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Abstract

Crépeau and Santha, in 1991, posed the question of reversibility of functionalities, that
is, which functionalities when used in one direction, could securely implement the identical
functionality in the reverse direction. Wolf and Wullschleger, in 2006, showed that oblivious
transfer is reversible. We study the problem of reversibility among 2-party SFE functionalities,
which also enable general multi-party computation, in the information-theoretic setting.

We show that any functionality that enables general multi-party computation, when used
in both directions, is reversible. In fact, we show that any such functionality can securely
realize oblivious transfer when used in an a priori fixed direction. This result enables secure
computation using physical setups that parties can only use in a particular direction due to
inherent asymmetries in them.

1 Introduction

In 1991, Crépeau and Santha [CS91] posed the following question. Given oblivious transfers in one
direction can we implement oblivious transfer in the opposite direction? That is, given oblivious
transfers where Alice is the sender and Bob is the receiver, can we securely realize an oblivious
transfer where Bob is the sender and Alice is the receiver? Wolf and Wullschleger [WW06] resolved
this question in the affirmative. This result inspired several interesting results in cryptography, like
offline generation of correlated private randomness independent of the target functionality being
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computed in secure computation [CLOS02, IPS08] and (comparatively) easily introducing adaptive-
security to secure computation protocols [Lin09]. The proof of reversibility for oblivious transfer
of [WW06] appears to be intimately tied to the specifics of the oblivious transfer functionality.
Could reversibility, however, be a more general phenomenon?

Some functionalities, like simultaneous exchange, are inherently reversible. But we are most in-
terested in functionalities which provide us general secure [Can00] multi-party computation [Yao82,
GMW87], i.e. the complete functionalities. Restricted to the class of complete functionalities, the
line of inquiry initiated in 1991 naturally leads to the following fundamental question.

Which Complete Functionalities can be Reversed?

We study this problem in the two-party setting for secure function evaluation (SFE) functionalities.
Our work provides a full characterization of SFE functionalities that are reversible as well as suffi-
cient for information-theoretic general secure multi-party computation. In fact, we show that every
complete SFE functionality is reversible. In other words, we show that if using a functionality in
both directions is powerful enough to enable general secure function evaluation, then in fact using
the functionality in just one direction is enough.

Aside from its inherent theoretical appeal, the question of reversibility is also motivated by
asymmetries that may be present in different systems. For example, if some physical phenomenon
between two parties Alice and Bob is being utilized in order to carry out secure computations, it
may be that only a powerful entity can play the role of Alice, but a weak device can play the role
of Bob. In such an scenario, it would be critical to ensure that the cryptographic advantage offered
by the physical phenomenon is sufficient for secure computation even if roles cannot be reversed.

We obtain our characterization of reversibility, in fact, by studying the more general problem of
characterizing all 2-party complete functionalities that can be used in fixed roles to enable secure
information-theoretic two-party computation, i.e. the characterization of fixed-role completeness.

1.1 Our contributions

In this work, we study 2-party secure function evaluation (SFE) functionalities in the information-
theoretic UC-setting [Can00]. Our first result shows that any complete 2-party SFE functionality
is reversible.

Informal Theorem 1 (Reversibility Characterization). Any complete 2-party SFE functionality
F is reversible.

Our construction is also constant rate. That is, n instances of the functionality in one direction
is used to implement Θ(n) instances of the functionality in the reverse direction.

A functionality F is complete if it can be used (in both directions) to securely realize the oblivious
transfer functionality. For the stronger security notion of fixed-role completeness, we show that any
complete functionality, when used in fixed-role, is also complete.

Informal Theorem 2 (Fixed-role Completeness Characterization). Any complete 2-party SFE
functionality F is also fixed-role complete.

Similar to the previous result, this result is also constant rate. That is, using n instances of
the F functionality in a fixed direction, we implement Θ(n) instances of the oblivious transfer
functionality.

Additionally, we also show that the commitment functionality can be securely realized in the
F-hybrid if and only if F is complete (see Corollary 1). The proof is sketched in Section 1.4. This
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rules out the possibility of a functionality F which is of an intermediate complexity in the following
sense: it enables the computation of the commitment functionality (a non-trivial functionality) but
not the (all powerful) oblivious transfer functionality.

1.2 Prior Works

The problem of reversibility was initially posed by Crépeau and Santha [CS91] and the reversibil-
ity of oblivious transfer (and oblivious linear function evaluation) was exhibited by Wolf and
Wullschleger [WW06].

There are several results characterizing completeness of functionalities in different settings. The
oblivious transfer functionality was identified by Wiesner and Rabin [Rab81, Wie83]. Brassard
et al. [BCR86] showed the equivalence between various flavors of OT. In a seminal work, Kilian
showed the active-completeness of OT [Kil88]. Prior to this, the passive-completeness of OT was
shown in [HM86, GV88]. Crépeau and Kilian showed that noisy channels are active-complete
[CK88].

The first characterization of completeness appeared in the seminal work of Kilian [Kil91]. In
the asymmetric SFE setting, Beimel et al. [BMM99] provided a characterization. Kilian, in another
seminal work in 2000, vastly generalized these results [Kil00]. Subsequent works extended Kilian’s
result for active-completeness in two different directions: [CMW05] considered “channel functions;”
[KMQ11] considered deterministic functions.

Recently, the full characterization of 2-party complete functionalities in the semi-honest [MPR12]
and malicious [KMPS14] settings were obtained.

1.3 Technical Overview: Reversibility of Functionalities

Let F be a randomized two-party functionality between parties A and B, and let Fcore denote the
redundancy-free core of F (obtained after removing redundancies from F , as described in Section
3.2 of our paper). Kraschewski et al. [KMPS14] showed that F is complete ⇐⇒ Fcore is not simple.

To develop intuition for ‘simple’ functions, consider the following example of a ‘simple’ two-party
functionality Fcoin. Fcoin ignores the inputs of both parties and just outputs a common uniform
independent random bit to both parties. The formal notion of a simple function generalizes this
to arbitrary randomized functions, by ensuring that if the parties start with independent inputs,
then conditioned on the “common information” present after evaluating Fcore, the views of the two
players remain independent of each other. Naturally then, a non-simple function is one where the
views of the two players are not independent conditioned on the “common information” present after
evaluating Fcore on independent inputs. For the rest of this exposition, we will assume that F is
redundancy-free, and thus F = Fcore.

Kraschewski et al. [KMPS14] also showed how to obtain UC commitments from either A → B
or B → A, but not necessarily in both directions, using any non-simple F . W.l.o.g. for our case
analysis and the examples below, we assume that F already gives commitments from A→ B.

The main technical challenge in our paper, is to obtain commitments from B → A using any
complete (equivalently, non-simple) F . This is done by partitioning all complete functionalities into
three exhaustive cases: 1(a), 1(b) and 2. We will illustrate how we achieve this with the help of
representative examples for each case (Figures 1, 2 and 3). We define the notion of ‘extreme views’
and ‘intersection’ below, after which we describe our partition and explain the main ideas that allow
us to obtain commitments in each case.

Extreme Views: Consider the example function matrices in Figures 1, 2 and 3. For simplicity,
these examples have no redundancies, and are therefore equivalent to their core. Alice views are
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rows, and each row is a tuple (x,w): where x is her input and w is the output she received. Bob
views are columns and each column is a tuple (y, z), where y is his input and z is his output. ⊥
denotes no input. Double-lines separate sets of columns that correspond to the same input of Bob.
The entry in row (x,w) and column (y, z) denotes PrF [(w, z) | (x, y)].

XXXXXXAlice
Bob (⊥, 0) (⊥, 1)

(⊥, 0) 1/2 1/6
(⊥, 1) 0 1/3

Figure 1: Case 1(a). Both columns are ex-
treme.

XXXXXXAlice
Bob (0, 0) (0, 1) (1, 0)

(⊥, 0) 1/4 1/12 0
(⊥, 1) 0 2/3 1

Figure 2: Case 1(b). (0,0) and (1,0) are ex-
treme. col(0, 1) ≡ 1/3 × col(0, 0) + 2/3 ×
col(1, 0)

XXXXXXAlice
Bob (0, 0) (0, 1) (0, 2) (1, 0) (1, 1)

(⊥, 0) 1/5 0 0 1/20 0
(⊥, 1) 0 3/5 0 9/20 9/20
(⊥, 2) 0 0 1/5 0 1/20

Figure 3: Case 2. (0,0), (0,1) and (0,2) are ex-
treme. col(1, 0) ≡ 1/4× col(0, 0) + 3/4× col(1, 0).
col(1, 1) ≡ 1/4× col(0, 2) + 3/4× col(1, 0).

A view of Bob corresponds to a column in the matrix, labelled by the (input, output) for that
view. An extreme view of Bob is a a column that cannot be written as a convex linear combination
of other columns in the matrix. Note that for any non-simple F , both parties will have at least one
extreme view.

Warmup: Extreme views guarantee binding.
Looking ahead, extreme views will form an important part of our analysis. Consider the following

illustrative situation: Suppose Alice and Bob invoke the functionality in Fig. 2 many times on
uniformly random inputs (assume they picked their inputs honestly). After this, Bob is supposed
to send Alice the indices of all executions where he received (1, 0). Suppose malicious Bob instead
decides to send to Alice some indices where his view was (0, 1) or (0, 0).

Note that corresponding to Bob’s view (1, 0), Alice always obtains view (⊥, 1). On the other
hand corresponding to Bob’s view (0, 1), Alice obtains view (⊥, 0) with constant probability. Corre-
sponding to Bob’s view (0, 0), Alice always obtains view (⊥, 0). Since Bob cannot guess what view
Alice obtained, if Bob tries to cheat by claiming that his view was (1, 0) when actually his view
was (0, 1) or (0, 0), Alice will sometimes end up with a view of (⊥, 0) and thus immediately detect
Bob’s cheating with constant probability. This weakly binds Bob to his views. We use repetition
techniques (error-correcting codes) to amplify this weak binding property.

More generally, since extreme views cannot be expressed as a convex linear combination of other
views, it impossible for any party to obtain other views and claim that he obtained a specific extreme
view without getting caught. In the example situation above, no convex linear combination of other
views (0, 1) and (0, 0) can be claimed to be the extreme view (1, 0). The same thing is true for all
extreme views in any functionality F .
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Intersecting Views: A view of Alice, VA, intersects with a view of Bob, VB, if the joint view
(VA, VB) occurs with non-zero probability on invoking F with uniform distribution over both inputs.

Case Analysis. Given this terminology, we partition the set of all complete functionalities into
three sets, corresponding to Cases 1(a), 1(b) and 2. [KMPS14] already show how to obtain commit-
ments from any functionality in what we call Case 1(a). The major technical contribution of our
paper is to obtain commitments from functionalities that lie in Cases 1(b) and 2.

We will now walk through these cases using example functionalities from Figures 1, 2 and 3.
We will first define Case 1(a), and then describe how we partition the remaining possibilities for
complete functionalities into Cases 1(b) and 2. At this level, the fact that they are exhaustive
will be trivial to see. For Cases 1(b) and 2, we will then explain the main ideas behind obtaining
commitments from B → A, with the help of examples.

