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Abstract The arithmetic in a finite field constitutes the core of Public Key Cryptography like RSA,
ECC or pairing-based cryptography. This paper discusses an efficient hardware implementation of the
Coarsely Integrated Operand Scanning method (CIOS) of Montgomery modular multiplication com-
bined with an effective systolic architecture designed with a Two-dimensional array of Processing Ele-
ments. The systolic architecture increases the speed of calculation by combining the concepts of pipelin-
ing and the parallel processing into a single concept. We propose the CIOS method for the Montgomery
multiplication using a systolic architecture. As far as we know this is the first implementation of such
design. The proposed architectures are designed for Field Programmable Gate Array platforms. They
targeted to reduce the number of clock cycles of the modular multiplication. The presented implemen-
tation results of the CIOS algorithms focuses on different security levels useful in cryptography. This
architecture have been designed in order to use the flexible DSP48 on Xilinx FPGAs. Our architecture
is scalable and depends only on the number and size of words. For instance, we provide results of im-
plementation for 8, 16, 32 and 64 bit long words in 33, 66, 132 and 264 clock cycles. We highlight the
fact that for a given number of word, the number of clock cycles is constant.

Keywords: Hardware Implementation, Modular Multiplication, Montgomery Algorithm, CIOS method,
Systolic Architecture, DSP48.

1 Introduction

Since 1976, many Public Key Cryptosystems (PKC) have been proposed and all these cryptosystems
based their security on the difficulty of some mathematical problem. The hardness of this underlying
mathematical problem is essential for security. Elliptic Curve Cryptosystems which were proposed
by Koblitz [11] and Miller [15], RSA [19] and the Pairing-Based Cryptography[10] are examples of
PKCs. All these systems rely on an efficient finite field multiplication. As a consequence, the de-
velopment of efficient architecture for modular multiplication has been a very popular subject of
research. In 1985, Montgomery has presented a new method for modular multiplication [16]. It’s
one of the most suitable algorithm for performing modular multiplications in hardware and soft-
ware implementations. The efficient implementation of the Montgomery modular multiplication in
hardware was considered by many authors [17,9,3,6,18,20]. There are a variety of ways to perform
the Montgomery multiplication, considering if multiplication and reduction are separated or inte-
grated. The separated approach consists in first performing the product and then the Montgomery
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reduction. It was presented in 1996 by Koç and Tolga in [13]. This method is called the Separated
Operand Scanning method (SOS). On the contrary, the integrated approach is characterized by an
alternation between multiplication and reduction. Several integrated approaches are presented in
[13]: the Coarsely Integrated Operand Scanning Method (CIOS), the Finely Integrated Operand
Scanning Method (FIOS), the Finely Integrated Product Scanning Method (FIPS) and the Coarsely
Integrated Hybrid Scanning Method (CIHS). According to Koç and Tolga in [13] the CIOS method
is a scalable word-based method for Montgomery multiplication, and it is the most efficient algo-
rithm that integrates the multiplication with reduction steps. A systolic array architecture [14,21]
is one possibility for the implementation of the Montgomery algorithm in hardware [20,18,17,3].
These architectures offer Processing Elements (PE) array where each Processing Element performs
arithmetic computation additions and multiplications. In accordance with the number of words
used, the architecture can employ a variable number of PEs. The systolic architecture uses very
simples Processing Elements. As a consequence, the systolic architecture decreases the needs for
logic elements in hardware implementations. Our contribution in this work is to combine a systolic
architecture, which is assumed to be the best choice for FPGA implementation, with the CIOS
method of Montgomery modular multiplication. We optimize the number of clock cycles required to
compute a n-bit Montgomery multiplication and we reduce the utilization of FPGA resources. We
have implemented the modular multiplication in a fixed number of clock cycles. To the best of our
knowledge, this is the first time that a hardware or a software multiplier of modular Montgomery
multiplication, suitable for various security level, is performed in just 33 clock cycles. Furthermore,
as far as we know, our work is the first one dealing with systolic architecture and CIOS method over
large prime characteristic finite fields. This paper is organized as follows: Section 2 discusses related
state-of-the-art works. Section 3 presents the Montgomery modular multiplication algorithm. The
proposed architectures and results are presented in Section 4 and Section 5. Finally, the conclusion
is presented in Section 6.

