
MQSAS - A Multivariate Sequential Aggregate
Signature Scheme

Rachid El Bansarkhani1, Mohamed Saied Emam Mohamed1, Albrecht
Petzoldt2

1 Technische Universität Darmstadt, Germany
2 Kyushu University, Japan

{elbansarkhani,mohamed}@cdc.informatik.tu-darmstadt.de
petzoldt@imi.kyushu-u.ac.jp

Abstract. (Sequential) Aggregate signature schemes enable a group
of users u1, . . . , uk with messages m1, . . . ,mk to produce a single sig-
nature Σ which states the integrity and authenticity of all the mes-
sages m1, . . . ,mk. The length of the signature Σ is thereby significantly
shorter than a concatenation of individual signatures. Therefore, aggre-
gate signatures can improve the efficiency of numerous applications, e.g.
the BGPsec protocol of Internet routing and the development of new
efficient aggregate signature schemes is an important task for crypto-
graphic research. On the other hand, multivariate cryptography offers a
huge variety of practical signature schemes. However, there is a lack of
multivariate signature schemes with special properties such as aggregate
signature schemes. In this paper, we propose a technique to extend the
HFEv- signature scheme to a sequential aggregate signature scheme. By
doing so, we create the first multivariate signature scheme of this kind.
Our scheme is very efficient and offers compression rates that outperform
current lattice-based constructions for practical parameters.

Keywords: Multivariate Cryptography, HFEv-, Sequential Aggregate Signa-
tures

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the cryp-
tographic schemes used in practice is based on number theoretic assumptions
such as factoring large integers and solving discrete logarithms. The best known
schemes within this domain are RSA, DSA, and ECC. However, such schemes
will become insecure as soon as large enough quantum computers are practical.
This lack of security can be attributed to Shor’s algorithm [26], which solves
number theoretic problems such as integer factorization and discrete logarithms
in probabilistic polynomial time on a quantum computer. Therefore, alternatives
to classical schemes are required, that are based on hard mathematical problems

withstanding quantum attacks. Besides lattice, code and hash based cryptosys-
tems, multivariate cryptography is one of the main candidates for this [1].

Multivariate schemes are in general very fast and require only modest compu-
tational resources, which makes them attractive for the use on low cost devices
such as smart cards and RFID chips [3,4]. Additionally, at least in the area of
digital signatures, there exists a large number of practical multivariate schemes
[9,14].

The HFE cryptosystem as proposed by Patarin in [20] is one of the best known
and most studied multivariate schemes. While the security of the basic scheme
appeared to be very weak, the HFEv- variant seems to represent a good candi-
date for multivariate signature schemes [21]. The most recent construction, the
Gui signature scheme [24], outputs very short signatures (120 bits) while at the
same time entailing high performance engines, which are comparable to those of
classical schemes such as RSA and DSA.

(Sequential) aggregate signature schemes enable a group of users U = {u1, . . . , uk},
each of them having a message mi to be signed, to generate a single signature Σ
which guarantees the integrity and authenticity of all the messages m1, . . . ,mk.
The key point hereby is that the length of the aggregate signature Σ is much
less than a concatenation of the individual signatures. Therefore, (sequential)
aggregate signature schemes have a great deal of application areas and are con-
sidered as an important tool in the BGPsec protocol [19], which has the role
to secure the global Internet routing system. Each node in a certain path of n
hops receives n certificates and the same amount of signatures. It then verifies
the signatures and creates its own signature attesting for this path and sends its
result together with the previous signatures to the next hop. As a consequence,
the number of certificates and signatures increases linearly with the number of
nodes on this path. This amount of bandwidth costs can drastically be reduced
by the use of a sequential aggregate signature scheme. Similar ideas can in gen-
eral be applied to public key infrastructures of any depth requiring chains of
certificates and signatures in order to authenticate public keys at the leafs. Such
schemes come always into use, when chains and paths need to be authenticated
as a condition for the protocol to work.

In this paper we show how to extend HFEv- to a multivariate sequential aggre-
gate signature scheme, allowing a set of signers u1, . . . , uk, each of them having
different keys and different messages mi, to generate a sequential aggregate sig-
nature for all the messages m1, . . . ,mk. The length of the resulting signature
is only slightly larger than a standard HFEv- signature. By use of the public
keys pki, the verifier can use this signature to check, if every message mi was
indeed signed by signer ui for i = 1, . . . , k. Our scheme is the first multivariate
(sequential) aggregate signature scheme and enables high compression rates and
therefore very short sizes of the aggregate signature. Furthermore, with regard

to its performance, our scheme outperforms current lattice-based constructions
[2].

The rest of this paper is organized as follows. In Section 2 we repeat the ba-
sic concepts of multi and sequential aggregate signatures. Section 3 gives an
overview of the area of multivariate cryptography and introduces the HFEv-
signature scheme, which is the basis of our construction. In Section 4 we then
present our technique to extend the HFEv- based signature scheme to a mul-
tivariate multi- and (sequential) aggregate signature schemes. In Section 5, we
reduce the security of our scheme from the one-wayness of HFEv- and discuss the
security of the underlying scheme. Section 6 gives concrete parameters for our
construction and compares our scheme with other existing multi and aggregate
signature schemes. Finally, Section 7 concludes the paper.

