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Abstract. In this short report we analyse the security of three schemes
proposed by J. H. Park et al. in ”Efficient Identity-Based Encryption and
Public-Key Signature from Trapdoor Subgroups”. The schemes make use
of trapdoor subgroups of Z∗

n and are secure under new assumptions called
q-Trapdoor Subgroup Diffie-Hellman (TSDH) and q-Trapdoor Subgroup
Exponent Inversion (TSEI). We show that given several secret keys in
case of IBE or several signatures in case of PKS, one can easily extract
the trapdoor and break security of the proposed schemes.
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1 Introduction

Recently J. H. Park et al. presented two efficient Identity-Based Encryption
(IBE) schemes based on trapdoor subgroups [1]. IBE is a cryptosystem, where the
public key is a string, e.g. the email address of the user. In order to work, secret
keys must be generated by a trusted party. The schemes are secure under a new
assumption called q-Trapdoor Subgroup Diffie-Hellman (TSDH). The author’s
also present a public key signature scheme that is strongly unforgeable against
chosen message attacks under a new assumption called q-Trapdoor Subgroup
Exponent Inversion (TSEI). Both assumptions were shown to hold in the generic
group model [2].

Our Contribution

In this short report we show that both IBE schemes and the signature scheme
from [1] are not secure. In particular, we show that:

1. given secret keys for several identities in the IBE scheme, one can decrypt
messages encrypted for any identity,

2. given several message-signature pairs in the signature scheme, one can create
signatures for arbitrary messages.



2 The Schemes

2.1 Identity-Based Encryption

The original paper [1] proposes two IBE schemes: a CPA secure and a CCA
secure scheme. Here we focus on the CPA secure scheme as the attack simply
transfers to the other case. Let M be the message space of the encryption scheme.
The CPA secure scheme from [1] is defined as:

SetupIBE(λ) Given a security parameter λ, the setup algorithm chooses two So-
phie Germain prime numbers p = 2 · p1 + 1 and q = 2 · q1 + 1, computes
modulus n = p · q, chooses random generator g of order p1 · q1, chooses a
random secret x ←$ Zp1·q1 and computes g1 = gx mod n. Select two hash
functions h : {0, 1}∗ → {0, 1}`, where ` < log2(p1 · q1) and H : Zn → M .
Output the public parameters pp = (n, g, g1, h,H) and the master secret key
msk = (x, p1 · q1).

KeyGenPBS(msk, ID) Given a master secret key msk and identity ID, the key
generation algorithm computes and returns the secret key skID, such that
(x+ h(ID)) · skID ≡ 1 mod (p1 · q1).

EncryptPBS(pp, ID,m) To encrypt message m for identity ID, the algorithm
chooses random s ∈ Zn, C0 = gs mod n, computes C1 = (g1 · gh(ID))s

mod n and C2 = H(C0)
⊕
m. Output the ciphertext ct = (C1, C2).

DecryptPBS(ct, skID) To decrypt ciphertext ct = (C1, C2), the decryption algo-
rithm computes C0 = (C1)skID mod n and returns messagem = C2

⊕
H(C0).

2.2 Signature Scheme

In this subsection we recall the signature scheme presented in [1].

SetupPKSS(λ) Given a security parameter λ, the setup algorithm chooses two
Sophie Germain prime numbers p = 2 · p1 + 1 and q = 2 · q1 + 1, computes
modulus n = p · q, chooses random generator g of order p1 · q1, chooses a
random secret x ←$ Zp1·q1 and computes g1 = gx mod n. Select hash func-
tions h : {0, 1}∗ → {0, 1}`, where ` < log2(p1 · q1). Output the public key
pk = (n, g, g1, h) and the secret key sk = (x, p1 · q1).

SignPKSS(sk,m) Given a secret key sk and message m, compute and return the
signature σ, such that (x+ h(m)) · σ ≡ 1 mod (p1 · q1).

