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Abstract. We propose a concrete procedure of the Σ-protocol introduced by Cramer, Damg̊ard and
Schoenmakers at CRYPTO ’94, which is for proving knowledge that a set of witnesses satisfies a
monotone predicate in witness-indistinguishable way; that is, hiding the assignment of truth in the
predicate. We provide a detailed procedure by extending the so-called OR-proof.
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1 Introduction

A Σ-protocol formalized in the doctoral thesis of Cramer [Cra96] is a protocol of a 3-move public-coin
interactive proof system which satisfies the three requirements of completeness, special soundness and honest-
verifier zero-knowledge. It is one of the simplest protocols of zero-knowledge interactive proof systems, which
have an easy but special simulator under the condition that the verifier is honest. On the other hand, it is
one of the most typical proof of knowledge systems [BG92]; the knowledge-extraction property by the special
soundness enables us to prove that an identification scheme derived from the Σ-protocol is secure against
active and concurrent attacks reducing the security to some hardness assumptions [BP02]. For example, the
Schnorr protocol [Sch89] and the Guillou-Quisquater protocol [GQ88] of identification schemes have been
known as applications of the instantiated Σ-protocols. Moreover, the identification schemes are able to be
converted into digital signature schemes by the Fiat-Shamir heuristic [FS86]. The signature schemes can be
proved secure against chosen-message attacks in the random oracle model [PS96] based on the passive security
of the identification schemes [AABN02]. By virtue of these three features, a Σ-protocol have been adopted
into building blocks of various cryptographic primitives such as anonymous credential systems [CL02] and
group signature schemes [BBS04]. Post-quantum study on Σ-protocols and their non-interactive versions in



the quantum random oracle model (the QROM model) were studied [Unr12,Unr15], and the soundness and
proof-of-knowledge property were proved in the QROM model [DFMS19,LZ19]. Concrete constructions such
as the lattice-based construction (for example, [BBC+18]) make an active area of research.

The OR-proof protocol for a Σ-protocol, which was proposed by Cramer, Damg̊ard and Schoenmakers
at CRYPTO ’94 [CDS94], is a Σ-protocol derived from the original Σ-protocol [CDS94,Dam10]. It is a
perfectly witness-indistinguishable protocol [FS90] by which a prover can convince a verifier that a prover
knows one of the two or both witnesses while even an unbounded distinguisher cannot tell which witness
is used. The OR-proof is essentially applied in, for example, the construction of a non-malleable proof of
plaintext knowledge [Kat03]. In the papers [CDS94,BL88]1, a more general protocol was proposed: Suppose
a prover and a verifier are given a monotone predicate f over a polynomial number of boolean variables.
Here a monotone predicate means a boolean-valued function which is a boolean formula without negation;
that is, as a boolean formula, boolean variables of f are connected by AND-gates or OR-gates, but no
NOT-gate is used. As a predicate, ‘1’ (True) is assigned into every variable in f at which the prover knows
the corresponding witness, and ‘0’ (False) is assigned into every remaining variable. The protocol attains
the perfect witness indistinguishability over all satisfying assignment patterns in the sense that the prover
is able to prove that she knows one of the patterns of witnesses while even an unbounded distinguisher
cannot tell which pattern is used. This protocol is an extension of the OR-proof to any monotone predicate,
and in [CDS94] a high-level construction was given by using a dual access structure and a “semi-smooth”
secret-sharing scheme. (As is stated in [CDS94], to remove the restriction of the monotonicity of f looks
difficult.)

1.1 Our Contribution and Related Works

In this paper, we provide a concrete procedure of the Σ-protocol for any monotone formula, which was
proposed by Cramer, Damg̊ard and Schoenmakers [CDS94], according to the secret sharing scheme of Benaloh
and Leichter [BL88]. Given a Σ-protocol Σ and a monotone predicate f , we construct a Σ-protocol Σf ,
concretely. Then we show that the protocol Σf realized by our procedure is actually a Σ-protocol with the
perfect witness indistinguishability.

