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Abstract. Passive physical attacks, like power analysis, pose a serious threat
to the security of embedded systems and corresponding countermeasures need
to be implemented. In this work, we demonstrate how the costs for protecting
digital circuits against passive physical attacks can be lowered significantly. We
introduce a novel masking approach called domain-oriented masking (DOM).
Our approach provides the same level of security as threshold implementations
(TI), while it requires less chip area and less randomness. DOM can also be scaled
easily to arbitrary protection orders for any circuit.
To demonstrate the flexibility of our scheme, we apply DOM to a hardware design
of the Advanced Encryption Standard (AES). The presented AES implementa-
tion is built in a way that it can be synthesized for any protection order. Although
the design is scalable, it leads to the smallest (~7.1 kGE), fastest, and least ran-
domness demanding (18 bits) first-order secure AES implementation. The gap
between DOM and TI increases with the protection order. Our second-order se-
cure AES S-box implementation, for example, has a hardware footprint that is
half the size of the smallest existing second-order TI of the S-box. This paper
includes synthesis results of our AES implementation up to the 15th protection
order.

Keywords: masking, domain-oriented masking, threshold implementations, pri-
vate circuits, side-channel analysis, DPA, hardware security, AES

1 Introduction

The increasing number of interconnected embedded devices demand security not only
on a cryptographic level but also on a physical level. Without countermeasures against
physical attacks embedded devices are defenseless against attackers which have physi-
cal access. An attacker can easily extract device internal secrets by measuring the power
consumption [16] or the electromagnetic emanation [22] of the device during security
critical operations.

The most promising approach to achieve resistance against passive physical attacks
is to make sensitive computations independent from the processed data by using so-
called masking schemes. The first masking scheme—hereafter referred to as classical
boolean masking scheme—was introduced by Goubin et al. [13]. Besides the classical



boolean masking scheme, there exist many other masking schemes, like Ishai et al.’s
private circuits [15] and the Trichina gate [26]. However, the aforementioned schemes
have been shown to be vulnerable against glitches and thus rigorous care has to be taken
during the implementation to avoid leakage caused by glitches.

A masking scheme that is inherently immune against glitches is the threshold im-
plementation (TI) masking scheme introduced by Nikova et al. [21]. It has been ex-
tensively researched and extended by Bilgin et al. [2, 4, 6] during the last years. There
exist many protected hardware implementations that are based on TI, like Moradi’s and
Poschmann’s AES implementation [20], which was improved by Bilgin et al. [3, 5].

However, the first approach to extend TI to higher protection orders [4] has shown to
be vulnerable against glitches by Reparaz [23] which lead to the Generalized Masking
Scheme [24] (GMS) as the secure extension of TI to higher orders. The GMS is also
the basis for the second-order TI of the AES S-box of De Cnudde et al. [10].

Implementing higher-order protection based on the TI scheme, has been shown to
be very costly. In particular the costs resulting from a high number of shares, like the
required chip area and the amount of fresh random bits are significant [10]. Also the
design effort is high as there exists no generalization to efficiently transform, for exam-
ple, a first-order TI into a higher-order TI. As a result, the non-linear parts of a circuit
need to be redesigned to fulfill the requirements for higher-order TI.

The private circuits scheme of Ishai et al. [15] on the other hand, which has a gen-
eralization to arbitrary protection orders, lacks the ability to deal with glitches. To the
best of our knowledge there exists no secure and efficient implementation of the private
circuit masking scheme in hardware that considers glitches. Furthermore, there has no
hardware implementation been published that can be synthesized for arbitrary protec-
tion orders.

Our contribution In this work we introduce domain-oriented masking (DOM), a
generic masking scheme that leads to hardware designs which can be synthesized for
arbitrary protection orders. DOM thereby realizes the same theoretical bounds for fresh
randomness as private circuits [15] without being vulnerable to glitches. Therefore, we
introduce the concept of share domains and apply the idea of keeping each domain
independent from other share domains.

Despite its generic construction, DOM provides lower implementation costs and the
same level of security and glitch resistance as TI. The main differences between DOM
and TI are: (1) our approach is domain oriented rather than function oriented, (2) the
minimum number of shares are always used which results in a reduced gate count and
a lowered number of required fresh random bits, (3) DOM protected hardware designs
can be synthesized for arbitrary protection orders.

On the basis of the DOM scheme we present an AES implementation with freely
scalable protection order. Nevertheless, our first-order secure AES variant requires only
7.1 kGE of chip area, 18 random bits per S-box call, and 246 clock (200 cycles for
the interleaved variant) cycles per encryption. It is thus the smallest, least randomness
demanding, and fastest first-order secure AES implementation. Our second-order AES
S-box is with 5.3 kGE of chip area around two times smaller than existing implemen-
tations. Furthermore, the DOM AES S-box also requires less than half the number of
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random bits of the TI S-box, while the AES core still achieves the same speed as our
first-order implementation.

This paper includes implementation results of our AES implementation up to the
15th protection order. The VHDL source code of the generic AES design is published
online [14], which we hope will help future research and make comparisons easier.

This paper is organized as follows. In Section 2, we start with a brief recap of
the most important properties of classical boolean masking approaches and threshold
implementations on the basis of a Galois field multiplier. In Section 3, we introduce
domain-oriented masking and make first comparisons with TI. In particular, we intro-
duce two DOM multiplier designs with different scopes of application for efficiently
protecting hardware designs. We then introduce two DOM-protected implementations
of the AES in Section 4. A comparison of the implementation results with existing AES
implementations is done in Section 5, which are based on the DOM multiplier designs.
Section 6 concludes our work.

2 Masking

The core idea of masking is to make computations independent from the data that is
processed. For this purpose, the data is split into a number of shares, which when re-
combined through addition over GF (2n) result in the original value. The sharing is
done based on uniformly distributed random numbers. A sharing of a variable x can be
written as shown in Equation 1, where the shares are denoted by capital letters with the
shared variable in the subscript index.

x = Ax +Bx + Cx + . . . (1)

The sharing does not only affect the representation of the data but also of the func-
tions that are applied to this data. An unshared function “F” is split up into a number of
component functions denoted by the original functions name with a capital letter in the
index. Again the sum over the component functions must give the same result as for the
unshared variables (see Equation 2).