VerifyPKSS(pk,m, σ) To verify signature σ on message m, the verification algo-
rithm accepts if (g1 · gh(m))σ = g mod n holds. Otherwise, it rejects the
signature.
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3 The Attack

The crucial observation is, that using corruption queries in case of IBE and
signature queries in case of the signature scheme, we are able to receive values
h1, s1 such that (x + h1) · s1 ≡ 1 (mod q1 · p1) (for unknown secret key x and
order q1 · p1). What is more, we are allowed to make several queries. Thus, let
us assume we have k such values, i.e. h1, . . . , hk, s1, . . . , sk.

We will now show that we can reconstruct q1 ·p1, i.e. the secret trapdoor and
order of g. First note that by definition we have:

x · si + hi · si ≡ 1 (mod q1 · p1)

x · sj + hj · sj ≡ 1 (mod q1 · p1)

for some i, j ∈ {1, . . . , k}. Multiplying the first congruential equation by sj and
the second one by si, we receive:

x · si · sj + hi · si · sj ≡ sj (mod q1 · p1)

x · sj · si + hj · sj · si ≡ si (mod q1 · p1).

We now subtract the second equation from the first one and receive:

(hi − hj) · si · sj ≡ (sj − si) (mod q1 · p1).

It follows that:

(hi − hj) · si · sj − (sj − si) ≡ 0 (mod q1 · p1).

Thus, by computing the value

((hi − hj) · si · sj − (sj − si)) (1)

in Z we receive a multiple of the hidden order q1 · p1. What is more, this value
is, with high probability, not equal to 0.

We can apply the same computations for different pairs of values receiving
a different multiple of the hidden order. Given several multiples we can with
high probability reconstruct the hidden order by applying the greatest common
divisor algorithm and taking the absolute value. Note that there exist

(
k
2

)
distinct

pairs, thus we can compute, with high probability,
(
k
2

)
unique multiples of the

hidden order.

Success Probability

We begin the discussion with the following lemma.

Lemma 1. k random integers are coprime with probability 1
ζ(k) , where ζ is the

Riemann zeta function.
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Proof. The probability that all k integers have a given prime p as a factor is
1/pk. So the probability that at least one of them does not have p as a factor
is 1 − 1/pk. Therefore, the probability that k integers have no common prime
factor is:

Pk =
∏

p∈primes

(1− 1/pk).

Using 1
1−x = 1 + x+ x2 + x3 + . . ., this can be rewritten as

Pk =

 ∏
p∈primes

(1 + 1/pk + 1/p2·k + 1/p4·k + . . .)

−1 .
Now by the fundamental theorem of arithmetic (every integer greater than 1
either is prime itself or is the unique product of prime numbers), we get:

Pk =
(
1 + 1/2k + 1/3k + 1/4k + . . .

)−1
,

where 1/Pk is by definition the Riemann zeta function. Thus, Pk = 1
ζ(k) .

Now let m1, . . . ,mk be the k multiples of q1 · p1 computed using equation 1
and let ni = mi/(q1 · p1). Note that gcd(m1, . . . ,mk) = q1 · p1 if, and only
if gcd(n1, . . . , nk) = 1. It now follows by lemma 1, that the probability that
gcd(m1, . . . ,mk) = q1 · p1 is 1

ζ(k) .

Thus, for k = 3 we already have a non-negligible success probability of 1
ζ(3) ≈

0.83. In other words, given secret keys for two identities in case of IBE or two
message-signature pairs in case of the signature scheme, we might break the
scheme with probability 0.83 (i.e. CPA and CCA or EUF-CMA).

Remark 1. The series 1
ζ(1) ,

1
ζ(2) ,

1
ζ(3) , . . . quickly converges to 1, e.g. 1

ζ(4) ≈ 0.92

and 1
ζ(8) ≈ 0.996.

4 Dummy Example

In this section we will show that our attack works by giving a simple example.
Since the IBE scheme is more complicated (i.e. involves more computations), we
will describe the attack on the proposed signature scheme.