Explanation for the relation to attribute-based cryptographic primitives should be in order2. Herranz
[Her14] provided the first attribute-based identification scheme (ABID) and attribute-based signature scheme
(ABS) which attain both the collusion resistance (against collecting private secret keys) and the computa-
tional attribute privacy without pairings (pairing-free) in the RSA setting. Recently, Herranz [Her16a] pro-
vided pairing-free ABID and ABS schemes in the discrete-logarithm setting with a constraint that the number
of private secret keys is bounded in the set-up phase. In the ABID and ABS schemes [Her14,Her16a] Σ-
protocols are used and described for the threshold-type predicates. Our concrete procedure of the Σ-protocol
Σf can serve as the building blocks of the schemes for any monotone predicates including the threshold-
type. More generically, our concrete procedure can be used as a replacement of a Σ-protocol used in a
cryptographic primitive for the purpose of treating any monotone predicates (for example, [Ana18,AA18]).

1.2 Our Construction Idea

To construct a concrete procedure of the Σ-protocol Σf with the perfect witness indistinguishability, we
look into the technique employed in the OR-proof [CDS94] and expand it so that it can treat any monotone
predicate, as follows. First express the boolean formula f as a binary tree T f . That is, we put leaves each
of which corresponds to each position of a variable in f . We connect two leaves by an ∧-node or an ∨-node
according to an AND-gate or an OR-gate which is between the two corresponding positions in f . Then
we connect the resulting nodes by an ∧-node or an ∨-node in the same way until we reach the root node
(which is also an ∧-node or an ∨-node). A verification equation of the given Σ-protocol Σ is assigned to

1 The authors would like to express their sincere apologies to the fact that they could not refer to these papers in
the conference version [AAS14] of this ePrint.

2 In the conference version [AAS14] of this ePrint, we explained that we attained the collusion resistance in the
construction of ABID and ABS schemes by a naive application of the credential bundle technique [MPR11]. But
instead, we partially lost the attribute privacy in the ABID and the ABS schemes though the attribute privacy
was wrongly claimed in [AAS14].
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every leaf. If a challenge string Cha of our Σ-protocol Σf is given by the verifier, then the prover assigns
the string Cha to the root node. If the root node is an ∧-node, then the prover assigns the same string
Cha to the two children. Else if the root node is an ∨-node, then the prover divides Cha into two random
strings ChaL and ChaR under the constraint that Cha = ChaL ⊕ChaR, and assigns ChaL and ChaR to
the left child and the right child, respectively. Here ⊕ means a bitwise exclusive-OR operation. Then the
prover continues to apply this rule at each height, step by step, until she reaches all the leaves. Basically, the
OR-proof technique assures that, at every leaf, we can either honestly execute the Σ-protocol Σ or execute
the simulator of Σ. Only when a set of witnesses satisfies the binary tree T f , the above procedure succeeds
in satisfying verification equations at all the leaves.

1.3 Organization of this Paper

In Section 2, we prepare for required notions and notations. In Section 3, we describe a concrete procedure
of the Σ-protocol Σf . In Section 4, we conclude our work re-stating our contribution.

2 Preliminaries

The security parameter is denoted by λ. The bit length of a string a is denoted by |a|. The concatenation of
a string a with a string b is denoted by a ‖ b. A uniform random sampling of an element a from a set S is
denoted as a ∈R S. The expression a =? b returns a value 1 (True) when a = b and 0 (False) otherwise.
The expression a ∈? S returns a value 1 when a ∈ S and 0 otherwise. When an algorithm A with input a
outputs z, we denote it as z ← A(a), or, A(a) → z. When a algorithm A with input a and a algorithm B
with input b interact with each other, we denote the transcript of the messages as 〈A(a), B(b)〉.

Let R = {(x,w)} ⊂ {0, 1}∗×{0, 1}∗ be a binary relation. We say that R is polynomially bounded if there
exists a polynomial `(·) such that |w| ≤ `(|x|) for any (x,w) ∈ R. We say that R is an NP relation if it is
polynomially bounded and there exists a polynomial-time algorithm for deciding membership of (x,w) in R.
For a pair (x,w) ∈ R we call x a statement and w a witness of x. An NP language for an NP relation R is

defined as: L
def
= {x ∈ {0, 1}∗;∃w ∈ {0, 1}∗, (x,w) ∈ R}. We introduce a relation function R(·, ·) associated

with the relation R by: R(·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1}, (x,w) 7→ 1 if (x,w) ∈ R, and 0 otherwise. The
function R(·, ·) is polynomial-time in |x| as an algorithm. We denote the set of witnesses of a statement x
by W (x).