2 Sequential Aggregate Signatures

In this section we describe the concept of (sequential) aggregate signature schemes.
Let U = {u1, . . . , uk} be a set of users participating in the protocol, each of them
having a key pair (ski, pki) of a digital signature scheme. Each user ui applies his
private key ski to generate a signature σi for a message mi (the messages mi are
not necessarily distinct). Let us assume that the k users ui (i = 1, . . . , k) desire
to prove to a single verifier V that each user ui signed his message mi. This could
be accomplished by sending all the messages mi and a signature σ̃ = (σ1, . . . , σk)
to the verifier V . However, the number of signatures σi and therefore the length
of σ̃ to be transmitted grows linearly with the number k of users.
An alternative way of proving the integrity and authenticity of the messages
m1, . . . ,mk is to combine all the signatures σi into a single signature Σ with
|Σ| � |σ̃|. To achieve this, one can use a multi or aggregate signature scheme. A
multi or an aggregate signature scheme AS consists of four algorithms KeyGen,
Sign, Combine and Verify, which are described as follows.

– KeyGen(1`): The probabilistic algorithm KeyGen takes as input a security pa-
rameter ` and outputs a key pair (sk, pk). In an aggregate signature scheme,
this algorithm is performed by every user ui.

– Sign(m, sk): The (probabilistic) algorithm Sign takes as input a message m
and a secret key sk and outputs a signature σ for the message m. To generate
an aggregate signature, this algorithm is performed by every user ui.

– Combine((m1, σ1), . . . , (mk, σk), (pk1, . . . , pkk)): The algorithm Combine takes
as input a set of message/signature pairs (m1, σ1), . . . , (mk, σk) as well as a
set of public keys pk1, . . . , pkk and outputs an aggregate signature Σ.

– Verify((m1, . . . ,mk), Σ, (pk1, . . . , pkk)): The deterministic algorithm Verify

takes as input a set of messages m1, . . . ,mk, an aggregate signature Σ and a
set of public keys pk1, . . . , pkk. It outputs TRUE, if Σ is a valid aggregate
signature for the messages m1, . . . ,mk and the users u1, . . . , uk and FALSE
otherwise.

In a multisignature scheme, all the messages mi (i = 1, . . . , k) are required to
be equal, while an aggregate signature scheme allows to combine signatures for
arbitrarily chosen messages mi.

In a sequential aggregate signature scheme, the combining step is done sequen-
tially. The first signer generates a standard signature σ1 for his message m1,
while the second signer generates a signature σ2 for his message m2 and com-
bines it with σ1 to obtain an aggregate signature Σ2 for both the messages m1

and m2. This step is repeated for the signers u3, . . . , uk. The last signer produces
the final signature Σ = Σk, which is now a valid aggregate signature for all the
messages m1, . . . ,mk. The process of generating a sequential aggregate signature
Σ is illustrated in Figure 1.

…

Fig. 1. Generation of a sequential aggregate signature

Compression Rate Let |σi| be the size of an individual signature σi (i =
1, . . . , k) and |Σ| be the size of the (sequential) aggregate signature Σ. Following
[2], we define the compression rate of the aggregate signature scheme by

τ(k) = 1− |Σ|∑k
i=1 |σi|

. (1)

The size ratio τ expresses therefore the amount of memory that has been saved
due to the use of the aggregate signature Σ. In fact, by the aggregate signature

scheme we reduced the signature size from originally
∑k

i=1 |σi| to |Σ| bits, which
results in a compression rate of τ(k). A value of τ = 0 corresponds to a signature
Σ which is as long as the concatenation of all the individual signatures (i.e. no
compression at all). A value of τ = 1− 1

k expresses the state that the aggregate
signature Σ has the size of an individual signature, which corresponds to an
optimal aggregate signature scheme.

3 The HFEv- Signature Scheme

In this section we review the HFEv- signature scheme, which is the basis of our
construction. Before we give a detailed description of the scheme itself, we start
with a short overview of the basic concepts of multivariate cryptography.

3.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials. (see equation (2)).

p(1)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(1)
ij · xixj +

n∑
i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(2)
ij · xixj +

n∑
i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(m)
ij · xixj +

n∑
i=1

p
(m)
i · xi + p

(m)
0 (2)

The security of multivariate schemes is based on the MQ problem.

Definition 1 (MQ Problem). Given m multivariate quadratic polynomials
p(1)(x), . . . , p(m)(x) in n variables x1, . . . , xn as shown in equation (2), find a
vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic poly-
nomials over the field GF(2) [12].