◦ Case 1(a): Kraschewski et al. [KMPS14] obtained commitments from P1 → P2 using any
functionality between parties P1 and P2 which has the following property: There exist at least
2 extreme views (V1P1

,V2P1
) of P1 which intersect with the same view VP2 of P2, i.e. both joint

views (V1P1
, VP2) and (V2P1

, VP2) occur with non-zero probability. They also show that any
complete functionality must satisfy this property in at least one direction, either P1 → P2 or
P2 → P1.

Recall that we require commitments from B → A. We define Case 1(a) as the set of all F
which satisfy the above property in the B → A direction. That is, Case 1(a) consists of all F
for which there exist at least 2 extreme views (V1B,V2B) of Bob that intersect with the same
view VA of Alice, i.e. both joint views (V1B, VA) and (V2B, VA) occur with non-zero probability.

Observe that in the example in Fig. 1, both Bob views (⊥, 0) and (⊥, 1) are extreme, and they
intersect with common Alice view (⊥, 0). Fig. 1 satisfies the above property from B → A and
lies in Case 1(a). Thus, [KMPS14] give B → A commitments for this case.

At a very intuitive level, Bob is committed to the views he obtained. He reveals these views
in the decommitment phase. The common intersecting view of Alice occurs sometimes, and
in these instances, she does not know what view Bob obtained. This property is amplified
to obtain hiding. As illustrated above, Bob cannot equivocate extreme views, and [KMPS14]
used this property of the extreme views to obtain binding as illustrated above.

XXXXXXAlice
Bob (⊥, 0) (⊥, 1)

(⊥, 0) 1/2 1/6
(⊥, 1) 0 1/3

Figure 1: Case 1(a). Both columns are ex-
treme.

XXXXXXAlice
Bob (0, 0) (0, 1) (1, 0)

(⊥, 0) 1/4 1/12 0
(⊥, 1) 0 2/3 1

Figure 2: Case 1(b). (0,0) and (1,0) are ex-
treme. col(0, 1) ≡ 1/3 × col(0, 0) + 2/3 ×
col(1, 0)

Remaining Cases Are Exhaustive. Let VB denote the set of all extreme views of Bob.
Let ŶB := {y : ∃z, such that (y, z) ∈ VB}, that is ŶB denotes the set of Bob inputs, which
have at least one corresponding view in VB. Let V̂B denote the set of all views of Bob that have
some y ∈ ŶB as input, i.e., V̂B = {(y, z) : y ∈ ŶB, (y, z) occurs with non-zero probability}.
Note: V̂B contains all extreme Bob views, and may also contain some non-extreme Bob views.
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– Case 1, i.e. Case 1(a) ∪ Case 1(b), consists of all complete functionalities for which two
views in V̂B intersect with a common Alice view.

– Case 2 consists of all complete functionalities for which no two views in V̂B intersect with
a common Alice view.

It is easy to see that Cases 1 and 2 are an exhaustive partition of all complete F . Next,

– Case 1(a) consists of all functionalities F in Case 1, where there are at least two extreme
views in V̂B that intersect with a common Alice view.

– Case 1(b) consists of all functionalities in Case 1 that are not in Case 1(a). In particular,
the fact that F is in Case 1(b) requires that no two extreme views in V̂B intersect with
a common Alice view. This means that either an extreme and non-extreme view of
Bob in V̂B intersect with a common Alice view, or two non-extreme views of Bob in V̂B
intersect with a common Alice view. Note that if two non-extreme views intersect, then
an extreme and non-extreme view also intersect (by the definition of extreme views).

◦ Case 1(b): Recall that this case consists of complete functionalities for which an extreme
and a non-extreme view of Bob in V̂B intersect with a common Alice view, for V̂B defined
above. An illustrative example for this case is in Fig. 2 above. The views (0, 0) and (1, 0) of
Bob are extreme, ŶB = {0, 1}, V̂B = {(0, 0), (0, 1), (1, 0)}. Moreover, views (0, 0) and (0, 1) in
V̂B intersect with a common Alice view. Also, views (1, 0) and (0, 1) in V̂B intersect with a
common Alice view. But no two extreme Bob views intersect with a common Alice view.

To obtain B → A commitments, Alice and Bob invoke F , with Alice using a uniform distri-
bution over her inputs and Bob using a uniform distribution over inputs in ŶB. Assume for
simplicity that Alice and Bob can be forced to use the correct distribution over their inputs.
(This can be ensured using cut-and-choose techniques and extreme views of Bob.)

Binding. We split Bob’s views into two categories: extreme and non-extreme. The main
idea behind building commitments will be to ensure that he cannot obtain views in one
category and later claim that they belong in another category. To understand this, consider
the following example scenario w.r.t. the functionality in Fig. 2: Bob obtains view (0, 0), which
is an extreme view, and claims later that he obtained (0, 1), which is a non-extreme view. We
would like to prevent this situation. We would also like to prevent Bob from obtaining view
(0, 1), which is a non-extreme view, and later claiming that he obtained (0, 0), which is an
extreme view. In both these situations, we would like Alice to catch such a cheating Bob with
high probability. Ensuring that she catches such a cheating Bob will (weakly) bind Bob to
the category of views he obtained. Here is how we ensure this.

– Suppose Bob obtains (0, 1) and later claims it was (0, 0). By a similar argument as the
warmup, Alice will catch him with constant probability: Note that Alice obtains view
(⊥, 1) with constant probability corresponding to Bob’s view (0, 1), but she never obtains
view (⊥, 1) corresponding to Bob’s view (0, 0). Since Bob doesn’t know what view Alice
obtained, if he actually obtained the view (0, 1) and tried to claim that he obtained (0, 0),
Alice will sometimes end up with view (⊥, 1) and detect Bob’s cheating with constant
probability. This can be amplified to full-fledged binding using error correction.

– Suppose Bob obtains (0, 0) and claims that it was (0, 1). In this case, the previous
argument no longer works since (0, 1) is not an extreme view. However, because both
parties used uniform inputs, Bob will obtain some ‘correct’ distribution over his outputs.
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Also by the previous item, Bob cannot have obtained (0, 1) and claim that it is (0, 0).
Thus, if he obtains (0, 0) and claims that he obtained (0, 1), then (0, 1) will appear too
often in his claimed views and Alice will detect this. In general, to equivocate extreme
views to non-extreme views, Bob will have to “steal” probability mass from the extreme
views and add more mass to the non-extreme views – which Alice will detect.

Hiding. For a uniform distribution over her inputs, with constant probability Alice obtains
a common view that intersects both an extreme and a non-extreme view of Bob. Thus she
cannot tell which category Bob’s view was in, at the end of the commit stage. This gives a
weak form of hiding which can then be amplified. For example in the functionality in Fig. 2,
Alice’s view (⊥, 0) intersects with the extreme view (0, 0) and non-extreme view (0, 1) of Bob.
Only one such intersection suffices to obtain hiding. For a complete analysis of this case,
please refer to Section 5.

◦ Case 2: Recall that this case consists of complete functionalities for which no two views of
Bob in V̂B intersect with a common Alice view, for V̂B defined above. Nevertheless, note
that at least 2 views of Bob must intersect with a common Alice view, because otherwise F
is trivial. Moreover, if two views outside V̂B intersect with a common Alice view, then both
views must be non-extreme (by the definition of V̂B). This means that at least one extreme
and non-extreme view pair intersect with a common Alice view, which means that in this case
necessarily, one Bob view inside V̂B and one outside V̂B intersect with a common Alice view.

XXXXXXAlice
Bob (0, 0) (0, 1) (0, 2) (1, 0) (1, 1)

(⊥, 0) 1/5 0 0 1/20 0
(⊥, 1) 0 3/5 0 9/20 9/20
(⊥, 2) 0 0 1/5 0 1/20

Figure 3: Case 2. (0,0), (0,1) and (0,2) are ex-
treme. col(1, 0) ≡ 1/4× col(0, 0) + 3/4× col(1, 0).
col(1, 1) ≡ 1/4× col(0, 2) + 3/4× col(1, 0).

In the illustrative example in Fig. 3, since the first three columns can be convex-linearly
combined to obtain the fourth and fifth columns, only the first three views (0, 0), (0, 1), (0, 2)
of Bob are extreme. Moreover, all extreme views of Bob correspond to input 0, thus ŶB =
{0}, V̂B = {(0, 0), (0, 1), (0, 2)} and views in V̂B do not intersect with any common Alice view.
Note also that Bob’s input 1 is not redundant, because the distribution over Alice’s views
induced by Bob’s input 1 is different from the distribution induced by Bob’s input 0.

To obtain B → A commitments in this case, Alice and Bob invoke F with Alice using a
uniform distribution over her inputs and Bob using a uniform distribution over all his inputs.

Binding. We partition Bob’s views into two categories: views inside V̂B and views outside
V̂B, then argue that he cannot equivocate between these categories. Again, here we only argue
that a cheating Bob will be caught with constant probability – this can be amplified using
error-correcting codes to obtain full-fledged binding.

In this case, it is not straightforward to argue that Bob can be forced to use a uniform
(or some requisite) distribution over his inputs – in fact arguing this forms the crux of our
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binding argument. Consider the example in Fig. 3. Here are two representative strategies of
a malicious Bob:

– Bob actually obtains view (1, 0), and later claims that it was (0, 1). However, unbe-
knownst to Bob, Alice may obtain view (⊥, 0) and therefore detects Bob’s cheating with
constant probability. More generally, if Bob uses input 1 and claims that it is a 0, Alice
will catch him with constant probability.

– Bob actually uses input 0 all the time, and later claims that in some invocations he used
input 1. Here, we note that the distributions over Alice’s views corresponding to Bob’s
inputs 0 and 1 in the example functionality are different. If this were not the case, then
Bob’s input 1 would be redundant. This means that Alice, by simply checking her output
distribution, will catch Bob whenever he launches such an attack.
We generalize this argument (refer to Lemma 3) to show that in any redundancy-free
core of a complete functionality, in Case 2, there exists at least one Bob input outside of
ŶB (this input is 1 in the representative example) which cannot be mimicked using any
input in ŶB (this input is 0 in this example).

Hiding. We show that there exists a common Alice view which intersects at least one Bob
view in ŶB (which is 0 in the representative example in Fig. 3) and one Bob view corresponding
to the un-mimickable input outside ŶB (which is a 1 in the example). In the example func-
tionality, Alice’s view (⊥, 0) intersects with the views (0, 0) in V̂B and (1, 0) corresponding to
input 1 outside ŶB. When using a uniform distribution over her inputs (this can be easily
ensured), with constant probability Alice obtains this intersecting view. This gives a weak
form of hiding which can then be amplified. A complete analysis of this case is in Section 6.

1.4 Technical Overview: Commitment reducible only to Complete SFE Func-
tionalities

We have already shown what if f is a 2-party SFE which is malicious-complete then Fcom fixed-role
reduces to it. So, it suffices to show that if F has a simple core, then Fcom does not reduce to
F . Suppose a protocol Π securely realizes Fcom in the F-hybrid, where F has a simple core. Note
that, given a public transcript, since F has a simple core, a party can always sample joint-views
consistent with it. Therefore, either each transcript can be equivocated or it is not hiding. Hence,
we have the following result:

Corollary 1. For every 2-party SFE F , we have: Fcom vuc F iff FOT vuc F .

2 Preliminaries

In this section, we recall some primitives useful in stating unified completeness results for 2-party
SFE in various security notions.