SetupPKSS(λ)

Let p = 227 = 2·p1+1 = 2·113+1 and q = 263 = 2·q1+1 = 2·131+1. Thus, the
hidden order is q1·p1 = 14803 and the modulus is n = p·q = 59701. We choose the
generator g = 33413 of order q1 · p1 and the secret key x = 11819. Compute the
value g1 = gx mod n = 2127. By definition ` = 13 < log2(14803) and we define
the hash function h as SHA-256 truncated to ` least significant bits. The public
key is pk = (59701, 33413, 38048, h) and the secret key is sk = (11819, 14803).
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The Attack

Let m1 =”Hello World”, m2 =”My second message” and m3 =”My third mes-
sage” be three messages signed by a user knowing the secret key sk. By computing
the hash values of this messages we get: h1 = h(m1) = 5230, h2 = h(m2) = 6031
and h3 = h(m3) = 1455. The signatures for this messages are s1 = 3737,
s2 = 5791 and s3 = 8055. We can check that this are valid signatures by com-
puting ĝi = (g1 · ghi)si . Thus, we have (computations in Z∗n):

ĝ1 = (2127 · 334135230)3737 = (2127 · 10563)3737 = 199253737 = 33413 = g

ĝ2 = (2127 · 334136031)5791 = (2127 · 7398)5791 = 341835791 = 33413 = g

ĝ3 = (2127 · 334131455)8055 = (2127 · 48073)8055 = 431598055 = 33413 = g

so s1, s2, s3 are indeed valid.
Now, we compute (computations in integers):

δ1,2 = (h1 − h2) · s1 · s2 − (s2 − s1) = −17334416621

δ1,3 = (h1 − h3) · s1 · s3 − (s3 − s1) = 113633290307

δ2,3 = (h2 − h3) · s2 · s3 − (s3 − s2) = 213454404616

and the greatest common divisor of those values, i.e. gcd(δ1,2, δ1,3, δ2,3) = 14803 =
q1 · p1. Thus, we reconstructed the hidden order q1 · p1 only using public val-
ues, i.e. the hash values of the signed messages h1, h2, h3 and the corresponding
signatures s1, s2, s3. It follows that we can forge a signature for any message.

5 The TSDH and TSEI Problems

In this section we discuss the assumption under which the authors of [1] prove
their schemes.

Definition 1 (q-Trapdoor Subgroup Diffie-Hellman Problem). The q-
TSDH problem is defined as follows: given

(
n, g, gx, g(x+r

∗)y, r∗, {1/(x+ ri), ri}qi=1

)
as input, under the condition that g is the generator of order q1 ·p1 trapdoor sub-
group of Z∗n, g, gx, g(x+r

∗)y are in Z∗n, r∗, r1, . . . , rq ∈ {0, 1}` for some ` (less
than log2(q1 · p1)) and (1/(x+ ri)) are in Zq1·p1 , to output gy ∈ Z∗n.

Definition 2 (q-Trapdoor Subgroup Exponent Inversion Problem). The
q-TSEI problem is defined as follows: given (n, g, gx, {1/(x+ ri), ri}qi=1) as in-
put, under the condition that g is the generator of order q1 ·p1 trapdoor subgroup
of Z∗n, g, gx are in Z∗n, r1, . . . , rq ∈ {0, 1}` for some ` (less than log2(q1 ·p1)) and
(1/(x+ri)) are in Zq1·p1 , to output a new pair (1/(x+r∗), r∗) ∈ Zq1·p1×{0, 1}`.

The advantage of the adversary in solving those problems is defined as the
probability that he returns the required output. It should be obvious from sec-
tion 3, that for q > 2 those problems are not hard. In fact, there exists an
adversary that has non-negligible advantage in solving those problems.
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In both cases, the adversary first uses the attack described in section 3 to
reconstruct the hidden order q1 · p1 and then uses this knowledge to compute x.
Knowing those values, he can easily compute 1/(x+ r∗) ∈ Zq1·p1 and gy in case
of the q-TSDH problem and (1/(x+ r∗), r∗) ∈ Zq1·p1 × {0, 1}`, for a random r∗,
in case of the q-TSEI problem.

Remark 2. The authors investigated the hardness of those problems in the generic
group model. We argue that this analysis is not correct as the adversary is not
limited to computations in Z∗n (or it’s subgroup). In fact, our attack uses com-
putations in integers, which are not considered in their analysis.

6 Conclusions

In this short report, we have shown an attack against the scheme in [1]. It
completely breaks the security of the IBE and signature schemes proposed in
this paper. The attack uses computations in integers which are not considered
by the author’s in their generic group model analysis.
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