We denote an interactive proof system for an NP relation R [Bab85,GMR85] as Π = (P, V), where P and
V are a pair of interactive Turing machines, which are called a prover and a verifier, respectively. In this
paper, not only V but also P are assumed to be probabilistic polynomial-time (ppt). That is, Π = (P, V) is
an interactive argument system.

2.1 Σ-protocol, Witness-Indistinguishability and OR-proof

Σ-protocol [Cra96,Dam10] Let R be an NP relation. A Σ-protocol Σ on a relation R is a 3-move public-
coin protocol of an interactive proof system Π = (P, V) [Cra96,Dam10]. P sends the first message called a
commitment Com to V. Then V sends the second message called a challenge Cha to P, which is a public
random string. Then P sends the third message called a response Res to V. Then V applies a decision test to
(x,Com,Cha,Res) to return 1 (accept) or 0 (reject). If V accepts, then the triple (Com,Cha,Res) is said to
be an accepting transcript on x. The challenge Cha is chosen uniformly at random from the challenge space
ChaSp(1λ) := {0, 1}l(λ) with l(·) being a super-log function (i.e. l(λ) = ω(log(λ))). To state the requirements
for the Σ-protocol Σ, we introduce the following notation of the six ppt algorithms of the protocol Σ:
Σ = (Σcom, Σcha, Σres, Σvrf, Σext, Σsim). The first algorithm Σcom is described as (Com, St) ← Σcom(x,w).
That is, on input (x,w) ∈ R, it generates a commitment message Com and outputs its inner state St. The
second algorithm Cha, reading the size of the security parameter as 1λ on input the statement x, it chooses
a challenge message Cha ∈R ChaSp(1λ) and returns as Cha← Σcha(x). Similarly, the third and the forth
algorithms are described as Res← Σres(x,w, St,Com,Cha) and b← Σvrf(x,Com,Cha,Res), respectively.
Σ must satisfy the following three requirements.
Completeness. A prover P(x,w) with a witness w ∈W (x) makes V(x) accept with the probability 1.
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The fifth algorithm is described as follows.
Special Soundness. There is a ppt algorithm called a knowledge extractor Σext, which, given as input a
statement x and two accepting transcripts (Com,Cha,Res) and (Com,Cha′,Res′), computes a witness ŵ
satisfying (x, ŵ) ∈ R with an overwhelming probability, where the two challenges Cha and Cha′ are different
(Cha 6= Cha′):

ŵ ← Σext(x,Com,Cha,Res,Cha′,Res′).

The sixth algorithm is described as follows.
Honest-Verifier Zero-Knowledge. For any fixed statement x there is a ppt algorithm called a simulator Σsim

such that

( ˜Cha, ˜Com, R̃es)← Σsim(x),

where the distribution of (simulated) transcripts {( ˜Com, ˜Cha, R̃es)} is the same as the distribution of (real)
accepting transcripts {(Com,Cha,Res)} generated as 〈P(x,w), V(x)〉 for any fixed witness w ∈ W (x) and
for the (honest) verifier V.

For a Σ-protocol, the above simulator Σsim(x) is modified as follows. First generate a challenge ˜Cha by
running Σcha(1λ) (i.e. uniform random sampling from ChaSp(1λ)), and then input the challenge ˜Cha to
the modified simulator to generate a commitment ˜Com and a response R̃es:

˜Cha← Σcha(1λ), ( ˜Com, R̃es)← Σsim(x, ˜Cha).

This modification is justified due to the fact that the challenge Cha is a public coin.
We note that an interactive proof system Π = (P, V) with a Σ-protocol is known to be a proof of knowledge

system. (For the notion of a proof of knowledge system, see [BG92].)

Witness-Indistinguishability [FS90,Gol01] Let R be an NP relation. Suppose that an interactive proof
system Π = (P, V) for the relation R is given. Suppose further that the proof system Π is with a Σ-protocol
Σ for the relation R so that we can set the completeness and the special soundness. We focus into the
following property.
Witness Indistinguishability. For any ppt algorithm V∗, any sequences W 0 = (w0

x)x∈L and W 1 =
(w1

x)x∈L s.t. w0
x, w

1
x ∈ W (x), any ppt algorithm D, any polynomial poly(·), any sufficiently long string

x ∈ L and any string z ∈ {0, 1}∗,

Pr[D
(
x, z, 〈P(x,w0

x), V∗(x, z)〉
)

= 1]

−Pr[D
(
x, z, 〈P(x,w1

x), V∗(x, z)〉
)

= 1] <
1

poly(|x|)
.