F(x, y) = FA + FB + FC + . . . (2)

A basic requirement of all masking schemes is that each intermediate signal needs
to be statistically independent of all unshared inputs and outputs. Often maintaining this
independence requires the addition of a fresh random share to intermediate results. In
this paper we always use Z shares to refer to randomly picked shares with the intention
to provide statistical independence. The independence requirement is strongly related
to the so-called probing model introduced by Ishai et al. [15] where the security against
a probing attacker limited to d (= protection order) probing needles is considered. It was
demonstrated by Faust et al. [11] and Rivain et al. [25] that there indeed exists a relation
between the number of probed wires in the d-probing model and the attack order for a
differential power analysis (DPA) attack. As it was shown by Chari et al. [9], there exist
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Fig. 1. Classical masked GF (2n) multiplier (left) and TI with component functions (right)

an exponential relation between the protection order and the number of leakage traces
that are required for revealing the intermediate values.

While linear functions over GF (2n) can be implemented trivially, the implementa-
tion of nonlinear parts is quite challenging. In the past, Galois field (GF ) multipliers
have shown to be a good reference point to compare masking schemes. Multipliers are
also of particular interest because on the basis of a simple one-bit multiplier, which cor-
responds to an AND gate, every boolean logic gate can be realized and in consequence
every possible circuit. In the following, we explain the classical masking scheme and
the threshold implementations scheme on the basis of a Galois field multiplier that is
protected against first-order attacks.

2.1 Classical Boolean Masking

First-order masking requires only two shares. Accordingly, a shared multiplication of
two inputs x and y over GF (2n) can be written as the multiplication of two shared finite
field elements as demonstrated in Equation 3, where x = Ax +Bx and y = Ay +By .

q = x× y = (Ax +Bx)(Ay +By)

= AxAy +AxBy +BxAy +BxBy

(3)

While all partial products are independent of x and y, the resulting sum is not.
Therefore, a fresh random share Z0 needs to be added to the first multiplication result
of Equation 3 to break the dependency between the intermediates calculated by the
multipliers. Figure 1 (left) shows a classical masked GF (2n) multiplier.

Even tough this multiplier seems to be secure in the d-probing model, this imple-
mentation is still not free from first-order leakages. Consider the results of the two the
multipliers on the left, for example, that calculate AxAy and AxBy . If this intermediate
signals reach the exclusive-OR gate before Z0 then the resulting signal is no longer in-
dependent to the value of y. As a result, the security of the masked multiplier depends
on signal transition times caused by wire lengths, transistor speeds, et cetera, which
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is hard to control for digital designers. For this reason, the classical boolean masking
scheme is considered to be flawed [18]. As it was shown by Mangard et al. [19] the
problems are not caused by the four multipliers itself or their additive leakage. The
only reason this sharing produces first-order leakages is due to glitches caused by the
addition of the multiplier results.

Researchers have tried to repair the masked multiplier in Figure 1 (left) [1, 12, 17].
These works mainly focused on balancing and reordering the signals and gates in such
a way that no glitches can occur any longer. These approaches, however, require an
enormous effort in the backend of the hardware design flow in order to guarantee the
correctness of the signal timings.

2.2 Threshold Implementations

Threshold implementations focus on component functions and on the properties these
component functions have to fulfill to guarantee data independence even in the presence
of glitches. These properties are correctness, non-completeness, and uniformity.

The correctness property of TI simply requires that the sum over the component
functions must give the same result as for the unshared variables. For first-order secure
implementations, the non-completeness property requires for each component function
to be independent of at least one share per variable. The non-completeness rule can also
be generalized [4] to any order of security d requiring for up to d component functions
to be independent of at least one input share.

As a consequence of the non-completeness property, each component function out-
put needs to be fed into a register before it can be safely used in the next function.
The property that is usually the hardest to achieve is the uniformity which demands all
share inputs and outputs of component functions to be uniformly distributed regardless
of which unshared values they represent. For first-order TI the uniformity of the com-
ponent functions can be often achieved without performing a complete resharing of the
outputs by using more shares, or correction terms, or using fresh random shares in more
than one component function. However, the GMS of Reparaz et al. [24], as the secure
extension of TI to higher orders, requires a resharing of all output shares with fresh
random bits to avoid glitches.

While functions that are linear over GF (2n) can be implemented in a first-order
secure manner with only two shares, Nikova et al. [21] states the lower bound for non-
linear functions with two variables to be at least three shares. In general, the number of
input shares required for higher-order security is given by sin ≥ d× t+1 where s is the
number of shares, d is the protection order, and t the degree of the function. The number
of output shares for TI is given with sout ≥

(
sin
t

)
. In [24], Reparaz et al. mentioned

that given an independent input sharing and carefully designed component functions
with more calculation steps and registers, the number of shares can be lowered to d+1.
However, they state that they avoid giving a generic construction for the d + 1 case
because extreme care has to be taken to not unmask any intermediate value.

As an example for a first-order secure TI, the GF (2) multiplier in Figure 1 (right)
uses three shares per variable and one fresh random share for achieving uniformity of
all output shares as shown by Bilgin [7] (Equation 4).
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FA = BxBy +BxCy + CxBy + Z0

FB = CxCy +AxCy + CxAy +AxZ0 +AyZ0

FC = AxAy +AxBy +BxAy +AxZ0 +AyZ0 + Z0

(4)

For the sake of completeness we note that the TI multiplier could also be imple-
mented by using two fresh random shares and less logic gates, or with more shares and
an increased gate count.