2.1 Secure Function Evaluation

A Functionality. Consider a two-party finite randomized functionality F between Alice and Bob,
where Alice has input x ∈ X and Bob has input y ∈ Y. They invoke the functionality with their
respective inputs and obtain outputs w ∈ W and z ∈ Z. We recall that such a functionality can
be denoted by a matrix. The rows of this matrix are indexed by Alice views (x,w) ∈ X ×W and
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columns are indexed by Bob views (y, z) ∈ Y × Z. The entry in the cell in row (x,w) and column
(y, z) equals Pr[w, z|x, y].

This matrix can also be viewed as a collection of stochastic sub-matrices, where each sub-matrix
corresponds to some input x ∈ X of Alice and y ∈ Y of Bob. Each cell in this sub-matrix, with row
indexed by Alice output w and column indexed by Bob output z equals Pr[w, z|x, y].

Graph of an SFE Functionality. Given a 2-party SFE F(fA, fB) we define a bipartite graph
G(F) as follows.

Definition 1. Graph of a 2-party SFE. Given a SFE functionality F(fA, fB), its corresponding
graph G(F) is a weighted bipartite graph constructed as follows. Its partite sets are X × ZA and
Y × ZB. For every (x, a) ∈ X × ZA and (y, b) ∈ Y × ZB, the edge joining these two vertices is
assigned weight

wt ((x, a), (y, b)) :=
Pr

r
$←R

[fA(x, y, r) = a ∧ fB(x, y, r) = b]

|X × Y |

The choice of the normalizing constant 1/|X × Y | is arbitrary. For this particular choice of
constant, we can view the weight of an edge as representing the joint-distribution probability of
input-output pairs seen by the two parties when (x, y, r)

$←X × Y ×R.

The kernel of a 2-party function f is a function which outputs to the two parties only the
“common information” that f makes available to them. To formalize this, we define a weighted
bipartite graph G(f) with partite sets X × W and Y × Z, and for every (x,w) ∈ X × W and
(y, z) ∈ Y ×Z, the edge joining these two vertices is assigned weight pf [w,z|x,y]

|X×Y | . The kernel of F is a

randomized function which takes inputs x ∈ X and y ∈ Y from the parties, samples (w, z)
$←f(x, y),

and outputs to both parties the connected component of G(F) which contains the edge (x,w), (y, z).

2-Party Secure Function Evaluation. A two-party randomized function (also called a secure
function evaluation (SFE) functionality) is specified by a single randomized function denoted as
f : X × Y → W × Z. Despite the notation, the range of f is, more accurately, the space of
probability distributions over W × Z. The functionality takes an input x ∈ X from Alice and an
input y ∈ Y from Bob, and samples (w, z) ∈ W × Z according to the distribution f(x, y); then it
delivers w to Alice and z to Bob. Throughout, we shall denote the probability of outputs being
(w, z) when Alice and Bob use inputs x and y respectively is represented by βF [w, z|x, y]. We use
the following variables for the sizes of the sets W,X ,Y,Z: |X | = m, |Y| = n, |W| = q, |Z| = r.

As is conventional in this field, in this paper, we shall restrict to function evaluations where
m,n, q and r are constants, that is, as the security parameter increases the domains do not expand.
(But the efficiency and security of our reductions are only polynomially dependent on m,n, q, r,
so one could let them grow polynomially with the security parameter. We have made no attempt
to optimize this dependency.) W.l.o.g., we shall assume that X = [m] (that is, the set of first m
positive integers), Y = [n],W = [q] and Z = [r].

We consider standard security notions in the information-theoretic setting: UC-security, stan-
dalone security and passive-security against computationally unbounded adversaries (and with com-
putationally unbounded simulators). Using UC-security allows to compose our sub-protocols se-
curely [Can00]. Error in security (simulation error) is always required to be negligible in the security
parameter of the protocol, and the communication complexity of all protocols are required to be
polynomial in the same parameter. However, we note that a protocol may invoke a sub-protocol
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with a security parameter other than its own (in particular, with a constant independent of its own
security parameter).

Complete Functionalities. A two-party randomized function evaluation F is standalone-complete
(respectively, UC-complete) against information theoretic adversaries if any functionality G can be
standalone securely (respectively, UC securely) computed in the F hybrid. We shall also consider
passive-complete functions where we consider security against passive (semi-honest) adversaries.

Redundancy-free core of a functionality. The core of a functionality is computed by removing
redundant parts of the functionality f . A redundancy may be of two forms. It could consist of inputs
which are useless for the adversary, that is, using another input gives the adversary strictly more
information about the view of the (other) honest party, while the honest party cannot distinguish the
cases in which the adversary used the less informative or the more informative input. In this case,
the less informative input is called redundant and is removed to obtain the core of the functionality.

Another kind of redundancy is an output redundancy, where two or more outputs can be com-
pressed into a single output if they convey identical information to the adversary about the honest
party’s view. As an example, consider a functionality in which when Bob’s input is 0, if Alice’s
input is 0 then he receives 0, but if her input is 1, he receives the output symbol α with probability
3/4 and β with probability 1/4. Here, the two outcomes α and β give Bob the same information
about Alice’s input, and could be merged into a single output. We recall the formal linear algebraic
definition of redundancies from Kraschewski et al. [KMPS14] in Section 2.

Simple core of functionalities. The core of a functionality f is simple if for parties starting
with independent inputs, the views of the parties remain independent of each other conditioned on
the common information after the function evaluation. This is formally defined in Section 2. Recall
that Kraschewski et al. [KMPS14] showed that a finite randomized functionality is complete if and
only if the redundancy-free core of F is not simple.

Extreme views and mimicking inputs Consider the matrix βF obtained after removing the
above-mentioned redundancies from the matrix F . The entry in the cell in row (x,w) and column
(y, z) is denoted by βFx,w,y,z and equals Pr[w, z|x, y].

Then a view (y, z) of Bob is an extreme view if the column indexed by (y, z) in βF cannot be
written as a convex linear combination of other columns in βF . Note that there necessarily exist at
least two extreme views for each party in any non-trivial functionality. We say that a view (y, z) of
Bob intersects with a view (x,w) of Alice if the entry βFx,w,y,z 6= 0.

Let Y0 ⊂ Y be a set of Bob inputs. We say that an input y∗ ∈ Y \ Y0 of Bob, is mimicked by
Y0, if there exists a probability distribution η over Y0 such that Alice’s view when Bob is choosing
inputs from this distribution is indistinguishable from her view when Bob uses y∗.

2.2 Leftover Hash Lemma

Themin-entropy of a discrete random variableX is defined to beH∞(X) = − log maxx∈Supp(X) p
f [X =

x]. For a joint distribution (A,B), the average min-entropy of A w.r.t. B is defined as H̃∞(A|B) =
− log

(
Eb∼B

[
2−H∞(A|B=b)

])
.

Imported Lemma 1 (Generalized Leftover Hash Lemma(LHL) [DORS08]). Let {Hx : {0, 1}n →
{0, 1}`}}x∈X be a family of universal hash functions. Then, for any joint distribution (W, I):
SD ((HX(W ), X, I), (U`, X, I)) ≤ 1

2

√
2−H̃∞(W |I)2`
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3 Technical Tools

This section is mainly based on concepts introduced in [KMPS14].

3.1 Notation and Definitions

Consider the matrix βF of the redundancy-free core of F , whose columns are indexed by Bob views
(y, z) ∈ Y × Z and rows are indexed by Alice views (x,w) ∈ X ×W. The entry in the cell in row
(x,w) and column (y, z) is denoted by βFx,w,y,z and equals Pr[w, z|x, y].

We will also consider the compressed matrix βFB whose rows are indexed by Bob inputs y and
rows are indexed by Alice views (x,w) ∈ X ×W. The entry in the cell in row (x,w) and column y
is denoted by βFx,w,y and equals Pr[w|x, y].

The maps φA and φB These maps define equivalence classes of views. Roughly, two rows (or
columns) in βF lie in the same equivalence class if they are scalar multiples of each other. Formally,
for each (x,w) ∈ X ×W, let the vector βF |(x,w) ∈ Rnr be the row indexed by (x,w) in the matrix
βF . Let φA : [m]× [q]→ [`] (for a sufficiently large ` ≤ mq) be such that φA(x,w) = φA(x′, w′) iff
βF |(x,w) = c ·βF |(x′,w′) for some positive scalar c. φB is defined similarly for column vectors indexed
by Bob views (y, z).

3.2 Characterizing Irredundancy

Redundancy in a function allows at least one party to deviate in its behavior in the ideal world
and not be detected (with significant probability) by an environment. In our protocols, which are
designed to detect deviation, it is important to use a function in a form in which redundancy has
been removed. We use definitions of irredundancy from [KMPS14], and give a brief overview here for
completeness. There also exists an efficient algorithm to remove redundancies following [KMPS14].

Irredundancy of a 2-Party Secure Function Evaluation Function. Recall that a 2-party
SFE function f with input domains, X × Y and output domain W × Z is defined by probabilities
pf [w, z|x, y]. Output redundancies identify if the output can be compressed to remove aspects of
the output that are useless for the adversary’s goal of gaining information about the honest party’s
inputs. For input redundancy, we define left and right redundancy of f as follows. Below, |X| =
m, |Y | = n, |W | = q, |Z| = r. To define left-redundancy, consider representing f by the matrices
{P x}x∈X where each P x is an nr × q matrix with P x(y,z),w = pf [w, y, z|x]. Here, pf [w, y, z|x] ,
1
np

f [w, z|x, y] (where we pick y independent of x, with uniform probability pf [y|x] = 1
n).

Definition 2. For an SFE function f : X × Y → W × Z, represented by matrices {P x}x∈X , with
P x(y,z),w = Pr[w, y, z|x], we say that an input x̂ ∈ X is left-redundant if there is a set {(αx,Mx)|x ∈
X}, where 0 ≤ αx ≤ 1 with

∑
x αx = 1, and each Mx is a q×q stochastic matrix such that if αx̂ = 1

then Mx̂ 6= I, and P x̂ =
∑

x∈X αxP
xMx. We say x̂ is strictly left-redundant if it is left-redundant

as above, but αx̂ = 0. We say x̂ is self left-redundant if it is left-redundant as above, but αx̂ = 1 (and
hence Mx̂ 6= I). We say that f is left-redundancy free if there is no x ∈ X that is left-redundant.

Right-redundancy notions for inputs ŷ ∈ Y are defined analogously. f is said to be redundancy-
free if it is left-redundancy free and right-redundancy free.
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3.3 Statistically Testable Function Evaluation

Statistical tests [KMPS14] help ensure that a cut-and-choose technique can be used to verify an
adversary’s claims about what inputs it sent to a 2-party function and what outputs it received,
when the verifier has access to only the other end of the function. It is important to note that such
statistical tests can only be applied when an adversary declares (or commits to) his claimed inputs
beforehand and is not allowed to adaptively choose his input claims adaptively based on function
output. Kraschewski et al. [KMPS14] show that evaluation of a 2-party function is statistically
testable iff the function is redundancy free.