The interactive proof system Π with the above property is said to be a witness-indistinguishable proof system
(WI, for short). A stronger notion is the perfect witness indistinguishability. If for any ppt algorithm V∗,
any sequences W 0 = (w0

x)x∈L and W 1 = (w1
x)x∈L s.t. w0

x, w
1
x ∈ W (x), any string x ∈ L and any string

z ∈ {0, 1}∗ the two distributions {(x, z, 〈P(x,w0
x), V∗(x, z)〉)} and {(x, z, 〈P(x,w1

x), V∗(x, z)〉)} are identical,
then the interactive proof system Π is said to be a perfectly witness-indistinguishable proof system (in short,
perfectly WIPoK).

OR-proof [Dam10] Let R be an NP relation. Suppose that a boolean formula f(X0, X1) = X0 ∨ X1 is
given, and fix the following relation.

ROR ={(x = (x0, x1), w = (w0, w1)) ∈ ({0, 1}∗)2 × ({0, 1}∗)2;

f(R(x0, w0), R(x1, w1)) = 1}.

The corresponding language is

LOR = {x ∈ ({0, 1}∗)2;∃w ∈ ({0, 1}∗)2, (x,w) ∈ ROR}.

4



Suppose further that aΣ-protocolΣ on a relationR is given. Then we construct the protocolΣOR for the rela-
tion ROR as follows. Let (x0, w0) be in R, wolog. P computes Com0 ← Σcom(x0, w0), (Com1,Cha1,Res1)←
Σsim(x1) and sends (Com0,Com1) to V. Then V chooses Cha← Σcha(1λ) and sends it to P. Then P computes
Cha0 := Cha ⊕Cha1,Res0 ← Σres(x0, w0,Com0,Cha0) and sends (Cha0,Cha1) and (Res0,Res1) to V.
Here ⊕ denotes a bitwise exclusive-OR operation. Then for each i = 0, 1, (Comi,Chai,Resi) is an accepting
transcript on xi, and furthermore, the distribution of transcripts {(Comi,Chai,Resi)} is the same as the
distribution of accepting transcripts generated as 〈P(xi, wi), V(xi)〉 for any fixed wi ∈W (xi).

The protocol ΣOR is actually a Σ-protocol [CDS94,Dam10]. We often call ΣOR the OR-proof protocol (or
simply, OR-proof, for short). A proof system Π with the OR-proof protocol is, as we see, perfectly witness-
indistinguishable [CDS94,Dam10]. Therefore, a proof system Π with the OR-proof protocol is perfectly
WIPoK.

2.2 Boolean Predicate

Let f = f(Xi1 , . . . , Xia) be a boolean formula over boolean variables U = {X1, . . . , Xu}. In this paper, we
consider only monotone boolean formulas; denoting the arity of f by a(f), two variables among Xi1 , . . . , Xia

are connected by a boolean connective; an AND-gate (∧) or an OR-gate (∨), and no NOT-gate (¬) appears
in f . For example, f = Xi1 ∧ ((Xi2 ∧Xi3)∨Xi4) for some indices i1, i2, i3, i4. For f(Xi1 , . . . , Xia), we denote
the set of indices of f by Att(f)(= {i1, . . . , ia}). Hereafter we use the symbol ij to mean the following:

ij
def
= (the index of a boolean variable that is the j-th argument of f).

Let U := {1, . . . , u} denote the set of indices of U . Suppose that we are given an access structure as a
boolean formula f . For S ∈ 2U , we evaluate the boolean value of f at S as follows:

f(S)
def
= f

(
Xij ← (ij ∈? S); j = 1, . . . , a(f)

)
∈ {0, 1}.

Under this notation, a boolean formula f can be seen as a map: f : 2U → {0, 1}. We call a boolean formula f
with this map a boolean predicate over U . We consider only monotone boolean predicates (in short, monotone
predicates) as above.