First-order leakage caused by glitches is avoided in any TI design through the non-
completeness rule. The first component function FA, e.g., is independent of all A shares,
the second component function FB of all the B shares, and so forth. The glitch resis-
tance however comes at high costs in terms of gate count. While the classical multiplier
requires only four AND gates and four XOR gates, the TI variant in Equation 4 con-
sumes 13 AND gates, 12 XOR gates, and three registers. In the next section we show
that our DOM schemes achieves the same security as TI by requiring only four AND
gates, four XOR gates, and two registers for the multiplier.

3 Domain-Oriented Masking (DOM)

In contrast to threshold implementations, which consider properties at function level,
our approach is based on the concept of share domains. In DOM implementations, each
share of a variable is associated with one share domain. This is also reflected in the
notation that is used in this paper. The shares Ax and Bx of a variable x, for example,
are associated with the domains A and B, respectively.

A DOM implementation uses d+1 shares per variable in order to achieve dth-order
security. There are d+ 1 domains in this case. The basic idea of the DOM approach is
to keep the shares of all domains independent from shares of other domains. This inde-
pendence ensures dth-order security according to the d-probing model. If, for example,
in a first-order security setting, a component function takes the inputs Ax and Ay from
domain A, all intermediate values calculated by this function are independent of the
corresponding unshared inputs x = Ax +Bx and y = Ay +By . This is a consequence
of the fact that Bx and By are not part of this function and are combined by another
component function working on domain B.

In case of linear functions, the independence of the domains is trivial to achieve
because linear functions only require to combine shares within one share domain. The
critical part, like in all masking schemes, are the non-linear functions. In the case of
non-linear functions, domain borders need to be crossed and dedicated measures need
to be taken in order to maintain the independence of the shares in the different domains.
The basic idea of DOM is to secure domain crossings by adding a fresh random share
Z and by using a register in order to prevent that glitches propagate from one domain
to the other.

In the following, we detail the concept of two-input GF DOM multipliers, which
can serve as a basis to protect arbitrary circuits, and which are also the most critical
part of masked AES implementations. In particular, we introduce two variants of DOM
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multipliers named DOM-indep and DOM-dep. The advantage of the DOM-indep mul-
tiplier is its lower demand for fresh randomness and also the gate count is significantly
smaller compared to the DOM-dep multiplier especially for low protection orders. The
difference between these multipliers, however, is that the DOM-indep variant requires
that the inputs are shared independently.

As an example for a violation of share independence consider the classical masked
GF multiplier in Figure 1 (left). If this multiplier calculates x × x for the same shar-
ing of both inputs x, then this would result in the multiplication terms AxAx, AxBx,
BxAx, and BxBx. The terms AxAx and BxBx use only one share of x and are thus
uncritical. The terms AxBx and BxAx, on the other hand, violate the share indepen-
dence by bringing shares from different domains of one sharing together. Even without
the XOR gates at the outputs of the classical masked GF multiplier, the intermediate
results depend on x. The share independence of course only requires the shares of the
inputs to be pairwise independent not the variables themselves. It is therefore possible
to calculate, for example, x× x with the DOM-indep multiplier, as long as both inputs
are shared independently.

In practice, dependencies between shares can be less obvious and can even be just
temporary. As an example consider a 2-bit transformation that is defined as follows: The
first output bit q0 of this transformation is the linear combination of two of the input bits
x0+x1 and the second output bit is just the first input bit q1 = x0. Due to signal delays
it is possible that both output bits are temporarily formed by the same input bit x0 only.
If those bits are the shared inputs of a non-linear function, then this again results in a
temporary violation of the share independence in form of glitches.

We start to introduce DOM by means of the first-order secure DOM-indep mul-
tiplier in Section 3.1 and extend it in Section 3.2 to arbitrary protection orders. The
independence requirement for the input shares of the DOM-indep multiplier allows us
to successively introduce the basic concept of DOM and to show its security in the
d-probing model. This multiplier design is similar to the design of Ishai et al. [15] but
without the vulnerability to glitches, and it has a balanced arrangement of the multipli-
cation terms which shortens the signal delay paths.

On the basis of the DOM-indep multiplier, we then construct the DOM-dep multi-
plier for inputs with related sharing and discuss its security. In Section 3.4 a comparison
of the DOM multiplier variants is given.

3.1 1st-Order Secure DOM-indep Multiplier

A first-order secure DOM-indep multiplier (see Figure 2) consists of two share domains.
The inputs x and y are provided to the multiplier by the shares Ax and Bx, and Ay and
By , respectively. The sharings for x and y are required to be uniformly random and
independent from each other. The multiplier returns the shares Aq and Bq of the output
q. A DOM multiplier performs three steps in order to map the input shares to the output
shares. We refer to these steps as calculation, resharing and integration.
Calculation: In the calculation step, the actual multiplication is performed and the
product terms AxAy , AxBy , BxAy and BxBy are calculated. In DOM, we distinguish
between inner-domain terms (AxAy , BxBy) and cross-domain terms (AxBy , BxAy).
The calculation of inner-domain terms only combines shares within one domain. These
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Fig. 2. First-order DOM-indep GF (2n) multiplier

terms are not critical from a security point of view. Any function that is computed based
on shares that are independent from the shares in other domains only lead to outputs
that are also independent of the shares of the other domains.

In case of cross-domain calculations, there is less freedom. In fact, in a DOM
scheme, cross-domain calculations can only be done for independently shared vari-
ables. If shares of the same variable would be combined for example, the scheme would
be trivially broken. For example, the product AxBx would leak information about x.
However, shares from different domains that correspond to different variables can be
combined without violating the requirement for dth-order security. In fact, there is no
leakage about x or y when calculating any function of Ax and By . This results from
the requirement that x and y are independently shared. There is also no leakage caused
by any function of Bx and Ay for an independent sharing of x and y. Circuit parts that
operate on inputs from multiple domains are plotted red in Figure 2. These parts are not
assigned to a specific domain and contain the cross-domain terms.
Resharing: In DOM, the integration of cross-domain terms into a domain is prepared
in the resharing step. By adding a fresh random Z share to a cross-domain term, it
becomes statistically independent from all other values and can therefore be added to
any arbitrary domain in a next step. However, using a new share for each cross-domain
term would lead to a high overhead. In DOM, the goal is to minimize the number of
fresh shares. In case of the 1st-order secure multiplier, the same fresh share Z0 is used
for the resharing of the product terms AxBy and BxAy . This does not lead to a first-
order leakage and at the same time allows to build a very efficient design.