To build a public key cryptosystem based on the MQ problem, one starts with
an easily invertible quadratic map F : Fn → Fm (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps S : Fm → Fm and T : Fn → Fn. The public key is therefore given
by P = S ◦F ◦T . The private key consists of S, F and T and therefore allows to
invert the public key. We note that, due to the above construction, the security
of multivariate schemes is not only based on the MQ-Problem but also on the
EIP-Problem (“Extended Isomorphism of Polynomials”) of finding the compo-
sition of P.

In this paper we focus on multivariate signature schemes of the BigField family.
For this type of multivariate schemes, the map F is a specially chosen and easily
invertible map over a degree n extension field E of F. One uses an isomorphism
Φ : Fn → E to transform F into a quadratic map

F̄ = Φ−1 ◦ F ◦ Φ (3)

from Fn to itself. The public key of the scheme is therefore given by

P = S ◦ F̄ ◦ T = S ◦ Φ−1 ◦ F ◦ Φ ◦ T : Fn → Fn. (4)

with two invertible affine maps S, T : Fn → Fn.
The standard signature generation and verification process of a multivariate
BigField scheme works as shown in Figure 2.

Signature Generation

h ∈ Fn - x ∈ Fn - y ∈ Fn - z ∈ Fn

6

P

S−1 F̄−1 T −1

Signature Verification

X ∈ E Y ∈ E-F−1

6

Φ

?

Φ−1

Fig. 2. General workflow of multivariate BigField signature schemes

Signature generation: To generate a signature for a message h ∈ Fn, one com-
putes recursively x = S−1(h) ∈ Fn, X = Φ(x) ∈ E, Y = F−1(X) ∈ E,
y = Φ−1(Y) ∈ Fn and z = T −1(y). The signature of the message h is given
by z ∈ Fn.

Verification: To check the authenticity of a signature z ∈ Fn, one simply com-
putes h′ = P(z) ∈ Fn. If h′ = h holds, the signature is accepted, otherwise
rejected.

Two widely used variations of multivariate BigField signature schemes are the
Minus variation and the use of additional (Vinegar) variables.
Minus-Variation: The idea of this variation is to remove a small number of
equations from the public key. The Minus-Variation was first used in schemes like

SFLASH [22] to prevent Patarin’s Linearization Equations attack [23] against
the Matsumoto-Imai cryptosystem [18].
Vinegar-Variation: In the vinegar variation one parametrizes the central map
F by adding (a small set of) additional (Vinegar) variables. In the context of
multivariate BigField signature schemes, the Vinegar variation can be used to
increase the security of the scheme against direct and rank attacks.

A good overview on existing multivariate schemes can be found in [6].

3.2 HFEv-

The HFEv- signature scheme [21] can be described as follows. Let F = Fq be a
finite field with q elements and E be a degree n extension field of F. Furthermore,
we choose integers D, a and v. Let Φ be the canonical isomorphism between Fn

and E, i.e.

Φ(x1, . . . , xn) =

n∑
i=1

xi ·Xi−1. (5)

The central map F of the HFEv- scheme is a map from E×Fv to E of the form

F(X) =

qi+qj≤D∑
0≤i≤j

αij ·Xqi+qj

+

qi≤D∑
i=0

βi(v1, . . . , vv) ·Xqi

+ γ(v1, . . . , vv), (6)

with αij ∈ E, βi : Fv → E being linear and γ : Fv → E being a quadratic
function.
Due to the special form of F , the map F̄ = Φ−1 ◦F ◦Φ is a quadratic polynomial
map from Fn+v to Fn. To hide the structure of F̄ in the public key, one com-
poses it with two affine (or linear) maps S : Fn → Fn−a and T : Fn+v → Fn+v

of maximal rank.

The public key of the scheme is the composed map P = S ◦F̄ ◦T : Fn+v → Fn−a,
the private key consists of S, F and T .

Signature generation: To generate a signature for a message h ∈ Fn−a, the signer
performs the following three steps to compute HFEv−−1(h).

1. Compute a pre-image x ∈ Fn of h under the affine map S.
2. Lift x to the extension field E (using the isomorphism Φ). Denote the result

by X.
Choose random values for the vinegar variables v1, . . . , vv ∈ F and compute
FV = F(v1, . . . , vv).

Solve the univariate polynomial equation FV (Y) = X by Berlekamp’s algo-
rithm and compute y′ = Φ−1(Y) ∈ Fn.
Set y = (y′||v1|| . . . ||vv).

3. Compute the signature z ∈ Fn+v by z = T −1(y).

Signature verification: To check the authenticity of a signature z ∈ Fn+v, one
simply computes h′ = P(z) ∈ Fn−a. If h′ = h holds, the signature is accepted,
otherwise rejected.

3.3 Gui

Recently, Petzoldt et al. proposed the multivariate signature scheme Gui [24],
which is based on the concept of HFEv-. In fact, the private and public keys of
Gui are just HFEv- keys over the field GF(2) with specially chosen parameters
n,D, a and v. Since the number of equations in the public key and therefore the
input size of Gui is only 90 bits, it would be possible for an attacker to find two
messages m1 and m2 whose hash values collide in these first 90 bits. To overcome
this problem, the authors of [24] developed a specially designed signature gen-
eration process. For this, they used a special parameter l (denoted as repetition
factor). The signature generation process of Gui works as shown in Algorithm
1.