2 Brief state of the art

In hardware design, the systolic architecture [14] is a pipelined network arrangement of Processing
Elements (or cells). It is a specialized form of parallel design. Each cell compute the data which is
coming as input and calculate data independently. In [21] the authors proposed a systolic design for
FPGA implementation. Several works are devoted to the implementation of the Montgomery mul-
tiplication [2,13,17,16,18,3,6,8,9,20]. The first ones to our knowledge who proposed a systolic array
are Iwamura, Matsumoto and Imai [8,9]. They presented a systolic architecture that can execute
a modular exponentiation using Montgomery multiplications. In [20] Tenca and Koç introduced a
pipelined Montgomery modular multiplication, which has the ability to work in any given operand
precision and which is adjustable to any chip area. Harris et al. in [4] improve the result of [20]
using a systolic architecture for the Montgomery multiplication. Siddika Berna Örs, Lejla Batina,
Bart Preneel and Joos Vandewalle presented in [17] a modular exponentiation based on the modular
Montgomery. In [18] Guilherme Perin, Daniel Gomes Mesquita and Jõao Baptista Martins proposed
a comparison between two modular multiplication architectures: a systolic and a very high-radix
multiplexed implementation. Their approach uses a radix-16 and radix-32 decomposition. Both im-
plementations targeted a Virtex-4 and a Virtex-5 FPGA. (A radix-n word is a word of size n.) Their
work is the latest and the most efficient describing the use of a systolic approach for the Mont-
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gomery multiplication. We briefly recall the definition of a systolic architecture before a summary
of their work. A systolic architecture is a pipelined network arrangement of PEs called cells. It is
a specialized form of parallel computing, where cells compute the data which is coming as input
and store them independently. A systolic architecture is an array composed of matrix-like rows of
cells. Each PE shares the information with its neighbours immediately after processing. Cell at each
step takes input data from one or more neighbours. The systolic architecture proposed in the work
[18] is composed of s Processing Elements distributed in a one-dimensional array. The number s is
the number of words. At each iteration of the Montgomery Algorithm, the words are read from an
external memory (BRAM) and passed to their architecture. To evaluate the number of clock cycles
for a Montgomery multiplication in the systolic architecture, they have to consider the first s cycles
to read the input operands from RAM memories. Furthermore the first iteration of algorithm also
needs s clock cycles. Finally the remaining iterations of algorithm are performed in 4×s clock cycles.
As a consequence, this architecture requires a 6×s(= s+s+4×s) clock cycles. For the multiplexed
architecture, the first steps are identical to thus of the systolic architecture (2× s). The number of
clock cycles required to remaining iterations of Montgomery Algorithm is 6×s clock cycles. In order
to perform the multiplexed architecture the algorithm requires 8× s(= 2× s+ 6× s) clock cycles.

3 Montgomery Multiplication

Algorithm 1: Montgomery Modular Multiplication
Input: p an odd prime, n = dlog2(p)e, R = 2n, p′ = −p−1mod R, M(a), M(b) ∈ Fp
Output: M(ab) mod p

1 γ ←M(a)×M(b)
2 δ ← γ × p′ mod R

3 T ← γ+δ×p
R

4 If T ≥ p then T ← T − p
5 return T

The Montgomery Multiplication Algorithm for large prime characteristic finite fields [16] is a
method for performing modular multiplication without needing to divide by the modulus. In cryptog-
raphy, the Montgomery Algorithm is the most used modular multiplication to perform the operation
a× b mod p. The Montgomery multiplication transforms the division by p into several divisions by
a power of 2, which consists only in shifts in hardware and software implementation. Furthermore,
the Montgomery multiplication among large numbers can be constructed using a radix representa-
tion of the numbers. Let p be an odd prime number. Let n = dlog2(p)e be the length of the binary
decomposition of p. We choose the base of numeration to be R = 2n, such that p < R. As p and
R are coprime, we can define p′ = −p−1 mod R. The choice of R is motivated by the facts that
gcd(R, p) = 1 and reductions and divisions by R must be efficient. As R is a power of 2, divisions are
right shifts and the modulo operation is a simple assignment of the first n-bit. Montgomery multi-
plication is performed with numbers represented in the Montgomery representation. The conversion
from ordinary domain to Montgomery domaine detailed in Table 1 The map M : a ∈ Fp → aR ∈ Fp