In order to prevent that any glitch propagates through the resharing step, in DOM
always a register is included as last part of the resharing step. The two registers in grey
dotted lines are optional registers for the inner-domain terms and are only required in the
case pipelining is used. At first sight, the registers in Figure 2 seem to add an additional
delay compared to the TI variant of the multiplier. However, the TI scheme also requires
registers at the output of each component function. Otherwise no cascading of functions
is possible. In case of a DOM multiplier, the output can be directly plugged into the next
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non-linear function. The number of register stages is thus the same for both schemes
(cf. Figure 1, right).

Integration: During the integration phase, the reshared cross-domain terms are added
to the domains, which concludes the GF multiplication. This addition leads to glitches
at the XOR gate at the output of the domain. However, as the resharing finishes with
a register no glitches can occur that depend on x or y. In terms of correctness of the
scheme, it is important to point out that the fresh share Z0 becomes part of both domains
of the multiplier. Hence, it holds that q = Aq+Bq and there is no need for any additional
share.

In summary, the security against a first-order probing attacker is given because each
domain contains only inner-domain terms and cross-domain terms that are reshared
with a fresh random share which is only used once in each domain. An attacker thus
always needs to combine two or more intermediate signals to get one signal that depends
on one of the independently shared inputs x or y. Problems caused by different signal
propagation times as for the classical masked multiplier in Section 2.1 are prevented
through registered outputs in the resharing phase.

3.2 Higher-Order Secure DOM-indep Multiplier

The first-order DOM multiplier can be extended to arbitrary protection orders. The
generalization requires to first extend the calculation phase to produce a correct sharing
with d+1 shares for any given protection order d. In the resharing phase it needs to be
ensured that the fresh random Z shares are distributed over the domains in a way that
(1) each cross-domain term is reshared with a Z share that is unique inside the targeted
domain, and (2) none of the signal combinations created in the integration phase reveals
more than the inner-domain terms or shares.

Calculation: The same rules as for the first-order DOM apply for the higher-order gen-
eralization. Again, any combination of inner-domain shares can be used for the multi-
plication terms inside their associated domain without any restrictions. Cross-domain
multiplication terms are restricted to be originated from independently shared variables
to prevent the case that two shares of the same sharing are combined.

Given this restrictions, the GF (2n) multiplication formula in Equation 3 can be
easily generalized for d+1 input shares per variable as shown in Equation 5. Each row
of this formula stands for one component function calculating one share of the output
q. The multiplications in the diagonal (bold) are the inner-domain multiplication terms
containing only shares from one specific domain and hence only leak about shares of
this domain. The cross-domain products do not leak more information on the inputs
x and y then when probing one share of x and one share of y directly. Hence, with
this formula the sharing for the calculation step for the GF multiplier is secure in the
d-probing model and can be realized for arbitrary numbers of shares. An example for a
second-order DOM multiplier is given in Figure 3.
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Fig. 3. Second-order secure DOM-indep GF (2n) multiplier

q = x× y =(Ax +Bx + Cx +Dx + Ex + . . . )(Ay +By + Cy +Dy + Ey + . . . )

=AxAy +AxBy +AxCy +AxDy +AxEy + . . .︸ ︷︷ ︸
Aq

BxAy +BxBy +BxCy +BxDy +BxEy + . . .︸ ︷︷ ︸
Bq

CxAy + CxBy +CxCy + CxDy + CxEy + . . .︸ ︷︷ ︸
Cq

...
...

...
...

...

(5)
Resharing: A core property for the generalization of the DOM scheme is how the
required fresh random Z shares can be efficiently distributed among the cross-domain
terms in a correct manner. From Equation 5 it can be seen that there are exactly d(d+1)
cross-domain terms which need to be reshared. It is also important to note that there are
exactly two product terms that combine shares from two given domains. For example
shares from domain A and B are only combined in the terms AxBy and BxAy . In
DOM, we use the same fresh share for product terms that combine shares from the
same domain, see Equation 6. Hence, we use d(d + 1)/2 fresh shares for a dth-order
DOM implementation of the multiplier (like Ishai et al. [15]).

Since no probing of any intermediate value created in the calculation phase contains
more than one share of each input variable x or y, and in the resharing phase we only
add fresh random shares to the cross-domain terms, no advantage to a d-probing attacker
is given during these phases.
Integration: In the integration phase, the multiplication terms of each component func-
tion are added up at the output of the domain. Because a digital designer has no influ-
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ence on the sequence in which these terms are added up, the higher-order DOM multi-
plier needs to provide security for each possible partial sum of these terms. In particular,
it has to be taken care of that each of these possible partial sums an attacker could probe
reveals only the shares of the domain she is probing in. This is ensured by the resharing
shown in Equation 6, where each Z share is only reused for cross-domain multiplica-
tion terms with the same domain association. Please note that the matrix in Equation 6
appears similar to the one used for the ISW algorithm in private circuits [15]. The dif-
ference, however, is in the distribution of the multiplications terms which allows a more
efficient implementation in hardware.

In order to exploit the reuse, it would be necessary to probe the two component
functions that use the terms with the reused share. However, the two component func-
tions that use the two terms are associated to the same domains as the terms in the
cross-domain products. Hence, there is no advantage for the attacker due the reuse.