Algorithm 1 Signature Generation Process of Gui

Input: HFEv- private key (S, F , T) message d, repetition factor l

Output: signature σ ∈ GF(2)(n−a)+l·(a+v)

1: h← SHA-256(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to l do
4: Di ← first n− a bits of h
5: (Si, Xi)← HFEv−−1(Di ⊕ Si−1)
6: h← SHA-256(h)
7: end for
8: σ ← (Sl||Xl|| . . . ||X1)
9: return σ

Roughly spoken, one computes HFEv- signatures for l different hash values of
the message d and combines them to a single signature of size (n−a)+ l ·(a+v).
Similarly, the verification algorithm (see Algorithm 2) evaluates the public key
l times.

Algorithm 2 Signature Verification Process of Gui

Input: Gui public key P, message d, repetition factor l, signature σ ∈
GF(2)(n−a)+l(a+v)

Output: TRUE or FALSE
1: h← SHA-256(d)
2: (Sl, Xl, . . . , X1)← σ
3: for i = 1 to l do
4: Di ← first n− a bits of h
5: h← SHA-256(h)
6: end for
7: for i = l − 1 to 0 do
8: Si ← P(Si+1||Xi+1)⊕Di+1

9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if

4 Our Sequential Aggregate Signature Scheme

In the design of our multivariate sequential aggregate signature scheme we apply
the HFEv- / Gui [24] trapdoor functions, which results in a scheme resembling
these basic components. However, while in Gui all the partial signatures are
computed using the same private key, we use here for every l-th partial signature
another key.

4.1 Key Generation

Let F = Fq be a finite field with q elements, n,D, a, v, l ∈ N be public parameters
and U = {u1, . . . , uk} be a set of users. Every user ui ∈ U generates an HFEv-
key pair ((Si,Fi, Ti),Pi) according to the given parameter set. Additionally, he
computes a public key identity idi = H(Pi) using a hash function H modeled as
a random oracle. He publishes his public key Pi and his public key identity idi
while keeping Si,Fi and Ti secret.

The reason for introducing public key identities in our scheme is the fact, that
the public keys serve as input to the hash function multiple times. For large
public keys it is therefore more efficient to utilize public identities instead of the
public keys itself and thus reducing the input size of the hash functions. This
results in faster signature generation engines.

4.2 Signature Generation

Assume that each user ui has a message mi to be signed. To generate an aggre-
gate signature Σ for the messages m1, . . . ,mk, every signer u1, . . . , uk performs

Algorithm 3. The final aggregate signature Σ is given by the output of the signer
uk.

The first signer u1 just computes a standard HFEv- (Gui) signature for the
message m1 (using Algorithm 1) and returns it as the first aggregate signature
Σ1.

In addition to his own private key and message, each signer ui (i ∈ {2, . . . , k})
requires as input lists of the public keys {pk1, . . . , pki−1}, the public key iden-
tities {id1, . . . , idi−1}, and the messages m1, . . . ,mi−1 of the previous signers
u1, . . . , ui−1 and the (i− 1)-th sequential aggregate signature Σi−1. Before com-
puting his own signature σi and combining it with Σi−1, ui checks the correctness
of Σi−1 via the verification algorithm (see Algorithm 4).

In order to generate the aggregate signature Σi, the signer ui (i = 2, . . . , k)
splits up the input aggregate signature Σi−1 into two blocks S̃, X̃, where S̃ has
a length of n−a bits. He uses his own private key ski to compute a standard Gui
signature σi = (Sl, Xl, . . . , X1) for the hash value h = H(m1, . . . ,mi, id1, . . . , idi)
by running Algorithm 1. After that, he combines his signature (Sl, Xl, . . . , X1)
with the previous aggregate signature Σi−1) to generate the new aggregate sig-
nature Σi. Algorithm 3 shows this process in algorithmic form.

Algorithm 3 Signature Generation Process of MQSAS for each user i ∈ 1, · · · , k
Input: private key ski, message mi , public keys pk1, . . . , pki−1, public key identities

id1, . . . , idi−1, messages m1, · · · ,mi−1, aggregate signature Σi−1, where Σ0 = ∅ ,
repetition factor l

Output: aggregate signature Σi

1: if i = 1 then
2: S̃ = 0n−a

3: X̃ ← ∅
4: else if AggVerify(i− 1, Σi−1, pk1, · · · , pki−1,m1, · · · ,mi−1) =TRUE then

5: (S̃, X̃)← split(Σi−1)
6: else
7: print(′′IncorrectSignature′′)
8: return
9: end if

10: h← H(m1, . . . ,mi, id1, · · · , idi)
11: for j = 1 to l do
12: Dj ← first n− a bits of h
13: (Sj , Xj)← HFEV−−1(Dj ⊕ Sj−1)
14: h← H(h)
15: end for
16: S̃ ← S̃ ⊕ Sl

17: X̃ ← (Xl|| . . . ||X1||X̃)
18: Σi ← (S̃, X̃)
19: return Σi

4.3 Signature Verification

To check the authenticity of an aggregate signature Σi, we parse Σi into the se-
quence of blocks S̃,Xi·l, . . . , X(i−1)·l+1, X(i−1)·l, . . . , X1. Here, the length of the

block S̃ is n − a, while all the other blocks are of length a + v. After this, the
verification of the aggregate signature Σi works very similar to the verification
of a Gui signature.