is a bijection and a field isomorphism of Fp. For any element a of Fp, the product aR ∈ Fp is called
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Ordinary Domain ⇐⇒ Montgomery Domain

a ←→ M(a)=a·R mod p

b ←→ M(b)=b·R mod p

a·b ←→ M(a·b)=a·b·R mod p

Table 1: Conversion between Montgomery and Ordinary Domains

the Montgomery representation of a in basis R and it is denotedM(a). We describe the Montgomery
multiplication in Algorithm 1. The Montgomery multiplication computes M(a)×M(b) and gives as
result M(ab).

3.1 CIOS Method

The Coarsely Integrated Operand Scanning (CIOS) method presented in Algorithm 2, improves the
Montgomery Algorithm by integrating the multiplication and reduction. More specifically, instead
of computing the product a · b, then reducing the result, this method allows an alternation between
iterations of the outer loops for multiplication and reduction. The integers (p, a and b) are seen as
lists of s words of size w. In order to perform this algorithm we need an array T of size only s+ 2.
The intermediate results are stored in T . The final result of the CIOS algorithm is composed by the
s+ 1 least significant words of this array. The alternation between multiplication and reduction is
possible since the value of m (in line 11 of the Algorithm 2) in the ith iteration of the outer loop for
reduction depends only on the value T [j], which is computed by the ith iteration of the outer loop for
the multiplication. In order to perform the multiplication, we have modified the CIOS algorithm of
[13] and designed this method with a systolic architecture. Indeed, instead of using an array to store
the intermediate result, we replace T by Input and Output signals for each Processing Element. As
a consequence, our design uses fewer of multiplexers and then we have better results considering the
number of slices.

4 Hardware Implementation

4.1 Block DSP in Xilinx FPGAs

Modern FPGA devices like Xilinx Virtex-4, Virtex-5 and Artix-7 as well as Altera Stratix FPGAs
have been equipped with arithmetic hardcore extensions to accelerate digital signal processing ap-
plications. These function DSP blocks can be used to build a more efficient implementation interms
of performance and reduce at the same time the demand for areas. DSP blocks can be programmed
to perform basic arithmetic functions, multiplication, addition and subtraction of unsigned integers.
Figure 1 shows the generic DSP structure in advanced FPGAs. DSP can operate on external Input
A,B and C as well as on feedback values from P or result PCIN.
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Algorithm 2: CIOS algorithm for Montgomery multiplication [13]
Input: p < 2K , p′ = −p−1mod 2w, w, s , K = s · w :bit length, R = 2K , a, b < p
Output: a · b ·R−1 mod p

1 T ← Null;
2 for i← 0 to s− 1 do
3 C ← 0;
4 for j ← 0 to s− 1 do
5 (C, S)← T [j] + a[i] · b[j] + C
6 T [j]← S

7 (C, S)← T [s] + C
8 T [s]← S
9 T [s+ 1]← C

10 C ← 0;
11 m← T [0] · p′ mod 2w

12 (C, S)← T [0] +m · p[0]
13 for j ← 1 to s− 1 do
14 (C, S)← T [j] +m · p[j] + C
15 T [j]← S

16 (C, S)← T [s] + C
17 T [s− 1]← S
18 T [s]← T [s+ 1] + C

19 return T ;

4.2 Proposed Architecture

The idea of our design is to combine the CIOS method of Montgomery Modular multiplier presented
in [13] with a two-dimensional systolic architecture in the model of [7,21]. As seen in section 3.1,
the CIOS method is an alternation between iterations of the loops for multiplication and reduc-
tion. The concept of the two-dimensional systolic architecture presented in Section 2 combines an
identical Processing Elements with local connections, which take external inputs and handle them
with a predetermined manner in a pipelined fashion. This new architecture is directly based on the
arithmetic operations of the CIOS method of Montgomery Algorithm. The arithmetic is performed
in a radix-w base (2w). The input operands are processed in s words of w bits. We present many
versions of this method. We illustrate our design for s = 8, s = 16, s = 32 and a s = 64 architec-
tures, respectively denoted NW-8 (for Number of Words), NW-16, NW-32 and NW-64. Before the
descriptions of the architectures NW-8 and NW-16, we begin with a generic description of our sys-
tolic architecture. Our proposed architectures for the implementation of the Montgomery modular
multiplication is detailed in this section. We describe it in detail as well as the different Processing
Element behaviours. In order to have less of states in our Final State Machine (FSM), we divided
our Algorithm 2 of Montgomery on five kinds of PE noted:

– cells alpha denoted α;
– cells beta denoted β;
– cells gamma denoted γ;
– cells alpha final denoted αf ;
– cells gamma final denoted γf .
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Figure 1: Structure of DSP block in modern FPGA device.

Figure 2: data dependency in general systolic architecture.

Figure 2 presents the dependency of the different cells. Below we describe precisely each cells. The
letters MSB stand for the Most Significant Bits and LSB for the Least Significant Bits. In our
notation the letter C denote the MSB of the results and the letter S the LSB.

1. alpha : Presented by the lines 4 and 5 in the Algorithm 2 and detailed in Algorithm 3 . The
PEs alpha are scalable according to the NW in the design. We use this cell to perform the
multiplication step. The input of the cell alpha are: S_In provided by the previous step, C_In
provided by the previous step, a[i]: The words of the operand a, and b[j]: The words of the
operand b. The output of the cell alpha are: S provided to the next step and C provided to the
next step.

2. beta : Presented by the lines 9, 10 and 11 in the Algorithm 2 and detailed in Algorithm 4. The
input of the cell beta are: S_In provided by the previous step, p[0]: The first word of the modulo
p and p′: predefined. The output of the cell beta are: m provided to the next step and C provided
to the next step.

3. gamma : Presented by the lines 13 and 14 in the Algorithm 2 and detailed in Algorithm 5. The
PEs gamma are scalable according to the NW in the design. We use this cell to perform the
reduction step. The input of the cell gamma are: S_In provided by the previous step, C_In
provided by the previous step, p[j]: The words of the modulo p and m provide by the cell beta.
The output of the cell gamma are: S provided to the next step and C provided to the next step.
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4. alpha_final : Presented by the lines lines 6, 7 and 8 in the Algorithm 2 and detailed in Algo-
rithm 6. The input of the cell alpha_final are: S_In provided by the previous step and C_In
provided by the previous step. The output of the cell alpha_final are: S1 provided to the next
step and S2 provide to the next step.

5. gamma_final : Presented by the lines 15, 16 and 17 in the Algorithm 2 and detailed in Algo-
rithm 7. The input of the cell gamma_final are: S1_In provided by the previous step, S2_In
provided by the previous step and C_In provided by the previous step. The output of the cell
gamma_final are: S1 provided to the next step and S2 provided to the next step.

Algorithm 3: Cell alpha
Input: a[i], b[j], C_In, S_In
Output: C, S

1 tmp1← S_In+ C_In
2 tmp2← a[i] · b[j]
3 tmp2← tmp2 + tmp1
4 C ←MSB(tmp2)
5 S ←LSB(tmp2)
6 return C, S;

Algorithm 4: Cell beta
Input: S_in, p[0], p′ = −p−1mod 2w

Output: C, m
1 tmp1← S_in · p′
2 m← LSB(tmp1)
3 tmp1← p[0] ·m
4 tmp1← S_in+ tmp1
5 C ←MSB(tmp1)
6 return C, m;

Algorithm 5: Cell gamma
Input: p[i], m, C_in, S_in
Output: C, S

1 tmp1← S_in+ C_in
2 tmp2← p[i] ·m
3 tmp2← tmp2 + tmp1
4 C ←MSB(tmp2)
5 S ←LSB(tmp2)
6 return C, S;
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Algorithm 6: Cell alpha_final
Input: C_in, S_in
Output: S1, S2

1 tmp1← S_in+ C_in
2 S1←LSB(tmp1)
3 S2←MSB(tmp1)
4 return C, S;

Algorithm 7: Cell gamma_final
Input: C_in, S1_in, S2_in
Output: S1, S2

1 tmp1← S1_in+ C_in
2 S1←LSB(tmp1)
3 S2←MSB(tmp1)
4 S2← S2_in+ S2
5 return S1, S2;

Figure 3: PEs of Systolic Architecture in two-dimensional array.