For example, the share Z0 in Figure 3 is used on the terms AxBy and BxAy and
these two terms only occur in the component functions for Aq and Bq . An attacker that
probes any partial sum of the terms of Aq learns only about shares in domain A. When
probing any partial sum of the terms Bq , there is only information about shares of the
domain B. A second-order attacker that learns about partial sums of Aq and Bq learns
about shares from the domains A and B in any case. The fact that partial products AxBy

and BxAy reuse Z0 does not provide any advantage to an attacker.
Based on Equation 5, the fact that a DOM multiplier fulfills dth-order security can

be verified visually. In this multiplication matrix the diagonal terms are formed by the
inner-domain product terms. These inner-domain terms also divide the multiplication
matrix into an upper and lower triangular matrix in which each of the fresh random
Z shares is used exactly once. The triangle formed by the Z shares is mirrored along
the diagonal. The mirroring of the Z shares ensures that each possible combination
of partial sums from any two component function removes at most one fresh random
share, and reveals only the inner-domain shares of both domains. Because this applies
for all combinations of partial sums of all different domains, an attacker restricted to d
probes obtains at most d shares per variable. The higher order multiplier is thus secure
in the d-probing model.

Aq = AxAy + (AxBy + Z0) + (AxCy + Z1) + (AxDy + Z3) + (AxEy + Z6) + . . .

Bq = (BxAy + Z0) + BxBy + (BxCy + Z2) + (BxDy + Z4) + (BxEy + Z7) + . . .

Cq = (CxAy + Z1) + (CxBy + Z2) + CxCy + (CxDy + Z5) + (CxEy + Z8) + . . .

Dq = (DxAy + Z3) + (DxBy + Z4) + (DxCy + Z5) + DxDy + (DxEy + Z9) + . . .

Eq = (ExAy + Z6) + (ExBy + Z7) + (ExCy + Z8) + (ExDy + Z9) + ExEy + . . .

...
...

...
...

...

(6)

The component functions of the multiplication matrix can also be written in closed
form as shown in Equation 7.

Fi = ti,i +

d∑
j>i

(ti,j + Z(i+j∗(j−1)/2)) +

d∑
j<i

(ti,j + Z(j+i∗(i−1)/2)) (7)
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This equation is the basis for the scalable AES designs in Section 4.

3.3 Higher-Order Secure DOM-dep Multiplier

For the DOM-dep multiplier we do not require that its inputs are shared independently.
The DOM-dep multiplier construction is secure, even if the shares of the inputs x and
y are identical (Ax = Ay , Bx = By , . . . ). A straightforward way to implement the
DOM-dep multiplier would be to use the DOM-indep multiplier and to reshare one
of its inputs. The additional cost in this case are d fresh random shares and d + 1
registers to ensure the resharing is done before the multiplication is performed. This
construction has a high negative impact on the performance of the multiplier because
the multiplication requires two cycles instead of one. To overcome the need for a two
register stages, we can trade one register stage against more computational overhead as
follows.

DOM-dep Multipliers with One Register Stage Instead of calculating x× y directly, a
random blinding value z is used to calculate it as shown in Equation 8.

x× y = x× (y + z)︸ ︷︷ ︸
blinding

+(x× z)︸ ︷︷ ︸
correction

(8)

On first sight this appears quite similar to the resharing approach with just more
computational overhead. However, z does not represent a sharing of the zero bit vector
as it is used for resharing, but a random blinding value. The blinding of y allows for
calculation of the multiplication x×(y+z) in an efficient manner. At first, one blinding
share is added to each share of y resulting in Equation 9.

y + z = (Ay +Az) + (By +Bz) + (Cy + Cz) . . . (9)

Again, registers are needed to ensure that the blinding of each share is performed
before the next calculation step is taken. Because the dependency between the blinded
shares and y is no longer given, the blinded shares can now be summed up without
demasking y but only y + z resulting in a single value b. The first multiplication in
Equation 8 can now be performed by multiplying each share of x with b by using normal
GF multipliers instead of DOM multipliers (Equation 10).

x× (y + z) = x× b = bAx + bBx + bCx . . . (10)

The d-probing security is given because each possible linear combination of blinded
y shares ((Ay +Az), (By +Bz) . . . ), that could be formed during the calculation of b,
result again in a uniformly random value unrelated to the shares of y. Multiplying each
share of x with a uniformly random value also does not compromise the security of x.
Please note that we strictly keep all x shares in their specific domains so that d probing
security for x is straightforwardly given at all times.

Furthermore, for each share of y that is used for the calculation of b one fresh ran-
dom mask is added. As a result, at each time y is protected by d+1 shares, either by the
y shares itself or by the z shares. Vice versa, z is protected during the calculation of b
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because each shares of z is masked by a share of y. Consequently, in order to protect y,
the unshared value of z needs to be protected against probing otherwise y can be easily
recovered from b.

For the second multiplier of Equation 8 calculating the correction x × z, we thus
need to ensure that at no time two shares of z come together. This can be easily achieved
by using the DOM multipliers from Figure 2 or Figure 3, respectively. Since, x and z are
independent because z is always randomly picked, calculating x × z is safe regarding
the independence requirement.

Adding the result of both multiplications together with respect to the domains is then
straightforward. Equation 11 shows the full mathematical description of the multiplier
implementation.

Aq = Ax((Ay +Az) + (By +Bz) + . . .︸ ︷︷ ︸
b

) +AxAz + (AxBz + Z0) + (AxCz + Z1) + . . .

Bq = Bx((Ay +Az) + (By +Bz) + . . . ) + (BxAz + Z0) +BxBz + (BxCz + Z2) + . . .