Binary-Tree Expression A monotone boolean predicate f can be represented by a finite binary tree T f .
Each inner node represents a boolean connective, an ∧-gate or an ∨-gate, in f . Each leaf corresponds to a
position Xi (not a variable Xi) in f in one-to-one way. For a finite binary tree T , we denote the set of all
nodes, the root node, the set of all leaves, the set of all inner nodes (i.e. all nodes excluding the leaves) and
the set of all tree-nodes (i.e. all nodes excluding the root node) as Node(T ), r(T ), Leaf(T ), iNode(T ) and
tNode(T ), respectively. Then a map ρ(·) is defined as:

ρ : Leaf(T )→ U , ρ(l)
def
= (the index i where l corresponds to the position Xi).

If T is of height greater than 0, T has two subtrees whose root nodes are two children of r(T ). We denote
the two subtrees by Lsub(T ) and Rsub(T ), which mean the left subtree and the right subtree, respectively.

3 Our Procedure of Σ-protocol on Monotone Predicate

In this section, we construct, given a Σ-protocol Σ and a monotone predicate f , a Σ-protocol Σf that is
perfectly witness-indistinguishable. Our protocol Σf is an extension of the OR-proof protocol ΣOR.

We revisit first the above notion that was introduced at a high level by Cramer, Damg̊ard and Schoenmak-
ers [CDS94]. Let R be a binary relation. Let f(Xi1 , . . . , Xia(f)) be a boolean formula over boolean variables
U = {X1, . . . , Xu}.
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P(x,w, f) : V(x, f):

(vn)n ← Σf
eva(T f , S)

If vr(T f ) 6= 1, then abort

else

Σf
com(x,w, T f , (vn)n, ?)
→ ((Coml)l, (Chan)n, (Resl)l) (Coml)l

−→

Cha Cha← Σf
cha(1λ)

Σf
res(x,w, T f , (vn)n, (Coml)l, ←−
Cha, (Chan)n, (Resl)l) Σf

vrf(x, T
f , (Coml)l,

→ ((Chan)n, (Resl)l) (Chan)n, (Resl)l Cha, (Chan)n, (Resl)l)
−→ → b,Return b

Fig. 1. Overview of our procedure of the Σ-protocol Σf for the relation Rf .

Definition 1 (Cramer, Damg̊ard and Schoenmakers [CDS94], our Rewritten Form) A relation
Rf is defined by:

Rf
def
= {(x = (xi1 , . . . , xia(f)), w = (wi1 , . . . , wia(f))) ∈ ({0, 1}∗)a(f) × ({0, 1}∗)a(f);

f(R(xi1 , wi1), . . . , R(xia(f) , wia(f))) = 1}.

Rf is a generalization of the relation ROR [CDS94,Dam10] where f was a boolean formula with a single
boolean connective OR, i.e. f = Xi1 ∨Xi2 . Note that, if R is an NP relation, then Rf is also an NP relation
under the assumption that the number of leaves of T f is bounded by a polynomial `(|x|). The corresponding
language is

Lf
def
= {x ∈ ({0, 1}∗)a(f);∃w ∈ ({0, 1}∗)a(f), (x,w) ∈ Rf}.

In the original paper [CDS94], a 3-move public-coin honest-verifier zero-knowledge proof of knowledge system
for the language Lf was defined as a perfectly witness-indistinguishable proof system on any given monotone
predicate f . Then, in [CDS94], a Σ-protocol of the perfectly WIPoK for the relation Rf was studied at a
high level by using the notion of the dual access structure of the access structure determined by f .

3.1 Our Procedure

Now we construct a concrete procedure of a protocol Σf of a WIPoK system for the relation Rf . Σf is a
3-move public-coin protocol of a proof of knowledge system Π = (P, V) between interactive ppt algorithms

P and V, and it consists of seven algorithms: Σf = (Σf
eva, Σ

f
com, Σ

f
cha, Σ

f
res, Σ

f
vrf, Σ

f
ext, Σ

f
sim). In our prover

algorithm P, there are four ppt subroutines Σf
eva, Σf

com, Σf
res and Σf

sim. On the other hand, in our verifier

algorithm V, there are two ppt subroutines Σf
cha and Σf

vrf. Moreover, Σf
vrf has two subroutines VrfCha and

VrfRes. Fig. 1 shows the construction of our procedure Σf . (For the binary-tree expression of a boolean
formula f , see Section 2.2.)
Evaluation of Satisfiability. The prover P begins with evaluation of whether and how S satisfies f by
running the evaluation algorithm Σf

eva. It labels each node of T f with a value v = 1 (True) or 0 (False).
For each leaf l, we label l with vl = 1 if ρ(l) ∈ S and vl = 0 otherwise. (For the definition of the function
ρ, see Section 2.2.) For each inner node n, we label n with vn = vnL