This organization allows us to optimize the number of clock cycles. Each Processing Element
in Figure 10 is responsible for performing arithmetic operations. The different Processing Elements
establish communication with the control block (FSM) as shown in Figure 9 by receiving starts
signals at each state of Montgomery Algorithm iteration. Each PE sends a done signal to the FSM
at each end of the calculation. The final result is a concatenation of the last output of gamma and
gamma_final PEs. The structure of all PEs have a combinational behaviour.

4.3 Internals architectures of cells

In this section we will describe the internals architectures of PEs used in these designs. Our five cells
are designed in order to use DSP(s) blocks.

Description of the cell α As illustrated in Figure 4, the multiplication between a[i] and b[j]
words returns a 2w bits result. This result is added thereafter to S_α_In. This latter is the least
significant bits of the result of Processing Element gamma, which is provided through the output
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multiplexer. The last add is also added to C_α_In. The C_α_In is the most significant bits of
the result of the previous Processing Element alpha, which is provided also through an output of
a second multiplexer. The different inputs outputs of the PE alpha are presented in Figure 9. The
most significant bits of the result of alpha is propagated to the multiplexer to fix the next PE of
alpha. Whereas the least significant bits are propagated to an other multiplexer to fix the next PE
of gamma. After each computation of the alpha PE a shift in the input b is triggered.

a[i]

b[i]

×

+
C α In

S α In

+

REG

REG

C α Out

S α Out

MSB w bits

LSB w bits

Figure 4: Alpha Processing Element internal architecture.

Description of the cell β According to our algorithm 4 and as illustrated in Figure 5, the zero
index word of p (p[0]) and p′ are provided to this beta Processing Element. The number p′ corresponds
the modular inverse of p modulo 2w. The multiplication between p′ and S_β_In returns a 2w bits
result, where only the least significant bits of this multiplication is multiplied by the first word of p
and returns a 2w bits result. Finally, this result is added to a w bits word S_β_In. Only the most
significant bit part of this result is used in the next gamma PE. The different inputs/outputs of PE
beta are presented in Figure 9.

p′

S β In

×

P [0]

×
+

S β In

REG C β Out

REG m

MSB w bits

LSB w bits

Figure 5: Beta Processing Element internal architecture.

Description of the cell γ As illustrated in Figure 6, the multiplication between m and p[j]
words returns a 2w bits result. This latter is added thereafter to S_γ_In. The number S_γ_In
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corresponds to the least significant bits of the result of Processing Element alpha, which is provided
through an output multiplexer. This add is also added to C_γ_In, where C_γ_In is the most
significant bits of the result of the previous Processing Element gamma. This PE gamma is provided
also through an output of a second multiplexer. The different inputs/outputs of the gamma PE are
shown in Figure 9. The most significant bits of result are propagated to the multiplexer to fix the
next PE of gamma. Whereas the least significant bits are propagated to an other multiplexer to fix
the next PE of alpha.

m

p[i]

×

+
C γ In

S γ In

+

REG

REG

C γ Out

S γ Out

MSB w bits

LSB w bits

Figure 6: Gamma Processing Element internal architecture.

Description of the cell αf The cell αf corresponds to the final α computed at the end of the line
correspond to the multiplication step. In the PE alpha_final, the S_α_f_In added to C_α_f
returns a 2w bits result as presented in Figure 7.

+
S α f In

C α f

REG

REG

S2 α f out

S1 α f out

MSB w bits

LSB w bits

Figure 7: Alpha_f Processing Element internal architecture.

Description of the cell γf The cell γf corresponds to the final γ computed at the end of the line
correspond to the reduction step. For Processing Element gamma_final, S1_γ_f_In is added to
C_γ_f , the result is a 2w bits. The least significant bits of the last result is added to S2_γ_f_In.
The internal architecture of the gamma_final type PE is presented in Figure 8.
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+
C γ f

S1 γ f In +

S2 γ f In

REG

REG

S2 γ f Out

S1 γ f Out

MSB w bits

LSB w bits

Figure 8: Gamma_f Processing Element internal architecture.

