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Abstract

Non-committing encryption (NCE) implements secure channels under adaptive corruptions in situations when
data erasures are not trustworthy. In this paper we are interested in the rate of NCE, i.e. in how many bits the sender
and receiver need to send per plaintext bit.

In initial constructions (e.g. Canetti, Feige, Goldreich and Naor, STOC 96) the length of both the receiver mes-
sage, namely the public key, and the sender message, namely the ciphertext, is m · poly(λ) for an m-bit message,
where λ is the security parameter. Subsequent works improve efficiency significantly, achieving rate poly log(λ).

We construct the first constant-rate NCE. In fact, our scheme has rate 1+ o(1), which is comparable to the rate of
plain semantically secure encryption. Our scheme operates in the common reference string (CRS) model. Our CRS
has size poly(m · λ), but it is reusable for an arbitrary polynomial number of m-bit messages. In addition, it is the
first NCE protocol with perfect correctness. We assume one way functions and indistinguishability obfuscation for
circuits.

As an essential step in our construction, we develop a technique for dealing with adversaries that modify the inputs
to the protocol adaptively depending on a public key or CRS that contains obfuscated programs, while assuming only
standard (polynomial) hardness of the obfuscation mechanism. This technique may well be useful elsewhere.
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1 Introduction

Informally, non-committing, or adaptively secure, encryption (NCE) is an encryption scheme for which it is possible
to generate a dummy ciphertext which is indistinguishable from a real one, but can later be opened to any message. This
primitive is a central tool in building adaptively secure protocols: one can take an adaptively secure protocol in secure
channels setting and convert it into adaptively secure protocol in computational setting by encrypting communications
using NCE [CFGN96]. In particular, NCE scheme is secure under selective-opening attacks [DNRS99].

The ability to open dummy ciphertexts to any message has its price in efficiency: while for plain semantically secure
encryption we have constructions with O(λ)-size, reusable public and secret keys for security parameter λ, and m +
poly(λ)-size ciphertext for m-bit messages, non-committing encryption has been far from being that efficient. Some
justification for this state of affairs is the lower bound of Nielsen [Nie02], which shows that the secret key of any NCE
has to be at least m where m is the overall number of bits decrypted with this key. Still, no bound is known on the size
of the public key or the ciphertext.

We focus on building NCE with better efficiency: specifically, we optimize the rate of NCE, i.e. the total amount of
communication sent per single bit of a plaintext.

Prior Work. The first construction of adaptively secure encryption, presented by Beaver and Haber [BH92], is
interactive (3 rounds) and relies on the ability of parties to reliably erase parts of their internal state. An adaptively
secure encryption that does not rely on secure erasures, or non-committing encryption, is presented in [CFGN96]. The
scheme requires only two messages, just like standard encryption, and is based on joint-domain trapdoor permutations.
It requires both the sender and the receiver to send Θ(λ2) bits per each bit of a plaintext. Subsequent work has focused
on reducing rate and number of rounds. Beaver [Bea97] and Damgård and Nielsen [DN00] propose a 3-round NCE
protocol from, respectively, DDH and a simulatable PKE (which again can be built from similar assumptions to
those of [CFGN96]) with m · Θ(λ2) bits overall communication for m bit messages, but only m · Θ(λ) bits from
sender to receiver. These results were improved by Choi et al. [CDMW09] who reduce the number of rounds to
two, which matches optimal number of rounds since non-interactive NCE is impossible [Nie02]. Also they reduced
simulatable PKE assumption to a weaker trapdoor simulatable PKE assumption; such a primitive can be constructed
from factoring. A recent work of Hemenway et al. [HOR15] presented a two-round NCE construction based on the
Φ-hiding assumption which has Θ(m logm) + poly(λ) ciphertext size and m · Θ(λ) communication from receiver
to sender. Hemenway, Ostrovsky, Richelson and Rosen [HORR16] construct NCE with rate poly log(λ) under the
ring-LWE assumption.

We remark that the recent results on adaptively secure multiparty computation (MPC) from indistinguishability ob-
fuscation in the common reference string (CRS) model [CGP15, GP15, DKR15] do not provide an improvement of
NCE rate. Specifically, [CGP15] and [DKR15] already use NCE as a building block in their constructions, and the
resulting NCE is as inefficient as underlying NCE. The scheme by Garg et al. [GP15] does not use NCE, but their
second message is of size poly(mλ) due to the statistically sound non-interactive zero knowledge proof involved.

Another line of work focuses on achieving better parameters for weaker notions of NCE where the adversary sees the
internal state of only one of the parties (receiver or sender). Jarecki and Lysyanskaya [JL00] propose a scheme that
is non-committing for the receiver only, which has two rounds and ciphertext expansion factor 3 (i.e., the ciphertext
size is 3m + poly(λ)), under DDH assumption. Furthermore, their public key is also short and thus their scheme
achieves rate 4. Canetti at al. [CHK05] construct a constant-rate NCE with erasures, meaning that the sender has to
erase encryption randomness, and the receiver has to erase the randomness used for the initial key generation. Their
NCE construction has rate 13.

Our Results. We present two NCE schemes with constant-rate in the CRS model. We first present a simpler
construction which gives us rate 4, and then, using more sophisticated techniques, we construct our main scheme with
rate 1 + o(1).
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Our first construction is given by a rate-preserving transformation from any NCE with erasures to full NCE, assuming
indistinguishability obfuscation (iO) and one way functions (OWFs). Here we plug-in the scheme of [JL00] to obtain
rate 4, or that of [CHK05] to obtain rate 13.

Our main construction assumes only iO and OWFs and achieves rate 1 + o(1). To be more precise, the public key,
which is the first protocol message in our scheme, has size poly(λ). The ciphertext, which is the second message, has
size poly(λ) + |m|1. The CRS size is O(poly(mλ)), but the CRS is reusable for any polynomially-many executions
without an a priori bound on the number of executions. Thus when length |m| of a plaintext is large, the scheme has
overall rate that approaches 1.

In addition, this NCE scheme is the first to guarantee perfect correctness. Note that NCE in the plain model cannot be
perfectly correct, and therefore some setup assumption is necessary to achieve this property.

Construction and Proof Techniques. Recall the definition of non-committing encryption: Such a scheme con-
sists of algorithms (Gen,Enc,Dec,Sim), which satisfy usual correctness and security requirements. Additionally, the
scheme should remain secure even if the adversary first decides to see the communications in the protocol and later
corrupt the parties. This means that the simulator should be able to generate a dummy ciphertext cf (without knowing
which message it encrypts). Later, upon corruption of the parties, the simulator learns a message m, and it should
generate internal state of the parties consistent with m and cf - namely, encryption randomness of the sender and
generation randomness of the receiver.

First attempts and our first construction. Recall that the puncturing technique of [SW14] adds a special trapdoor
branch to a program, which allows to “explain” any input-output behavior of a program, i.e. to generate randomness
consistent with a given input-output pair ([SW14, DKR15]). Given such a technique, we could try to build NCE as
follows. Start from any rate-efficient non-committing encryption scheme in a model with erasures. Obfuscate the key
generation algorithm Gen and put it in the CRS. The protocol then proceeds as follows: the receiver runs Gen, obtains
(pk, sk), sends pk to the sender, gets back c and decrypts it with sk. In order to allow simulation of the receiver,
augment Gen with a trapdoor which allows a simulator to come up with randomness for Gen that is consistent with
(pk, sk). However, this approach doesn’t allow to simulate the sender.

One natural way to allow simulation of the sender is to modify Gen: instead of outputting pk, it should output an
obfuscated encryption algorithm E = iO(Enc[pk]) with the public key hardwired, and the receiver should send E
(instead of pk) to the sender in round 1. In the simulation Enc[pk] can be augmented with a trapdoor, thus allowing
to simulate the sender. The problem is that this scheme is no longer efficient: in all known constructions the trapdoor
(and therefore the whole program E) has the size of at least λ|m|, meaning that the rate is at least λ.2

Another attempt to allow simulation of the sender is to add to the CRS an obfuscated encryption program E′ =
iO(Enc(pk,m, r)), augmented with a trapdoor in the simulation. Just like in the initial scheme, the receiver should
send pk to the sender; however, instead of computing c directly using pk, the sender should run the obfuscated
program E′ on pk,m and r. This scheme allows simulating both the sender and the receiver, and at the same time
keeps the communication as short as in the original PKE. However, we can only prove selective security of this scheme,
meaning that the adversary has to commit to the challenge message m before it sees the CRS. This is a limitation of
the puncturing technique being used: in the security proof the input to the program Enc, including message m, has to
be hardwired into the program.

We get around this issue by using another level of indirection. Instead of publishing E′ = iO(Enc(pk,m, r)) in the
CRS, we publish a program GenEnc which generates E′ and outputs it.

Thus our first protocol works as follows: the receiver uses Gen to generate (pk, sk) and sends pk to the sender. The
sender runs GenEnc and obtains E′, and then executes E′(pk,m, r) → c and sends c back to the receiver. Note that

1In fact, the precise length of communication for transmitting m is 4λ+ |m|, i.e. it scales linearly with security parameter.
2This is due to the fact that this trapdoor uses a punctured PRF applied to the message m, and, to the best of our knowledge, in all known

constructions of PPRFs the size of a punctured key is at least λ|m|.
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GenEnc doesn’t take m as input, therefore there is no need to hardwire m into CRS and in particular there is no need
to know m at the CRS generation step.

Our main construction. We give another construction of NCE, which achieves asymptotically optimal rate. That
is, the amount of bits sent is |m|+ poly(λ), and by setting m to be long enough, we can achieve rate arbitrarily close
to 1. The new scheme assumes only indistinguishability obfuscation and one-way functions.

First we briefly outline the main idea behind our construction. Our starting point is the [SW14] PKE scheme from
iO and one way functions. We first show that this scheme is in fact NCE with erasures. We then use ideas from the
deniable encryption of [SW14] to modify the public key so as to allow simulating the sender. However, this results in
a long public key. To avoid sending this long public key from the receiver to the sender, we instead send a short token
t, which can be used by special programs to generate the same pair of (pk, sk) of the underlying NCE with erasures.
This is done by first computing the generation randomness rGen ← FMSK(t) using a shared key MSK, then sampling
(pk, sk) from rGen and finally outputting whatever is needed for parties, i.e. c or sk. Thus the token t can be thought
of as an encapsulation of the generation randomness rGen of the underlying NCE with erasures. (Clearly rGen itself
must remain unknown to the adversary.) Since we do not send the public key of the underlying NCE, we only need
that the underlying NCE has short ciphertexts; public keys can be long.

Security-wise, the main difference between our first construction of NCE and this one is that here we reveal a lot of
information about how rGen was generated. Indeed, in the previous scheme the adversary learned pk but never learned
the values used to generate it. Here the adversary sees t in the clear, and the secrecy of MSK is the only thing which
keeps rGen secret. This has its effect on the proof - we have to puncture MSK and hardwire/remove public keys inside
programs, which results in additional requirements on the underlying NCE scheme with erasures.

More concretely, our construction proceeds in two steps. We first define and construct an augmented version of NCE
with erasures, called same-public-key non-committing encryption with erasures (seNCE). Our seNCE scheme will have
short ciphertexts, i.e. ciphertext size is m+ poly(λ). However, the public keys will still be long, namely poly(mλ).

The second step in our construction is to transform any seNCE into a full NCE scheme in the CRS model where the
ciphertext size is preserved and the public key size depends only on security parameter. We now describe these steps
in somewhat more detail.

SeNCE schemes. These are NCE schemes with the following additional properties:

• security with erasures: the receiver is allowed to erase its generation randomness (but not sk); the sender is
allowed to erase its encryption randomness. (This means that sk is the only information the adversary expects
to see upon corrupting both parties.)

• same public key: the generation and simulation algorithms executed on the same input r produce the same
public keys.

Construction of seNCE. Our starting point is the PKE construction from iO and one way functions by Sahai and
Waters [SW14]. Similarly to that scheme we set our public key to be an obfuscated program with a key k inside,
which takes as inputs messagem and randomness r and outputs a ciphertext c = (c1, c2) = (prg(r),Fk(prg(r))⊕m),
where F is a pseudorandom function (PRF). However, instead of setting k to be a secret key, we set the secret key
to be an obfuscated program (with k hardwired) which takes an input c = (c1, c2) and outputs Fk(c1) ⊕ c2. Once
the encryption and decryption programs are generated, the key k and the randomness used for the obfuscations are
erased, and the only thing the receiver keeps is its secret key. Note that ciphertexts in the above scheme have length
m+ poly(λ).

To see that this construction is secure with erasures, consider the simulator that sets a dummy ciphertext cf to be a
random value. To generate a fake decryption key skf , which behaves like a real secret key except that it decrypts cf
to a challenge message m, the simulator obfuscates a program (with m, cf , k hardwired) that takes as input (c1, c2)
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and does the following: if c1 = cf1 then the program outputs cf2 ⊕ c2 ⊕ m, otherwise the output is Fk(c1) ⊕ c2.
Encryption randomness of the sender, as well as k and obfuscation randomness of the receiver, are erased and do not
need to be simulated. (Note that the simulated secret key is larger than the real secret key. So, to make sure that the
programs have the same size, the real secret key has to be padded appropriately.)

Furthermore, the scheme has the same-public-key property: The simulated encryption key is generated in exactly the
same way as the honest encryption key.

Finally note that this scheme has perfect correctness.

From seNCE to full NCE. Our first step is to enhance the given seNCE scheme, such that the scheme remains
secure even when the sender is not allowed to erase its encryption randomness. Specifically, following ideas from the
deniable encryption of Sahai and Waters [SW14], we add a trapdoor branch to the encryption program, i.e. the public
key. This allows the simulator to create fake randomness rf,Enc, which activates this trapdoor branch and makes the
program output cf on input m. In order to create such randomness, the simulator generates rf,Enc as an encryption
(using a scheme with pseudorandom ciphertexts3) of an instruction for the program to output cf . The program will first
try to decrypt rf,Enc and check whether it should output cf via trapdoor branch, or execute a normal branch instead.

The above construction of enhanced seNCE still has the following shortcomings. First, its public key (recall that it is
an encryption program) is long: the program has to be padded to be at least of size poly(λ) · |m|, since in the proof the
keys for the trapdoor branch are punctured and have an increased size, and therefore the size of an obfuscated program
is poly(mλ). 4 Second, the simulator still cannot simulate the randomness which the receiver used to generate its
public key, e.g. keys for the trapdoor branch and randomness for obfuscation. Third, the scheme is only selectively
secure, meaning that the adversary has to fix the message before it sees a public key. This is due to the fact that our way
for explaining a given output (i.e. trapdoor branch mechanism) requires hardwiring the message inside the encryption
program in the proof.

We resolve these issues by adding another “level of indirection” for the generation of obfuscated programs. Specifi-
cally, we introduce a common reference string that will contain two obfuscated programs, called GenEnc and GenDec,
which are generated independently of the actual communication of the protocol and can be reused for unboundedly
many messages. The CRS allows the sender and the receiver to locally and independently generate their long public
and private keys for the underlying enhanced seNCE while communicating only a short token. Furthermore, we will
only need to puncture these programs at points which are unrelated to the actual encrypted and decrypted messages.

The NCE scheme. The receiver chooses randomness rGenDec and runs a CRS program GenDec(rGenDec). This
program uses rGenDec to sample a short token t. Next the program uses this token t to internally compute a secret
generation randomness rseNCE, from which it derives (pk, sk) pair for underlying seNCE scheme. Finally, the program
outputs (t, sk). The public key (i.e., the receiver’s message) is the token t.

The sender obtains the program GenEnc from the CRS and computes GenEnc(t, rGenEnc) where rGenEnc is the sender’s
fresh randomness. We now describe program GenEnc. Similarly to GenDec, GenEnc first uses t to generate secret
randomness rseNCE for seNCE, and samples the same key pair (pk, sk) for seNCE as the receiver. Further, GenEnc gen-
erates trapdoor keys and obfuscation randomness, which it uses to compute a public key program PEnc[pk] of enhanced
seNCE, which extends the underlying seNCE public key with a trapdoor as described above. PEnc[pk] is the output of
GenEnc. After obtaining PEnc, the sender chooses encryption randomness rEnc and runs c← PEnc[pk](m, rEnc). In its
response message, the sender sends c to the receiver, who decrypts it using sk.

Correctness of this scheme follows from correctness of the seNCE scheme, since at the end a message is being en-
crypted and decrypted using the seNCE scheme. To get some idea of why security holds, note that the seNCE gener-
ation randomness rseNCE is only computed internally by the programs. This value is never revealed to the adversary,

3For this purpose we use a puncturable deterministic encryption scheme (PDE), since it is iO-friendly and has pseudorandom ciphertexts.
4 To the best of our knowledge, in all known puncturable PRFs the size of a punctured key applied to m is at least λ|m|
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and therefore can be thought of as being “erased”. In particular, if we had a VBB obfuscation, we could almost imme-
diately reduce security of our scheme to security of seNCE. Due to the fact that we only have iO, the actual security
proof becomes way more intricate.