We consider the notion of a statistically testable function evaluation game. (The notion is
more general and could be extended to reactive systems, or multi-player settings; for simplicity we
define it only for the relevant setting of 2-party functions.) As mentioned there, we shall show that
evaluation of a 2-party function is statistically testable if and only if the function is redundancy free.
For simplicity, we define a particular test and show that it is sound and complete for redundancy
free functions (without formally defining statistical tests in general). (It is easy to see that functions
with redundancy cannot have a sound and complete test. Since this is not relevant to our proof, we
omit the details.)

Left-Statistical-Test(f, pY ;N):

1. The adversary picks x̃ = (x̃1, . . . , x̃N ) ∈ XN , and for each i ∈ [N ] the challenger (secretly)
picks uniform i.i.d yi ∈ Y , according to the distribution pY .

2. For each i ∈ [N ], the parties invoke f with inputs xi and yi respectively; the adversary
receives wi and the challenger receives zi, where (wi, zi)

$← f(xi, yi). Here the adversary
picks xi adaptively depending upon the previous inputs xi, x̃i, wi, w̃i.

3. The adversary then outputs w̃ = (w̃1, . . . , w̃N ) ∈WN .

Let f be redundancy free. Consider the following statistical test, formulated as a game between
an honest challenger (verifier) and an adversary (prover) in the f -hybrid. The adversary wins this
game (breaks the soundness) if the following conditions hold:

1. Consistency: Let µw̃,x̃,y,z be the number of indices i ∈ [N ] such that w̃i = w̃, x̃i = x̃, yi = y
and zi = z. Also, let µx̃,y be the number of indices i ∈ [N ] such that x̃i = x̃ and yi = y.
The consistency condition requires that ∀(w, x, y, z) ∈ W × X × Y × Z, µw̃,x̃,y,z = µx̃,y ×
pf [w̃, z|x̃, y]±N2/3.

2. Separation: Let vectors A, Ã ∈ (W × X)N be defined by Ai := (wi, xi) and Ãi = (w̃i, x̃i).
The separation condition requires that the hamming distance between the vectors A and Ã
is ∆(A, Ã) ≥ N7/8.

Right-Statistical-Test(f, pX ;N) is defined analogously. Statistical-Test(f, pX , pY ;N) consists of
Left-Statistical-Test(f, pY ;N) and Right-Statistical-Test(f, pX ;N), and the adversary wins if it wins
in either experiment. Before proceeding, we note that the above statistical test is indeed “complete”:
if the prover plays “honestly” and uses x̃ = x and w̃ = w, then the consistency condition will be
satisfied with all but negligible probability (for any choice of x). The following imported lemma will
be used to guarantee that given committed inputs, statistical tests will detect divergent behaviour
on the views, with significant probability.
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Imported Lemma 2. [KMPS14] If f is redundancy free, and pXand pY are constant distribution
which have full support over X and Y respectively, then the probability that any adversary wins in
Statistical-Test(f, pY , pX ;N) is negl(N). 1

We detail the proof of the above statement in Appendix A.

3.4 Weak Converse of the Channel Coding Theorem, Generalization

A converse of the channel coding theorem states that message transmission is not possible over a
noisy channel at a rate above its capacity, except with a non-vanishing rate of errors. We use a
generalization of the (weak) converse of channel coding theorem due to [KMPS14] where the receiver
can adaptively choose the channel based on its current view. Then if in at least a µ fraction of
the transmissions, the receiver chooses channels which are noisy (i.e., has capacity less than that
of a noiseless channel over the same input alphabet), it is possible to lower bound its probability
of error in predicting the input codeword as a function of µ, an upper bound on the noisy channel
capacities, and the rate of the code. We import the following lemma from [KMPS14].

Imported Lemma 3. Let F = {F1, . . . ,FK} be a set of K channels which take as input alphabets
from a set Λ, with |Λ| = 2λ. Let G ⊆ [K] be such that for all i ∈ G, the capacity of the channel Fi
is at most λ− c, for a constant c > 0.

Let C ⊆ ΛN be a rate R ∈ [0, 1] code. Consider the following experiment: a random codeword
c1 . . . cN ≡ c

$← C is drawn and each symbol c1 . . . cN is transmitted sequentially; the channel used
for transmitting each symbol is chosen (possibly adaptively) from the set F by the receiver.

Conditioned on the receiver choosing a channel in G for µ or more transmissions, the probability
of error of the receiver in predicting c is

Pe ≥ 1− 1

NRλ
− 1− cµ/λ

R
.

4 Summary and Exhaustive Case Analysis

4.1 Summary

Given a 2-party SFE F , we represent by FA→B the functionality which takes its first input from
Alice and its second input from Bob. Similarly, we define the functionality FB→A. We say F reduces
to G, represented by F vuc G, if there exists a information-theoretic UC-secure protocol for F in
the G-hybrid. The functionality F⊗n represents n independent copies of the functionality F .

We observe that Kraschewski et al. [KMPS14] obtain oblivious transfer using any finite ran-
domized functionality F with a non-simple core, in a fixed direction, if there exist commitments
in both directions. Furthermore, they already show that for any finite randomized functionality
F with a non-simple core, commitments can be obtained from either Alice to Bob or from Bob to
Alice.

Our main technical contribution will be to show that, in fact, for any finite randomized func-
tionality F with a non-simple core, commitments can be obtained both from Alice to Bob and from
Bob to Alice, by using F in a fixed direction.

Analogous to the above statement, we also have a statement where FA→B is replaced by FB→A.
Next, once we get FOT at constant rate, we can implement FB→A at constant rate using [IPS08].
This gives our main result.

1 The distributions pXand pY are constant while N is a growing parameter.
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Theorem 1 (Reversible Characterization). For every 2-party SFE F : if FOT vuc F in the mali-
cious setting (possibly using F in both directions), then there exists c > 0 such that F⊗σA→B vuc F⊗κB→A
in the malicious setting and σ ≥ cκ.

Again, once we have commitments in both directions, by using the SFE functionality in only
one direction, we can use the compiler of [KMPS14] to directly obtain the following theorem.

Theorem 2 (Fixed-Role Completeness Characterization). For every 2-party SFE F : FOT vuc F
in the malicious setting (possibly using F in both directions) if and only if there exists c > 0 such
that F⊗σOT vuc F⊗κA→B in the malicious setting and σ ≥ cκ.

4.2 Exhaustive Case Analysis

First, we will classify any functionality F with a non-simple redundancy-free core, into a set of
exhaustive cases. In each case, we demonstrate that it is possible to obtain commitments using F ,
from Bob to Alice. Let VB denote the set of extreme Bob views, and Ŷ be the set of inputs of Bob
that admit at least one extreme view, that is, Ŷ := {y : ∃z, such that (y, z) ∈ VB}. Let V̂B denote
the set of all Bob views corresponding to inputs in Ŷ , that is V̂B = {(y, z) : y ∈ Ŷ }. Our cases are
listed in Table 1.

1 There exists an Alice view with which ≥ 2 Bob views in V̂B intersect.
(a) There exists an Alice view with which ≥ 2 extreme Bob views in V̂B intersect. In this

case, it is possible to obtain commitments from Bob to Alice [KMPS14].
(b) There exists an Alice view with which one extreme and ≥ 1 non-extreme Bob view in V̂B

intersect.
2 No two Bob views in V̂B intersect with the same Alice view.

Table 1: Exhaustive Summary of Cases

Claim 1. In a non-simple functionality F , if no two extreme Bob views intersect with the same
Alice view, then there exists an Alice view which intersects with one extreme and one non-extreme
Bob view.

Proof. In a non-simple functionality F , if no two extreme Bob views intersect with the same Alice
view, then we have the following possibilities:

1. There is an Alice view intersecting an extreme and non-extreme Bob view,

2. Or, there is an Alice view which intersects 2 non-extreme Bob views,

3. Or, no Alice view intersects any two Bob views.

We show that 2 =⇒ 1, and 3 contradicts the fact that F is non-simple.
Let the number of extreme views of Bob be γ. Denote the extreme views of Bob by (y∗i , z

∗
i ), for

i ∈ [γ]. Suppose Alice view VA = (x, z) intersects with two non-extreme Bob views V 1
B = (y1, z1)

and V 2
B = (y2, z2). Then, the columns βF|(y1,z1) and β

F
|(y2,z2) of β

F have non-zero entries in the row
corresponding to (x, z). Since both views (V 1

B, V
2
B) are non-extreme, the columns βF|(y1,z1) and β

F
|(y2,z2)

of βF can be expressed as a linear combination of extreme columns (y∗i , z
∗
i ), for i ∈ [γ]. This means
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that there necessarily exists at least one extreme view (y∗, z∗) ∈ {(y∗1, z∗1), (y∗2, z
∗
2), . . . (y∗γ , z

∗
γ)} such

that the column βF|(y∗,z∗) of β
F has a non-zero entry in the row corresponding to (x, z). This proves

2 =⇒ 1.
Suppose that in a non-simple functionality F , no view of Alice intersects with any two views of

Bob. That is, every view of Alice intersects with at most one view of Bob. In this case, the common
information/kernel obtained after function evaluation is the view of Bob. It is straightforward to
see that both parties can independently sample their views, conditioned on any view of Bob. This
completes the proof of this claim.

In the following sections, we construct commitments Fcom,B→A, for any functionality F depend-
ing on which of the two cases it falls in.

We observe that in case there exists an Alice view with which at least two extreme Bob views
in V̂B intersect, the protocol of [KMPS14] can be used to obtain commitments from Bob to Alice.
We re-state their result in the following lemma. In the following lemma, we will recall appropriate
notions of confusability from [KMPS14]. Any functionality F in which at least two extreme Bob
views in V̂B intersect with a common Alice view, will be said to have a confusable bF .

Imported Lemma 4. Denote the set of extreme views of Bob by bF . For each Alice view (x,w)
denote by bF |(x,w) all the extreme views of Bob which intersect with the specific Alice view (x,w).
That is, bF |(x,w) is the set of extreme views (y, z) of Bob such that the row in βF indexed by (y, z)

has a positive entry in the column indexed by (x,w). bF is said to be confusable if there exists
(x,w) ∈ X ×W and two elements (y1, z1), (y2, z2) ∈ bF |(x,w) such that φB(y1, z1) 6= φB(y2, z2). aF

is defined similarly for extreme views of Alice. Then,

1. If the redundancy-free core of F is simple, either aF or bF is confusable.

2. If aF is confusable, it is possible to obtain commitments from Alice to Bob. If bF is confusable,
it is possible to obtain commitments from Bob to Alice.

5 Case 1(b): Commitments

5.1 Construction

Let VB denote the set of all extreme views of Bob and let Ŷ denote the set of all inputs of Bob
that contain at least one extreme view, that is Ŷ := {y : ∃z, such that (y, z) ∈ VB}. Further, let
V̂B denote the set of all Bob views corresponding to inputs in Ŷ , that is V̂B = {(y, z) : y ∈ Ŷ }.

In this section, we demonstrate how to obtain commitments from any functionality F for which
the following is true: V̂B “is confusable”, that is, there exists an Alice view (x,w) and two distinct Bob
views (Ŷ1, ẑ1) and (Ŷ2, ẑ2) ∈ V̂b (where possibly Ŷ1 = Ŷ2) such that βF

x,Ŷ1,w,ẑ1
6= 0 and βF

x,Ŷ2,w,ẑ2
6= 0.

The protocol is described in Fig. 4.