In the remainder of this section we detail our design for a s = 8 and a s = 16 architectures,
respectively denoted NW-8 and NW-16.

4.4 Our architectures

Firstly, we will start with the NW-8 architecture which contains 3 PEs of type alpha and 3 of type
gamma. With this design we can compute a modular multiplication in 33 clock cycles. Secondly we
will present the NW-16 architecture that is composed by 6 PEs of type alpha and 6 PEs of type
gamma. And we can perform a modular multiplication with this architecture in 66 clock cycles.
Similarly, in order to implement the NW-32 architecture and the NW-64 architecture we need every
time to double the number of cells. We provide a comparison of our architectures at the end of this
section.

NW-8 Architecture In this architecture, the operands and the modulo are divided in 8 words as
illustrated in Figure 10. The NW-8 architecture is composed of 9 Processing Elements distributed
in a two-dimensional array. Every Processing Elements are responsible for the calculus involving w
bits words of the input operands. For example, for a 256 bits modular multiplication with NW-8,
the operands are split in 8 words of 32 bits which results in a two-dimensional array of 9 Processing
Elements. The 9 Processing Elements are divided in the following manner: 3 cells alpha, 1 cell
alpha_final, 1 cell beta, 3 cells gamma, et 1 cell gamma_final. Those choices were made in order
to optimize the number of states in our FSM. As seen in section 2 each PE in the N-dimensional
array is connected to 2N data In/Out paths for communicating with 2N PEs in the N-dimensional
array. Since we are working with two-dimensional elements, each PE in our design is connected to
4 data paths, 2 Input and 2 Output as presented in Figure 3. In this architecture, the Processing
Elements are designed with finite state machines (FSM). The control block communicates with the
PEs and shift registers through starts signals. The Figure 9 presents an overview of our architecture.
For more technical details the Figure 20 presents the differents PEs with input/output. The shift
register is designed to provide the required words for a modular multiplication to the PEs. The
Processing Element alpha requires words a[i] and b[j] of the operands a and b, on the other side the
Processing Element gamma required a words of the operand p. Thus, these operands are defined
in the package body. At the end of the Montgomery modular multiplication, the control block
provides the multiplication result a · b · R−1 mod p through the outputs of the last gamma and
gamma_final Processing Elements. To evaluate the number of clock cycles for a CIOS method of
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Figure 9: Proposed Montgomery modular multiplication architecture.

Figure 10: The data dependency graph of the proposed new Systolic Architecture with a
Tow-dimensional array of Processing Elements (NW-8).
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modular multiplication in NW-8, the first parameter is max{number of alpha, number of gamma}=3,
it means that our design can handle three iterations of i at the same time as illustrated in Figure
10. Implying that our algorithm require to loop s + 3 times. we can performing our design in 33
clock cycles since our design requires three states (33 = 3 × (s + 3)). The different results of this
architecture in bit-length 256 are given in Table 2. And we illustrate an execution of this architecture
in the appendix B.1

Artix-7 DSP Frequency (MHz) Clock cycle

MMM (s=8/K=256) 31 105.275 33

Alpha 4 291.023 1

Gamma 4 291.023 1

Beta 4 388.350 1

Alpha_final 1 459.918 1

Gamma_final 2 442.811 1

Table 2: Implementations of cells and MMM (NW-8).

NW-16 Architecture In this architecture, the operands and the modulo are divided in 16 words.
The NW-16 architecture is designed in the same way as the NW-8. This example illustrates the
scalability of our design. The NW-16 architecture is composed of 15 Processing Elements distributed
in a two-dimensional array, where every Processing Elements are responsible for the calculus involving
w bits words of the input operands. The 15 Processing Elements are divided like this: 6 cells alpha,
1 cell alpha_final, 1 cell beta, 6 cells gamma et 1 cell gamma_final. We can remark that the number
of PEs of type alpha and gamma are the double of the number for NW-8. As said previously, the
number of other PE type (alpha_final, beta, gamma_final) remains unchanged whatever the number
of words in the design. In order to evaluate the number of clock cycles of the NW-16 architecture,
the first parameter is max{number of alpha, number of gamma}=6, implying that our algorithm
requires to loop s + 6 times. We can perform the multiplication with our design in 66 clock cycles
since our design requires three states (66 = 3× (s+ 6)). The different results of this architecture in
bit-length 256 are given in Table 3.