∧ vnR
or vn = vnL

∨ vnL
according to

AND/OR evaluation of two labels of its two children, nL and nR. The computation is executed for every
node from the root to each leaf, recursively, as in Fig. 2.
Commitment. The prover P computes a commitment for each leaf by running the algorithm Σf

com described
in Fig. 3. Basically,Σf

com runs for every node from the root to each leaf, recursively. As a result,Σf
com generates

for each leaf l a value Coml; If vl = 1, then Coml is computed honestly according to Σcom. Else if vl = 0,
then Coml is computed in the simulated way according to Σsim. Other strings, (Chan)n and (Resl)l, are
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Σf
eva(T , S) :
TL := Lsub(T ), TR := Rsub(T )

If r(T ) is ∧-node n, then vn := Σf
eva(TL, S) ∧Σf

eva(TR, S),

Return (vn, Σ
f
eva(TL, S), Σf

eva(TR, S))

else if r(T ) is ∨-node n, then vn := Σf
eva(TL, S) ∨Σf

eva(TR, S),

Return (vn, Σ
f
eva(TL, S), Σf

eva(TR, S))
else if r(T ) is a leaf l, then vl := (ρ(l) ∈? S)

Return (vl)

Fig. 2. The subroutine Σf
eva of our Σf .

Σf
com(x,w, T , (vn)n,Cha) :
TL := Lsub(T ), TR := Rsub(T )
If r(T ) is ∧-node n, then Chan := Char(TL) := Char(TR) := Cha

Return (Chan, Σ
f
com(x,w, TL, (vn)n,Char(TL)),

Σf
com(x,w, TR, (vn)n,Char(TR)))

else if r(T ) is ∨-node n, then Chan := Cha
If vr(TL) = 1 and vr(TR) = 1, then Char(TL) := ?, Char(TR) := ?

else if vr(TL) = 1 and vr(TR) = 0, then Char(TL) := ?, Char(TR) ← Σcha(1λ)

else if vr(TL) = 0 and vr(TR) = 1, then Char(TL) ← Σcha(1λ),Char(TR) := ?

else if vr(TL) = 0 and vr(TR) = 0, then Char(TL) ← Σcha(1λ),Char(TR) := Cha⊕Char(TL)

Return (Chan, Σ
f
com(x,w, TL, (vn)n,Char(TL)),

Σf
com(x,w, TR, (vn)n,Char(TR)))

else if r(T ) is a leaf l, then Chal := Cha
If vl = 1, then Coml ← Σcom(xρ(l), wρ(l)),Resl := ?
else if vl = 0, then (Coml,Resl)← Σsim(xρ(l),Cha)
Return(Coml,Chal,Resl)

Fig. 3. The subroutine Σf
com of our Σf .

needed for the simulation. Note that the distinguished symbol ? is used to indicate that the value has not
been decided yet. P sends (Coml)l to V.

Challenge. The verifier V computes a challenge Cha by running the algorithm Σf
cha described in Fig. 4. V

sends Cha to P.

Σf
cha(1λ) : Cha← Σcha(1λ),Return(Cha)

Fig. 4. The subroutine Σf
cha of our Σf .

Response. The prover P computes a response for each leaf by running the algorithm Σf
res described in Fig.

5. Basically, the algorithm Σf
res runs for every node from the root to each leaf, recursively. As a result, Σf

res

generates the challenge strings (Chan)n for all the nodes n ∈ Node(T f ) and the response strings (Resl)l
for all the leaves l ∈ Leaf(T f ). Note that the computations of all challenge strings (Chan)n are completed
(according to the “division rule” described in Section 1.2). P sends (Chan)n and (Resl)l to V.

Verification. The verifier V computes a decision boolean by running the following algorithm Σf
vrf from the

root to each leaf, recursively.
Now we have to check that Σf is certainly a Σ-protocol for the relation Rf .

Proposition 1 (Completeness) The completeness holds for our Σf .