5.2 Proof of Security

5.2.1 Receiver Security (Statistical Binding/Extractability)

In the UC setting, it suffices to consider a dummy sender S and malicious environment ZS , such
that the dummy sender forwards all messages from ZS to the honest receiver/simulator, and vice-
versa. Without loss of generality, the malicious simulation strategy SimS can be viewed to interact
directly with ZS . SimS is described in Fig. 5.
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Inputs: Sender S has input bit bit ∈ {0, 1} and receiver R has no input.
Hybrid: F for non-simple function F , and Ŷ as defined above is confusable. F provides
commitments (Com) from Alice to Bob.
The protocol is presented in terms of a (κ, κ − κ15/16,Ω(κ15/16))-linear code C over the binary
alphabet. (An explicit code is not necessary: the receiver can pick random Ω(κ15/16) “parity
checks” to construct the code and announce it to the sender.) The protocol is parameterized by κ.

1. Commit Phase:

(a) R (Alice) picks inputs (X1, X2, . . . , X2κ2) uniformly from X 2κ2 . She commits to each
of them using fresh randomness and sends Com(X1),Com(X2), . . .Com(X2κ2) to S.

(b) S (Bob) picks inputs (Y1, Y2, . . . , Y2κ2) from a uniform distribution over Ŷ 2κ2 . R and S
invoke F , 2κ times, with inputs (X1, X2, . . . , X2κ2) and (Y1, Y2, . . . , Y2κ2) respectively.

(c) Cut-and-Choose: R picks r1
$← {0, 1}∗ and sends Com(r1) to S. S sends r2

$← {0, 1}∗

to R. R uses randomness (r1 ⊕ r2) to pick a subset I ←
(

2κ2

[κ2]

)
of the κ2 indices. R

decommits to r1. Furthermore, for all i ∈ I, R decommits to input Xi and also opens
her view (Xi,Wi).
S aborts if the decommitments are not correct, or the inputs of R are not close to
a uniform distribution, or if (Xi,Wi) for i ∈ I satisfy the consistency checks in the
Left-Statistical-Tests.
Else, S and R set S = [2κ2] \ I and reorder the indices in S to [κ2].

(d) S does the following for all i ∈ [κ].

◦ Construct the jth characteristic vector uj such that for all i ∈ [κ], uj,i = 0 if and
only if (Yjκ+i, Zjκ+i) ∈ V, else uj,i = 1.

◦ Pick κ random codewords c1, c2, . . . cκ ∈ Cκ. Pick h $←H, a universal hash func-
tion mapping {0, 1}κ

2

→ {0, 1}, and for j ∈ [κ], compute y = h(c1, c2, . . . cκ) ⊕
bit, offsetj = (cj ⊕ uj). Send (h, y, offset1, offset2, . . . offsetκ) to R.

2. Reveal Phase:

(a) S sets b′ = bit,u′j = uj for j ∈ [κ] and sends b′,u′1,u′2, . . .u′κ to R as his opening. S
also sends (Yi, Zi) for all i ∈ [κ2], to R.

(b) R accepts if all the following conditions hold:

◦ For j ∈ [κ], cj = u′j ⊕ offsetj , is a valid codeword.
◦ b′ = h(c1, c2, . . . cκ)⊕ y.
◦ For all i ∈ [κ2], (Yi, Zi) satisfy input-output frequency tests.

Figure 4: Fcom in Case 1(b).

Lemma 1. There exists a constant c such that the simulation error for the malicious sender is at
most 2−cκ.

Proof. The simulator performs Steps 1(a), (b) and (c) as per the honest receiver strategy, and also
emulates the functionality F honestly for the sender. It remains to show that the unique bit b′
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The simulator SimS does the following.

1. Commit Phase:

(a) SimS picks inputs (X1, X2, . . . , X2κ2) uniformly from X 2κ2 . SimS then commits to
each of them using fresh randomness and sends Com(X1),Com(X2), . . .Com(X2κ2) to
S. Note that SimS has the capability to equivocate these commitments.

(b) SimS obtains inputs (Y1, Y2, . . . Y2κ2) from S and emulates the functionality F honestly
for S with inputs (X1, X2, . . . X2κ2) and (Y1, Y2, . . . Y2κ2).

(c) Cut-and-Choose: SimS picks r1
$← {0, 1}∗ and sends com1 = Com(r1) to S. S sends

r2
$← {0, 1}∗ to SimS . SimS uses (r′1 ⊕ r2) to pick subset I $←

(
2κ2

[κ2]

)
of the κ2 indices.

SimS decommits com1 to r1 and, for all i ∈ I, SimS decommits to input Xi and also
opens the view (Xi,Wi). Set S = [2κ2] \ I and reorder the indices in S to [κ2].

(d) SimS obtains (h, y, offsetj) for j ∈ [κ] from S. It constructs characteristic vectors uj
such that for all i ∈ S, ui = 0 if and only if (Yi, Zi) ∈ V, else ui = 1. It then
computes c̃j = uj ⊕ offsetj , sets c′j to be the nearest codeworda to c̃j , and sets bit
b′ = y ⊕ h(c′1, c

′
2, . . . c

′
κ).

2. Reveal Phase:

(a) Obtain b′, u′1, u′2, . . . u′κ, (Yi, Zi) for all i ∈ [κ2] from S as his opening.

(b) Allow the ideal functionality to output the extracted bit b′ if all the following conditions
hold (and otherwise reject):

◦ (u′j ⊕ offsetj) is a valid codeword for j ∈ [κ].
◦ (Yi, Zi) for all i ∈ [κ2] satisfy input-output frequency tests.

aIf the nearest codeword is not unique, then SimS commits to an arbitrary bit.

Figure 5: Sender Simulation Strategy in Case 1(b).

extracted by the simulator equals the bit b committed by the sender Bob. The crux of this proof
relies on the fact that the protocol requires the sender to use one extreme view and on the minimum
distance of the code used.

Bob cannot claim non-extreme views to be extreme. In the opening made by Bob, consider
the positions where Bob claimed his view to be extreme, that is, (yi, zi) = (y∗, z∗) ∈ VB, such that
the equivalence class of this view φB(y∗, z∗) = Φ. Consider the fraction of these positions where the
actual view of Bob (y′, z′) such that φB(y′, z′) 6= Φ. In these positions, the expected view of Alice is
given by a linear combination of the columns βF |(y′,z′) (with coordinates scaled appropriately). If
this linear combination is not close to the vector βF |(y∗,z∗) (scaled appropriately) then with all but
negligible probability, the opening will not be accepted by the receiver. On the other hand, if the
linear combination is close to βF |(y∗,z∗), since βF |(y∗,z∗) is outside the linear span of other βF |(y′,z′)
with φB(y′z′) 6= φB(y∗, z∗), only at a small number (sub-linear fraction, say κ2/3) of places can
Bob open to (y∗, z∗) but have had an actual view (y′, z′). This is because, an extreme view can’t
be expressed as a linear combination of other views of Bob, without being detected by Alice with
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constant probability.

Bob uses close to uniform distribution over inputs in ŶB. Consider an input y∗ ∈ ŶB and
let (y∗, z∗) denote its corresponding extreme view. Alice will not accept the extreme view (y∗, z∗)

in the opening of Bob (except with probability 2−cκ
2/3) unless Bob actually obtained the particular

view in all but κ2/3 of these indices. In order to obtain the view (y∗, z∗) in 1/ŶB × βFz∗|y∗ fraction
of indices, Bob should have used the input y∗ to the functionality with probability at least 1/|ŶB|.

Bob cannot equivocate outputs. Since Bob uses all inputs in ŶB with nearly the correct
probability (except on O(κ2/3) indices, then in the real and simulated worlds, he also obtains views
in V̂B with nearly the expected probability. Furthermore, he cannot obtain views not in VB and
pretend that they were in VB except for O(κ7/8) indices. Therefore, he cannot obtain views in VB
and pretend that they were not in VB except for O(κ7/8) indices, otherwise he will fail the frequency
tests on the outputs.

To summarize,

◦ For any input y∗ ∈ ŶB, if Alice accepts the decommitment, Bob should have actually used
the input to the functionality F in exactly 1/|ŶB| fraction of the places, except cheating in
at most κ2/3 indices.

◦ For any (extreme) view (y∗, z∗) ∈ V̂B, Bob cannot have claimed to obtain (y∗, z∗) at specific
indices unless he obtained the view in (y∗, z∗) at all but O(κ7/8) of these indices.

◦ For any non-extreme view (y∗, z∗) ∈ V̂B, Bob cannot have claimed to obtain (y∗, z∗) at specific
indices unless he actually obtained some non-extreme view at all but O(κ7/8) of these indices.

By using a code such that the minimum distance of the code (Ω(κ15/16)) is much larger than the
number of positions where the sender can cheat as above (O(κ7/8), we guarantee that the sender is
bound to his committed bit.

Specifically, the simulator computes the nearest codeword to the codeword extracted from the
sender, and uses this to extract his committed bit. The sender cannot equivocate this codeword
without cheating in Ω(κ15/16) views, and if he does so, his decommitment is not accepted except
with probability at least (1− 2−cκ). This completes the proof of this lemma.

5.2.2 Sender Security (Statistical Hiding/Equivocability)

It suffices to consider a dummy receiver R and malicious environment ZR, such that the dummy
receiver forwards all messages from ZR to the honest sender/simulator, and vice-versa. Without
loss of generality, the malicious simulation strategy SimR can be viewed to interact directly with
ZR. SimR is described in Fig. 6.

Lemma 2. There exists a constant c such that the simulation error for the malicious receiver is at
most 2−cκ.

Proof. Consider the use of the function f as a “channel”, which accepts xi,j from Alice, ci,j from Bob,
samples (yi,j , wi,j , zi,j) and outputs zi,j to Bob, and ai,j ⊕ ci,j to Alice where ai,j = φB(yi,j , zi,j).

The cut-and-choose verification in Step 1(c) ensures that Alice uses (close to) a uniform dis-
tribution over her inputs. This is done by invoking Left-Statistical-Tests on committed inputs
X1, x2 . . . X2κ2 of Alice, and her claimed outputs W1,W2, . . .W2κ2 .
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The simulator SimR does the following.

1. Commit Phase:

(a) SimR obtains commitments c1, c2, . . . c2κ2 from R.
(b) SimR obtains inputs (X1, X2, . . . X2κ2) from R and emulates the functionality F hon-

estly for R with inputs (X1, X2, . . . X2κ2) and (Y1, Y2, . . . Y2κ2).

(c) Cut-and-Choose: SimR obtains com1 from R. SimR sends r2
$←{0, 1}∗ to R. R decom-

mits to r1 and sends subset I $←
(

2κ2

[κ2]

)
of the κ2 indices. For all i ∈ I, SimR obtains

decommitments Xi and also the openings (Xi,Wi). SimR aborts if the decommitments
are not correct, or the inputs of R are not from a uniform distribution, or if (Xi,Wi)
for i ∈ I do not satisfy the consistency checks in Left-Statistical-Tests.

(d) SimR follows honest strategy to commit to a uniformly random bit bit′
$←{0, 1}.

Figure 6: Receiver Simulation Strategy in Case 1(b).