Cq = Cx((Ay +Az) + (By +Bz) + . . . )︸ ︷︷ ︸
x×b

+(CxAz + Z1) + (CxBz + Z2) + CxCz + . . .︸ ︷︷ ︸
DOM-indep multiplier: x×z

...
(11)

Figure 4 shows the resulting design of a second-order DOM-dep multiplier. The
shares of x are illustrated in a bundled manner for clarity reasons. As one can see,
the design contains only one register stage going through the DOM multiplier and the
calculation of b. In addition to the requirements of the DOM-indep multiplier, a linear
number of fresh random shares for z are required, as well as a linear amount of registers
and GF multipliers. The overhead for transforming a DOM-indep multiplier into a
DOM-dep multiplier thus grows linearly in terms of randomness as well as chip area.
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Increasing the efficiency for first-order multipliers Even though the overhead of a
DOM-dep multiplier compared to a DOM-indep multiplier grows just linearly, the in-
sertion of the blinding value z triples the number of required random shares for the
first-order multiplier. However, a closer investigation of Equation 11 reveals that the
calculation of b actually uses more randomness than required. For example for the
x × (y + z) part, Ay + Az is calculated before it is multiplied with Ax just to remove
AxAz again in the x× z part. This simply results from the simplification performed for
higher-order DOM multipliers to compute b only once for all domains. If instead b is
calculated for each domain individually, one z share can be saved. Equation 12 shows
the updated multiplication formulas for a first-order multiplier with two fresh random
shares only. Z0 is used instead the shares of z for blinding y, and Z1 is used for the
secure integration of AxZ0 and BxZ0.

Aq = Ax(Ay + (By + Z0)) + (AxZ0 + Z1)

Bq = Bx(By + (Ay + Z0))︸ ︷︷ ︸
x×(y+z)

+(BxZ0 + Z1)︸ ︷︷ ︸
x+z

(12)

We do not consider this approach to be suitable for orders above one because the
area overhead introduced by calculating each b per domain increases quadratically with
the protection order, and also the randomness overhead introduced by the blinding with
one additional random share relativizes for higher orders.

3.4 Comparison of DOM Multiplier Variants

Table 1 summarizes the DOM multiplier constructions discussed in this section. The
basis for the comparison is the DOM-indep which has the smallest requirement on
fresh randomness, and chip area (number of GF multipliers, XOR gates and registers).
Randomness and area numbers for the other variants are to be read as in addition to the
results stated in the columns left.

Table 1. Summary of DOM multiplier variants

DOM-indep DOM-indep DOM-dep
+ resharing

Related input sharing no yes yes
Register stages 1 2 1
Fresh random shares d(d+ 1)/2 . . .+ d . . .+ 1a

GF multipliers (d+ 1)2 . . . . . .+ (d+ 1)
XOR’s d(d+ 1) . . .+ (d+ 1) . . .+ (d+ 1)
Registers d(d+ 1) . . .+ (d+ 1)
a Not required for first-order implementations.

Using the resharing approach to make the DOM-indep suitable for inputs with re-
lated sharing introduces a second register stage, and requires additionally d random
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Fig. 5. AES-interleaved variant datapath (all data signals are 8 bits wide)

shares and d+ 1 registers and XOR gates. The costs for avoiding the register stage for
the DOM-dep multiplier is another random share (except for first-order implementa-
tions), d+ 1 additional finite-field multipliers, and (d+ 1) XOR’s for adding the result
of x × z and x × b together. The total number of registers stays the same compared to
the DOM-indep + resharing solution.
In the next section, the different variants of DOM multipliers are investigated in practice
for a protected AES hardware implementation.

4 DOM Protected AES Implementations

To compare the efficiency the DOM scheme with existing threshold implementa-
tions, we implemented different variants of the AES-128 encryption-only design sug-
gested by Moradi and Poschmann [20]. Moradi’s design was also used and modi-
fied by Bilgin et al. [3, 5] resulting in a more efficient first-order TI, and recently by
De Cnudde et al. [10] for a second-order TI of the AES S-box following the GMS
scheme [23].

The control path of the design of Moradi et al. consists of a linear-feedback shift
register (LFSR), the round constant generation module (RCON), and some additional
logic gates to generate the control signals (see Figure 5 for an overview). The LFSR of
Moradi’s design has a cycle length of 21 for the unprotected implementation. In each
round, the first 16 cycles are spent on AddRoundKey and SubBytes. Then there is one
cycle spent on ShiftRows, and the remaining four cycles are used for MixColumns and
to calculate the first four bytes of the next round key. For the TI variant another four
cycles are added in each round due to the pipelining delay of the S-box. The datapath
of Moradi’s AES design mainly consists of the S-box, the key and state registers which
are implemented as shift registers, the MixColumns module, and some multiplexers.

We implemented two variants of the AES S-box resulting in two AES designs
with different design goals. The AES-interleaved design uses an S-box with only five
pipelining stages and was designed for a minimum number of cycles per encryption. Be-
cause for some multipliers the sharing of the inputs are possibly related due to glitches,
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the DOM-dep multipliers are used in this case. The AES-simple design uses only the
DOM-indep multipliers but requires additionally three pipeline stages in the S-box to
ensure independence. The AES-simple design has a lower demand for fresh randomness
and a lower chip area requirement compared to the AES-interleaved but requires more
cycles per encryption. Both variants are fully scalable in terms of protection order.

4.1 Different DOM Designs of the AES S-box

The most complex and most security critical part of the AES implementation is the
S-box. Figure 6 shows our design of a 1st-order secure DOM variant of Canright’s [8]
AES S-box. The S-box consists of many linear operations like the linear mappings at
the input and the output, the square scalers, the sub-field inverters, and the adders. The
Galois field multipliers with different field order form the non-linear parts of the S-box.
Canright’s S-box makes repeated use of a finite field isomorphism to express GF (28)
elements as multiple elements in lower subfields—down to eight elements in GF (2).

The main difference between the first-order TI S-box designs and our DOM de-
sign, is that we use only two shares throughout the whole circuit. In order to secure
all GF multipliers of the AES S-box depicted in Figure 6, we have implemented them
based on the DOM concept introduced in Section 3. To maximize the efficiency of the
implementation, additional pipelining registers are added to the S-box. The pipelining
registers are marked with circles and appear along the red dotted lines in Figure 6.
The grey marked registers and stages are only required for the eight-stage variant. As
a result, each GF multiplier has an additional register in the path of the inner-domain
multiplication before the last XOR gate at the domain output (cf. Figure 2).

To make the S-box secure and efficient at the same time, it is necessary to pinpoint
all multipliers that have related input sharings. These multipliers need to be treated more
carefully than the multipliers with independent inputs where the DOM-indep multipli-
ers can be used. Therefore, the S-box is subdivided into five or eight pipeline stages,
respectively. The following description refers to the five stage variant.