To see how we resolved the three issues from above (namely, with the length of the public key, with simulating the
receiver, and with selective security), note:

(a) The only information communicated between sender and receiver is the short token t which depends only on the
security parameter, and the ciphertext c which has size O(λ) + |m|. Thus the total communication is O(λ) + |m|.
(b) The simulator will show different programs GenEnc:Sim, GenDec:Sim and Enc:Sim, which have trapdoor
branches inside; they allow the simulator to “explain” the randomness for any desired output, thus allowing it to
simulate internal state of both parties.
(c) We no longer need to hardwire message-dependent values into the programs in the CRS, which previously made
security only selective. Indeed, in a real world the inputs and outputs of these programs no longer depend on the
message sent. They still do depend on the message in the ideal world (for instance, the output of GenDec is skm);
however, due to the trapdoor branches in the programs it is possible for the simulator to encode skm into randomness
rGenDec rather than the program GenDec itself. Therefore m can be chosen adaptively after seeing the CRS (and the
public key).

In the proof of our NCE we crucially use the same public-key property of underlying seNCE: Our programs use the
master secret key MSK to compute the generation randomness rseNCE from token t, and then sample seNCE keys
(pk, sk) using this randomness. In the proof we hardwire pk in the CRS, then puncture MSK and choose rseNCE at
random. Next we switch the seNCE values, including the public key pk, to simulated ones. Then we choose rseNCE
as a result of a PRF, and unhardwire pk. In order to unhardwire (now simulated) pk from the program and compute
(pk, sk) = FMSK(rseNCE) instead, simulated pk generated from rseNCE should be exactly the same as the real public
key pk which the program normally produces by running seNCE.Gen(rseNCE). This ensures that the programs with
and without pk hardwired have the same functionality, and thus security holds by iO.

An additional interesting property of this transformation is that is preserves the correctness of underlying seNCE
scheme, meaning that if seNCE is computationally (statistically, perfectly) correct, then the resulting NCE is also com-
putationally (statistically, perfectly) correct. Therefore, when instantiated with our perfectly correct seNCE scheme
presented earlier, the resulting NCE achieves perfect correctness. To the best of our knowledge, this is the first NCE
scheme with such property.

Shrinking the secret key. The secret key in the above scheme consists of an obfuscated program D, where D is
the secret key (i.e. decryption program) for the seNCE scheme, together with some padding that will leave room to
“hardwire”, in the hybrid distributions in the proof of security, the |m|-bit plaintext m into D. Overall, the description
size of D is |m|+O(λ); when using standard IO, this means that the obfuscated version of D is of size poly(|m|λ).

Still, using the succinct Turing and RAM machine obfuscation of [KLW15, CHJV15, BGL+15, CH15] it is possible
to obtain program obfuscation where the size of the obfuscated program is the size of the original program plus a
polynomial in the security parameter. This can be done in a number of ways. One simple way is to generate the
following (short) obfuscated TM machine OU : The input is expected to contain a description of a program that is
one-time-padded, and then authenticated using a signed accumulator as in [KLW15], all with keys expanded from
an internally known short key. The machine decrypts, authenticates, and then runs the input circuit. Now, to ob-
fuscate a program, simply one time pad the program, authenticate it, and present it alongside machine OU with the
authentication information and keys hardwired.

Augmented explainability compiler. In order to implement the trapdoor branch in the proof of our NCE scheme,
we use among other things the “hidden sparse triggers” method of Sahai and Waters [SW14]. This method proved to
be useful in other applications as well, and Dachman-Soled et al [DKR15] abstracted it into a primitive called “ex-
plainability compiler”. Roughly speaking, explainability compiler turns a randomized program into its “trapdoored”
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version, such that it becomes possible, for those who know faking keys, to create fake randomness which is consistent
with a given input-output pair.

We use a slightly modified version this primitive, which we call an augmented explainability compiler. The main
difference here is that we can use the original (unmodified) program in the protocol, and only in the proof replace it
with its trapdoor version. This is important for perfect correctness of NCE: none of the programs GenEnc, GenDec, and
Enc in the real world contain trapdoor branches (indeed, if there was a trapdoor branch in, say, encryption program
Enc, it would be possible that an honest sender accidentally chooses randomness which contains an instruction to
output an encryption of 0, making the program output this encryption of 0 instead of an encryption of m). Another
difference is technical: both their and our compiler add an extracting PRF to the program, but our compiler uses a
special PRF with a sparse image. In the proof of security of NCE we exploit the structure of our compiler and make
use of the sparseness of this PRF.

2 Preliminaries

2.1 Non-committing Encryption and its Variants.

Non-committing encryption. Non-committing encryption is an adaptively secure encryption scheme, i.e., it re-
mains secure even if the adversary decides to see the ciphertext first and only later corrupt parties. This means that the
simulator should be able to first present a “dummy” ciphertext without knowing what the real message m is. Later,
when parties are corrupted and the simulator learns m, the simulator should be able to present receiver decryption key
(or receiver randomness) which decrypts dummy c to m and sender randomness under which m is encrypted to c.
Definition 1. A non-committing encryption scheme for a message space M = {0, 1}l is a tuple of algorithms
(Gen,Enc,Dec,Sim), such that correctness and security hold:

• Correctness: For all m ∈M Pr

m = m′

∣∣∣∣∣∣
(pk, sk)← Gen(1λ, rGen);
c← Encpk(m, rEnc);
m′ ← Decsk(c)

 ≥ 1− negl(λ).

• Security: An adversary cannot distinguish between real and simulated ciphertexts and internal state even if it
chooses message m adaptively depending on the public key pk. More concretely, no PPT adversary A can win
the following game with more than negligible probability:

A challenger chooses random b ∈ {0, 1}. If b = 0, it runs the following experiment (real):

1. It chooses randomness rGen and creates (pk, sk)← Gen(1λ, rGen). It shows pk to the adversary.

2. The adversary chooses message m.

3. The challenger chooses randomness rEnc and creates c← Enc(pk,m; rEnc). It shows (c, rEnc, rGen) to the
adversary.

If b = 1, the challenger runs the following experiment (simulated):

1. It runs (pks, cs)← Sim(1λ). It shows pks to the adversary.

2. The adversary chooses message m.

3. The challenger runs (rsEnc, r
s
Gen)← Sim(m) and shows (cs, rsEnc, r

s
Gen) to the adversary.

The adversary outputs a guess b′ and wins if b = b′.

In this definition we only spell out the case where both parties are corrupted, and all corruptions happen after the
execution and simultaneously. Indeed, if any of the parties is corrupted before the ciphertext is sent, then the simulator
learns m and can present honest execution of the protocol; therefore we concentrate on the case where corruptions
happen afterwards. Next, m is the only information the simulator needs, and after learning it (regardless of which
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party was corrupted) the simulator can already simulate both parties; thus we assume that corruptions of parties
happen simultaneously. Finally, without loss of generality we assume that both parties are corrupted: if only one or no
party is corrupted, then the adversary sees strictly less information in the experiment, and therefore cannot distinguish
between real execution and simulation, as long as the scheme is secure under our definition.

Note that this definition only allows parties to encrypt a single message under a given public key. This is due to
impossibility result of Nielsen [Nie02], who showed that a secret key of any NCE can support only bounded number
of ciphertexts. If one needs to send many messages, it can run several instances of a protocol (each with a fresh pair
of keys). Security for this case can be shown via a simple hybrid argument.

Non-committing encryption in a programmable common reference string model. In this work we build NCE in
a CRS model, meaning that both parties and the adversary are given access to a CRS, and the simulator, in addition to
simulating communications and parties’ internal state, also has to simulate the CRS. Before giving a formal definition,
we briefly discuss possible variants of this definition.

Programmable CRS. One option is to consider a global (non-programmable) CRS model, where the CRS is given
to the simulator, or local (programmable) CRS model, where the simulator is allowed to generate a CRS. The first
variant is stronger and more preferable, but in our construction the simulator needs to know underlying trapdoors and
we therefore focus on a weaker type.

Reusable CRS. Given the fact that in a non-committing encryption a public key can be used to send only bounded
number of bits, a bounded-use CRS would force parties to reestablish CRS after sending each block of messages.
Since sampling a CRS is usually an expensive operation, it is good to be able to generate a CRS which can be reused
for any number of times set a priori. It is even better to have a CRS which can be reused any polynomially many times
without any a priori bound. In our definition we ask a CRS to be reusable in this stronger sense.

Security of multiple executions. Unlike NCE in the standard model, in the CRS model single-execution security
of NCE does not immediately imply multi-execution security. Indeed, in a reduction to a single-execution security
we would have to, given a challenge and a CRS, simulate other executions. But we cannot do this since we didn’t
generate this CRS ourselves and do not know trapdoors. Therefore in our definition we explicitly require that the
protocol remains secure even when the adversary sees many executions with the same CRS.

Definition 2. An NCE scheme for a message space M = {0, 1}l in a common reference string model is a tuple of
algorithms (GenCRS,Gen, Enc,Dec,Sim) which satisfy correctness and security.

Correctness: For all m ∈M Pr

m = m′

∣∣∣∣∣∣∣∣
CRS← GenCRS(1λ);
(pk, sk)← Gen(1λ,CRS; rGen);
c← Encpk(m,CRS; rEnc);
m′ ← Decsk(CRS, c)

 ≥ 1− negl(λ).

If this probability is equal to 1, then we say that the scheme is perfectly correct. 5

Security: For any PPT adversary A, advantage of A in distinguishing the following two cases is negligible:

A challenger chooses random b ∈ {0, 1}. If b = 0, it runs the following experiment (real):

First it generates a CRS as CRS ← GenCRS(1λ, l). CRS is given to the adversary. Next the challenger does the
following, depending on the adversary’s request:

• On a request to initiate a protocol instance with session ID id, the challenger chooses randomness rGen,id and
creates (pkid, skid)← Gen(1λ,CRS, rGen,id). It shows pkid to the adversary.

• On a request to encrypt a message mid in a protocol instance with session ID id, the challenger chooses random-
ness rEnc,id and creates cid ← Enc(pkid,mid; rEnc,id). It shows cid to the adversary.

5Note that this definition implies that there are no decryption errors for any CRS, computed by GenCRS.
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• On a request to corrupt the sender of a protocol instance with ID id, the challenger shows rEnc,id to the adversary.

• On a request to corrupt the receiver of a protocol instance with ID id, the challenger shows rGen,id to the adver-
sary.

If b = 1, it runs the following experiment (simulated):

First it generates a CRS as CRSs ← Sim(1λ, l). CRSs is given to the adversary. Next the challenger does the following,
depending on the adversary’s request:

• On a request to initiate a protocol instance with session ID id, the challenger runs (pksid, c
s
id) ← Sim(1λ) and

shows pksid to the adversary.

• On a request to encrypt a message mid in a protocol instance with session ID id, the challenger shows csid to the
adversary.

• On a request to corrupt the sender of a protocol instance with ID id, the challenger shows rsEnc,id ← Sim(mid)
to the adversary.

• On a request to corrupt the receiver of a protocol instance with ID id, the challenger shows rsGen,id ← Sim(mid)
to the adversary.

The adversary outputs a guess b′ and wins if b = b′.

Constant rate NCE. The rate of an NCE scheme is how many bits the sender and receiver need to communicate
in order to transmit a single bit of a plaintext: NCE scheme for a message space M = {0, 1}l has rate f(l, λ), if
(|pk|+ |c|)/l = f(l, λ). If f(l, λ) is a constant, the scheme is said to have constant rate.

Same-public-key non-committing encryption with erasures (seNCE). Here we define a different notion of NCE
which we call same-public-key non-committing encryption with erasures (seNCE); it is used as a building block in
our main construction. First, such a scheme allows parties to erase unnecessary information: the sender is allowed
to erase its encryption randomness, and the receiver is allowed to erase its generation randomness rGen (but not its
public or secret key). Furthermore, this scheme should have “the same public key” property, which says that both real
generation and simulated generation algorithms should output exactly the same public key pk, if they are executed
with the same random coins.
Definition 3. The same-public-key non-committing encryption with erasures (seNCE) for a message space M =
{0, 1}l is a tuple of algorithms (Gen,Enc,Dec,Sim), such that correctness, security, and same-public-key property
hold:

• Correctness: For all m ∈M Pr

m = m′

∣∣∣∣∣∣
(pk, sk)← Gen(1λ, rGen);
c← Encpk(m, rEnc);
m′ ← Decsk(c)

 ≥ 1− negl(λ).

• Security with erasures: No PPT adversaryA can win the following game with more than negligible probabil-
ity:

A challenger chooses random b ∈ {0, 1}. If b = 0, it runs a real experiment:

1. The challenger chooses randomness rGen and creates (pk, sk) ← Gen(1λ, rGen). It shows pk to the
adversary.

2. The adversary chooses a message m.

3. The challenger chooses randomness rEnc and creates c← Enc(pk,m; rEnc). It shows c to the adversary.

4. Upon corruption request, the challenger shows to the adversary the secret key sk.

If b = 1, the challenger runs a simulated experiment:
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1. A challenger generates simulated public key and ciphertext (pks, cs) ← Sim(1λ)6. It shows pks to the
adversary.

2. The adversary chooses a message m.

3. The challenger shows the ciphertext cs to the adversary.

4. Upon corruption request, the challenger runs sks ← Sim(m) and shows to the adversary simulated secret
key sks.

The adversary outputs a guess b′ and wins if b = b′.

• The same public key: For any r let Gen(1λ, r) = (pk, sk);Sim(1λ, r) = (pks, cs). Then pk = pks.

3 Explainability Compiler

In this section we briefly and very informally describe the properties of an explainability compiler, constructed in
[SW14, DKR15], since we heavily use it in both constructions of NCE. Those familiar with the techniques of [SW14,
DKR15] can skip this section and move to the actual NCE scheme in section 5. However, note that our compiler is
slightly different. For a formal definition, proofs, and differences between [SW14, DKR15] compiler and ours, refer
to appendix B.

A compiler takes a program and outputs a new program which now can be “explained” - i.e. if you know a special
faking key f , you can give randomness consistent with any input-output pair. Just as an example, consider a program
Encrypt[pk](m, r) which simply outputs an encryption of m with randomness r under a public key pk (fig. 1). Let’s
say our ultimate goal is to cheat the adversary and convince him that a zero-encrypting ciphertext c = Encpk(0)
was produced by running a program Encrypt[pk] on a message m = 1. Thus, we need to come up with fake, but
innocent-looking randomness rf such that Encrypt[pk](1, rf ) = c.

It is not clear how to achieve this with the original program Encrypt (unless Enc is already a deniable encryption
itself). However, we can achieve this by slightly changing an encryption program. Consider a trapdoored program
Encrypt:td (fig. 1)) which differs from original Encrypt in two aspects. First, it doesn’t use randomness r as it is: it
generates internal (and hidden) randomness u using a PRF (which in fact also has to be an extractor). Second and more
important, it has an additional, trapdoor, branch: before doing anything, it tries to interpret r as a ciphertext under a
special faking key f and decrypt it. If decryption was successful, then it interprets the result as a pair (m′, c′), which
it views as an instruction to output c′ on input m′. Thus, if the input to the program m is indeed equal to m′, then it
outputs c′ and halts. If any of these fails (i.e. it couldn’t decrypt, or m 6= m′), then it aborts the trapdoor branch and
goes to a normal branch, encrypting m honestly.

If such a program Encrypt:td is used in encryption scheme, then it is possible for the simulator to explain c = Encpk(0)
as an encryption of 1. In order to do this, it should generate rf as an encryption (under a faking key f ) of (1, c). Then
the program Encrypt:td on input 1, rf will decrypt rf to an instruction “output c on input 1” and, since 1 is indeed the
input, output c.

Several comments follow. First, to make sure fake rf is indistinguishable from a real randomness, encryption under a
faking key f should have pseudorandom ciphertexts.

Second, it is important that the actual encryption randomness u remains hidden even given randomness r (and in
particular that the program doesn’t directly use r to encrypt). Indeed, if the encryption randomness u was known,
everybody could run a public encryption procedure Encpk(1, u) and see that it doesn’t result in the claimed ciphertext c.

Third, the set of randomness r which is a valid encryption under a faking key f should be sparse, otherwise encryption
will not be correct. This is because each such r becomes “a point of incorrect behavior”, outputting a ciphertext which
is possibly unrelated to the input bit. In a real execution, when r is chosen at random, r must happen to be a valid

6We omit the random coins and state of Sim.
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Example of the explainability compiler
Program Encrypt[pk](m, r)

1. Set c← Encpk(m; r)
2. Output c

Program Encrypt:td[pk](m, r)
1. trapdoor branch:

(a) Try to decrypt r using faking keys. If decryption failed, goto normal branch;
(b) If decryption succeeded, interpret the result as m′, c′.
(c) If m′ = m, output c′ and halt. Otherwise goto normal branch.