In the j-th iteration, the algorithm first reconstructs the hash values D1, . . . , Dl

used during the generation of the j-th partial signature. Just as in Algorithm 2
it then evaluates the public key pkj l times to compute the new value of S̃. At

termination, the aggregate signature Σi is accepted, if and only if S̃ = 0 holds.

Algorithm 4 Verification Process of MQSAS

Input: public keys pk1, . . . , pki, public key identities id1, . . . , idi, messages m1, . . . ,mi,
repetition factor l and aggregate signature Σi

Output: boolean value TRUE or FALSE
1: (S̃,Xi·l, . . . , X(i−1)·l+1, X(i−1)·l, . . . , X1)← split(Σi)
2: for j = i to 1 do
3: h← H(m1, . . . ,mj , id1, · · · , idj)
4: for k = 1 to l do
5: Dk ← first n− a bits of h
6: h← H(h)
7: end for
8: for k = l − 1 to 0 do
9: S̃ ← pkj(S̃||X(j−1)·l+k+1)⊕Dk+1

10: end for
11: end for
12: if S̃ = 0 then
13: return TRUE
14: else
15: return FALSE
16: end if

The Algorithms 3 and 4 show how to instantiate the MQSAS signature scheme
with HFEv- / Gui. However we note that our multivariate sequential aggregate
signature scheme can also be instantiated on the basis of every other multivari-
ate signature scheme such as Rainbow. Nevertheless, since HFEv- / Gui leads
to optimal compression rates, we restrict here to initializing our scheme with
HFEv- / Gui.

5 Security

In this section we give an overview of the security of our sequential aggregate
signature scheme. In particular, we start with a description of the formal security
model adopted in order to provide evidence that the security of our multivariate
sequential aggregate signature scheme can be reduced from the one-wayness of
HFEv-. Then, we discuss existing attacks on the HFEv- scheme itself in order
to estimate the practical security of our construction. We start with some basic
assumptions on HFEv-.

Assumption 1 (One-wayness) The HFEv- function is one-way, i.e. for all
PPT adversaries it is hard to find a preimage x ∈ Fn+v for a given value
y ∈ Fn−a such that y = HFEv−(x). The advantage of the adversary is given
by

Advow
HFEv−(A) = Prob|y $← Fn−a, x← A | HFEv−(x) = y| ≤ ε,

for a negligible function ε.

We remark that one-wayness is a minimal required hardness assumption to build
from HFEv- a secure digital signature scheme. A trapdoor function is said to
be (t, ε)-one-way if there exists no algorithm running in time at most t, that
outputs a valid preimage with probability at most ε.

Theorem 1. Assuming the (t′, ε′)-one-wayness of HFEv- as per Assumption 1,
the sequential aggregate signature scheme presented in Section 4 is (t, qH , qS , n, ε)-
secure against existential forgery under adaptive sequential aggregate chosen-
message attack such that

(qS + qH + 1) · ε′ ≥ ε and t ≤ t′ − (4kqH + 4kqS + 7k − 1)

for all t and ε.

Proof (sketch). The security model of our sequential aggregate signature scheme
is mainly adopted from [16], where the forger is allowed to control the private
keys of all but at least one honest signer. The adversary A runs in time at most t
with at most qS queries to the signing oracle and qH hash queries and succeeds in
providing a forgery with probability at most ε. The number of users is bounded
by k. We use a forger to break the one-wayness of the HFEv- function similar
to [16]. As a consequence, almost all steps of the security proof go through with
only some slight modifications taking into account that we additionally apply an
encoder that splits the signature into two parts, where one part is handed over
to the signer.

5.1 Practical Attacks against HFEv-

As stated in [24], the relevant attacks against the HFEv- signature scheme and
therefore against MQSAS are the MinRank and the direct attack. According to
[24], the complexity of the MinRank attack against an HFEv- scheme is at least

ComplexityMinRank = O(qn·(r+v+a−1) · (n− a)3). (7)

Following the discussion in [24], this complexity is much higher than that of a
direct attack against the scheme.

The complexity of a direct attack against a multivariate scheme is mainly deter-
mined by the degree of regularity, at which a Gröbner basis algorithm such as
F4 finds a solution. In the case of HFEv-, this degree is upper bounded [10] by

dreg ≤

{
(q−1)·(r−1+a+v)

2 + 2 q even and r + a odd
(q−1)·(r+a+v)

2 + 2 otherwise
, (8)

where r = blogq(D − 1)c +1. In [24] it was shown that this upper bound is
relatively tight.