Proof. Suppose that vr(T f ) = 1. We show that, for every node in Node(T f ), either vn = 1 or Chan 6= ∗
holds after executing Σf

com. The proof is by induction on the height of T f . The case of height 0 follows from
vr(T f ) = 1 and the completeness of Σ. Suppose that the case of height k holds and consider the case of

height k + 1. The construction of Σf
com assures the case of height k + 1. �
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Σf
res(x,w, T , (vn)n, (Coml)l,Cha, (Chan)n, (Resl)l) :
TL := Lsub(T ), TR := Rsub(T )
If r(T ) is ∧-node n, then Chan := Char(TL) := Char(TR) := Cha

Return(Chan, Σ
f
res(x,w, TL, (vn)n, (Coml)l,Char(TL), (Chan)n, (Resl)l),

Σf
res(x,w, TR, (vn)n, (Coml)l,Char(TR), (Chan)n, (Resl)l))

else if r(T ) is ∨-node n, then Chan := Cha

If vr(TL) = 1 and vr(TR) = 1, then Char(TL) ← Σcha(1λ),Char(TR) := Cha⊕Char(TL)

else if vr(TL) = 1 and vr(TR) = 0, then Char(TL) := Cha⊕Char(TR)

else if vr(TL) = 0 and vr(TR) = 1, then Char(TR) := Cha⊕Char(TL)

else if vr(TL) = 0 and vr(TR) = 0, then do nothing

Return(Chan, Σ
f
res(x,w, TL, (vn)n, (Coml)l,Char(TL), (Chan)n, (Resl)l),

Σf
res(x,w, TR, (vn)n, (Coml)l,Char(TR), (Chan)n, (Resl)l))

else if r(T ) is a leaf l, then Chal := Cha
If vl = 1, then Resl ← Σres(xρ(l), wρ(l),Coml,Cha)
else if vl = 0, then do nothing
Return(Chal,Resl)

Fig. 5. The subroutine Σf
res of our Σf .

Σf
vrf(x, T , (Coml)l,Cha, (Chan)n, (Resl)l) :
Return(VrfCha(T ,Cha, (Chan)n) ∧ VrfRes(x, T , (Coml)l, (Chal)l, (Resl)l))

VrfCha(T ,Cha, (Chan)n) :
TL := Lsub(T ), TR := Rsub(T )
If r(T ) is ∧-node n, then

Return ((Cha =? Char(TL)) ∧ (Cha =? Char(TR))
∧VrfCha(TL,Char(TL), (Chan)n) ∧ VrfCha(TR,Char(TR), (Chan)n))

else if r(T ) is ∨-node n, then
Return ((Cha =? Char(TL) ⊕Char(TR))
∧VrfCha(TL,Char(TL), (Chan)n) ∧ VrfCha(TR,Char(TR), (Chan)n))

else if r(T ) is a leaf l, then

Return (Cha ∈? ChaSp(1λ))

VrfRes(x, T , (Coml)l, (Chal)l, (Resl)l) :
For l ∈ Leaf(T ) : If Σvrf(xρ(l),Coml,Chal,Resl) = 0, then Return (0)
Return (1)

Fig. 6. The subroutine Σf
vrf of our Σf .
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Proposition 2 (Special Soundness) The special soundness holds for our Σf .

We construct a knowledge extractor Σf
ext by employing the knowledge extractor Σext of the underlying

Σ-protocol Σ as in Fig. 7. Then Lemma 1 assures the above proposition.

Σf
ext(x, f, (Coml)l, Cha, (Chan)n, (Resl)l, Cha′, (Cha′n)n, (Res′l)l) :
If Cha = Cha′ then Return TheSameCha

else if Σf
vrf(x, T

f ,Cha, (Coml)l, (Chan)n, (Resl)l) = 0

or Σf
vrf(x, T

f ,Cha′, (Coml)l, (Cha′n)n, (Res′l)l) = 0, then Return ⊥
else

For l ∈ Leaf(T f ):

If Chal = Cha′l, then ŵρ(l) ∈R {0, 1}`(|xρ(l)|)
else ŵρ(l) ← Σext(xρ(l),Coml,Chal,Resl,Cha′l,Res′l)

Return (ŵ := (ŵij )1≤j≤a(f))

Fig. 7. The knowledge-extractor Σf
ext of our Σf .

Lemma 1 (Knowledge Extraction) The string ŵ output by Σf
ext satisfies (x, ŵ) ∈ Rf .