2. normal branch:
(a) Set u← PRF(m, r)
(b) Set c← Encpk(m;u)
(c) Output c

Program Encrypt:r[pk](m, r)
1. Set u← PRF(m, r)
2. Set c← Encpk(m;u)
3. Output c

Program Explain(m, c; ρ)
1. Set rf to be an encryption under a faking key f of (m, c, ρ)
2. Output rf

Figure 1: Original program Encrypt and programs Encrypt:td, Encrypt:r and Explain, which are the result of running
a compiler on Encrypt.

encryption under f with only negligible probability; this ensures that Encrypt:td almost always executes its normal
branch and therefore encryption remains correct.

As follows from the previous comment, Encrypt:td which is run on fake rf andm always executes its trapdoor branch,
whereas when it is run on a truly random r, it executes its normal branch almost always (unless r accidentally happened
to be a valid encryption under a faking key f ). Therefore it should remain hidden from the adversary which branch is
being run - otherwise it can easily distinguish. In particular, faking key f should remain hidden from the adversary,
although it is hardcoded inside Encrypt:td.

Next, it is important that the trapdoor branch checks that m′ in the instruction is the same as m in the input. If it
didn’t perform this input check and instead run “Decrypt r to m′, c′; output c′” code, then the adversary could easily
distinguish between a real r and fake rf : Namely, executing Encrypt:td(0, rf ) and Encrypt:td(1, rf ) with a fake rf
would yield the same output c′, whereas running Encrypt:td(0, r) and Encrypt:td(1, r) would result in two different
ciphertexts, since a change in m results in a change in encryption randomness u.

Finally, note that this technique ensures that real r and c = Encrypt:td(1, r) is indistinguishable from c = Encrypt:td(0, r)
and fake rf which explains c on input m = 1; in words, this means that a ciphertexs encrypting 0 can be explained as
encrypting 1. However, it is more convenient to require a different guarantee from the compiler: that it is possible to
generate fake randomness rf which explains c on its true plaintext m. This property is called indistinguishability of
explanations, meaning that the adversary cannot distinguish between true r and fake rf which both result in the same
c on input m.

Preserving correctness of encryption. As discussed above, such a method inherently introduces a decryption error,
since it is possible for a randomly chosen r to be a valid encryption of some m and c, so that Encrypt:td on input m, r
outputs c, which can be unrelated to m. If we want our encryption to be perfectly correct, we need to make sure that
in the real world there is no trapdoor branch in the program - it should only be in the simulated Encrypt:td. This can
be achieved by generating Encrypt:r (“r” for “rerandomized”, see fig. 1) in the real world and Encrypt:td in the ideal
world. Needless to say, we need to prove that these two programs are indistinguishable.
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Program Explain. Previously we used a faking key f to generate fake randomness rf . As we discussed, f has
to remain hidden from the adversary, and thus the adversary couldn’t generate fake randomness itself. However, it is
possible to give it such a possibility: one can show that real and fake randomness remains indistinguishable even if the
adversary has an obfuscated program Explain, which generates fake randomness. More specifically, it takes as input
the desired input-output pair m, c, as well as randomness ρ, and outputs rf , which is an encryption of (m, c, ρ) under
f . It is crucial that rf is randomized with ρ: if it weren’t, then the adversary could catch us by running Explain(m, c)
itself and noticing that we gave it exactly the same rf .

Properties of the compiled programs. Here we informally state the properties we achieve:

• Indistinguishability of programs with an without the trapdoor, namely Encrypt:td and Encrypt:r. Intuitively,
this holds since the set of inputs on which they differ is tiny and hard to find. Note that if the adversary was
given a program Explain, it could easily distinguish the two by running them on any fake r.

• Indistinguishability of the source of output: the adversary cannot distinguish whether a given c is the result
of running Encrypt:td or original Encrypt, even given Encrypt:td and Explain.

• Indistinguishability of explanations: random r and c = Encrypt:td(m, r) is indistinguishable from c =
Encrypt:td(m, r) and rf = Explain(m, c; ρ), even given Encrypt:td and Explain. I.e. Encrypt:td on both (m, r)
and (m, rf ) outputs the same c, but does this using different branches, which should be indistinguishable for the
adversary.

4 Constant-rate Non-committing Encryption in the CRS model

In this section we give our simpler construction of a constant-rate non-committing encryption. For a construction of
NCE with rate 1, see section 5.

More precisely, we describe the transformation from any non-committing encryption with erasures (eNCE) in the
plain model to a full non-committing encryption in a CRS model, such that this transformation preserves the length of
communication. Thus by using any constant-rate NCE with erasures (for instance, [JL00] or [CHK05]) we achieve a
full constant-rate NCE.

The scheme is given on Fig. 2. The CRS contains a description of two programs, GenEnc and Gen. Gen(rGen)
simply runs a generation algorithm of eNCE and outputs pk, sk. GenEnc(rGenEnc) outputs an obfuscated program
Encrypt(pk,m, r). Encrypt(pk,m, r) just computes a normal encryption of m under pk. All three algorithms are
“rerandomized”, i.e. randomness they use is obtained by applying an extracting PRF on their input. The protocols
goes as follows: the receiver runs Gen to produce (pk, sk) and sends pk to the sender. Then the sender first runs
GenEnc to produce a program E, and then runs E on pk, m, and obtains the ciphertext c, which it sends to the
receiver.

Theorem 1. Assume indistinguishability obfuscation for circuits and one way functions. Let (eNCE.Gen, eNCE.Enc,
eNCE.Dec) be a non-committing encryption with erasures in a plain model. Then:

1. The scheme given on Fig. 2 is a full non-committing encryption scheme in a CRS model.

2. The length of communication (i.e. |pk|+ |c|) is the same as the length of communication in underlying eNCE.

Since a constant-rate NCE schemes with erasures do exist ([CHK05, JL00], under decisional composite residuosity
assumption and DDH), we immediately get the following corollary:

Corollary 1. Assuming one way functions, indistinguishability obfuscation, and hardness of decisional composite
residuosity, there exist a constant-rate non-committing encryption in the CRS model.
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NCE from eNCE
CRS: obfuscated programs Gen and GenEnc
Inputs: sender’s message m
• Round 1. The receiver chooses randomness rGen and generates keys (pk, sk) ← Gen(rGen). It sends pk to the

sender.
• Round 2. The sender chooses randomness rEnc, rGenEnc. It runs E ← GenEnc(rGenEnc) and then c ←
E(pk,m, rEnc). It sends c to the receiver.

• The receiver decrypts m′ ← eNCE.Dec(sk, c).

Program Gen(rGen)
Inputs: randomness rGen
// hardcoded values: key for extracting PRF ExtGen

1. Set rNCE ← FExtGen(rGen).
2. Set (pk, sk)← eNCE.Gen(rNCE)
3. Output (pk, sk)

Program GenEnc(rGenEnc)
// hardcoded values: key for extracting PRF ExtGenEnc
Inputs: message m, randomness rEnc

1. Set e← FExtGenEnc(rEnc);
2. Use e to sample a key ExtEncrypt for an extracting PRF and obfuscation randomness riO
3. Compute E ← iO(Encrypt[ExtEncrypt]; riO)
4. Output E.

Program Encrypt(pk, m, rEncrypt)
// hardcoded values: key for extracting PRF ExtEncrypt
Inputs: eNCE public key pk, message m, randomness rEncrypt

1. Set u← FExtEncrypt(rEncrypt).;
2. Compute c← Encpk(m;u)
3. Output c.

Figure 2: Transformation from a non-committing encryption with erasures to a full non-committing encryp-
tion. Programs are padded to be of the same size as programs in the proof.
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Simulation:
1. Simulation of the CRS:

(a) Sample keys ExtGen, fGen, ExtGenEnc, fGenEnc, choose random sGen, sGenEnc and set SGen ← prg(sGen),
SGenEnc ← prg(sGenEnc).

(b) Set the CRS to be obfuscated programs Gen:Sim[ExtGen, fGen, SGen] and
GenEnc:Sim[ExtGenEnc, fGenEnc, SGenEnc].

For every execution, generate the following:
2. Simulation of communication: Run eNCE.Sim to generate pk, c, state.
3. Simulation of internal state of the sender for message m:

(a) Sample keys ExtEncrypt, fEncrypt and randomness sEncrypt. Set SEncrypt ← prg(sEncrypt).
(b) Set E to be an obfuscated program Encrypt : Sim[ExtEncrypt, fEncrypt, SEncrypt].
(c) set rEnc ← PDE.EncfEncrypt(pk,m, c, prg(ρ1)) for random ρ1
(d) set rGenEnc ← PDE.EncfGenEnc(E, prg(ρ2)) for random ρ2
(e) set rEnc, rGenEnc to be the internal state of the sender.

4. Simulation of internal state of the receiver for message m:
(a) run skm ← eNCE.Sim(m, state). Set rGen ← PDE.EncfGen(pk, skm, prg(ρ3)) for random ρ3
(b) set rGen to be the internal state of the receiver.

Figure 3: NCE Simulator. Description of programs Gen:Sim, GenEnc:Sim, and Encrypt:Sim are given in Fig.
4.

Proof. It is clear from the description of the scheme that the transformation preserves the length of communication.
We show that it also preserves correctness and security of the underlying eNCE.

Correctness. By the correctness of the underlying eNCE scheme, when generation randomness and encryption
randomness are chosen uniformly at random, a decryption error happens with only negligible probability. Since in our
scheme both generation randomness rNCE and encryption randomness u are generated using an extracting PRF, their
distribution is close to uniform (with overwhelming probability over the choice of PRF keys), and therefore decryption
error remains negligible.

Security. We prove in a sequence of hybrids that the real distribution is indistinguishable from the simulated one.
To keep the proof concise, we only prove it for one execution.

The proof consists of a repeated application of the following properties of explainability compiler 7:

• The program is indistinguishable from its version with a trapdoor branch (for instance, Gen and Gen:Sim);

• The ciphertext produced by running Encrypt:Sim (which has a trapdoor branch) is indistinguishable from com-
puting a ciphertext using a truly random encryption randomness u (the same holds for output of other two
programs);

• the true randomness is indistinguishable from fake randomness explaining given input-output behavior.

These properties allow to make pk, sk,m independent of programs, after which we can use security of underlying
eNCE to switch them to simulated pk, sk, c. Now we briefly describe hybrids:

1. Real execution. In this distribution the CRS contains obfuscated programs GenEnc and Gen; rGen, rGenEnc, and
rEncrypt are truly random, and pk and c are generated honestly, as specified in Fig. 2.

2. Hybrid 1. In this hybrid the CRS contains obfuscated programs GenEnc:Sim and Gen:Sim (Fig. 4).

Indistinguishability holds by indistinguishability of programs with and without a trapdoor (def. 7 and theorem
5).
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Programs generated by NCE Simulator.
Program Gen:Sim(rGen)
Inputs: randomness rGen
// hardcoded values: key for extracting PRF ExtGen, faking key fGen, prg image SGen

1. Trapdoor branch:
(a) Decrypt out← PDE.DecfGen(rGen); if out = ⊥, then execute normal branch.
(b) Else parse out as (pk′, sk′, s′, ρ̃). If prg(s′) = SGen then output (pk′, sk′) and halt; otherwise execute the

normal branch.
2. Normal branch:

(a) Set rNCE ← FExtGen(rGen).
(b) Set (pk, sk)← eNCE.Gen(rNCE)
(c) Output (pk, sk)

Program GenEnc:Sim(rGenEnc)
// hardcoded values: key for extracting PRF ExtGenEnc, faking key fGenEnc, prg image SGenEnc

Inputs: message m, randomness rEnc
1. Trapdoor branch:

(a) Decrypt out← PDE.DecfGenEnc(rGenEnc); if out = ⊥, then execute normal branch.
(b) Else parse out as (E′, s′, ρ̃). If prg(s′) = SGenEnc then output (E′) and halt; otherwise execute the normal

branch.
2. Normal branch:

(a) Set e← FExtGenEnc(rEnc);
(b) Use e to sample a key ExtEncrypt for an extracting PRF and obfuscation randomness riO
(c) Compute E ← iO(Encrypt[ExtEncrypt]; riO)
(d) Output E.

Program Encrypt:Sim(pk, m, rEncrypt)
// hardcoded values: key for extracting PRF ExtEncrypt , faking key fEncrypt, prg image SEncrypt

Inputs: eNCE public key pk, message m, randomness rEncrypt
1. Trapdoor branch:

(a) Decrypt out← PDE.DecfEncrypt(rEncrypt); if out = ⊥, then execute normal branch.
(b) Else parse out as (c′, s′, ρ̃). If prg(s′) = SEncrypt then output (c′) and halt; otherwise execute the normal

branch.
2. Normal branch:

(a) Set u← FExtEncrypt(rEncrypt);
(b) Compute c← Encpk(m;u)
(c) Output c.

Figure 4: Programs generated by NCE Simulator. These programs have an additional trapdoor branch which
allows the simulator, who knows faking keys fGenEnc, fGen, fEncrypt, to “explain” any input-output pair of the program,
i.e. show randomness consistent with this input-output pair.
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3. Hybrid 2. In this hybrid upon corruption of parties the adversary is given fake randomness rf,Gen and rf,GenEnc
(instead of real rGen and rGenEnc), generated as rf,Gen ← PDE.EncfGen(pk, sk, prg(ρ3)) and rf,GenEnc ←
PDE.EncfGenEnc(E, prg(ρ2)). Here ρ2, ρ3 are chosen at random, and E is an obfuscated Encrypt generated
as in a real execution.

Indistinguishability holds by selective explainability (def. 7 and theorem 5). Note that an input to GenEnc
(i.e. pk) doesn’t depend on m, and Gen doesn’t have non-random input at all; thus we can indeed use selective
explainability.

4. Hybrid 3. In this hybrid we choose rNCE (generation randomness for eNCE) and e (used to generate and
obfuscate Encrypt) at random, instead of checking for a trapdoor branch and then computing extracting PRFs
FExtGen and FExtGenEnc , as in programs Gen:Sim and GenEnc:Sim.

Indistinguishability holds by indistinguishability of the source of the output for programs Gen:Sim and GenEnc:Sim
(def. 7 and theorem 5).

5. Hybrid 4. In this hybrid we generate E as obfuscation of Encrypt:Sim, instead of Encrypt.

Indistinguishability holds by indistinguishability of programs with and without a trapdoor (def. 7 and theorem
5).

6. Hybrid 5. In this hybrid upon corruption of parties the adversary is given fake randomness rf,Encrypt (instead of
real rEncrypt ), generated as rf,Encrypt ← PDE.EncfEncrypt (pk,m, c, prg(ρ1)). Here ρ1 is chosen at random.

Indistinguishability holds by selective explainability (def. 7 and theorem 5). Note that the program Encrypt
needs to be generated only upon corruption, when m is already determined; thus we can indeed use selective
explainability.

7. Hybrid 6. In this hybrid we choose encryption randomness u at random, instead of checking for a trapdoor
branch and then computing extracting PRFs FExtEncrypt , as in the program Encrypt:Sim.

Indistinguishability holds by indistinguishability of the source of the output for the program Encrypt:Sim (def.
7 and theorem 5).

8. Hybrid 7. In this hybrid we switch pk, c, sk from real to simulated, relying on security of underlying eNCE.
This is a simulation distribution.

The proof for many executions can be carried out in the same way, by first switching the CRS to simulated (hybrid 1)
and then switching executions from real to simulated one by one (hybrids 2-7 for each).

5 Optimal-rate Non-committing Encryption in the CRS Model.

In this section we show how to construct a fully non-committing encryption with rate 1 + o(1). A crucial part of our
protocol is the underlying seNCE scheme with short ciphertexts, which we will transform into a full NCE in section
5.2.

5.1 Same-public-key Non-committing Encryption with Erasures

In this subsection we present our construction of the same-public-key non-committing encryption with erasures
(seNCE for short) (defined in section 2, definition 3), which is a building block in our construction of a full fledged
NCE.

Inspired by Sahai and Waters [SW14] way of converting a secret key encryption scheme into a public-key encryption,
we set our public key to be an obfuscated encryption algorithm pk = iO(Enc[k]) (see Figure 5). To allow the simulator
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The seNCE Protocol:
Inputs: sender’s message m
• Round 1. The receiver chooses randomness rGen and generates keys (PEnc,PDec) ← Gen(rGen). It sends PEnc

to the sender and erases rGen.
• Round 2. The sender chooses randomness rEnc and generates a ciphertext c← PEnc(m; rEnc). It sends c to the

receiver and erases rEnc.
• The receiver decrypts m′ ← PDec(c) and outputs m′.

Program Gen(r)
Inputs: randomness r which consists of three parts r = (r1, r2, r3)

1. Set k ← r1 and generate PEnc ← iO(Enc[k]; r2) and PDec ← iO(Dec[k]; r3).
2. Output (PEnc,PDec)

Program Enc[k](m, r) // hardcoded PRF key k
Inputs: message m, randomness r
Program Size: this program is padded to be of maximum size of Enc and Enc:1

1. Set c1 ← prg(r) and c2 ← Fk(c1)⊕m.
2. output c = (c1, c2)

Program Dec[k](c) // hardcoded PRF key k
Inputs: ciphertext c consisting of two parts (c1, c2)
Program Size: this program is padded to be of maximum size of Dec and SimDec.