In [24], the authors performed numerous experiments with direct attacks on
HFEv- schemes over fields of characteristic 2. We therefore follow from their
results that our parameter sets over GF(2) fulfill the proposed security levels.

However, in order to reduce the repetition factor l of the Gui scheme and there-
fore to improve the compression rate of MQSAS, we aim at implementing the
scheme over larger fields such as GF(7), too. To estimate the security of these
schemes, we performed a number of experiments. We implemented the HFEv-
scheme in MAGMA and solved the public systems using the F4 [11] algorithm
integrated in MAGMA. Before applying the algorithm, we fixed (v + a) vari-
ables to create determined systems and added the field equations xqi − xi = 0
(i = 1, . . . , n − a). Table 1 shows the results. For each parameter set we per-
formed 10 experiments. The values presented in the table are the average of the
single results.

HFEv- D = 8, a = v = 2 D = 8, a = v = 3

n− a 10 12 14 10 12 14

dreg 8 9 10 9 10 11

time (s) 10.1 395 12,628 15.7 538 15,874

memory(MB) 25.7 220 2,837 32.8 1,057 13,728

Table 1. Direct attacks on HFEv- signature schemes over GF(7)

As the table shows, the degree of regularity at which F4 finds a solution to our
systems is quite high. In particular, with the parameter set (D, a, v) = (8, 2, 2)
we can reach a degree of regularity of at least 10, while (D, a, v) = (8, 3, 3) leads
to dreg ≥ 11.

The complexity of a direct attack against a multivariate scheme can be esti-
mated by

ComplexityF4/F5
= 3 · T 2 · τ = 3 ·

(
n− a
d

)2

·
(
n− a

2

)
. (9)

By substituting the values of n and dreg into this formula, we find that the com-
plexity of a direct attack against the schemes listed in Table 2 will be higher
than the proposed levels of security. Note that this estimation is very conserva-
tive, since we assume that the degree of regularity will not rise above 10 and 11
respectively.

6 Parameters and Comparison

In this section we propose concrete parameter sets for the MQSAS scheme and
compare its compression capabilities and performance to that of other (sequen-
tial) aggregate signature schemes. In particular, we propose 5 parameter sets
for 80-bit security and 2 parameter sets for 120-bit security, allowing a trade
off between compression rate and performance (see Table 2). The parameters
shown in the table are chosen in such a way that the complexity of a direct
attack against the scheme is beyond the proposed level of security.

security MQSAS public key private key |σ| (bit) compression
level (bit) (F, n,D, a, v, l) size (kB) size (kB) (20 signers) factor τ(20)

80

(GF(2),96,5,6,6,2) 57.7 2.4 570 0.75
(GF(2),95,9,5,5,2) 55.5 2.3 490 0.78
(GF(2),94,17,4,4,2) 53.3 2.3 410 0.81
(GF(2),96,65,2,2,2) 55.7 2.3 254 0.88
(GF(7),62,8,2,2,1) 47.1 2.9 420 0.89

120
(GF(2),127,9,4,6,2) 133.8 4.1 523 0.81
(GF(7),93,8,3,3,1) 156.7 6.4 630 0.90

Table 2. Proposed Parameters and resulting key sizes for the MQSAS scheme

To avoid the above mentioned double signing, we also propose parameters for
the MQSAS scheme over GF(7). We can efficiently store 14 bits in 5 GF(7)-
elements, while an element of GF(7) is stored in 3 bits. By doing so, we need

60 GF(7)-elements to store a hash value of 160 bits (80-bit security), while 90
GF(7) elements are needed to store a hash value of 240 bits (120-bit security).

Note that the key sizes listed in Table 2 are those of a single signer ui. The
verifyer of the aggregate signature Σ = Σk is faced with a public key of size k
times the value listed in the table.

The size of a sequential aggregate signature of our scheme is given by

|Σ| = (n− a) + k · l · (a+ v), (10)

the compression rate τ is given by

τ = 1− |Σ|
k · |σ|

= 1− 1

k
·
(

1 +
(k − 1) · l · (a+ v)

(n− a) + l · (a+ v)

)
. (11)

Table 3 and Figure 3 show the signature sizes and the compression factor τ for
the above parameter sets and different numbers of users.

MQ-SAS 5 signers 10 signers 20 signers 50 signers 100 signers
(F, n,D, a, v, l) |Σ| (bit) τ |Σ| (bit) τ |Σ| (bit) τ |Σ| (bit) τ |Σ| (bit) τ