The GF (24) multiplier in Stage 1 receives its inputs from the linear mapping at the
S-box input. The linear mapping takes the 8-bit input shares Ax and Bx and linearly
combines these eight bits inside their share domain (see [8] for more details). Because
of the different signal transition times and gate delays, it is therefore possible that the
output of the linear mapping temporarily consists of bits with related sharing. Applying
these bits directly to the DOM-indep multiplier design from Figure 2—while the linear
mapping has not yet settled—would thus violated the independence in the cross-domain
GF multipliers. To avoid these glitches, the DOM-dep is used (Figure 4) for the five-
stage S-box variant. For the eight-stage S-box the normal DOM multipliers are used but
registers are inserted after the linear maps to ensure the signals are settled before the
bits are applied to the multiplier.

The situation is similar at Stage 2 and Stage 3. At these stages glitches can occur
from the combination of the square scaler outputs with the outputs of the DOM multi-
pliers. Again these glitches can be avoided either by using DOM-dep multipliers or by
inserting pipelining stages at the marked positions in Figure 4.

For the multipliers in Stage 4, the inputs are the pipelined S-box inputs and the
output of the DOM multipliers of the previous stage. The output of the DOM multipli-
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Fig. 6. First-order DOM design of the AES S-box, with five or eight register stages
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ers of Stage 3 originate from the inputs of the GF (24) inverter which is remasked in
Stage 1 (the masking is effective at latest at Stage 2). Therefore, the inputs of the Stage
4 multipliers are clearly independent and so DOM-indep multipliers can be used here.

Stage 5 only performs the output mapping which is again a linear transformation and
uncritical as long as it is not followed by a nonlinear transformation that is unprepared
for related sharing of its inputs. As shown in Figure 5, the output of the S-box is either
stored in the key or state registers before it is used again, or fed into the S-box which is
also uncritical because the input multiplier of either S-box variant is already prepared
to process related input sharings.

The rest of the S-box is implemented according to the original Canright design but
without some of its optimizations which would not be beneficial for our implementa-
tion. Canright’s design, for example, reuses some temporary results in other parts of the
S-box. Storing temporary results would lead to many additional pipelining registers for
the DOM design of the S-box and is therefore not suitable. For the generalization of the
S-box to higher protection order, the black (or blue) parts in Figure 6 are duplicated and
the GF multipliers are generated as described in Section 3.

4.2 AES-interleaved

The AES-interleaved variant has an asymptotic runtime of 200 cycles which is the mini-
mum for a single S-box AES-128 implementation. This low cycle count is achieved due
to a reduction of one encryption round to 20 cycles compared to Moradi’s implementa-
tion. Therefore, the LFSR of the controlpath is modified to shorten the cycle length from
21 to 20. Furthermore, the first round and the last round of two successive encryptions
are interleaved.

The datapath is illustrated in Figure 5. The AES-interleaved design uses the five-
stage S-box variant. During the first round the key and plaintext are loaded byte-wise
from outside into the AES core. Similar to Moradi’s implementation, the first 16 cycles
are spent on AddRoundKey and SubBytes. In the 16th cycle the ShiftRows transformation
is performed inside the state registers. The last four cycles are used for the key sched-
ule. In the 10 AES rounds MixColumns is performed in parallel to AddRoundKey and
SubBytes. After the last round, the final AddRoundKey produces the ciphertext which
appears byte-wise at the output of the AES core. Simultaneously the next plaintext and
key inputs can be loaded.

4.3 AES-simple

For the AES-simple design, the eight-stage S-box is used. The increased amount of
delay cycles mainly affects the controller of the AES core, which now uses 23 cycles
instead of 20 for one encryption round. The three additional cycles are inserted to finish
the S-box calculations inside one round. During this time the clock is separated from
the key registers by using a clock gating cell. Compared to the AES-interleaved design,
the additional logic required for loading the next plaintext and calculating the final
ciphertext for the is removed to make the AES-simple design more compact. As a result,
one encryption takes 246 clock cycles.
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Table 2. First-order secure AES-128 implementation results

Variant/Module Chip Area Randomness Cycles Throughput @0.1 MHz
[%] [kGE] [Bits/S-box] [Kbps.]

Our Implementations
AES-simple 100.0 7.1 18 246 52

S-box 37.0 2.6
State registers 34.2 2.4
Key registers 21.5 1.5
Control, et cetera 7.3 0.6

AES-interleaved 100.0 7.6 28 ' 200 64
S-box 37.3 2.8
State registers 32.1 2.4
Key registers 19.9 1.5
Control, et cetera 10.7 0.9

Related Implementations
Moradi et al. [20] 11.0 / 10.8a 48 266 48
Bilgin et al. [3] 9.1 / 8.2a 44 246 52
Bilgin et al. [5] 8.1 / 7.3a 32 246 52
a This variant uses the compile ultra option.

5 Implementation Results

In order to make the comparison with existing implementations as fair as possible we
tried to use the same synthesis parameters as the related work if available. All results
are thus collected for a UMC 180 nm generic II logic process with 1.8 V power supply
and 0.1 MHz and are thus consistent with Moradi et al. [20] and Bilgin et al. [3, 5].
Even though the same standard cell library is used, the synthesis results may differ
for the same RTL input because we have no access to the Synopsis tool chain—and
especially to the compile ultra synthesis option, which allows to highly optimize each
part of the circuit individually—as used by related work. Our designs are compiled with
the Cadence Encounter RTL compiler version v08.10-s28 1 and routed with Cadence
NanoRoute v08.10-s155.

5.1 First-Order AES Implementations

Table 2 compares our first-order secure AES hardware implementations with existing
related work. In terms of chip area requirements the AES-simple implementation uses
only 7.1 kGE which is more than 1 kGE smaller than other designs. Comparison against
the highly optimized results for the compile ultra synthesis option of related work still
shows a difference of 200 GE. The largest components in the design are the S-box with
37.0%, the state registers with 34.2%, and the key registers with 21.5% of the overall
chip area. The remaining area is consumed by the control logic and other components
(multiplexers, round constant calculation, et cetera).