1. Output Fk(c1)⊕ c2.
Figure 5: seNCE protocol

to generate a fake secret key, we apply the same trick to the secret key: we set the secret key to be an obfuscated de-
cryption algorithm with hardcoded PRF key, namely sk = iO(Dec[k]). In other words, the seNCE protocol proceeds
as follows: the receiver generates the obfuscated programs pk, sk and then erases generation randomness, including
the key k. Then it sends pk to the sender; the sender encrypts its message m, erases his encryption randomness, and
sends back the resulting ciphertext c, which the receiver decrypts with sk. We present the detailed description of the
seNCE protocol in Figure 5.

Theorem 2. The scheme given on Fig. 5 is the same-public-key non-committing encryption scheme with erasures,
assuming indistinguishability obfuscation for circuits and one way functions. In addition, it has ciphertexts (the
second message in the protocol) of size poly(λ) + |m|. The protocol is also perfectly correct.

Proof. We show that the scheme from Figure 5. is a seNCE and has short ciphertexts.

Perfect correctness. The underlying secret key encryption scheme is perfectly correct, since Dec(Enc(m, r)) =
Fk(c1)⊕ (Fk(c1)⊕m) = m. Due to perfect correctness of iO, our seNCE protocol is also perfectly correct.

Security with erasures: We need to show that real and simulated pk, c, sk are indistinguishable, even when the
adversary can choose m adaptively after seeing pk.

Now we give the proof for the theorem:

1. Real experiment. In this experiment PEnc and PDec are generated honestly using Gen, c∗ is a ciphertext en-
crypting m∗ with randomness r∗, i.e. c∗1 = prg(r∗), c∗2 = Fk(c∗1)⊕m∗.

2. Hybrid 1. In this experiment c∗1 is generated at random instead of prg(r∗).

Indistinguishability from the previous hybrid follows by security of the PRG.
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Simulation:
1. Generate a simulated public key PEnc as follows: choose a random PRF key k and randomness r, set

PEnc ← iO(Enc[k]; r).
2. Generate a simulated ciphertext c∗ = (c∗1, c

∗
2) for random c1, c2.

3. Generate a simulated receiver’s internal state PDec for message m∗ as follows:
PDec ← iO(SimDec[k, c∗,m∗]).

Program SimDec[k, c∗, m∗](c) // hardcoded PRF key k, dummy ciphertext c∗, challenge message m∗

Inputs: ciphertext c which consists of two parts (c1, c2)
Program Size: this program is padded to be of maximum size of Dec and SimDec.

1. If c1 = c∗1, output c∗2 ⊕ c2 ⊕m∗. Otherwise, output Fk(c1)⊕ c2.
Figure 6: seNCE Simulator.

Program Enc:1[k{c∗1}](m, r) // hardcoded punctured PRF key k{c∗1}
Inputs: message m, randomness r
Program Size: this program is padded to be of maximum size of Enc and Enc:1

(a) Set c1 ← prg(r) and c2 ← Fk{c∗1}(c1)⊕m.
(b) Output c = (c1, c2).

Figure 7: Program Enc:1 used in the proof.

3. Hybrid 2. In this experiment we puncture key k in both programs Enc and Dec, namely, we obfuscate programs
PEnc = iO(Enc:1[k{c∗1}]), PDec = iO(SimDec [k{c∗1}, c∗,m∗]). We claim that functionality of these programs
is the same as that of Enc and Dec:

Indeed, in Enc:1 (defined in Figure 7), c∗1 is random and thus with high probability it is outside the image of
the PRG; therefore no input r results in evaluating F at the punctured point c∗1, and we can puncture safely. In
SimDec (defined in Figure 6), if c1 6= c∗1, then the program behaves exactly like the original one (i.e. computes
Fk(c1)⊕ c2); if c1 = c∗1, then SimDec outputs c∗2 ⊕ c2 ⊕m = (Fk(c∗1)⊕m)⊕ c2 ⊕m = Fk(c∗1)⊕ c2, which
is exactly what Dec outputs when c1 = c∗1. Note that c∗1 is random (and thus independent of m), therefore
pk = Enc:1[k{c∗1}] can be generated before the message m∗ is fixed.

Indistinguishability from the previous hybrid follows by the security of iO.

4. Hybrid 3. In this hybrid we switch c∗2 from Fk(c∗1)⊕m∗ to random. This hybrid relies on the indistinguishability
between punctured value Fk(c∗1) and a truly random value, even given a punctured key k{c∗1}.

Indeed, to reconstruct this hybrid, first choose random c∗1 and get k{c∗1} and val∗ (which is either random or
Fk(c∗1)) from the PPRF challenger. Show obfuscated Enc : 1[k{c∗1}] as a public key. When the adversary fixes
message m∗, set c∗2 = val∗ ⊕m∗ and upon corruption show obfuscated SimDec[k{c∗1}, c∗,m∗]. If val∗ was
truly random, then c∗2 = val∗ ⊕m∗ is distributed uniformly and thus we are in hybrid 3. If val∗ is the actual
PRF value, then c∗2 = Fk(c∗1)⊕m∗ and we are in hybrid 2.

Indistinguishability holds by security of a punctured PRF.

5. Hybrid 4 (Simulation). In this hybrid we unpuncture the key k in both programs and show PEnc ← iO(Enc[k]),
PDec ← iO(SimDec[k, c∗,m∗]).

This is without changing the functionality of the programs: Indeed, in Enc no random input r results in prg(r) =
c∗1, thus we can remove the puncturing. In Dec:1 due to preceding “if” no input c causes evaluation of Fk{c∗1},
thus we can unpuncture it as well.

The indistinguishability from the previous hybrid follows by the security if the iO.

We observe that the last hybrid is indeed the simulation experiment described in Figure 6: c∗ is a simulated ciphertext
since c∗1 is random, c∗2 = Fk(c∗1), PEnc is honestly generated, and PDec is a simulated key SimDec[k, c∗,m∗], which
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decrypts c∗ to m∗. Thus, we have shown that this scheme is non-committing with erasures.

The same public key. Both real generation algorithm Gen and the simulator on randomness rGen = (r1, r2, r3)
produce exactly the same public key pk = iO(Enc[r1]; r2).

Efficiency: Our PRG should be length-doubling to ensure that its image is sparse. Thus |c1| = 2λ, and |c2| = |m|.
Thus the size of our ciphertext is 2λ+ |m|.7

5.2 From seNCE to full NCE

In this subsection we show how to transform any seNCE (for instance, seNCE constructed in Section 5.1) into full
non-committing encryption in the CRS model. We start with a brief overview of the construction:

Construction. Our CRS contains algorithms GenEnc and GenDec which share master secret key MSK. Both
programs can internally generate the parameters for the underlying seNCE scheme using their MSK and then output
an encryption program or a decryption key. More specifically, GenDec takes a random input, produces generation
token t and then uses this token and MSK to generate randomness rNCE for seNCE.Gen. Then the program samples
seNCE keys pk, sk from rNCE. It outputs the token t and the generated decryption key sk for a seNCE scheme. The
receiver keeps sk for itself and sends the token t to the sender.

GenEnc, given a token t, can produce (the same) pair (pk, sk) and outputs an algorithm Encpk, which has pk hard-
wired. This algorithm takes a message m and outputs its encryption c, which the sender sends back to the receiver.
Then receiver decrypts it using sk.

All three programs GenEnc, GenDec, Enc are augmented with sparse computationally extracting PRFs, which are
used to obtain new randomness by hashing down all inputs to the program.

We present our full NCE protocol and its building block functions GenEnc, GenDec, Enc in Figure 8.

Theorem 3. Assuming indistinguishability obfuscation for circuits, one way functions, and seNCE with a ciphertext
size O(poly(λ)) + |m|, the described construction is a constant-rate non-committing public key encryption scheme
in a common reference string model. Assuming perfect correctness of underlying seNCE, our NCE scheme is also
perfectly correct.

6 Proof of security of theorem 2

6.1 Proof overview

Proof. We first show correctness of the scheme. Next we present a simulator and argue that the scheme is secure.
Finally we argue that the scheme is constant-rate.

7In fact, the size of our public key is poly(λ), since so is the size of a key k punctured at c1 and later obfuscated. If we could also simulate
sender internal state, then we could obfuscate generation algorithm Gen, put it into a CRS, and the scheme “send PEnc, send c” would be fully
non-committing and constant rate. However, we don’t know how to make sender state simulatable without making the size of PEnc at least λ|m|,
which already has rate at least λ.
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The NCE Protocol
CRS: obfuscated programs PGenEnc = iO(GenEnc),PGenDec = iO(GenDec)
Inputs: sender’s message m

1. Round 1. The receiver chooses randomness rGenDec and generates (t, sk) ← PGenDec(rGenDec). The receiver
sends t to the sender.

2. Round 2. The sender chooses randomness rGenEnc and generates PEnc ← PGenEnc(t, rGenEnc). Then the sender
chooses randomness rEnc and encrypts c← PEnc(m, rEnc). The sender sends c to the receiver.

3. The receiver decrypts m′ ← seNCE.Decsk(c) and outputs m′

Program GenEnc[MSK, ExtGenEnc](t, rGenEnc)
// hardcoded values: master key MSK, key for sparse computationally extracting PRF ExtGenEnc
Inputs: token t, randomness rGenEnc

1. Set the randomness rNCE ← FMSK(t), run (pk, sk)← seNCE.Gen(rNCE).
2. Set the randomness e← FExtGenEnc(t, rGenEnc), sample ExtEnc, riO,Enc ← e.
3. Generate PEnc ← iO(Enc[pk,ExtEnc]; riO,Enc).
4. Output the program PEnc.

Program Enc[pk, ExtEnc](m, rEnc)
// hardcoded values: seNCE public key pk, key for sparse computationally extracting PRF ExtEnc
Inputs: message m, randomness rEnc

1. Generate encryption randomness u← FExtEnc(m, rEnc).
2. Compute ciphertext c← seNCE.Encpk(m;u).
3. Output c.

Program GenDec[MSK, ExtGenDec](rGenDec)
// hardcoded values: master key MSK , key for sparse extracting PRF ExtGenDec,
Inputs: randomness rGenDec

1. Generate token t← FExtGenDec
(rGenDec).

2. Set the randomness rNCE ← FMSK(t), run (pk, sk)← seNCE.Gen(rNCE).
3. Output (t, sk).

Figure 8: The NCE Protocol. The description of our NCE protocol. We write rEnc, rGenEnc, rGenDec to denote
randomness used in these programs. ExtEnc, ExtGenEnc, and ExtGenDec are keys for sparse computationally extracting
PRF, which allows to “garble” randomness before using it in the program.

Correctness. The presented scheme is perfectly correct, as long as the underlying seNCE is perfectly correct: First,
due to perfect correctness of iO, using obfuscated programs GenEnc, GenDec, Enc is as good as using corresponding
non-obfuscated programs. Next, both the sender and receiver generate public and secret seNCE keys as (pk, sk) ←
seNCE.Gen(FMSK(t)). The sender also generates c, which is an encryption of m under pk, which is decrypted under
sk by receiver. Thus the scheme is as correct as the underlying seNCE scheme is.

Since the protocol for seNCE which we give in section 5.1 has perfect correctness, the overall NCE scheme, when
instantiated with our seNCE protocol from section 5.1, also achieves perfect correctness.

6.1.1 Description of the simulator

In this subsection we first explain which variables the adversary sees and then describe our simulator.

The view of the adversary. The view of the adversary consists of the CRS (programs P∗GenEnc,P
∗
GenDec), as well

as communications and internal state of several protocol instances. Namely, for each protocol instance the adversary
sees the following variables:
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1. The first protocol message t∗, after which the adversary assigns an input m for this protocol instance;

2. The second protocol message c∗;

3. The sender internal state r∗Enc, r
∗
GenEnc;

4. The receiver internal states r∗GenDec.

Other values, such as P∗Enc and sk∗, can be obtained by the adversary by running programs in the CRS: P∗Enc ←
P∗GenEnc(t

∗, r∗GenEnc), (sk∗, t∗)← P∗GenDec(r
∗
GenDec).

Simulation. The simulator sets a simulated CRS to be a description of programs GenEnc:Sim, GenDec:Sim (Fig-
ure 10). The difference from real-world programs is that these simulated programs have a trapdoor branch inside them,
which allows the simulator to produce randomness such that a program outputs a desired output on this randomness.
These programs are trapdoor versions of programs GenEnc:clean, GenDec:clean (Figure 11).

• CRS generation. The simulator generates CRS programs GenEnc, GenDec, including keys f for trapdoor
branch.

Next the simulator responds to requests of the adversary. The adversary can interactively ask to setup a new
execution of the protocol (where the input m can be chosen based on what the adversary has already learn from
other executions), or ask to deliver messages or corrupt parties in protocols which are already being executed.
Below we describe what our simulator does in each case:

• Simulation of the first message. If the receiver is already corrupted, then the simulator generates the first
message by choosing random r∗GenDec and running (t∗, sk∗)← GenDec:Sim(r∗GenDec). Otherwise the simulator
chooses random t∗ as the first message.

• Simulation of the second message. If either the sender or the receiver is already corrupted, then the simulator
learns m and therefore can generate the second message honestly. If neither the sender nor the receiver in this
execution are corrupted by this moment, the simulator runs (pk∗f , c

∗
f )← seNCE.Sim(FMSK(t∗)) and gives c∗f to

the adversary as the second message.

• Simulation of the sender internal state. If either the sender or the receiver had been corrupted before the
second message was sent, then the simulator has generated the second message honestly and can thus show true
sender randomness.

Otherwise it first generates an obfuscation P∗Enc of the program Enc:Sim with simulated pk∗f hardwired inside
(Figure 10). Next it encodes m∗, c∗f into sender encryption randomness, i.e. sets r∗f,Enc ← PDE.EncfEnc(m

∗, c∗f ,
s∗Enc, prg(ρ3)) for random ρ3; so that P ∗Enc on input (m∗, r∗f,Enc) outputs c∗f .

Finally, it encodes P∗Enc into r∗f,GenEnc, i.e. sets the sender’s generation randomness r∗f,GenEnc ←
PDE.EncfGenEnc(t

∗,P∗Enc, s
∗
GenEnc, prg(ρ2)) for random ρ2, so that P∗GenEnc outputs P∗Enc on input (t∗, r∗f,GenEnc).

The pair (r∗f,GenEnc, r
∗
f,Enc) is set to be the sender internal state.

• Simulation of the receiver internal state. If the corruption happens before the first message is sent, then the
simulator has generated the first message honestly and thus can show true receiver internal state.

If corruption happens after the first message, but before the second, then the simulator has shown random t∗ as
the first message. It computes sk∗ ← seNCE.Gen (FMSK(t∗)). It encodes (t∗, sk∗) into receiver randomness,
i.e. sets r∗f,GenDec ← PDE.EncfGenDec

(t∗, sk∗, s∗GenDec, prg(ρ1)) for random ρ1, so that P ∗GenDec on input r∗f,GenDec

outputs (t∗, sk∗).

If corruption happens after the second message, then the simulator runs seNCE simulator and gets fake secret
key sk∗f which decrypts dummy c∗f to m∗, chosen by the adversary. Next it encodes (t∗, sk∗f ) into receiver
randomness, i.e. sets r∗f,GenDec ← PDE.EncfGenDec

(t∗, sk∗f , s
∗
GenDec, prg(ρ1)) for random ρ1, so that P ∗GenDec on

input r∗f,GenDec outputs (t∗, sk∗f ).
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Note that simulation of each protocol instance is independent of simulation of other protocol instances (except for
the fact that they share the same CRS). Therefore in order to keep the description of the simulator simple enough, in
Figure 9 we present a detailed description of the simulator for a single execution only; it can be trivially generalized
to a multiple-execution case according to what is written above. In addition, the simulator is presented for a difficult
case, i.e. when nobody is corrupted by the time the ciphertext is sent, and therefore the simulator has to present a
dummy c and later open it to a correct m.

Next we outline the intuition for the security proof and after that provide the detailed description of hybrids.

Simulation

1. Generate a CRS:
(a) Sample keys MSK, fGenEnc,ExtGenEnc, fGenDec,ExtGenDec. Also choose random s∗GenEnc, s

∗
GenDec, s

∗
Enc and

set S∗GenEnc ← prg(s∗GenEnc), S∗GenDec ← prg(s∗GenDec), S∗Enc ← prg(s∗Enc).
(b) Generate obfuscations PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, S

∗
GenEnc]),

PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, S
∗
GenDec]).

(c) Set the CRS to be (PGenEnc,PGenDec). Publish the CRS.
2. Generate communications in the protocol:

(a) Choose a random t∗ and generate r∗NCE ← FMSK(t∗).
(b) Run the seNCE simulator (c∗f , st) ← seNCE.Sim(r∗NCE) to generate a simulated ciphertext and state for a

future opening.
(c) Show (t∗, c∗f ) as communications in the protocol.

3. Generate parties’ internal state consistent with message m∗ and communications:
(a) Run the seNCE simulator to create a simulated secret key: sk∗f ← seNCE.Sim(st,m∗)
(b) Set the receiver’s randomness r∗f,GenDec ← PDE.EncfGenDec

(t∗, sk∗f , s
∗
GenDec, prg(ρ1)) for random ρ1.