(GF(2),96,5,6,6,2) 210 0.63 330 0.71 570 0.75 1,290 0.77 2,490 0.78

(GF(2),95,9,5,5,2) 190 0.65 290 0.74 490 0.78 1,090 0.80 2,090 0.81

(GF(2),94,17,4,4,2) 170 0.68 250 0.76 410 0.81 890 0.83 1,690 0.84

(GF(2),96,65,2,2,2) 134 0.73 174 0.83 254 0.88 494 0.90 894 0.91

(GF(7),62,8,2,2,1) 240 0.75 300 0.84 420 0.89 780 0.92 1,380 0.93

(GF(2),127,9,4,6,2) 223 0.69 323 0.77 523 0.82 1,123 0.84 2,123 0.85

(GF(7),93,8,3,3,1) 360 0.75 450 0.84 630 0.89 1,170 0.92 2,070 0.93

Table 3. Signature sizes and compression rates of the MQ-SAS scheme

6.1 Implementation

To estimate the performance of MQSAS, we created an implementation of our
scheme in C. For the implementation of the underlying HFEv- scheme we thereby
adapted the implementation of Gui [24] to our setting. Table 4 shows the com-
putation time needed to generate an aggregate signature for different number
of users and parameter sets. The experiments were run on a PC with a Core-i5
3750k processor (Ivy Bridge) at 2.4 GHz and with 16 GB of RAM. The timings
in the table are the average values of 500 signature generation processes.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120

τ (
k)

users k

compression rate τ (k)

MQSAS(GF(2),96,5,6,6,2), 80 bit security

MQSAS(GF(2),96,65,2,2,2), 80 bit security

MQSAS(GF(2),127,9,4,6,2), 120 bit security

MQSAS(GF(7),93,8,3,3,1), 120 bit security

Fig. 3. Compression rate τ of the MQ-SAS scheme

MQ-SAS signature generation time (ms)
(F, n,D, a, v, l)) 5 signers 10 signers 20 signers 50 signers 100 signers

(GF(2),96,5,6,6,2) 1.24 3.13 6.11 27.86 82.91

(GF(2),95,9,5,5,2) 2.94 6.75 8.52 36.31 94.25

(GF(2),94,17,4,4,2) 9.30 17.19 32.32 68.18 158.01

(GF(2),127,9,4,6,2) 3.42 5.23 11.61 45.3 141.4

(GF(2),96,65,2,2,2) 150.86 302.23 599.24 1509.69 3053.25

Table 4. Signature generation time of MQSAS

6.2 Discussion

Table 2 indicates that we achieve very short signatures and high compression
rates at security levels of both 80-bit and 120-bit. For example, for 80-bit se-
curity, our scheme allows to generate an aggregate signature for 20 signers of
length only 254 bits, which is less than one quarter of a single RSA signature at
the same security level. Remarkably, the compression rates for 120-bit security
are even higher than in the 80-bit case. On the other hand, the key sizes are
considerably larger for the corresponding parameter sets.

Table 3 shows the aggregate signature sizes and associated compression rates
for different parameter sets and number of users. The highest compression rates
can hereby be achieved by the two schemes MQ-SAS(GF(7), 62, 8, 2, 2, 1) and
MQ-SAS(GF(7), 93, 8, 3, 3, 1). The reason for this is that, for these parameter
sets, we can avoid the double signing of Gui. As the table shows, these parame-
ter sets allow compression rates of up to 93 %, which means that we need only
the size of 7 individual signatures to prove the validity of an aggregate signature
for 100 signers (see also Figure 3).

In Table 4 we provide the timings for the signing and verification engine of
our scheme. In fact, we note, that each signing step by construction invokes the
verification engine in order to check the actual aggregate in terms of validity,
before the signer is able to proceed. The timings indicate that the parameter set
(GF(2), 96, 65, 2, 2, 2), due to the high degree of the HFE polynomial in use, is
much slower than the remaining ones. We therefore observe a trade off between
the compression rate and the performance of the scheme.

6.3 Comparison to other aggregate signature schemes

In this subsection we compare our sequential aggregate signature scheme with
other constructions. In fact, we observe that multivariate-based sequential ag-
gregate signature schemes are more suitable for practice than their counterparts
from classical and lattice-based cryptography. In terms of signature sizes and per-
formance, HFEv- has been shown to be far more efficient than the other schemes.
The size of an individual signature is only slightly more than one hundred bits,
whereas the underlying signature schemes of the other sequential aggregate sig-
nature schemes occupy memory of size thousands of bits.

With regard to the performance, the timings of our scheme for signing and
verification are also significantly better than that of the other schemes. We have
shown that the overhead, that our sequential aggregate signature scheme entails,
can be at least as low as 7 bits per signature for a reasonable level of security.
Hence, almost the whole signature of a signer is concealed within the signature of
his successor. Furthermore, the arithmetic operations of our scheme are mainly
performed over the field F2, which is well studied and thus allows to carry out fast

operations such as the encoding function in order to hide the signature in a syn-
drome to be signed by the next signer in the chain. Lattice-based systems work
over Zn

q , which implies to carry out more complex arithmetic operations such as
reductions modulo q for at least n ≥ 256 components. For RSA-based sequential
aggregate signature schemes it is more difficult to instantiate the scheme.

In fact, it is important to agree on how to choose the hash functions beforehand,
since the domains of the participating signers differ. Furthermore, the operations
are more complex and hence lead to a less efficient scheme. This has also been
observed in [2]. The advantages of our scheme are evident emerging MQSAS as
a real post-quantum candidate for the BGPsec [19] protocol and other applica-
tions. Our scheme outperforms all current schemes in terms of performance and
signature sizes.