NW-32 Architecture In this architecture, the operands and the modulo are divided in 32 words.
The NW-32 architecture is composed of 27 Processing Elements distributed in a two-dimensional
array, where every Processing Elements are responsible for the calculus involving w bits words
of the input operands. The 27 Processing Elements are divided like this: 12 cells alpha, 1 cell
alpha_final, 1 cell beta, 12 cells gamma et cell gamma_final. In order to evaluate the number of
clock cycles of the NW-32 architecture, the first parameter as we have seen previously is max{number
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Artix-7 DSP Frequency (MHz) Clock cycle

MMM (s=16/K=256) 29 145.892 66

Alpha 2 379.341 1

Gamma 2 379.341 1

Beta 2 453.104 1

Alpha_final 1 459.918 1

Gamma_final 2 442.811 1

Table 3: Implementations of cells and MMM (NW-16).

of alpha, number of gamma}=12, implying that our algorithm require to loop s+ 12 times. We can
perform the multiplication with our design in 132 clock cycles since our design requires three states
(132 = 3× (s+ 12)).

NW-64 Architecture In this architecture, the operands and the modulo are divided in 64 words.
The NW-64 architecture is composed of 51 Processing Elements distributed in a two-dimensional
array, where every Processing Elements are responsible for the calculus involving w bits words of the
input operands. The 51 Processing Elements are divided like this: 24 cells alpha, 1 cell alpha_final,
1 cell beta, 24 cells gamma et 1 cell gamma_final. In order to evaluate the number of clock cycles
of the NW-64 architecture, the first parameter is max{number of alpha, number of gamma}=24,
implying that our algorithm require to loop s + 24 times. We can perform the multiplication with
our design in 264 clock cycles since our design requires three states (264 = 3× (s+ 24)).

Architectures comparison The Table 4 explains a comparison between the different architectures.
Number of clock cycles for every architecture equal to 3 × (s+nb), such that nb=max{number of
cells alpha, number of cells gamma}, implying that our algorithm require to loop s+ nb times. It is
interesting to notice that all our architectures are scalable and targeting the different security levels
useful in cryptography.

5 Results

The Table 5 summarizes the FPGA results postimplementation of the proposed versions of modular
multiplication architectures. We present a results for the both architectures NW-8 and NW-16. The
designs were described in hardware description languages (VHDL) and synthesized for Artix-7 and
Virtex-5 Xilinx FPGAs. In order to check the correctness of the result, we compare the results
given by the FPGA with the sage code. We present the different results after implementation of
bit-length k which are given in Table 5. These circuits have the advantage of suitability to various
applications with different bit lengths like RSA, ECC and pairings. As it is shown in Table 5, an
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CIOS s=8 s=16 s=32 s=64

K=256 32 16 8 4

K=512 64 32 16 8

K=1024 128 64 32 16

K=2048 256 128 64 32

Clock cycles= 3 × (s+nb) 33 66 132 264

Number of cells 6 +3 12 +3 24 +3 48 +3

Table 4: comparison of our architectures

interesting property of our design is the fact that the clock cycles are independent from the bit
length. This property gives to our design the advantage of suitability to different security level. In
order to implement the modular Montgomery multiplication for fixed security level, we must choose
the most suitable architecture. The results presented in this work are compared with the previous
work [18,17,5,4] in the Table 6. We could notice that our results are better then [18] considering
every point of comparison i.e. the number of slice and the number of clock cycles. Considering the
number of slices, we recall that [18] used an external memory to optimize the number of slices used
by their algorithms. Considering the comparison with [17], our design requires less number of slices,
and a better frequency and we really improve the number of clock cycles. Our design performed
the Montgomery multiplication in 66 clock cycles for the 512 and 1024 bit length corresponding to
AES-256 and AES-512 security level, while [17] performed the multiplication in 1540 clock cycles
for the AES-256 security level and 3076 for the AES-512 security level.