(c) Sample keys fEnc,ExtEnc and generate P∗Enc ← iO(Enc:Sim[fEnc,ExtEnc, S
∗
Enc]);

(d) Set the sender’s generation randomness r∗f,GenEnc ← PDE.EncfGenEnc(t
∗,P∗Enc, s

∗
GenEnc, prg(ρ2)) for random

ρ2.
(e) Set the sender’s encryption randomness r∗f,Enc ← PDE.EncfEnc(m

∗, c∗f , s
∗
Enc, prg(ρ3)) for random ρ3.

(f) Show (r∗f,GenEnc, r
∗
f,Enc) as the sender’s internal state and r∗f,GenDec as receiver’s internal state.

Figure 9: Simulation.

6.1.2 Overview of the analysis of the simulator

Before presenting hybrids, let us give a roadmap of the proof: Starting from the real execution, we first add trapdoor
branches to the programs in the CRS, in order to allow creating fake randomness which explains a given output. Next
we change what the simulator shows as internal states of the parties: instead of showing their real randomness, the
simulator shows fake randomness (which explains outputs of programs from a real execution, i.e. this randomness
explains honestly generated sk∗, c∗, and P ∗Enc). Our next step is to puncture the key MSK{t∗} in both CRS programs.
This allows us to switch seNCE generation randomness r∗NCE from FMSK(t∗) to a random value; this means that
seNCE parameters (pk∗, sk∗) are now freshly generated and do not depend on the rest of an experiment anymore.
Therefore we can use security of seNCE and switch seNCE values (pk∗, c∗, sk∗) from real to simulated (in particular,
the simulator hardwires these simulated c∗f , sk

∗
f into fake randomness, instead of hardwiring real-execution c∗, sk∗).

Next we undo previous hybrids: we set r∗NCE as the result of FMSK(t∗), and then unpuncture MSK{t∗} in both CRS
programs.

We now briefly describe each hybrid. The full description with detailed security reductions is given in section 6.2.

• Hybrid 0. We start with a real execution of the protocol.

• Hybrids 1a-1b. We change CRS programs to be obfuscations of GenEnc:Sim and GenDec:Sim, instead of
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Programs used in a simulation.

Program GenEnc:Sim[MSK, fGenEnc, ExtGenEnc, SGenEnc](t, rGenEnc)
// hardcoded values: master key MSK, faking key fGenEnc, key for sparse extracting PRF ExtGenEnc, prg image SGenEnc

Inputs: token t, randomness rGenEnc
1. Trapdoor branch:

(a) Decode out← PDE.DecfGenEnc(rGenEnc); if out = ⊥, then execute the normal branch.
(b) Else parse out as (t′,P′, s′, ρ̃). If t′ = t and prg(s′) = SGenEnc, then output P′ and halt. Otherwise, execute

the normal branch.
2. Normal branch:

(a) Set the randomness rNCE ← FMSK(t), run (pk, sk)← seNCE.Gen(rNCE).
(b) Set the randomness e← FExtGenEnc(t, rGenEnc), sample ExtEnc, riO,Enc ← e.
(c) Generate PEnc ← iO(Enc[pk,ExtEnc]; riO,Enc).
(d) Output the program PEnc.

Program Enc:Sim[pk, fEnc, ExtEnc, SEnc](m, rEnc)
// hardcoded values: seNCE public key pk, sender faking key fEnc, key for sparse extracting PRF ExtEnc, prg image
SEnc

Inputs: message m, randomness rEnc
1. Trapdoor branch:

(a) Decrypt out← PDE.DecfEnc(rEnc); if out = ⊥, then execute the normal branch.
(b) Else parse out as (m′, c′, s′, ρ̃). Ifm′ = m and prg(s′) = SEnc, then output c′ and halt. Otherwise, execute

the normal branch.
2. Normal branch:

(a) Generate encryption randomness u← FExtEnc(m, rEnc).
(b) Compute ciphertext c← seNCE.Encpk(m;u).
(c) Output c.

Program GenDec:Sim[MSK, fGenDec, ExtGenDec, SGenDec](rGenDec)
// hardcoded values: master key MSK , receiver faking key fGenDec, key for sparse extracting PRF ExtGenDec, prg image
SGenDec

Inputs: randomness rGenDec

1. Trapdoor branch:
(a) Decrypt out← PDE.DecfGenDec

(rGenDec); if out = ⊥, then execute normal branch.
(b) Else parse out as (t′, sk′, s′, ρ̃). If prg(s′) = SGenDec then output (t′, sk′) and halt; otherwise execute the

normal branch.
2. Normal branch:

(a) Generate token t← FExtGenDec
(rGenDec).

(b) Set the randomness rNCE ← FMSK(t), run (pk, sk)← seNCE.Gen(rNCE).
(c) Output (t, sk).

Figure 10: Programs used in a simulation. Note that GenEnc:Sim still produces normal program Enc, not
Enc:Sim.
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GenEnc and GenDec; in other words, we add trapdoor branch to CRS programs. Security holds by indistin-
guishability of programs with and without trapdoor branch (theorem 5).

Next for every execution i, in which the receiver is corrupted between the first and the second messages
are sent, we run hybrids 2i − 3i.

– Hybrid 2i. Instead of showing the real r∗GenDec, the simulator shows fake r∗f,GenDec, which encodes
t∗, sk∗. These experiments are indistinguishable because of the indistinguishability of explanation: in-
deed, GenDec on both inputs r∗GenDec and r∗f,GenDec outputs t∗, sk∗, therefore true randomness r∗GenDec

is indistinguishable from randomness r∗f,GenDec, which explains the output t∗, sk∗ on empty non-random
input.

Note that since there is no non-random input to our program PGenDec, it is enough to use the selective
indistinguishability of explanation.

– Hybrid 3i. We choose t∗ at random and then compute sk∗ as (pk∗, sk∗) ← seNCE.Gen(FMSK(t∗)). In
other words, when generating t∗ (and therefore sk∗) we skip trapdoor branch and applying extracting PRF
FExt in GenDec. Indistinguishability holds by indistinguishability of a source of the output for programs
GenDec:Sim, GenDec:clean and output (t∗, sk∗).

This is the simulation for the case when the receiver is corrupted between the first and the second message.

For every execution i, in which both corruptions happen after the second message is sent, we run hybrids
2i − 5hi.

• Hybrid 2i. Instead of showing the real r∗GenEnc, the simulator shows fake r∗f,GenEnc, which encodes t∗,P∗Enc.
These experiments are indistinguishable because of the indistinguishability of explanation (theorem 5): indeed,
GenEnc on both inputs t∗, r∗GenEnc and t∗, r∗f,GenEnc outputs P ∗Enc, and by the theorem true randomness r∗GenEnc is
indistinguishable from fake randomness r∗f,GenEnc which explains P ∗Enc on input t∗. Note that non-random input
to our program PGenEnc is t∗, obtained as t∗ ← FExtGenDec

(r∗GenDec) for random r∗GenDec, i.e., it can be generated
before a CRS is shown to the adversary. Thus it is enough to use the selective indistinguishability of explanation
(theorem 5).

• Hybrid 3i. In the next step instead of showing the real r∗GenDec, the simulator shows fake r∗f,GenDec, which
encodes t∗, sk∗. These experiments are indistinguishable because of the indistinguishability of explanation:
indeed, GenDec on both inputs r∗GenDec and r∗f,GenDec outputs t∗, sk∗, therefore true randomness r∗GenDec is indis-
tinguishable from randomness r∗f,GenDec, which explains the output t∗, sk∗ on empty non-random input.

Note that since there is no non-random input to our program PGenDec, it is enough to use the selective indistin-
guishability of explanation.

• Step 4i. Next global step is to switch random r∗Enc to fake r∗f,Enc which encodes (m∗, c∗). We do this in several
steps:

– Hybrid 4ai. We obtain t∗, sk∗ by running GenDec:clean on r∗GenDec instead of running GenDec:Sim. In
other words, when generating t∗ (and therefore sk∗) we skip trapdoor branch in GenDec; in addition, we
choose t∗ at random instead of computing FExtGenDec on r∗GenDec. Indistinguishability holds by indistin-
guishability of a source of the output for programs GenDec:Sim, GenDec:clean and output (t∗, sk∗).

– Hybrid 4bi. We generate P∗Enc by running GenEnc:clean on t∗ and random e∗, instead of running
GenEnc:Sim(t∗, r∗GenEnc). In other words, when generating P ∗Enc we skip trapdoor branch in GenEnc and
use random e∗, instead of choosing e∗ as a result of FExtGenEnc(t

∗, r∗GenEnc) (recall that e∗ is randomness used
to create key ExtEnc, put it on top of seNCE.Encpk() and obfuscate the whole program P∗Enc = iO(Enc)).
In other words, we take generated pk∗, choose extractor keys and obfuscation randomness at random and
generate iO(Enc). Later in the experiment we encode P∗Enc into randomness r∗f,GenEnc. Security holds by
indistinguishability of source of the output (theorem 5) for program GenEnc.
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– Hybrid 4ci. We generate P∗Enc as an obfuscation of program Enc:Sim instead of Enc. In other words,
we add trapdoor branch to P∗Enc; keys for these trapdoor branch are chosen at random. Security holds by
indistinguishability of programs with and without trapdoor branch for program Enc (theorem 5).

– Hybrid 4di. In this step we finally change r∗Enc to r∗f,Enc as follows: we first create a CRS and give it
to the adversary. Then we generate random t∗ and show t∗ to the adversary as the first message in the
protocol. Next the adversary fixes an input m∗. Then we generate pk∗, sk∗ as seNCE.Gen(FMSK(t∗))
and give Enc.clean() = seNCE.Encpk∗() to the explainability challenger as the underlying program. The
challenger chooses random e∗, samples keys ExtEnc, fEnc, SEnc and gives us either (r∗Enc,m

∗, c∗,P∗Enc)
or (r∗f,Enc,m

∗, c∗,P∗Enc), where r∗Enc is random, P∗Enc = iO(Enc.Sim), c∗ = P∗Enc, and r∗f,Enc encodes
m∗, c∗, sEnc. We show the given c∗ as the second message in the protocol. Once asked to open the internal
state, we present the given r∗Enc or r∗f,Enc, generate r∗GenEnc explaining the given P∗Enc, and generate r∗GenDec

explaining (t∗, sk∗).

We can rely on the selective indistinguishability of explanation for program Enc:Sim (5) since at the
moment when we need to see the challenge in explanation game (i.e., when we need to show c∗ to the
adversary), P∗Enc’s input m∗ is already fixed.

• Step 5i. Our next global step is to change the underlying seNCE values to simulated. We proceed in several
steps:

– Hybrids 5ai-5bi. We puncture MSK at t∗. In GenDec we can puncture immediately, since due to the
sparseness of FExtGenDec

no input r results in t∗. In GenEnc we hardwire pk∗ and use it whenever t = t∗;
otherwise, we use the punctured key MSK{t∗} to generate rNCE and then sample pk.

– Hybrid 5ci. Once MSK{t∗} is punctured, we can choose the generation randomness for underlying seNCE
scheme r∗NCE at random.

– Hybrids 5di. We generate c∗ as a result of running Enc.clean on m∗ and random u∗ instead of running
P∗Enc(m

∗, r∗Enc). In other words, when generating c∗ we skip trapdoor branch and use fresh randomness
instead of using PRF FExtEnc . We rely on indistinguishability of the source of the output for programs
Enc:Sim, Enc:clean and output c∗.

– Hybrid 5ei. Next we switch the seNCE values from real to simulated: namely, c∗f is now simulated and
sk∗f is now a simulated key decrypting c∗f to m∗. We rely on the security of the underlying seNCE. Here
we crucially use the fact that in the underlying NCE scheme pk∗ is shown before the adversary chooses a
message, since we hardwire this pk∗ into the CRS (in GenEnc).

– Hybrid 5fi. We switch back r∗NCE to be the result of FMSK(t∗).

– Hybrid 5gi-5hi. We unpuncture MSK{t∗} in GenEnc and GenDec and remove the hardwired pk∗ from
GenEnc. To remove hardwired pk∗, we crucially use the fact that pk∗, although simulated, is the same as
real pk∗, generated from randomness FMSK(t∗), which is guaranteed by the same-public-key property of
seNCE.

6.1.3 Sizes in our construction

Our construction has a lot of size dependencies. We present a size diagram on Figure 12. There all sizes are grouped
in “complexity classes”. Here we outline several main dependencies:

• if a fake randomness has values encoded, it should be longer than these values, but not much longer. Namely,
if underlying encoded message has size l, then the size of the plaintext for PDE (which consists of encoded
message, secret s and prg(ρ)) is l + 3λ, and the size of PDE ciphertext should be at least 4 times bigger (the
latter is because explainability compiler uses statistically injective PRF). Therefore randomness and encoded
value are in the same “complexity class”.
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Programs used in hybrids

Program GenEnc:clean[MSK](t; e)
// hardcoded values: master key MSK
Inputs: token t, randomness e

1. Set the randomness rNCE ← FMSK(t), run (pk, sk)← seNCE.Gen(rNCE).
2. Sample ExtEnc, riO,Enc ← e.
3. Generate PEnc ← iO(Enc[pk,ExtEnc]; riO,Enc).
4. Output the program PEnc.

Program Enc:clean[pk](m; u)
// hardcoded values: seNCE public key pk
Inputs: message m, randomness u

1. Compute ciphertext c← seNCE.Encpk(m;u).
2. Output c.

Program GenDec:clean[MSK](t)
// hardcoded values: master key MSK
Inputs: randomness t

1. Set the randomness rNCE ← FMSK(t), run (pk, sk)← seNCE.Gen(rNCE).
2. Output (t, sk).
Figure 11: Programs used in hybrids. Note that GenEnc:clean still produces normal Enc, not Enc:clean.

• if a key is punctured on some input, its size is at least λ|input|.

• if randomness is used as input for sparse extracting PRF, its length should be at least O(λ) (since in this case we
can construct such a PRF by theorem 4).

• size of an obfuscated program is significantly larger than the size of original program (polynomial in original
size s and security parameter λ).

Note that all dependencies in the graph are due to the “hardwired values”, i.e. due to the fact that some values should be
hardcoded into programs, or messages should be encrypted into ciphertexts. In particular, the same length restrictions
remain even when succinct iO for TM or RAM ([CHJV15, CH15, KLW15]) is used.

Note that the dependency graph is acyclic, and variables which we actually send over the channel - t and c - are in the
very top of the graph. This means that we can set length of t and m to be a security parameter, and then set lengths of
other variables as large as needed by following edges in dependency graph.

6.2 Full proof of security in Theorem 3

Theorem 2. Assuming indistinguishability obfuscation for circuits, one way functions, and same public key NCE with
erasures, such that ciphertext has the size poly(λ) + |m|, the scheme given in Fig. 8 is a constant-rate non-committing
public key encryption scheme in a common reference string model.

Proof. Assume the adversary decides to run N executions in total. In the proof we first switch programs in the CRS
to their trapdoor versions and then start switching executions from real to simulated one by one.

In each hybrid we only describe variables specific to a target execution being changed, but we also comment on why
other executions are still generated properly.

We consider the following sequence of hybrids that transforms the adversary’s view in the real execution to the simu-
lated execution and we argue that the view in each two consecutive hybrids are indistinguishable.
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Figure 12: Size dependency graph between different variables, when underlying seNCE is instantiated with our
construction from section 5.1. Notation: iO(s) for size s means the resulting size of an obfuscated program of the
initial approximate size s. Dependencies due to obfuscation are drawn as fat blue arrows. Green boxes mark CRS,
yellow boxes mark randomness used for extracting PRF, and blue denotes variables which are sent in the protocol.
Arrows for t are shown dashed for easier tracking. Red dashed rectangles with complexity in the top right corner
denote a complexity group.
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Real execution.

1. Generate a CRS:

(a) Sample MSK;

(b) Sample a key ExtGenEnc and obfuscate PGenEnc ← iO(GenEnc[MSK,ExtGenEnc]),

(c) Sample a key ExtGenDec and obfuscate PGenDec ← iO(GenDec[MSK,ExtGenDec]);

(d) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) choose random r∗GenDec and run (t∗, sk∗)← PGenDec(r
∗
GenDec)

(b) choose random r∗GenEnc, r
∗
Enc and run P∗Enc ← PGenEnc(t

∗, r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc)

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) show (r∗GenEnc, r
∗
Enc) as sender internal state and r∗GenDec as receiver internal state.

This hybrid corresponds to the real world. All executions are generated honestly, according to the protocol.

Hybrid 1a - switch GenDec in the CRS to its trapdoor version.

1. Generate a CRS:

(a) Sample MSK;

(b) Sample a key ExtGenEnc and obfuscate PGenEnc ← iO(GenEnc[MSK,ExtGenEnc]),

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]) ;

(d) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) choose random r∗GenEnc, r
∗
Enc and run P∗Enc ← PGenEnc(t

∗, r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc)

(b) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) show (r∗GenEnc, r
∗
Enc) as sender internal state and r∗GenDec as receiver internal state.