Proof. We prove the lemma by induction on the number of all ∨-nodes in iNode(Tf ). First remark that
Cha 6= Cha′.

Suppose that all nodes in iNode(Tf ) are ∧-nodes. Then the above claim follows immediately because
Chal 6= Cha′l holds for all leaves.

Suppose that the case of k ∨-nodes holds and consider the case of k + 1 ∨-nodes. Look at one of the
lowest height ∨-node and name the height and the node as h∗ and n∗, respectively. Then Chan∗ 6= Cha′n∗

because all nodes with their heights less than h∗ are ∧-nodes. So at least one of children of n∗, say n∗L,
satisfies Chan∗

L
6= Cha′n∗

L
. Divide the tree T f into two subtrees by cutting the branch right above n∗, and

the induction hypothesis assures the claim. �

Proposition 3 (HVZK) The honest-verifier zero-knowledge property holds for our Σf .

Proof. We construct a polynomial-time simulator Σf
sim, which on input a statement x ∈ Lf and a predicate

f returns an accepting transcript ((Coml)l,Cha, (Chan)n, (Resl)l), as in Fig. 8.

Σf
sim(x, f) :

˜Cha← Σf
cha(1λ), w ∈R {0, 1}`(|xρ(l)|), For n ∈ Node(T f ) : vn := 0

(( ˜Coml)l, ( ˜Chan)n, (R̃esl)l)← Σf
com(x,w, T f , (vn)n, ˜Cha)

Return(( ˜Coml)l, ˜Cha, ( ˜Chan)n, (R̃esl)l)

Fig. 8. The simulator Σf
sim of our Σf .

�
We summarize the above results into the following theorem and corollary.

Theorem 1 (Σf is a Σ-protocol) If a given protocol Σ on a relation R is a Σ-protocol, and if a boolean
predicate f is monotone and the number of leaves of T f is bounded by a polynomial `(|x|), then the protocol
Σf with our procedure is a Σ-protocol for the relation Rf .

Theorem 2 (Σf is a perfectly WIPoK) If a given protocol Σ on a relation R is a Σ-protocol, and if
a boolean predicate f is monotone and the number of leaves of T f is bounded by a polynomial `(|x|), then
the protocol Σf with our procedure is a protocol of a perfectly witness-indistinguishable proof of knowledge
system for the relation Rf .

Proof. For any statement x and any two witnesses w1 and w2 satisfying Rf (x,w1) = Rf (x,w2) = 1, the
distribution of the transcript P(x,w1) and V(x) of Σf and the distribution of the transcript P(x,w2) and
V(x) of Σf are identical. �
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3.2 Non-interactive Version

The Fiat-Shamir transform FS(·) can be applied to any Σ-protocol Σ ([FS86,AABN02]). Therefore, the
non-interactive version of our procedure Σf is obtained.

Theorem 3 (FS(Σf ) is a non-interactive perfectly WIPoK) If a given protocol Σ on a relation R is
a Σ-protocol, and if a boolean predicate f is monotone and the number of leaves of T f is bounded by a poly-
nomial `(|x|), then the protocol FS(Σf ) is a protocol of a non-interactive perfectly witness-indistinguishable
proof of knowledge system for the relation Rf . A knowledge extractor is constructed in the random oracle
model.

3.3 Discussion

As is mentioned in [CDS94], the Σ-protocol Σf can be considered as a proto-type of an attribute-based
identification scheme [AAHI13]. Also, the non-interactive version FS(Σf ) can be considered a proto-type of
an attribute-based signature scheme [MPR11]. That is, Σf and FS(Σf ) are an attribute-based identification
scheme and an attribute-based signature scheme without the collusion resistance against collecting private
secret keys, respectively.

4 Conclusion

We provided a concrete procedure of a Σ-protocol Σf , which is of a perfectly witness-indistinguishable
proof of knowledge system for an NP relation Rf , where f is an input monotone predicate. Our concrete
procedure is for any monotone predicate f on condition that the number of leaves of T f is bounded by a
polynomial `(|x|). It serves as building blocks of cryptographic primitives which use Σ-protocols; for example,
the pairing-free ABID and ABS schemes [Her14,Her16a].
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[Her16b] on the topic in this paper. We would like to thank to Keita Emura and Takahiro Matsuda for
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