The AES-simple variant requires only 18 bits of fresh randomness per S-box calcu-
lation while related implementations require between 32 bits and 48 bits. We assume
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Table 3. Second-order secure AES-128 implementation results

Variant/Module Chip Area Randomness Cycles Throughput @0.1 MHz
[%] [kGE] [Bits/S-box] [Kbps.]

Our Implementations
AES-simple 100.0 11.9 54 246 52

S-box 44.5 5.3
State registers 30.7 3.7
Key registers 19.3 2.3
Control, et cetera 5.5 0.6

AES-interleaved 100.0 12.8 84 ' 200 64
S-box 45.0 5.7
State registers 28.6 3.7
Key registers 17.7 2.3
Control, et cetera 8.6 1.1

Related Implementations
De Cnuddea et al. [10] 11.2 / 7.9b 126 - -
a S-box implementation only
b This variant uses the compile ultra flag which is not available in our tool chain.

that the number of required fresh random bits is even more crucial for the efficiency
of an implementation because the generation of fresh random bits with high entropy
requires additional hardware and involves, e.g., complex analog circuitry or pseudo
random number generators based on symmetric primitives. Both options have a cru-
cial influence on the chip area requirements, the energy budget, and on the delay or
throughput.

The chip area requirements for the interleaved variant is about 0.5 kGE higher than
for the simple AES variant. Due to the usage of blinding shares in the interleaved de-
sign, 28 random bits are required instead of 18 for this implementation. The higher
amount of random bits allows to encrypt plaintext blocks with asymptotically 200 cy-
cles instead of 246 cycles.

5.2 Second-Order AES Implementations

In the work of De Cnudde et al. [10] in 2015, the first and—to the best of our
knowledge—only second-order TI of the AES S-box was introduced. In order to im-
plement the GF multiplications, at least five shares were used to fulfill the non-
completeness requirements for second-order TI. Our scheme, on the other hand, re-
quires only three shares for a second-order secure implementation which saves two
shares at minimum.

Table 3 shows that De Cnudde’s S-box implementation is with 11.2 kGE almost as
big as our overall chip area of the AES cores with 11.9 kGE. Furthermore, it requires
126 fresh random bits per S-box operation—not including the random bits required for
share expansion at the input of the S-box—which is more than two times the number of
random bits our simple implementation requires (54 bits).
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For our designs, the number of required cycles and the throughput is not influenced
by the higher protection degree. The size of the S-box, the state and key registers, on
the other hand, are increased because of the higher share count. A comparison between
Table 2 and Table 3 shows that the S-box influences the area growth to a higher de-
gree than all the other components with 44.5% of the overall area. The comparison
also shows that the absolute overhead between AES-simple implementation and the
AES-interleaved variant stays about the same which highly relativizes the overhead for
higher order implementations.

5.3 dth-Order AES Implementations

The generic construction of the AES implementation not only allows to calculate
the number of required random bits of 9d(d + 1) for the AES-simple variant, and
9d(d+ 1) + 10d (first-order) or 9d(d + 1) + 10(d + 1) for the AES-interleaved de-
sign, respectively. It is furthermore possible to synthesize the AES implementation for
arbitrary protection orders.

Figure 7 shows the post-synthesis area requirements for the different components
in relation to the protection order for the AES-simple variant. It can be observed that
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the state key and control logic requirements grow linearly. The S-box and the contained
multipliers grow quadratically with the order. For the S-box, the size increases from
37% for the first-order implementation to about 78% for the 15th-order. The relative
size of the state and key register decrease from 34.2% and 21.5% to around 12.5% and
8%, respectively. The smallest amount of chip area is again used for the control logic
implementation which is almost constant.

Comparing Figure 7 to De Cnudde’s implementation shows that our third-order
DOM S-box implementation with 8.8 kGE has less area requirements than the second-
order TI with 11.2 kGE without the compile ultra synthesis option. Furthermore, our
fourth-order DOM S-box implementation is with 13.4 kGE only about 2.2 kGE bigger
than the second-order TI S-box. In terms of random bits, our third-order secure simple
implementation requires 108 random bits and De Cnudde’s second-order secure imple-
mentation 126 bits.

The influence of the increased number of shares to the longest combinatorial path is
illustrated in Figure 8 (left). The maximum delay increases from 3.9 ns to about 4.1 ns
for the simple variant which roughly corresponds to 28 MHz. The delay not only in-
fluences the maximum possible clock frequency but also the maximum throughput.
As shown in Figure 8 (right), the simple variant achieves about 132 Mbps and the in-
terleaved variant 136 Mbps for first-order protection assuming the maximum possible
clock frequency. Due to the higher maximum delay of the interleaved variant, the max-
imum throughput of both implementations is quite comparable for different the protec-
tion orders. For a fixed clock frequency the throughput of the AES-interleaved is of
course always higher.

6 Conclusions

In this work we introduced a novel masking scheme called domain-oriented mask-
ing (DOM). We have shown that our scheme reaches the same security level as TI.
Nevertheless, the DOM scheme has some clear benefits over TI. At first, the number
of required shares is reduced compared to existing TI implementations, especially for
higher-order protection. As a consequence, the chip area requirements and the amount
of fresh random bits also decrease. Furthermore, the DOM’s generic structure leads to
hardware implementations that can be synthesized for any given protection order with-
out redesigning any part of the circuit.

We demonstrated the flexibility of DOM for a hardware design of the AES which
can be synthesized for an arbitrary protection order. The first-order and second-order
DOM AES designs are significantly smaller and less randomness demanding than the
TI protected counterparts of related work. Besides the lowered hardware requirements,
our AES-interleaved variant also requires significantly less cycles for computing one
encryption. In addition we stated hardware result for our AES implementation up to the
15th protection order.
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