In this hybrid we add a trapdoor branch to the program GenDec. In other words, instead of generating PGenDec as
iO(GenDec[MSK,ExtGenDec]), we generate it as
iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]), where keys are chosen at random and SGenDec = prg(sGenDec)
for random sGenDec.

Indistinguishability between this and previous hybrid holds by indistinguishability of programs with and without a
trapdoor for Alg = GenDec:clean, Alg : r = GenDec, Alg : td = GenDec:Sim. Let us show a reduction. We gener-
ate MSK and set Alg = GenDec:clean[MSK] as an algorithm for the game. The challenger runs the compiler and out-
puts either Alg : td = iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]) or Alg : r = iO(GenDec[MSK,ExtGenDec]).
We set a given program to be P∗GenDec and then run the rest of the hybrid.

Here all executions are generated honestly according to the protocol; the only difference is that instead of using
program GenDec, GenDec:Sim is used to generate (t, sk).
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Hybrid 1b - switch GenEnc in the CRS to its trapdoor version.

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);

(d) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) choose random r∗GenEnc, r
∗
Enc and run P∗Enc ← PGenEnc(t

∗, r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc)

(b) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) show (r∗GenEnc, r
∗
Enc) as sender internal state and r∗GenDec as receiver internal state.

In this hybrid we add a trapdoor branch to program GenEnc. In other words, instead of generating PGenEnc as
iO(GenEnc[MSK,ExtGenEnc]), we generate it as iO(GenEnc:Sim [MSK, fGenEnc,ExtGenEnc, SGenEnc]), where keys
are chosen at random and SGenEnc = prg(sGenEnc) for random sGenEnc.

Indistinguishability between this and previous hybrid holds by indistinguishability of programs with and without a
trapdoor for Alg = GenEnc:clean, Alg : r = GenEnc, Alg : td = GenEnc:Sim. Let us show a reduction. We gener-
ate MSK and set Alg = GenEnc:clean[MSK] as an algorithm for the game. The challenger runs the compiler and out-
puts either Alg : td = iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]) or Alg : r = iO(GenEnc[MSK,ExtGenEnc]).
We set a given program to be P∗GenEnc and then run the rest of the hybrid.

Here all executions are generated honestly according to the protocol; the only difference is that instead of using
program GenEnc and GenDec, GenEnc:Sim and GenDec:Sim are used to generate PEnc and (t∗, sk∗), respectively.

Next we run the sequence hybrids Hyb2l - Hyb5gl for all executions l = 1, . . . , N .

Hybrid 2l - fake sender generation randomness.

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);

(c) choose random r∗GenDec and run (t∗, sk∗)← PGenDec(r
∗
GenDec);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) choose random r∗GenEnc, r
∗
Enc and run P∗Enc ← PGenEnc(t

∗, r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc)

(b) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:
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(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗,P∗Enc; ρ) for some random ρ

(b) show (r∗f,GenEnc, r
∗
Enc) as sender internal state and r∗GenDec as receiver internal state.

In this hybrid we generate t∗, sk∗ before we publish a CRS (they depend on PGenDec and random r∗GenDec, so we can
do this). We also show fake r∗f,GenEnc ← PExplainGenEnc(t

∗,P∗Enc; ρ) instead of showing real random r∗GenEnc.

Indistinguishability of this and previous hybrid holds by selective indistinguishability of explanations of algorithm
Alg : td = PGenEnc. Let’s show a reduction. First we sample keys MSK, fGenDec,ExtGenDec, sGenDec and create obfus-
cated PGenDec. We choose random r∗GenDec and generate (t∗, sk∗) ← PGenDec(r

∗
GenDec). We fix t∗ as a selective input

for indistinguishability of explanations game. We set an algorithm for the game to be Alg = GenEnc:clean[MSK].

GM runs the compiler and obtains programs Alg : r,Alg : td,Explain. Note that Alg : td = iO(GenEnc:Sim[MSK,
fGenEnc,ExtGenEnc, SGenEnc]). The challenger chooses random r∗GenEnc, runs P∗Enc ← Alg : td(t∗, r∗GenEnc) on se-
lective input t∗. Next it sets fake randomness r∗f,GenEnc ← Explain(t∗,P∗Enc; ρ) for some random ρ. It outputs
Alg : td,Explain,P∗Enc and either r∗GenEnc or r∗f,GenEnc.

We set the CRS to be PGenDec (generated by us) and Alg : td from the challenge. We show this CRS to the adversary.

Next we show to the adversary the first message t∗. After it chooses input m∗, we choose random r∗Enc and run
challenge P∗Enc on (m∗, r∗Enc). Then we show c∗ as the second message in the protocol.

To show parties’ internal state, we output our own r∗Enc, output challenge generation randomness (which is either
r∗GenEnc or r∗f,GenEnc), and output our own r∗GenDec.

Generating other executions. In simulated executions we generate fake rjf,GenEnc using challenge program Explain.
Real executions are not changed.

Hybrid 3l - fake receiver generation randomness.

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(c) choose random r∗GenDec and run (t∗, sk∗)← PGenDec(r
∗
GenDec);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) choose random r∗GenEnc, r
∗
Enc and run P∗Enc ← PGenEnc(t

∗, r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc)

(b) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) show (r∗f,GenEnc, r
∗
Enc) as sender internal state and r∗f,GenDec as receiver internal state.

29



In this hybrid we show fake r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) instead of showing real random r∗GenDec.

Indistinguishability of this and previous hybrid holds by selective indistinguishability of explanations of algorithm
Alg : td = PGenDec. Let’s show a reduction. First we sample keys MSK and fix an empty input for selective indistin-
guishability of explanations game. We set an algorithm for the game to be Alg = GenDec:clean[MSK].

GM runs the compiler and obtains programs Alg : r,Alg : td,Explain. Note that Alg : td = iO(GenDec:Sim[MSK,
fGenDec,ExtGenDec, SGenDec]). The challenger chooses random r∗GenDec, runs (t∗, sk∗) ← Alg : td(r∗GenDec). Next it
sets fake randomness r∗f,GenDec ← Explain(t∗, sk∗; ρ) for some random ρ. It outputs Alg : td,Explain, (t∗, sk∗) and
either r∗GenDec or r∗f,GenDec.

Next we choose necessary keys for GenEnc:Sim and set the CRS to be PGenEnc (generated by us) and Alg : td from
the challenge. We show this CRS to the adversary.

Next we show to the adversary the first message t∗ from the challenge output. After it chooses input m∗, we choose
random r∗GenEnc and r∗Enc and run P∗Enc ← PGenEnc(t

∗; r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc). Then we show c∗ as the second

message in the protocol.

To show parties’ internal state, we output our own r∗Enc, output challenge generation randomness (which is either
r∗GenDec or r∗f,GenDec), and output our own r∗f,GenEnc ← PExplainGenEnc(t

∗, P ∗Enc; ρ1).

Generating other executions. In simulated executions we generate fake rjf,GenDec using challenge program Explain.
Real executions are not changed.

Hybrid 4al - token t∗ is generated at random

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(c) choose random t∗ , set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) choose random r∗GenEnc, r
∗
Enc and run P∗Enc ← PGenEnc(t

∗, r∗GenEnc), c∗ ← P∗Enc(m
∗, r∗Enc)

(b) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) show (r∗f,GenEnc, r
∗
Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we generate (t∗, sk∗) by running GenDec:clean(t∗) instead of running GenDec:Sim(r∗GenDec).

Indistinguishability holds because of indistinguishability of the source of the output for the program GenDec. Let us
show the reduction:
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We choose MSK and set Alg = GenDec:clean[MSK] as an algorithm and and an empty input for indistinguishability
of the source of the output game. The challenger runs the compiler to obtain programs Alg : r,Alg : td,Explain.
Note that Alg : td = iO(GenDec:Sim). Then the challenger chooses random r∗GenDec and random t∗ and generates
(t∗, sk∗) either as Alg : td(r∗GenDec) or Alg(t∗) (note that Alg = GenDec:clean[MSK] indeed outputs its input t). The
challenger gives us (Alg : td,Explain, (t∗, sk∗)).

We choose the keys for GenEnc:Sim and create PGenEnc and PExplainGenEnc. We set the CRS to be Alg : td and
PGenEnc.

We show t∗ as the first message in the protocol. When the adversary fixes an input m∗, we choose random r∗GenEnc,
r∗Enc and generate P∗Enc ← PGenEnc(t

∗; r∗GenEnc) using challenge t∗. Next we set c∗ ← P ∗Enc(m
∗; r∗Enc).

Later we generate r∗f,GenDec using challenge Explain(t∗, sk∗; ρ2) for random ρ2 and generate r∗f,GenEnc using PExplainGenEnc.

Generating other executions. Other executions are generated in the same way as in the previous hybrid. Changing
how t in execution l was generated doesn’t affect other executions.

Hybrid 4bl - keys for Enc are generated at random

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(c) choose random t∗, set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc ← GenEnc:clean[MSK](t∗; e∗) for random e∗:

i. choose random e∗, sample Ext∗Enc, r
∗
iO,Enc ← e∗

ii. create P∗Enc ← iO(Enc[pk∗,Ext∗Enc]; r
∗
iO,Enc)

(b) choose random r∗Enc and generate c∗ ← P∗Enc(m
∗; r∗Enc):

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) show (r∗f,GenEnc, r
∗
Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we generate P ∗Enc by running GenEnc:clean instead of GenEnc.

Indistinguishability holds because of indistinguishability of the source of output for program GenEnc. Let us show the
reduction:

We choose MSK, generate the keys for GenDec and obfuscate it to get PGenDec,PExplainGenDec. Next we choose random
t∗, set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);
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We set Alg = GenEnc:clean[MSK] as an algorithm and t∗ as an input for indistinguishability of the source of the
output game. The challenger runs the compiler to obtain programs Alg : r,Alg : td,Explain. Note that Alg : td =
iO(GenEnc:Sim). Then the challenger chooses random r∗GenEnc and random e∗ and generates P∗Enc either as Alg : td(t∗; r∗GenEnc)
or Alg(t∗; e∗). The challenger gives us (Alg : td,Explain,P∗Enc).

We set the CRS to be Alg : td and P∗GenDec.

We show t∗ as the first message in the protocol. When the adversary fixes an input m∗, we choose r∗Enc and generate
c∗ ← P ∗Enc(m

∗; r∗Enc) using the challenge program P∗Enc.

Later we generate r∗f,GenDec using PExplainGenDec and generate r∗f,GenEnc as challenge Explain(t∗, P ∗Enc; ρ2).

Generating other executions. Other executions are generated in the same way as in the previous hybrid. Changing
how keys for PEnc in execution l were generated doesn’t affect other executions.

Hybrid 4cl - P∗Enc is an obfuscation of Enc:Sim

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(c) choose random t∗ and set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) choose random r∗Enc and generate c∗ ← P∗Enc(m
∗; r∗Enc):

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) show (r∗f,GenEnc, r
∗
Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we generate P∗Enc as obfuscation of Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc] instead of Enc[pk∗,Ext∗Enc].

Indistinguishability holds because of indistinguishability of programs with and without a trapdoor for program Enc.
Let us show a reduction.

We first generate the CRS programs (together with corresponding Explain programs), choose random t∗ and set
r∗NCE ← FMSK(t∗), (pk∗, sk∗) ← seNCE.Gen(r∗NCE). We show the CRS, as well as the first message t∗, to the
adversary.
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We set Alg = Enc:clean[pk∗] as a program for indistinguishability game. The challenger runs its compiler to obtain
Alg : r,Alg : td,Explain. It gives us a challenge program P which is either Alg : r or Alg : td.

We choose random r∗Enc and generate c∗ ← P(m∗; r∗Enc) using challenge program P. We show c∗ to the adversary.

Finally we complete the hybrid by generating fake randomness r∗f,GenEnc ← PExplainGenEnc(t
∗,P; ρ1), encoding chal-

lenge P, and r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2). We show r∗f,GenEnc, r

∗
f,GenDec, and r∗Enc to the adversary.

Generating other executions. Other executions are generated in the same way as in the previous hybrid. Changing
how PEnc in execution l was generated doesn’t affect other executions.

Hybrid 4dl - fake encryption randomness

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(c) choose random t∗ and set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) choose random r∗Enc and generate c∗ ← P∗Enc(m
∗; r∗Enc):

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) set r∗f,Enc ← PExplainEnc(m
∗, c∗; ρ3) for random ρ3;

(d) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we show fake r∗f,Enc ← PExplainEnc(m
∗, c∗; ρ3) instead of showing real random r∗Enc.

Indistinguishability of this and previous hybrid holds by selective indistinguishability of explanations of algorithm
Alg : td = Enc:Sim. Let’s show a reduction. First we generate a CRS, choose random t∗ and compute (pk∗, sk∗).
We show the CRS and the first message, t∗, to the adversary. The adversary chooses m∗.

We fix input m∗ and program Alg = Enc:clean[pk∗] for selective indistinguishability of explanations game.

GM runs the compiler and obtains programs Alg : r,Alg : td,Explain. Note that Alg : td = iO(Enc:Sim[pk∗, fEnc,
ExtEnc, SEnc]). The challenger chooses random r∗Enc, runs c∗ ← Alg : td(r∗Enc). Next it sets fake randomness r∗f,Enc ←
Explain(m∗, c∗; ρ) for some random ρ. It outputs Alg : td,Explain, c∗ and either r∗Enc or r∗f,Enc.
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We show challenge c∗ as the second message in the protocol to the adversary.

To show parties’ internal state, we output r∗f,GenEnc ← PExplainGenEnc(t
∗,Alg : td; ρ1), output

r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2), and output challenge randomness (r∗Enc or r∗f,Enc),

Generating other executions. Other executions are generated in the same way as in the previous hybrid. Changing
the generation of r∗Enc in execution l was generated doesn’t affect other executions.

Hybrid 5al - puncture MSK{t∗} in GenEnc:Sim

1. Generate a CRS:

(a) Sample MSK;

(b) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(c) choose random t∗ and set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) choose random r∗Enc and generate c∗ ← P∗Enc(m
∗; r∗Enc):

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) set r∗f,Enc ← PExplainEnc(m
∗, c∗; ρ3) for random ρ3;

(d) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we use a punctured key MSK{t∗} in PGenEnc, i.e. PGenEnc ←
iO(GenEnc:Sim1[MSK{t∗}, fGenEnc, ExtGenEnc, S∗GenEnc, t∗, pk∗]) (Fig. 13), with a punctured MSK{t∗} inside and
hardwired t∗ and pk∗. In GenEnc:Sim1 normal branch first checks if t = t∗; in this case it uses hardwired public
key pk∗ to generate program PEnc. If t 6= t∗, then it proceeds as before, computing rNCE ← FMSK{t∗}(t), pk, sk ←
NCE.Gen(rNCE), and using this pk to generate PEnc. Indistinguishability of this and previous hybrid holds by iO:

Note that we didn’t change a trapdoor branch, thus the set of inputs on which the trapdoor branch is executed (and
therefore also the set on which the normal branch is executed) is the same for both programs. Consider three cases:

1. If input (t, r) results in executing trapdoor branch, then both programs output the same answer, since their
trapdoor branch code is the same.

2. If input (t, r) results in executing normal branch, and t 6= t∗, then both programs execute the same steps to
compute PEnc, with the only difference that GenEnc:Sim uses full key MSK and GenEnc:Sim1 uses punctured
MSK{t∗}. Since we assumed that t 6= t∗, the output is the same in both programs.
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3. If input (t, r) results in executing normal branch, and t = t∗, then GenEnc:Sim computes r∗NCE ← FMSK(t∗),
sets pk∗, sk∗ ← seNCE.Gen(r∗NCE), and uses pk∗ to generate PEnc; GenEnc:Sim1 on input t = t∗ directly sets
pk∗ to be used in generating PEnc. Therefore they are using the same public key pk∗, and other variables needed
to generate PEnc (keys fEnc,ExtEnc, SEnc, obfuscation randomness riO,Enc) are all sampled from the same e =
FExtGenEnc(t

∗, r); thus they generate exactly the same obfuscated program PEnc = iO(Enc[pk∗, fEnc,ExtEnc]; riO,Enc]).

Generating other executions. The difference is that GenEnc:Sim1 is now used to generate PEnc in all other execu-
tions. In simulated executions t is chosen at random and thus with overwhelming probability t 6= t∗; this means that
other simulated executions are still generated normally, as if original program GenEnc:Sim was used.

Now consider the first message in a real execution t = GenDec:Sim(rGenDec). Since rGenDec is random, with over-
whelming probability normal branch is executed and thus t = FExtGenDec

(rGenDec). But random t∗ is outside the image
of FExtGenDec

due to sparseness of this PRF, thus t∗ 6= t, and therefore with overwhelming probability over the choice
of t∗ other executions are not affected by the change.