This test ensures that she obtains the view (x,w) that intersects with an extreme and a non-
extreme view in V̂B in at least βF|x,zκ

2 −O(κ) invocations. At all these invocations, given her view,
Alice has confusion about whether the corresponding view of Bob was extreme or non-extreme.
Therefore, the views obtained by Alice act as a channel transmitting information about the cor-
responding views of Bob. It is that the capacity of this channel is a constant, that is less than
1.

Then we appeal to an extension of the weak converse of Shannon’s Channel Coding Theorem
(Imported Lemma 2) to argue that since the code has rate 1 − o(1), Alice errs in decoding each
codeword with at least a constant probability. We need this extension of the (weak) converse of the
channel coding theorem to handle that the facts that:

1. The receiver can adaptively choose the channel characteristic, by picking yi,j adaptively, and

2. Some of the channel characteristics that can be chosen include a noiseless channel, but the
number of times such a characteristic can be used cannot be large (except with negligible
probability). The reason this restriction can be enforced is because Alice’s view intersects
with views of Bob corresponding to characteristic index 0 and 1.

Then, applying the Leftover Hash Lemma, we get that for a universal hash function h, if Bob
sends κ codewords over such a channel, the output of the hash function is at least 1− 2−cκ close to
uniform. Thus, the simulation error is at most 2−cκ.

6 Case 2: Commitments

As before, let VB denote the set of all extreme views of Bob and let Ŷ denote the set of all inputs of
Bob that contain at least one extreme view, that is Ŷ := {y : ∃z, such that (y, z) ∈ VB}. Further,
let V̂B denote the set of all Bob views corresponding to inputs in Ŷ , that is V̂B = {(y, z) : y ∈ Ŷ }.

In this section, we demonstrate how to construct commitments from any function F for which
the following is true: V̂B has no confusion, that is no two Bob views in V̂B intersect with the same
Alice view. In other words, all views corresponding to all inputs y ∈ Ŷ are extreme and also disjoint.
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First, we make the following basic observation about disjoint extreme views. Let VB denote the
set of extreme views of Bob. If there is no Alice view VA which intersects two or more Bob views
in VB, then each Bob view in VB is in one-to-one correspondence with the equivalence class φ of
Alice views. In particular, each Bob view (y, z) in VB reveals φ(VA) for any view VA which the Bob
view (y, z) intersects. Then, we note that for all inputs ŷ in Ŷ , each output view (ŷ, ẑ) completely
reveals the equivalence class φ of Alice views. The following lemma is imported from [KMPS14].

Imported Lemma 5. [KMPS14]. Suppose Ŷ ⊆ Y is a set of inputs, where each view (ŷ, z) for
each input ŷ ∈ Ŷ is completely revealing about the equivalence class φ of Alice views. If some input
y∗ ∈ Y \ Ŷ can be fully-mimicked by Ŷ then y∗ is a strictly redundant input.

Note that if y 6∈ Y0 can be mimicked by Y0, it does not necessarily mean that y∗ is redundant,
because for redundancy there must exist a probabilistic mapping from Y0×Z to y∗×Z. However, if
Y0 are all completely revealing about the equivalence class φ of Alice views, it can be shown that y∗

is indeed redundant. For completeness, we repeat the formal proof from [KMPS14] in Appendix B.

Lemma 3. Suppose Ŷ ⊆ Y is a set of inputs, where each view (ŷ, z) for each input ŷ ∈ Ŷ is
completely revealing about an equivalence class of Alice views. Let Y ′ = Y \ Ŷ . If every input in
Y ′ can be mimicked using a probability distribution over other inputs that assigns constant non-zero
weight to Ŷ , then every input in Y ′ is strictly redundant.

Proof. Our proof follows along the lines of Gaussian elimination, removing one variable dependency
at a time. As is the case with Gaussian elimination, the invariant we maintain is that the ith variable
does not influence anything beyond the ith constraint. Our proof uses an inductive argument where
the above invariant is iteratively maintained in each iteration.

Consider inputs y∗ ∈ Y ′ that can be mimicked using non-zero constant weight in Ŷ . We prove
that if all inputs y∗ ∈ Y ′ can be mimicked using non-zero constant weight in Ŷ , then they can in
fact be fully mimicked only by Ŷ . Once we prove this, we can invoke Imported Lemma 5 to prove
that all such inputs y∗ must be strictly redundant. We first set up some notation for the proof.

Notation. Let Y ′ = {y∗1, y∗2, . . . y∗` } and Ŷ = {ŷ1, ŷ2, . . . ŷ|Y|−`}, where ` < |Y|. Let M be an
`×(`+1) matrix whose entries are set such that for all i ∈ [`], y∗i =

∑
j∈[`](Mi,j)y

∗
j +
∑

j∈[|Y|−`] pi,j ŷj .
Then Mi,(`+1) =

∑
j∈[|Y|−`] pi,j .

That is, for (i, j) ∈ [`]× [`], the row Mi denotes the probability distribution over inputs y∗j used
to mimic the input y∗i . The entry Mi,`+1 denotes the total weight of inputs in Ŷ assigned by the
probability distribution, for mimicking the input y∗i .

Transformation. Assume, contrary to the statement of the lemma, that every entryMi,`+1 for all
i ∈ [1, `] is a non-zero constant, denote the ith such entry by ci. We give a series of transformations
on M , such that the resulting matrix M ′ has non-zero entries only in the (` + 1)th column. This
suffices to prove that all inputs can be fully mimicked using some distribution over inputs only in
Ŷ , therefore proving the lemma.

We inductively set Mi,j = 0 for all (i, j) ∈ [1, k]× [1, k].

Base Case. In the base case, if M1,1 = 0, we are done.
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Else we can rewrite the first row equations as:

y∗1 =
∑
j∈[`]

(Mi,j)y
∗
j +

∑
j∈[|Y|−`]

pi,j ŷj (1)

= M1,1y
∗
1 +

∑
j∈[2,`]

(Mi,j)y
∗
j +

∑
j∈[|Y|−`]

pi,j ŷj (2)

y∗1 −M1,1y
∗
1 =

∑
j∈[2,`]

(M1,j)y
∗
j +

∑
j∈[|Y|−`]

p1,j ŷj (3)

y∗1(1−M1,1) =
∑
j∈[2,`]

(M1,j)y
∗
j +

∑
j∈[|Y|−`]

p1,j ŷj (4)

If M1,1 6= 0, we rewrite this as:

y∗1 =
∑
j∈[2,`]

M1,j

(1−M1,1)
y∗j +

∑
j∈[|Y|−`]

p1,j
(1−M1,1)

ŷj (5)

At the end of this manipulation, we have an equivalent system of equations represented by
matrix M ′, such that M ′1,1 = 0 and for all j ∈ [`],M ′1,j =

M1,j

(1−M1,1)
. In shorthand, we denote this by

M1,1 → 0,M1,j → M1,j

(1−M1,1)
for j ∈ [2, `].

Inductive Hypothesis.
Assume that after the kth transformation, all entries Mi,j = 0 for (i, j) ∈ [1, k]× [1, k]. This gives

us, that for i′ ∈ [1, k], the probability distribution over other inputs for mimicking inputs y∗i′ are of
the form:

y∗i′ =
∑

j∈[k+1,`]

(Mk+1,j)y
∗
j +

∑
j∈[|Y|−`]

pk+1,j ŷj (6)

Induction Step. This consists of the following two transformations:

1. The probability distribution over other inputs for mimicking the input y∗k+1 can be written
as:

y∗k+1 =
∑
j∈[k]

(Mk+1,j)y
∗
j +

∑
j∈[k+1,`]

(Mk+1,j)y
∗
j +

∑
j∈[|Y|−`]

pk+1,j ŷj (7)

Then, it is possible to substitute the first k terms in this equation using Equation 6 to obtain
another equation of the form:

y∗k+1 =
∑

j∈[k+1,`]

(M ′k+1,j)y
∗
j +

∑
j∈[|Y|−`]

p′k+1,j ŷj , (8)

for suitably modified values (M ′k+1,j) and p′k+1,j .

At the end of this set of transformations, for all j ∈ [k],Mk+1,j → 0 and for j ∈ [k +
1, `],Mk+1,j →M ′k+1,j .

2. Now, we can write the (k + 1)th row Equation 8 as:

y∗k+1 = (M ′k+1,k+1)y
∗
k+1 +

∑
j∈[k+2,`]

(M ′k+1,j)y
∗
j +

∑
j∈[|Y|−`]

p′k+1,j ŷj (9)
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If Mk+1,k+1 6= 0, this can be rewritten as:

y∗k+1 =
∑

j∈[k+2,`]

M ′k+1,j

(1−M ′k+1,k+1)
y∗j +

∑
j∈[|Y|−`]

pk+1,j

(1−M ′k+1,k+1)
ŷj (10)

At the end of this transformation, the matrix entry M ′k+1,k+1 → 0.

3. Substituting Equation 10 into the first k rows, we get that for i′ ∈ [1, κ + 1], the probability
distribution over other inputs for mimicking inputs y∗i′ are of the form:

y∗i′ =
∑

j∈[k+1,`]

(M ′′k+1,j)y
∗
j +

∑
j∈[|Y|−`]

p′′k+1,j ŷj (11)

At the end of these transformations, we obtain an matrix M̄ representing an equivalent system
of equations, such that for all (i, j) ∈ [`] × [`], M̄i,j = 0 and M̄i,`+1 6= 0. This completes the proof
of this lemma.

Now, suppose that for all inputs y∗ ∈ Y \ Ŷ , Bob can mimic y∗ using non-zero weight in Ŷ .
Then, since Lemma 3 proves that all inputs y∗ ∈ Y \Ŷ can be written as a convex linear combination
of inputs entirely in Ŷ . This contradicts Imported Lemma 5. Since the functionalities we study
only have a constant-sized domain, it is always easy to find such an input y∗.

6.1 Construction

The protocol is described in Fig. 7. Without loss of generality, we can assume that there exists a
commitment protocol from Alice to Bob. We construct a commitment protocol with Bob as sender,
and Alice as receiver.

6.2 Proof of Security

6.2.1 Receiver Security (Statistical Binding/Extractability)

In the UC setting, it suffices to consider a dummy sender S and malicious environment ZS , such
that the dummy sender forwards all messages from ZS to the honest receiver/simulator, and vice-
versa. Without loss of generality, the malicious simulation strategy SimS can be viewed to interact
directly with ZS . SimS is described in Fig. 8.

Lemma 4. There exists a constant c such that the simulation error for the malicious sender is at
most 2−cκ.

Proof. The simulator performs Steps 1(a), (b) and (c) as per the honest receiver strategy, and also
emulates the functionality F honestly for the sender. It remains to show that the unique bit b′

extracted by the simulator equals the bit b committed by the sender Bob. The crux of this proof
relies on the fact that the protocol requires the sender to use all his extreme views, and some
non-extreme views; and on the minimum distance of the code used.
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Inputs: Sender S has input bit bit ∈ {0, 1} and receiver R has no input.
Hybrid: F for non-simple function F where Ŷ is not confusable, and y∗ as defined above, exists.
F provides commitments (Com) from Alice to Bob.
The protocol is presented in terms of a (κ′, κ′ − κ′8/9, ω(κ15/16))-linear code C over the binary
alphabet. (An explicit code is not necessary: the receiver can pick random ω(κ7/8) “parity checks”
to construct the code and announce it to the sender.) The protocol is parameterized by κ.