6 Conclusion

In this paper we have presented an efficient hardware implementation of the CIOS method of Mont-
gomery multiplication Algorithm over large prime characteristic finite fields Fp. We give the results
of our design after routing and placement using a Artix-7 and Virtex-5 Xilinx FPGAs. Our systolic
implementations is suitable for every implementation implying a modular multiplication, for example
RSA, ECC and pairing-based cryptography. Our architectures and the designs were matched with
features of the FPGAs. The NW-8 design presented a good performance considering latency× area
efficiency. This architecture can run for all the bit length corresponding to classical security levels
(128, 256, 512 or 1024 bits) in just 33 clock cycles. On the other hand the NW-16 perform the same
bit length in 66 clock cycles, but improve in area compared to NW-8 work. Our systolic design using
this method CIOS is scalable for other number of words.
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Artix 7- Nexys 4

NW-8 NW-16

128 256 512 256 512 1024

Freq MHz 198 106 65 146 106 65

cycles 33 33 33 66 66 66

Slice Registers 487 870 1614 1123 2164 4208

Slice LUTs 355 809 2650 846 1789 5242

Slices 206 352 878 402 798 2072

DSP 19 31 87 29 57 161

Table 5: illustration of the scalabilty of our architecture.

Xilinx FPGAs

Our works A7 Our works V5 [18] V5 [17] VE [5] VII [4] VII [12] V [1] K7 and V5

512 1024 512 1024 512 1024 512 1024 1024 1024 512 1024 512 K7 512 V5

Freq MHz 106 65 97 65 95 130 95.229 95.620 116.4 119 72.1 79.2 176 123

Cycles 66 66 66 66 96 384 1540 3076 1088 1167 – – 66 66

Speed µs 0.622 1.013 0680 1.015 1.010 2.953 16.031 32.021 9.34 9.80 – – 0.374 0536

Slice Registers 2164 4208 3046 6072 3876 6642 – – – – – – 5076 4960

Slice LUTs 1789 5242 1781 5824 – – 2972 5706 9319 9271 3125 6243 8757 10877

BRAM 0 0 0 0 128 256 – – – – – – 0 0

Table 6: Comparaison of our work with state-of-art implementations.
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A Appendix

A.1 Code Sage NW-8

#NW-8 Algoritm
s=8
p’
p=[p0,p1,p2,p3,p4,p5,p6,p7]
b=[b0,b1,b2,b3,b4,b5,b6,b7]
a=[a0,a1,a2,a3,a4,a5,a6,a7]
T=[0,0,0,0,0,0,0,0,0,0]
for i in range (s):

C_S=0
for j in range (0,s):

C_S=T[j]+a[i]*b[j]+(C_S>>32)
T[j]=C_S%(2^32)

C_S=T[s]+(C_S>>32)
T[s]=C_S%(2^32)
T[s+1]=C_S>>32
m=(T[0]*p’)%(2^32)
C_S=T[0]+m*p0
for j in range (1,s):

C_S=T[j]+m*p[j]+(C_S>>32)
T[j-1]=C_S%(2^32)

C_S=T[s]+(C_S>>32)
T[s-1]=C_S%(2^32)
T[s]=T[s+1]+(C_S>>32)
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A.2 Code Sage NW-16

#NW-16 Algoritm
s=16
p’
p=[p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15]
b=[b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15]
a=[a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15]
T=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for i in range (s):

C_S=0
for j in range (0,s):

C_S=T[j]+a[i]*b[j]+(C_S>>16)
T[j]=C_S%(2^16)

C_S=T[s]+(C_S>>16)
T[s]=C_S%(2^16)
T[s+1]=C_S>>16
m=(T[0]*p’)%(2^16)
C_S=T[0]+m*p0
for j in range (1,s):

C_S=T[j]+m*p[j]+(C_S>>16)
T[j-1]=C_S%(2^16)

C_S=T[s]+(C_S>>16)
T[s-1]=C_S%(2^32)
T[s]=T[s+1]+(C_S>>16)

B architecture

B.1 Execution
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Figure 11: Step 1.

Figure 12: Step 2.
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Figure 13: Step 3.

Figure 14: Step 4.
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Figure 15: Step 5.

Figure 16: Step 6.
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Figure 17: Step 7.

Figure 18: Step 8.



24 Authors Suppressed Due to Excessive Length

Figure 19: Step 9.
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Figure 20: All Processing Elements.
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