Hybrid 5bl - puncture MSK{t∗} in GenDec:Sim

1. Generate a CRS:

(a) Sample MSK;

(b) choose random t∗ and set r∗NCE ← FMSK(t∗), (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim1[MSK{t∗}, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) choose random r∗Enc and generate c∗ ← P∗Enc(m
∗; r∗Enc):

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) set r∗f,Enc ← PExplainEnc(m
∗, c∗; ρ3) for random ρ3;

(d) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we puncture MSK{t∗} in program PGenDec , i.e. PGenDec ←
iO(GenDec:Sim1[MSK{t∗}, fGenDec, ExtGenDec, SGenDec]) (Fig. 14); the use of the punctured key instead of the full
one is the only difference between programs.

Indistinguishability of this and previous hybrid holds by iO; note that we didn’t change a trapdoor branch, thus the set
of inputs on which the trapdoor branch is executed (and therefore also the set on which the normal branch is executed)
is the same for both programs. Consider two cases:

35



Program GenEnc:Sim1

Program GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc,SGenEnc, t
∗,pk∗](t, rGenEnc)

Constants: punctured master key MSK{t∗}, faking key fGenEnc, key for sparse extracting prf ExtGenEnc, prg image
SGenEnc, a point t∗, seNCE public key pk∗

Inputs: token t, randomness rGenEnc
1. Trapdoor branch:

(a) decode out← PDE.DecfGenEnc(rGenEnc); if out = ⊥ then goto normal branch;
(b) parse out as t′,P′, s′, ρ̃. If t′ = t and prg(s′) = SGenEnc then output P′ and halt, else goto normal branch;

2. Normal branch:
(a) if t = t∗ then set pk = pk∗;
(b) else set rNCE ← FMSK{t∗}(t), set pk, sk ← NCE.Gen(rNCE)
(c) set randomness e← FExtGenEnc(t, rGenEnc), sample fEnc,ExtEnc, riO,Enc, sEnc ← e. Set SEnc ← prg(sEnc).
(d) create PEnc ← iO(Enc[pk,ExtEnc, fEnc, SEnc]; riO,Enc)
(e) output PEnc

Figure 13: Program GenEnc:Sim1.

Program GenDec:Sim1

Program GenDec:Sim1[MSK{t∗}, fGenDec,ExtGenDec,SGenDec](rGenDec)
Constants: punctured master key MSK{t∗} , receiver faking key fGenDec, key for sparse extracting prf ExtGenDec, prg
image SGenDec

Inputs: randomness rGenDec

1. Trapdoor branch:
(a) decode out← PDE.DecfGenDec

(rGenDec); if out = ⊥ then goto normal branch;
(b) parse out as (t′, sk′, s′, ρ̃). If prg(s′) = SGenDec then output (t′, sk′) and halt; else goto normal branch.

2. Normal branch:
(a) generate token t← FExtGenDec

(rGenDec)
(b) set randomness rNCE ← FMSK{t∗}(t), run (pk, sk)← NCE.Gen(rNCE)
(c) output (t, sk)

Figure 14: Program GenDec:Sim1.

1. If input (t, r) results in executing the trapdoor branch, then both programs output the same answer, since their
trapdoor branch code is the same.

2. If input (t, r) results in executing the normal branch, then, since t∗ is randomly chosen, with overwhelming
probability over the choice of t∗ it is outside the image of FExtGenDec

due to sparseness of this PRF. Thus no input
r result in t = t∗, and we can safely puncture the key without changing the functionality.

Generating other executions. The difference is that we use GenDec:Sim1 to generate t, sk in other executions. In
simulated executions t is chosen at random and thus with overwhelming probability t 6= t∗; this means that other
simulated executions are still generated normally.

Consider the first message in a real execution t = GenDec:Sim(rGenDec). Since rGenDec is random, with overwhelm-
ing probability normal branch is executed and thus t = FExtGenDec

(rGenDec). But random t∗ is outside the image of
FExtGenDec

due to sparseness of this PRF, thus t∗ 6= t, and other real executions are generated normally, as if original
program GenDec:Sim was used.

Hybrid 5cl - choose at random punctured value r∗NCE
1. Generate a CRS:

(a) Sample MSK;
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(b) choose random t∗, choose random r∗NCE. Set (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim1[MSK{t∗}, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) choose random r∗Enc and generate c∗ ← P∗Enc(m
∗; r∗Enc):

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) set r∗f,Enc ← PExplainEnc(m
∗, c∗; ρ3) for random ρ3;

(d) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we choose r∗NCE at random instead of FMSK(t∗).

Indistinguishability holds by selective security of puncturable PRF FMSK: we first choose random t∗ and give it to
puncturable PRF challenger as a point to puncture at. We get back MSK{t∗} and either r∗NCE = FMSK(t∗) or random
r∗NCE. We use a given key to generate programs, and use given r∗NCE to generate (pk∗, sk∗) ← seNCE.Gen(r∗NCE).
Depending on whether we got random r∗NCE or not, we are either in this hybrid or in the previous hybrid.

Generating other executions. Similar to previous two hybrids, we can assume that for real and simulated t it holds
that t 6= t∗, and changing r∗NCE = FMSK(t∗) to a random value doesn’t affect other executions.

Hybrid 5dl - encrypt m∗ using fresh randomness u

1. Generate a CRS:

(a) Sample MSK;

(b) choose random t∗, choose random r∗NCE. Set (pk∗, sk∗)← seNCE.Gen(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim1[MSK{t∗}, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish a CRS.

2. Generate communications in the protocol:
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(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗, f∗Enc,Ext
∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) choose random u∗ and generate c∗ ← seNCE.Enc(pk∗;m∗;u∗)

(c) show (t∗, c∗) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(b) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗; ρ2) for some random ρ2

(c) set r∗f,Enc ← PExplainEnc(m
∗, c∗; ρ3) for random ρ3;

(d) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we generate c∗ ← Enc:clean[pk∗](m∗;u∗) for random u∗, instead of running P ∗Enc.

Indistinuishability holds by indistinguishability of source of the output for algorithm Alg = Enc:clean. Let us show
a reduction.

We start by generating random t∗, r∗NCE and necessary keys for the CRS, obfuscating programs and showing this CRS
to the adversary. We also show t∗.

We set Alg = Enc:clean[pk∗] to be an algorithm and m∗ to be an input for the game. The challenger runs the
compiler and gets programs Alg : r,Alg : td,Explain. Note that Alg : td = P∗Enc. The challenger chooses r∗Enc and
u∗ and generates c∗ either as Alg : td(m∗; r∗Enc) or Alg(m∗;u∗). It gives us (Alg : td,Explain, c∗).

We show challenge c∗ to the adversary as ciphertext. Upon request to show internal state we encode challenge Alg : td
into r∗f,GenEnc. r

∗
f,GenDec is generated as described in the hybrid. r∗f,Enc ← Explain(m∗, c∗; ρ3).

Generating other executions. Other executions are not affected by the changes - we generate them as in the previous
hybrid.

Hybrid 5el - switch pk∗, sk∗, c∗ to simulated.

1. Generate a CRS:

(a) Sample MSK;

(b) choose random t∗, choose random r∗NCE. Set (pk∗f , c
∗
f , st)← seNCE.Sim(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim1[MSK{t∗}, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗f ]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗f , f
∗
Enc,Ext

∗
Enc, S

∗
Enc]; r

∗
iO,Enc)
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(b) show (t∗, c∗f ) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set sk∗f ← Sim(st,m∗)

(b) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(c) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗f ; ρ2) for some random ρ2

(d) set r∗f,Enc ← PExplainEnc(m
∗, c∗f ; ρ3) for random ρ3;

(e) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we switch real pk∗, c∗, sk∗ to simulated pk∗f , c
∗
f , sk

∗
f , where pk∗, c∗f , st ← seNCE.Sim(r∗NCE), and

sk∗f ← seNCE.Sim(st,m∗) (st is the state of a simulator).

Indistinguishability holds by security of underlying seNCE. Let us show the reduction. First we generate CRS keys,
random t∗ and get pk∗ or pk∗f from NCE challenger. We obfuscate CRS programs (in particular, we hardwire given
pk∗ or pk∗f into GenEnc) and publish the CRS.

We show t∗ to the adversary as the first message in our protocol. The adversary fixes input m∗. We get either c∗

(encrypting m∗) or c∗f (dummy) from seNCE challenger and output it as the second message in the protocol.

When the adversary asks us to show internal state for message m∗, we first ask the challenger to provide us with
a secret key for m∗ and get back either sk∗ or sk∗f . Then we sample necessary keys and obfuscation randomness
Ext∗Enc, f

∗
Enc, s

∗
Enc, r

∗
iO,Enc and generate P∗Enc with pk∗ or pk∗f hardwired. Then we create internal state by encoding

(t∗,P∗Enc) into r∗f,GenEnc; t
∗ and challenge secret key (sk∗ or sk∗f ) into r∗f,GenDec; and challenge ciphertext (c∗ or c∗f )

into r∗f,Enc. We show these three random values as internal state of the parties.

Generating other executions. We can assume that rNCE 6= r∗NCE for all other executions and therefore switching
seNCE values, obtained from r∗NCE, to simulated doesn’t affect other executions.

Hybrid 5fl - switch r∗NCE back to the result of the PRF.

1. Generate a CRS:

(a) Sample MSK;

(b) choose random t∗, set r∗NCE ← FMSK(t∗). Set (pk∗f , c
∗
f , st)← seNCE.Sim(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim1[MSK{t∗}, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗f ]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗f , f
∗
Enc,Ext

∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) show (t∗, c∗f ) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:
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(a) set sk∗f ← Sim(st,m∗)

(b) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(c) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗f ; ρ2) for some random ρ2

(d) set r∗f,Enc ← PExplainEnc(m
∗, c∗f ; ρ3) for random ρ3;

(e) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we set r∗NCE ← FMSK(t∗) instead of choosing it at random.

Indistinguishability holds because of selective security of a puncturable PRF FMSK{t∗}. Let us show a reduction. We
first choose random t∗ and give it to PRF challenger as a point to puncture at. The challenger gives back MSK{t∗}
and value r∗NCE which is either random or FMSK(t∗). We proceed with using this punctured key and (pk∗f , c

∗
f , st) ←

seNCE.Gen(r∗NCE) in generating the rest of the hybrid.

Generating other executions. We can assume that real and simulated t 6= t∗ and changing random r∗NCE to FMSK(t∗)
doesn’t affect other executions.

Hybrid 5gl - Unpuncture MSK{t∗} in GenDec:Sim.

1. Generate a CRS:

(a) Sample MSK;

(b) choose random t∗, set r∗NCE ← FMSK(t∗). Set (pk∗f , c
∗
f , st)← seNCE.Sim(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim1[MSK{t∗}, fGenEnc,ExtGenEnc, SGenEnc, t

∗, pk∗f ]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish the CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗f , f
∗
Enc,Ext

∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) show (t∗, c∗f ) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set sk∗f ← Sim(st,m∗)

(b) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(c) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗f ; ρ2) for some random ρ2

(d) set r∗f,Enc ← PExplainEnc(m
∗, c∗f ; ρ3) for random ρ3;

(e) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we show original program GenDec:Sim instead of GenDec:Sim1, i.e. we unpuncture MSK{t∗} in
GenDec.
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Indistinguishability holds because of iO. Indeed, since t∗ is random, with overwhelming probability it is outside the
image of sparse PRF FExtGenDec

, thus, no input r result in evaluating this PRF on t∗, and we can bring the punctured
value back.

Generating other executions. Since in other executions with overwhelming probability t 6= t∗, this doesn’t affect
other executions.

Hybrid 5hl - Unpuncture MSK{t∗} in GenEnc:Sim.

1. Generate a CRS:

(a) Sample MSK;

(b) choose random t∗, set r∗NCE ← FMSK(t∗). Set (pk∗f , c
∗
f , st)← seNCE.Sim(r∗NCE);

(c) Sample keys ExtGenDec, fGenDec, sGenDec, set SGenDec ← prg(sGenDec);
obfuscate PGenDec ← iO(GenDec:Sim[MSK, fGenDec,ExtGenDec, SGenDec]);
obfuscate PExplainGenDec ← iO(Explain[fGenDec, sGenDec]);

(d) Sample keys ExtGenEnc fGenEnc, sGenEnc, set SGenEnc ← prg(sGenEnc);
obfuscate PGenEnc ← iO(GenEnc:Sim[MSK, fGenEnc,ExtGenEnc, SGenEnc]),
obfuscate PExplainGenEnc ← iO(Explain[fGenEnc, sGenEnc]).

(e) Set CRS = (PGenEnc,PGenDec). Publish a CRS.

2. Generate communications in the protocol:

(a) generate P∗Enc as an obfuscation of Enc:Sim:

i. choose random e∗, sample Ext∗Enc, f
∗
Enc, s

∗
Enc, r

∗
iO,Enc ← e∗. Set S∗Enc ← prg(s∗Enc).

ii. create P∗Enc ← iO(Enc:Sim[pk∗f , f
∗
Enc,Ext

∗
Enc, S

∗
Enc]; r

∗
iO,Enc)

(b) show (t∗, c∗f ) as communications in the protocol

3. Show parties’ internal state consistent with message m∗ and communications:

(a) set sk∗f ← Sim(st,m∗)

(b) set r∗f,GenEnc ← PExplainGenEnc(t
∗, P ∗Enc; ρ1) for some random ρ1

(c) set r∗f,GenDec ← PExplainGenDec(t
∗, sk∗f ; ρ2) for some random ρ2

(d) set r∗f,Enc ← PExplainEnc(m
∗, c∗f ; ρ3) for random ρ3;

(e) show (r∗f,GenEnc, r
∗
f,Enc) as sender internal state and r∗f,GenDec as receiver internal state.

In this hybrid we show original program GenEnc:Sim instead of GenEnc:Sim1, i.e. we remove the line “if t = t∗

then set pk = pk∗f” and unpuncture MSK{t∗}.

Indistinguishability holds because of iO. Note that we didn’t change the trapdoor branch, thus the set of inputs on
which the trapdoor branch is executed (and therefore also the set on which the normal branch is executed) is the same
for both programs. Consider three cases:

1. If input (t, r) results in executing the trapdoor branch, then both programs output the same answer, since their
trapdoor branch code is the same.

2. If input (t, r) results in executing the normal branch, and t 6= t∗, then both programs execute the same steps to
compute PEnc, with the only difference that GenEnc:Sim uses full key MSK and GenEnc : 1 uses punctured
MSK{t∗}. Since we assumed that t 6= t∗, the output is the same in both programs.
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3. If input (t, r) results in executing the normal branch, and t = t∗, then GenEnc:Sim computes r∗NCE ←
FMSK(t∗), sets pk∗, sk∗ ← seNCE.Gen(r∗NCE), and uses pk∗ to generate PEnc. GenEnc:Sim1 on input t = t∗

directly sets pk∗f to be used in generating PEnc, where (pk∗f , c
∗
f , st) ← seNCE.Sim(r∗NCE), r∗NCE ← FMSK(t∗).

Importantly, pk∗ obtained by running NCE.Gen on r∗NCE is exactly the same as pk∗f obtained by running
NCE.Sim on r∗NCE by the “fixed-public-key” property of underlying seNCE. Therefore they are using the same
public key pk∗ = pk∗f , and other variables needed to generate PEnc (keys fEnc,ExtEnc, obfuscation randomness
riO,Enc) are all sampled from the same e = FExtGenEnc(t

∗, r); thus they generate exactly the same obfuscated
program PEnc = iO(Enc[pk∗, fEnc,ExtEnc]; riO,Enc]).

Generating other executions. Since for other executions t 6= t∗, this change doesn’t affect other executions.

This is hybrid is equivalent to simulation.
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A Preliminaries

A.1 Indistinguishability Obfuscation for Circuits

The goal of obfuscation is to provide a method that transforms any program in an obfuscated version that hides the
details of the implemented functionality but still provides the capability to evaluate it on any input. The study of
obfuscation was initiated by Hada [Had00] and Barak et al. [BGI+01, BGI+12].

There are several different security notions for obfuscation. In our constructions we will be using indistinguishability
obfuscation(iO) which we define next. Indistinguishability obfuscation was introduced by Barak et al. [BGI+01]
and the first candidate construction for iO for any polynomial size circuit was presented by the work of Garg et
a. [GGH+13].

Definition 4 (Indistinguishability Obfuscation (iO)). A uniform PPT machine iO is called an indistinguishability
obfuscator if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1

• There is a polynomial p such that for every circuit C ∈ Cλ, it holds that |iO(c)| ≤ p(|C|).

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α such that the follow-
ing holds: For all security parameters λ ∈ N, for all circuit families C0 = {C0

λ}λ∈N, C1 = {C1
λ}λ∈N of size

|C0
λ| = |C1

λ|, we have that if C0
λ(x) = C1

λ(x) for all inputs x, then∣∣∣Pr[D(iO(1λ, C0
λ)) = 1

]
− Pr

[
D(iO(1λ, C1

λ)) = 1
]∣∣∣ ≤ negl(λ)

A.2 Puncturable Pseudorandom Functions and their variants

Puncturable PRFs. In puncrurable PRFs it is possible to create a key that is punctured at a set S of polynomial size.
A key k punctured at S (denoted k{S}) allows evaluating the PRF at all points not in S. Furthermore, the function
values at points in S remain pseudorandom even given k{S}.