1. Commit Phase:

(a) For all i ∈ [κ], R (Alice) picks inputs (X1, X2, . . . , X2κ2) from a uniform distribution
over X 2κ2 . Alice also sends Com(X1),Com(X2), . . .Com(X2κ2) to Bob.

(b) S (Bob) picks inputs (Y1, Y2, . . . , Y2κ2) from a uniform distribution over (Ŷ ∪ y∗)2κ2 .
R and S invoke F , 2κ times, with inputs (X1, X2, . . . , X2κ2) and (Y1, Y2, . . . , Y2κ2)
respectively.

(c) Cut-and-Choose: R picks r1
$←{0, 1}∗ and sends Com(r) to S. S sends r2

$←{0, 1}∗ to

R. R uses r1 ⊕ r2 to pick a subset I $←
(

2κ2

[κ2]

)
of the κ2 indices. R decommits to r1.

Furthermore, for all i ∈ I, R decommits to input Xi and also opens her view (Xi,Wi).
S aborts if the decommitments are not correct, or the inputs of R are not close to
a uniform distribution, or if (Xi,Wi) for i ∈ I satisfy the consistency checks in the
Left-Statistical-Tests.

(d) S does the following for all i ∈ [κ].

◦ Construct the jth characteristic vector uj such that for all i ∈ [κ], uj,i = 0 if and
only if Yjκ+i ∈ Ŷ , else uj,i = 1.

◦ Pick κ random codewords c1, c2, . . . cκ ∈ Cκ. Pick h $←H, a universal hash func-
tion mapping {0, 1}κ

2

→ {0, 1}, and for j ∈ [κ], compute y = h(c1, c2, . . . cκ) ⊕
bit, offsetj = (cj ⊕ uj). Send (h, y, offset1, offset2, . . . offsetκ) to R.

2. Reveal Phase:

(a) S sets b′ = b,u′ = u and sends b′, u′ to R as his opening. S also sends (Yi, Zi) for all
i ∈ [κ2], to R.

(b) R accepts if all the following conditions hold:

◦ For j ∈ [κ], cj = u′j ⊕ offsetj , is a valid codeword.
◦ b′ = h(c1, c2, . . . cκ)⊕ y.
◦ Input-output frequency tests on (Yi, Zi) pass for all i ∈ [κ2].

Figure 7: Fcom in Case 2.

Bob cannot claim non-extreme views to be extreme. Equivalently, Bob cannot claim
an input outside ŶB to be an input inside ŶB. In the opening made by Bob, consider the
positions where Bob claimed his view to be (yi, zi) = (y∗, z∗) ∈ VB, such that the equivalence class
of this view φB(y∗, z∗) = Φ. Consider the fraction of these positions where the actual view of Bob
(x′, w′) such that φB(y′, z′) 6= Φ.

In these positions, the expected view of Alice is given by a linear combination of the columns
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The simulator SimS does the following.

1. Commit Phase:

(a) SimS picks inputs (X1, X2, . . . , X2κ2) uniformly from X 2κ2 . SimS then commits to
each of them using fresh randomness and sends Com(X1),Com(X2), . . .Com(X2κ2) to
S. Note that SimS has the capability to equivocate these commitments.

(b) SimS obtains inputs (Y1, Y2, . . . Y2κ2) from S and emulates the functionality F honestly
for S with inputs (X1, X2, . . . X2κ2) and (Y1, Y2, . . . Y2κ2).

(c) Cut-and-Choose: SimS picks r1
$← {0, 1}∗ and sends com1 = Com(r1) to S. S sends

r2
$← {0, 1}∗ to SimS . SimS uses (r′1 ⊕ r2) to pick subset I $←

(
2κ2

[κ2]

)
of the κ2 indices.

SimS decommits com1 to r1 and, for all i ∈ I, SimS decommits to input Xi and also
opens the view (Xi,Wi). Set S = [2κ2] \ I and reorder the indices in S to [κ2].

(d) SimS obtains (h, y, offsetj) for j ∈ [κ] from S. It constructs characteristic vectors uj
such that for all i ∈ S, uj,i = 0 if and only if Yjκ+i ∈ Ŷ , else ui = 1. It then
computes c̃j = uj ⊕ offsetj , sets c′j to be the nearest codeworda to c̃j , and sets bit
b′ = y ⊕ h(c′1, c

′
2, . . . c

′
κ).

2. Reveal Phase:

(a) Obtain b′, u′1, u′2, . . . u′κ, (Yi, Zi) for all i ∈ [κ2] from S as his opening.

(b) Allow the ideal functionality to output the extracted bit b′ if all the following conditions
hold (and otherwise reject):

◦ (u′j ⊕ offsetj) is a valid codeword for j ∈ [κ].
◦ (Yi, Zi) for all i ∈ [κ2] satisfy the input-output frequency tests in the Right-

Statistical-Tests.
aIf the nearest codeword is not unique, then SimS commits to an arbitrary bit.

Figure 8: Sender Simulation Strategy in Case 2.

βF |(y′,z′) (with coordinates scaled appropriately). If this linear combination is not close to the
vector βF |(y∗,z∗) (scaled appropriately) then with all but negligible probability, the opening will not
be accepted by the receiver. On the other hand, if the linear combination is close to βF |(y∗,z∗), since
βF |(y∗,z∗) is outside the linear span of other βF |(y′,z′) with φB(y′z′) 6= φB(y∗, z∗), only at a small
number (sub-linear fraction, say κ2/3) of places can Bob open to (y∗, z∗) but have had an actual
view (y′, z′). Thus, extreme views cannot be claimed to be obtained as a result of using inputs
which exclusively yield non-extreme views.

Bob cannot claim an input inside ŶB to be outside ŶB. By Lemma 3, we also know that
y∗ cannot be mimicked with any non-zero weight in Ŷ , without getting caught by the receiver in
the Right-Statistical-Tests. Thus, it is not possible to use inputs in Ŷ and equivocate them to y∗.
This gives that the sender cannot equivocate at more that O(κ2/3) indices.
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Bob cannot equivocate. By using a code such that the minimum distance of the code (Ω(κ3/4))
is much larger than the number of positions where the sender can cheat in one of the two situations
above (O(κ2/3), we guarantee that the sender is bound to his committed bit.

Specifically, the simulator computes the nearest codeword to the codeword extracted from the
sender, and uses this to extract his committed bit. The sender cannot equivocate this codeword
without cheating in Ω(κ3/4) views, and if he does so, his decommitment is not accepted except with
probability at least (1− 2−cκ). This completes the proof of this lemma.

6.2.2 Sender Security (Statistical Hiding/Equivocability)

It suffices to consider a dummy receiver R and malicious environment ZR, such that the dummy
receiver forwards all messages from ZR to the honest sender/simulator, and vice-versa. Without
loss of generality, the malicious simulation strategy SimR can be viewed to interact directly with
ZR. SimR is described in Fig. 9.

Lemma 5. There exists a constant c such that the simulation error for the malicious receiver is at
most 2−cκ.

Proof. Consider the use of the function f as a “channel”, which accepts xi,j from Alice, ci,j from Bob,
samples (yi,j , wi,j , zi,j) and outputs zi,j to Bob, and ai,j ⊕ ci,j to Alice where ai,j = φB(yi,j , zi,j).

The cut-and-choose verification in Step 1(c) ensures that Alice uses (close to) a uniform distri-
bution over her inputs. Then, she obtains the view (x,w) that intersects with an extreme and a
non-extreme view in V̂B in at least a constant fraction of the invocations. At all these invocations,
given her view, Alice has confusion about whether the corresponding view of Bob was extreme of
non-extreme. Formally, we can show that the capacity of the above channel is a constant, that is
less than 1.

The simulator SimR does the following.

1. Commit Phase:

(a) SimR obtains commitments c1, c2, . . . c2κ2 from R.
(b) SimR obtains inputs (X1, X2, . . . X2κ2) from R and emulates the functionality F hon-

estly for R with inputs (X1, X2, . . . X2κ2) and (Y1, Y2, . . . Y2κ2).

(c) Cut-and-Choose: SimR obtains com1 from R. SimR sends r2
$←{0, 1}∗ to R. R decom-

mits to r1 and sends subset I $←
(

2κ2

[κ2]

)
of the κ2 indices. For all i ∈ I, SimR obtains

decommitments Xi and also the openings (Xi,Wi). SimR aborts if the decommitments
are not correct, or the inputs of R are not from a uniform distribution, or if (Xi,Wi)
for i ∈ I do not satisfy the consistency checks in Left-Statistical-Tests.

(d) SimR follows honest sender strategy to commit to a uniformly random bit bit′
$←{0, 1}∗.

Figure 9: Receiver Simulation Strategy in Case 2.

Then we appeal to an extension of the weak converse of Shannon’s Channel Coding Theorem
(Imported Lemma 2) to argue that since the code has rate 1, Alice errs in decoding each codeword
with at least a constant probability. We need this extension of the (weak) converse of the channel
coding theorem to handle that the facts that:
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1. The receiver can adaptively choose the channel characteristic, by picking yi,j adaptively, and

2. Some of the channel characteristics that can be chosen include a noiseless channel, but the
number of times such a characteristic can be used cannot be large (except with negligible
probability). The reason this restriction can be enforced is because Alice’s view intersects
with views of Bob corresponding to characteristic index 0 and 1.

Then, applying the Leftover Hash Lemma, we get that for a universal hash function h, if Bob
sends κ codewords over such a channel, the output of the hash function is at least 1− 2−cκ close to
uniform. Thus, the simulation error is at most 2−cκ.
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A Statistically Testable Function Evaluation

Imported Lemma 2 (Restated.) If f is redundancy free, and pXand pY are constant distribution
which have full support over X and Y respectively, then the probability that any adversary wins in
Statistical-Test(f, pY , pX ;N) is negl(N).2

Proof. We shall only argue that if f is left-redundancy free, then the probability of any adversary
winning the Left-Statistical-Test(f, pY ;N) is negligible in N . There is a similar argument for the
Right-Statistical-Test. Then the result follows by a union bound.

The experiment involves the adversary adaptively choosing xi. To facilitate the analysis, instead
we shall analyze all choices of (x̃,x,w, w̃), but restricted to w being “typical” for a randomly
chosen y (for the given vector x). Since this would hold except with negligible probability (over
random choice of y and the randomness of f), this restriction will not affect the conclusion. Then,
assuming that the adversary satisfies the sufficient-distance condition, we analyze the probability
of the consistency condition holding. We shall argue that this probability is negligible if f is
redundancy free.

We shall consider the expectation of the quantity µw̃,x̃,y,z − pf [w̃, z|x̃, y]µx̃,y and argue that for
some value of x, ỹ, z̃, the absolute value of this expectation should be large, say, Ω(N7/8). Note
that, once we fix (x̃,x,w, w̃), then for any quadruple (x̃, x, w, w̃), µw̃,x̃,y,z and µx̃,y can both be
written as the sum of i.i.d indicator random variables. This is because the random experiment
we consider consists only of picking yi, zi, for each i independently: if xi = x and wi = w, then
Pr[yi = y, zi = z] = pf,Y [y, z|x,w] := pY [y]·pf [w,z|x,y]∑

z′,y′ p
Y [y′]·pf [w,z′|x,y′] . Then by Chernoff bounds, we obtain

that except with negligible probability, the consistency condition will be violated.
We shall define the set Good of “good” (x̃,x,w) in which, for each x̃, x, w, the number of positions

i with wi = w among the positions i with x̃i = x̃, xi = x is as expected (over uniformly random i.i.d
yi and randomness of f) up to an additive error of N2/3. (Note that this assumption is non-trivial
only when there are at least N2/3 positions with x̃i = x̃, xi = x.) The analysis below would be for
every tuple (x̃,x,w) ∈ Good. W.l.o.g we assume that for each (x̃,x,w) the adversary chooses w̃
deterministically.