7 Conclusion

In this paper we proposed a multivariate sequential aggregate signature scheme
on the basis of the HFEv- signature scheme, which, to our knowledge, is the first
multivariate signature scheme of this kind. Due to the use of HFEv- / Gui as the
underlying signature scheme, the resulting signatures are very short (less than 1
kbit for 100 signers at 80 bits of security) and we achieve high compression rates
(up to 93 % for k = 100 signers). Furthermore, due to the efficiency of arithmetic
operations over GF(2), our scheme outperforms all current (sequential) aggregate
signature schemes in terms of performance.

References

1. D.J. Bernstein, J. Buchmann, E. Dahmen (eds.): Post Quantum Cryptography.
Springer, 2009.

2. R. El Bansarkhani, J. Buchmann: Towards Lattice Based Aggregate Signatures.
AFRICACRYPT 2014, LNCS vol. 8469, pp. 336- 355. Springer, 2014.

3. A. Bogdanov, T. Eisenbarth, A. Rupp, C. Wolf. Time-area optimized public-key
engines: MQ-cryptosystems as replacement for elliptic curves? CHES 2008, LNCS
vol. 5154, pp. 45-61. Springer, 2008.

4. A.I.T. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F.
Y.-S. Lee, B.-Y. Yang. SSE implementation of multivariate PKCs on modern x86
cpus. CHES 2009, LNCS vol. 5747, pp. 33 - 48. Springer, 2009.

5. N.T. Courtois, M. Daum, P. Felke: On the Security of HFE, HFEv- and QUARTZ.
PKC 2003, LNCS vol. 2567, pp. 337 - 350. Springer 2003.

6. J. Ding, J. E. Gower, D. S. Schmidt: Multivariate Public Key Cryptosystems.
Springer, 2006.

7. J. Ding, T. Hodges: Inverting HFE Systems Is Quasi-Polynomial for All Fields.
CRYPTO 2011, LNCS vol. 6841, pp. 724-742. Springer 2011.

8. J. Ding, T. Kleinjung: Degree of regularity for HFE-. IACR eprint 2011/570.
9. J. Ding, D. S. Schmidt: Rainbow, a new multivariate polynomial signature scheme.

ACNS 2005, LNCS vol. 3531, pp. 164-175. Springer 2005.

10. J. Ding, B.Y. Yang: Degree of Regularity for HFEv and HFEv-. PQCrypto 2013,
LNCS vol. 7932, pp. 52-66. Springer, 2013.

11. J.C. Faugère: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, pp. 61-88 (1999).

12. M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company 1979.

13. D. Kravitz: Digital Signature Algorithm. US patent 5231668 (July 1991).
14. A. Kipnis, L. Patarin, L. Goubin: Unbalanced Oil and Vinegar Schemes. EURO-

CRYPT 1999, LNCS vol. 1592, pp. 206–222. Springer 1999.
15. A. Kipnis, A. Shamir: Cryptanalysis of the HFE Public Key Cryptosystem.

CRYPTO 99, LNCS vol. 1666, pp. 19 - 30. Springer 1999.
16. A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham: Sequential Aggregate Signatures

from Trapdoor Permutations. EUROCRYPT 2004, LNCS vol. 3027, pp. 74-90.
Springer 2004.

17. M. S. E. Mohamed, J. Ding and J. Buchmann: Towards Algebraic Cryptanalysis
of HFE Challenge 2, ISA 2011, Communications in Computer and Information
Science vol. 200, pp. 123-131. Springer 2011.

18. T. Matsumoto, H. Imai: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. EUROCRYPT 1988. LNCS vol. 330, pp. 419-
453. Springer 1988.

19. Network Working Group: A Border Gateway Protocol (BGP-4). RFC 4271,
https://tools.ietf.org/html/rfc4271.

20. Patarin, J.: Hidden Field equations (HFE) and Isomorphisms of Polynomials (IP).
In: Proceedings of EUROCRYPT’96, pp. 38–48, Springer, Heidelberg (1996)

21. J. Patarin, N. Courtois, L. Goubin: QUARTZ, 128-Bit Long Digital Signatures.
CTRSA 2001, LNCS vol. 2020, pp. 282-297. Springer, 2001.

22. J. Patarin, N. Courtois, L. Goubin: Flash, a fast multivariate signature algorithm.
CTRSA 2001, LNCS vol. 2020, pp. 298 - 307. Springer, 2001.

23. J. Patarin: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt 88. CRYPTO 95. LNCS vol. 963, pp. 248 - 261. Springer 1995.

24. A. Petzoldt, M.S. Cheng, B.Y. Yang, C. Tao, J. Ding: Design Principles for HFEv-
based Signature Schemes. Asiacrypt 2015. To appear.

25. R. L. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM 21 (2), pp. 120-126 (1978).

26. P. Shor: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, SIAM J. Comput. 26 (5), pp. 1484 - 1509
(1997).