Definition 5. A puncturable pseudorandom function family for input size n(λ) and output size m(λ) is a tuple of
algorithms {Sample,Puncture,Eval} such that the following properties hold:

• Functionality preserved under puncturing: For any PPT adversary A which outputs a set S ⊂ {0, 1}n, for
any x 6∈ S,

Pr[Fk(x) = Fk{S}(x) : k ← Sample(1λ), k{S} ← Puncture(k, S)] = 1.

• Pseudorandomness at punctured points: For any PPT adversaries A1, A2, define a set S and state state as
(S, state)← A1(1λ). Then

Pr[A2(state, S, k{S}, Fk(S))]− Pr[A2(state, S, k{S}, U|S|·m(λ))] < negl(λ),

where Fk(S) denotes concatenated PRF values on inputs from S, i.e. Fk(S) = {Fk(xi) : xi ∈ S}.

The GGM PRF [GGM84] satisfies this definition.
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Statistically injective puncturable PRFs. Such PRFs are injective with overwhelming probability over the choice
of a key. Sahai and Waters [SW14] show that if F is a puncturable PRF where the output length is large enough
compared to the input length, and h is 2-universal hash function, then F′k,h = Fk(x)⊕ h(x) is a statistically injective
puncturable PRF.

Extracting puncturable PRFs. Such PRFs have a property of a strong extractor: even when a full key is known,
the output of the PRF is statistically close to uniform, as long as there is enough min-entropy in the input. Sahai and
Waters [SW14] showed that if the input length is large enough compared to the output length, then such PRF can be
constructed from any puncturable PRF F as F′k,h = h(Fk(x)), where h is 2-universal hash function.

Sparse computationally extracting puncturable PRFs. We need a slightly modified version of extracting PRFs:
we relax the extracting requirement from statistical to computational, but require our PRF to have a sparse image.

Definition 6. A PRF family with a key Ext mapping a a{0, 1}n(λ) to {0, 1}l(λ) is a sparse computationally extracting
family for min-entropy k(λ), if the following two conditions hold:

• Sparseness: Pr[r ∈ Im(FExt) : Ext← Sample(1λ), r ← Ul] < ν(λ) for some negligible function ν;

• Computational extractor: If distribution X has min-entropy at least k(λ), then with overwhelming probability
over the choice of key Ext for any PPT adversary A

| Pr [ A(Ext,FExt(x)) = 1 | x← X ]− Pr [ A(Ext, r) = 1 | r ← UI ] | < negl(λ).

Theorem 4. Assuming one way functions exist, if n(λ) ≥ k(λ) ≥ 3λ + 2 and l(λ) ≥ 2λ, then there exists a sparse
extracting puncturable PRF family for min-entropy k(λ) mapping n(λ)-bit inputs to l(λ)-bit outputs.

Proof. [SW14] show that if n(λ) ≥ k(λ) ≥ m(λ) + 2e(λ) + 2, then there exist an extracting PRF family mapping
n(λ)-bit strings to m(λ)-bit strings such that their output is 2−e(λ)-close to uniform even with the key given, as long
as an input has min-entropy at least k(λ). By setting m = λ, e = λ we obtain an extracting family {FK} with outputs
2−λ-close to uniform, as long as k(λ) ≥ 3λ+ 2.

Let us set our sparse computationally extracting PRF to be F′K = prg(FK), where prg is at least length-doubling, i.e.,
it maps λ bits to l bits, and l ≥ 2λ. F′K is still a puncturable PRF, and it has inputs of size n ≥ k ≥ 3λ+ 2 and outputs
of size l ≥ 2λ. For inputs chosen from a distribution X with min-entropy k(λ) it holds that

{(K,F′K(x)) : x← X} ≈c {(K, r) : r ← Ul} .

Indeed, {(K,F′K(x)) : x← X} ≈ {(K, prg(s)) : s← Uλ} ≈c {(K, r) : r ← Ul}, where the first indistinguishabil-
ity holds by statistical closeness of underlying PRF output to random and the second by security of the pseudorandom
generator.

Our PRF is sparse due to the fact that the PRG is at least length-doubling and therefore has a sparse image.

A.3 Puncturable Deterministic Encryption (PDE).

Puncturable deterministic encryption was first introduced as a building block for deniable encryption by Sahai and Wa-
ters [SW14] (called there a hidden sparse trigger mechanism) and then was defined as a primitive by Waters [Wat14].
In this scheme the ciphertext of a message m is computed as (A = Fk1(m), B = Fk2(A) ⊕ m), and decryption
on input (A,B) outputs m ← Fk2(A) ⊕ B if Fk1(m) = A; otherwise if outputs ⊥. An important property of this
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PDE scheme is that it is iO-friendly8 and has ciphertexts with pseudorandom properties. This allows us to encode
information inside “randomness” by encrypting this information using PDE and then claiming that this ciphertext is
true randomness. For a full definition and properties of PDE we refer the reader to [Wat14].

B Augmented Explainability Compiler

In this section we describe a variant of an explainability compiler of [DKR15]. This compiler is used in our construc-
tion of NCE, as discussed in the introduction.

Roughly speaking, explainability compiler modifies a randomized program such that it becomes possible, for those
who know faking keys, to create fake randomness rf which is consistent with a given input-output pair. Explainability
techniques were first introduced by Sahai and Waters [SW14] as a method to obtain deniability for encryption (there
they were called “a hidden sparse trigger meachanism”). Later Dachman-Soled, Katz and Rao [DKR15] generalized
these ideas and introduced a notion of explainability compiler.

We modify this primitive for our construction and call it an “augmented explainability compiler”. Before giving a
formal definition, we briefly describe it here. Such a compiler Comp takes a randomized algorithm Alg(input;u) with
input input and randomness u and outputs three new algorithms:

• Alg : r(input; r) is a “rerandomized” version of Alg. Namely, this algorithm first creates fresh randomness u
using a PRF and then runs Alg with this fresh randomness.

• Alg : td(input; r) is a “trapdoored” version of Alg : r, which allows to create randomness consistent with a
given output: namely, before executing Alg : r, Alg : td interprets its randomness r s a PDE ciphertext and tries
to decrypt it. If it succeeds and r encrypts an instruction to output output, then Alg : td complies. Otherwise it
runs Alg : r.

• Explain(input, output) outputs randomness for algorithm Alg : td consistent with given input and output. It
uses PDE to encrypt an instruction to output output on an input input, and outputs the resulting ciphertext.

Definition 7. An augmented explainability compiler Comp is an algorithm which takes as input algorithm Alg and
random coins and outputs programs PAlg:r,PAlg:td,PExplain, such that the following properties hold:

• Indistinguishability of the source of the output. For any input it holds that

{(PAlg:td,PExplain, output) : r ← U, output← Alg(input; r)}

and
{(PAlg:td,PExplain, output) : r ← U, output← PAlg:td(input; r)}

are indistinguishable.

• Indistinguishability of programs with and without a trapdoor. PAlg:r and PAlg:td are indistinguishable.

• Selective explainability. Any PPT adversary has only negligible advantage in winning the following game:

1. Adv fixes an input input∗;

2. The challenger runs PAlg:r,PAlg:td,PExplain ← Comp(Alg);

3. The challenger chooses random r∗ and computes output∗ ← PAlg:td(input∗; r∗);

4. The challenger chooses random ρ and computes fake r∗f ← PExplain(input
∗, output∗; ρ)

8Namely, there is one-to-one correspondence between ciphertexts and plaintexts. This allows to puncture a program at a certain message m, but
at the same time preserve its functionality by hardwiring only a sinlge (m, c) pair into the program.
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5. The challenger chooses random bit b. If b = 0, it shows (PAlg:td,PExplain, output
∗, r∗), else it shows

(PAlg:td,PExplain, output
∗, r∗f )

6. Adv outputs b′ and wins if b = b′

Differences between [DKR15] compiler and our construction. For the reader familiar with [SW14], [DKR15],
we briefly describe the differences.

First, we split compiling procedure into two parts: the first part, rerandomization, adds a PRF to the program Alg, such
that the program uses randomness F(input, r) instead of r. The second part adds a trapdoor branch to rerandomized
program. This is done for a cleaner presentation of the proof.

Second, we slightly change a trapdoor branch activation mechanism: together with faking keys we hardwire an image
S of a pseudorandom generator into the program. Whenever this program decrypts fake r, it follows instructions
inside r only if these instructions contain a correct preimage of S. This trick allows us to first change S to random
and then to indistinguishably “delete” the whole trapdoor branch from the program. Thus it becomes possible to use
a program without a trapdoor in the protocol (and only in the proof change it to its trapdoor version), which is crucial
for achieving perfect correctness.

Another difference is that our extracting PRF is only computationally extracting, but instead has a sparse image. This
sparseness is not directly needed for the compiler, but we still need it in the proof of our NCE scheme; thus we crucially
use the exact implementation of the compiler.

Construction. Our explainability compiler is described in Figure 15. It takes as input algorithm Alg and random-
ness r. It uses r to sample keys Ext (for sparse computationally extracting PRF), f (for PDE), as well as random s,
and randomness for iO. It sets S = prg(s). Then it obfuscates programs Alg : r[Alg,Ext], Alg : td[Alg,Ext, f, S],
and Explain[f, s]. It outputs these programs.
Theorem 5. Algorithm Comp presented in Figure 15 is an augmented explainability compiler.

Proof. We need to show indistinguishability of the source of the output, indistinguishability of programs with and
without a trapdoor, and selective explainability.

Indistinguishability of the source of the output. We show that for any program Alg, for any input two distributions

{(PAlg:td,PExplain, output) : r ← U, output← Alg(input; r)}

and
{(PAlg:td,PExplain, output) : r ← U, output← PAlg:td(input; r)}

are indistinguishable. We show this by a sequence of hybrids:

1. We start with a distribution {(PAlg:td,PExplain, output) : r ← U, output← PAlg:td(input; r)}

2. In hybrid 1 we show a distribution {(PAlg:td,PExplain, output) : r ← U, output ← PAlg:r(input; r)}. In other
words, when output is computed, trapdoor branch in Alg : td is omitted.

This hybrid is statistically close to the previous one, since randomly chosen r is not a valid PDE encryption with
overwhelming probability, and therefore the trapdoor check doesn’t pass.

3. Next we show a distribution {(PAlg:td,PExplain, output) : r ← U, output ← Alg(input; r)}. In other words,
we use given randomness r from the input instead of first applying extracting PRF FExt to (input, r).

Indistinguishability holds by computationally extracting property of a PRF FExt. Indeed, given (Ext, val) as a
challenge, where val is either truly random or FExt(input, r) for random r and fixed input, we can reconstruct
the hybrid as follows: first we create PAlg:td,PExplain ourselves (for these we need to use given Ext and sample
other needed keys ourselves), and then compute output as Alg(input; val).
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Explainability compiler Comp.
Program Comp(Alg; r)
Inputs: Algorithm Alg, randomness r

1. Use r to sample keys Ext (for sparse computationally extracting PRF), f (for PDE), as well as random s and
randomness for iO r1, r2, r3.

2. Set S ← prg(s);
3. Set PAlg:r ← iO(Alg : r[Alg,Ext]; r1), PAlg:td ← iO(Alg : td[Alg,Ext, f, S]; r2), and PExplain ←
iO(Explain[f, s]; r3).

4. Output PAlg:r, PAlg:td, and PExplain.

Program Alg : r
Program Alg : r[Alg,Ext](input; r)
Constants: underlying randomized algorithm Alg(input;u), a key for sparse computationally extracting prf Ext
Inputs: input input, randomness r

1. Create randomness u← FExt(input, r);
2. output output← Alg(input;u)

Program Alg : td
Program Alg : td[Alg, f ,Ext,S](input; r)
Constants: underlying randomized algorithm Alg(input;u), a faking key f , a key for sparse computationally ex-
tracting prf Ext, prg image S
Inputs: input input, randomness r

1. Trapdoor branch:
(a) decode out← PDE.Decf (r); if out = ⊥ then goto normal branch;
(b) parse out as (input′, output′, s′, ρ̃). If input = input′ and prg(s′) = S then output output′ and halt, else

goto normal branch;
2. Normal branch:

(a) Create randomness u← FExt(input, r);
(b) output output← Alg(input;u)

Program Explain
Program Explain[f , s](input,output; ρ)
Constants: a faking key f , secret s, which is a prg preimage of S
Inputs: input and output (input, output), randomness ρ

1. output r ← PDE.Encf (input, output, s, prg(ρ))

Figure 15: Explainability compiler and programs used.
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Since r has the size of at least λ, the input to the PRF (input, r) has enough min-entropy, and by theorem 4
(Ext, val) for random val and for PRF value val are indeed indistinguishable.

Indistinguishability of programs with and without a trapdoor. Here we show that PAlg:td and PAlg:r are indistin-
guishable. Consider the following hybrids:

1. We start by showing PAlg:td = iO(Alg : td[Alg, f,Ext, S]), where S ← prg(s).

2. In the next hybrid we show PAlg:td = iO(Alg : td[Alg, f,Ext, S]), where S is chosen at random.

Indistinguishability holds by security of a prg.

3. Next we show PAlg:r; in other words, we delete trapdoor branch from the program.

Indistinguishability holds by iO. Indeed, with overwhelming probability over the coins of reduction, random
S is outside prg image, thus, there is no input (input; r), which results in executing trapdoor branch due to the
check S = prg(s′).

Selective indistinguishability of explanations. We show that any PPT adversary has only negligible advantage in
winning the following game:

1. Adv fixes input input∗;

2. The challenger runs PAlg:r,PAlg:td,PExplain ← Comp(Alg);

3. The challenger chooses random r∗ and computes output∗ ← PAlg:td(input∗; r∗);

4. The challenger chooses random ρ and computes fake r∗f ← PExplain(input
∗, output∗; ρ)

5. The challenger chooses random bit b. If b = 0, it shows (PAlg:td,PExplain, output
∗, r∗), else it shows

(PAlg:td,PExplain, output
∗, r∗f )

6. Adv outputs b′ and wins if b = b′

We show this in a sequence of hybrids 0b, . . . , 4b, for bit b = 0, 1, and then show that hybrids 40 and 41 are indistin-
guishable. This proof is very close to the original proof in [SW14], [DKR15], and therefore we only briefly sketch it
here.

1. Hybrid 0b. We start with running experiment in explainability game for bit b.

2. Hybrid 1b. We generate r∗f ← PDEf (input∗, output∗, s∗, ρ̃∗), where ρ̃∗ is random instead of prg(ρ∗); security
holds by security of a prg.

3. Hybrid 2b. In the next hybrid we show programs PAlg:td = iO(Alg : td : 1),PExplain = iO(Explain : 1)
(Figure 16). These programs have hardwired values and punctured keys. Indistinguishability holds by iO, since
programs have the same functionality (for the proof of this fact we refer the reader to [SW14].

4. Hybrid 3b. In the next hybrid we choose r1∗f to be a random value instead of Ff1(input∗, output∗, s∗, ρ̃∗);
we also choose r2∗f to be a random value instead of Ff2(r1∗f ) ⊕ (input∗, output∗, s∗, ρ̃∗). Indistinguishability
holds by pseudorandomness of punctured points for PRFs Ff1 , Ff2 .

5. Hybrid 4b. In this hybrid we choose u∗ to be random instead of FExt(input
∗, r∗). Indistinguishability holds by

pseudorandomness of punctured points for PRF FExt.

Hybrids 40 and 41 are the same, since both r∗ and r∗f are chosen at random and are treated in the same manner.
Therefore selective explainability holds.
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Program Alg : td : 1

Program Alg : td : 1[Alg, f ,Ext,S](input; r)
Constants: underlying randomized algorithm Alg(input;u), a faking key f = f1, f2, a key for sparse computation-
ally extracting prf Ext, prg image S
Inputs: input input, randomness r = r1, r2

1. Trapdoor branch:
(a) if (input, r) = (input∗, r∗) or (input, r) = (input∗, r∗f ), then output output∗ and halt;
(b) if r1 = r1∗ or r1 = r1∗f then goto normal branch;
(c) set out← Ff2{r1∗}{r1∗f}(r1)⊕ r2
(d) if out = (input∗, output∗, s∗, ρ̃∗) then goto normal branch;
(e) if Ff1{input∗,output∗,s∗,ρ̃∗}(out) 6= r1 then goto normal branch;
(f) parse out as (input′, output′, s′, ρ̃). If input = input′ and prg(s′) = S then output output′ and halt, else

goto normal branch;
2. Normal branch:

(a) Create randomness u← FExt{input∗,r∗}{input∗,r∗f}(input, r);
(b) output output← Alg(input;u)

Program Explain : 1

Program Explain : 1[f , s](input,output; ρ)
Constants: a faking key f , secret s, which is a prg preimage of S
Inputs: input and output (input, output), randomness ρ

1. set r1← Ff1{input∗,output∗,s∗,ρ̃∗}(input, output, s, prg(ρ))
2. set r2← Ff2{r1∗,r1∗f}(r1)⊕ (input∗, output∗, s∗, ρ̃∗)
3. output r = r1, r2

Figure 16: Programs Alg : td : 1 and Explain : 1, used in the proof of explainability compiler.
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