Fix (x̃,x,w) ∈ Good and an arbitrary w̃. Let Ĩx̃w̃ denote the subset of indices i ∈ [N ] such that
(x̃i, w̃i) = (x̃, w̃), and indy,z denote the set of i such that (yi, zi) = (y, z). We also write Ĩx̃ to denote
the set of all indices i with x̃i = x̃.

2 The distributions pXand pY are constant while N is a growing parameter.
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Let J̃x̃ = Ĩx̃ \ ∪w∈W (Ĩx̃,w ∩ indx̃,w). That is, J̃x̃ is the set of indices i such that x̃i = x̃ and there
is some “deviation”: either xi 6= x̃i or wi 6= w̃i. By the separation condition of the test, we know
that there is some value x̂ ∈ X such that |J̃x̂| ≥ 1

mN
7/8. Henceforth, we restrict our attention to

Ĩx̂.
The probabilities in the expressions below are conditioned on (x̃,x,w), where the random choices

made are of y and (w, z). (We do not assume any distribution over x̃ and x which are chosen by
the adversary.) For any y ∈ Y , we have:

E
[
µw̃,x̂,y,z

]
= E

[
|Ĩx̂,w̃ ∩ indy,z|

]
=

∑
x∈X,w∈W
pf,Y [w|x]>0

E
[
|Ĩx̂w̃ ∩ indw,x,y,z|

]

=
∑
x,w

|Ĩx̂w̃ ∩ indxw| · pf,Y [y, z|x,w] =
∑
x,w

|Ĩx̂w̃ ∩ indxw| ·
pf,Y [w, y, z|x]

pf,Y [w|x]

Here, pf,Y [w, y, z|x] , pY [y]pf [w, z|x, y] (since we pick y independent of x, with probability pY [y|x] =
pY [y]) and pf,Y [w|x] =

∑
y,z p

f,Y [w, y, z|x]. Also, we define βxww̃ to be the fraction among the indices
i (within Ĩx̂) in which the adversary sent xi = x to f and obtained wi = w, for which it reported
w̃i = w̃.3

βxww̃ =

{ |Ĩx̂w̃∩indxw|
|Ĩx̂∩indxw|

if |Ĩx̂ ∩ indxw| 6= 0

0 otherwise.

|Ĩx̂w̃ ∩ indxw| = |Ĩx̂ ∩ indxw| · βxww̃ by definition of βxww̃ (12)

=
(
|Ĩx̂ ∩ indx| · pf,Y [w|x]±N2/3

)
· βxww̃ since (x̃,x,w) ∈ Good. (13)

We substitute this into the above expression for E
[
µw̃,x̂,y,z

]
. Note that pf,Y [w|x] > 0 implies that

it is lower-bounded by a positive constant (depending on f , independent of N), and so N2/3

pf,Y [w|x] =

O(N2/3). Thus,

E
[
µw̃,x̂,y,z

]
=
∑
x,w

|Ĩx̂w̃ ∩ indxw| · pf,Y [w, y, z|x] · βxww̃ ±O(N2/3)

= |Ĩx̂| ·
∑
x

αx (P x ·Bx)(y,z),w̃ ±O(N2/3)

where αx = |Ĩx̂∩indx|
|Ĩx̂|

, P x is an nr× q matrix with P x(y,z),w = pf,Y [w, y, z|x] and Bx is a q× q matrix
with Bx

ww̃ = βxww̃. Note that the sum of all the entries in P x is 1; also,
∑

x α
x = 1 and for each x,

Bx is a stochastic matrix.
3Note that we omit x̂ from the notation of βx

ww̃ (and below, αx), since we are restricting our attention to Ĩx̂.
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Next we consider the following:

E
[
µx̂,y

]
=
∑
x,w

pf,Y [y|x,w]|Ĩx̂ ∩ indxw|

=
∑
x,w

pf,Y [y|x,w]pf,Y [w|x]|Ĩx̂ ∩ indx| ±O(N2/3) since (x̃,x,w) ∈ Good

= |Ĩx̂|
∑
x,w

αxpf,Y [w, y|x]±O(N2/3)

= |Ĩx̂|pY [y]
∑
x

αx ±O(N2/3) since pf,Y [y|x] = pY [y]

= |Ĩx̂|pY [y]±O(N2/3).

So, pf [w̃, z|x̂, y] · E
[
µx̂,y

]
= |Ĩx̂|P x̂(y,z),w̃ ±O(N2/3),

since P x̂(y,z),w̃ = pf,Y [w̃, y, z|x̂] = pf [w̃, z|x̂, y]pf,Y [y|x̂] = pf [w̃, z|x̂, y]pY [y]. Thus,

E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
= |Ĩx̂|

(
(
∑
x

αxP x ·Bx)− P x̂
)

(y,z),w̃

±O(N2/3)

Finally, we can rewrite |Ĩx̂| in terms of |J̃x̂| as follows:

|J̃x̂| = |Ĩx̂| −
∑
w

|Ĩx̂w ∩ indx̂w|

= |Ĩx̂| −

(
|Ĩx̂ ∩ indx̂|

∑
w

pf,Y [w|x̂] · βx̂ww

)
±N2/3 by Equation 13

= |Ĩx̂|

(
1− αx̂ ·

∑
w,y,z

pf,Y [w, y, z|x̂] · βx̂ww

)
±N2/3

Since |J̃x̂| = Ω(N7/8) and |Ĩx̂| ≤ N , this implies
(

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
= Ω(N−1/8).

Then,

E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
=
(
|J̃x̂| ±O(N2/3)

)( (
(
∑

x α
xP x ·Bx)− P x̂

)
(y,z),w̃

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
±O(N2/3)

= |J̃x̂|

( (
(
∑

x α
xP x ·Bx)− P x̂

)
(y,z),w̃

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
± o(N7/8)

where in the last step we used that fact that 1/
(

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
= O(N1/8),

and N2/3 ·N1/8 = o(N7/8).
Finally, since f is redundancy free, D(P 1, . . . , Pm) ≥ εf ·min(pY ), where εf > 0 is a constant.

Since pY has full support (and is independent of N), min(pY ) > 0 is also a constant. Thus,

max
(w̃,y,z)

|E
[
µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y

]
| ≥ |J̃x̂|

(
‖(
∑

x α
xP x ·Bx)− P x̂‖max

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
± o(N7/8)

≥ |J̃x̂|
q

(
‖(
∑

x α
xP x ·Bx)− P x̂‖∞

1− αx̂ ·
∑

w,y,z p
f,Y [w, y, z|x̂] · βx̂ww

)
± o(N7/8)

≥ |J̃x̂|
q

D(P 1, . . . , Pm)± o(N7/8) = Ω(N7/8).
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To complete the proof we use Chernoff bounds to argue that with all but negligible probability, for
(w̃, y, z) which maximizes the above expectation, |µw̃,x̂,y,z − pf [w̃, z|x̂, y] · µx̂,y| > N2/3 (when N is
sufficiently large).

B Proof of Imported Lemma 5: Mimicking Lemma [KMPS14]

We repeat the proof of this lemma from [KMPS14], here for completeness. To show that y∗ is
a strictly redundant input, we consider two experiments: in the first experiment Bob chooses an
input ŷ ∈ Y0 with probability p̂[ŷ] and then on obtaining an output ẑ from f (Alice picks an input
uniformly at random), maps it to an output z with probability p̂[z|ẑŷ] and reports z to Alice.
In the other experiment, Bob picks his input to be y∗ and obtains an output z from f which he
reports to Alice. (We denote the probabilities in the first experiment using p̂ and in the second
experiment using p.) To show that y∗ is strictly redundant, we show that the views of Alice in the
two experiments (given by the probabilities p̂[xwz] and p[xwz|y∗]) are identical.

p̂[xwz] =
∑
ŷ

p̂[wxŷz] =
∑
ŷ

p̂[ŷ] · p̂[xwz|ŷ]

=
∑
ŷ,ẑ

p̂[ŷ] · p̂[xwzẑ|ŷ]

=
∑
ŷ,ẑ

p̂[ŷ] · p̂[xwẑ|ŷ] · p̂[z|ẑŷ] because p̂[z|xwẑŷ] = p̂[z|ẑŷ]

=
∑
ŷ,ẑ

p̂[ŷ] · p[xwẑ|ŷ] · p̂[z|ẑŷ] because p̂[xwẑ|ŷ] = p[xwẑ|ŷ]

p[xwz|y∗] =
∑

(x̂,ŵ)∈af
γ
(x,w)
(x̂,ŵ)p[x̂ŵz|y

∗] (extreme views)

=
∑

(x̂,ŵ)∈af
γ
(x,w)
(x̂,ŵ) · p[z|x̂ŵy

∗] · p[x̂ŵ|y∗]

=
∑

(x̂,ŵ)∈af
γ
(x,w)
(x̂,ŵ) · p[z|x̂ŵy

∗] ·
∑
z∈Z

p[x̂ŵz|y∗]

=
∑

(x̂,ŵ)∈af
γ
(x,w)
(x̂,ŵ) · p[z|x̂ŵy

∗]
∑
(ŷ,ẑ):
ŷ∈Y0

η(ŷ)p[x̂ŵẑ|ŷ] (because of mimicking)

=
∑
(ŷ,ẑ):
ŷ∈Y0

∑
(x̂,ŵ)∈af

γ
(x,w)
(x̂,ŵ) · η(ŷ) · p[z|x̂ŵy∗] · p[x̂ŵẑ|ŷ]

Note that for ŷ ∈ Y0 and any ẑ ∈ Z, and (x̂, ŵ) ∈ af |(ŷ,ẑ), the quantity p[z|x̂ŵy∗] depends only
on (ŷ, ẑ); this is because ŷ ∈ Y0 is an extremity revealing input, and p[z|x̂ŵy∗] is identical for all
(x̂, ŵ) ∈ af |(ŷ,ẑ). So, for ŷ ∈ Y0, ẑ ∈ Z, and (x̂, ŵ) ∈ af |(ŷ,ẑ), we define p∗ŷ,ẑ = p[z|x̂ŵy∗] as a function
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of (ŷ, ẑ) alone. Now,

p[xwz|y∗] =
∑
(ŷ,ẑ):
ŷ∈Y0

η(ŷ) · p∗ŷ,ẑ ·
∑

(x̂,ŵ)∈af
γ
(x,w)
(x̂,ŵ)p[x̂ŵẑ|ŷ]

=
∑
(ŷ,ẑ):
ŷ∈Y0

η(ŷ) · p∗ŷ,ẑ · p[xwẑ|ŷ] (extreme views)

These two expressions can be made equal by setting p̂[ŷ] = η(ŷ) for ŷ ∈ Y0 (and 0 outside Y0),
and p̂[z|ẑŷ] = p∗ŷ,ẑ.
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