
Applying TVLA to Public Key Cryptographic

Algorithms

Michael Tunstall and Gilbert Goodwill

Abstract

Test Vector Leakage Assessment (TVLA) has been proposed as a method
of determining if a side-channel attack is feasible, for a given implemen-
tation of a block cipher, by looking for leakage without conducting an
attack. The thresholds chosen for the evaluation of leakage are chosen
such that passing the tests gives a strong indication that no leakage is
present. In this document, we describe how TVLA can be adapted to pu-
bic key cryptographic algorithms, with a specific focus on RSA, ECDSA
and ECDH.

1 Introduction

Side-channel analysis was introduced to the cryptographic community by Kocher
who noted that the time required to compute a modular exponentiation could
potentially reveal the exponent that was used [1]. Further work by Kocher et
al. demonstrated the instantaneous power consumption was dependent on the
data being manipulated at a given point in time [2]. This would allow crypto-
graphic keys to be determined by making hypotheses of intermediate states of
a cryptographic algorithm and validating these hypotheses using the instanta-
neous power consumption. The same analysis has also been shown to be possible
on the electromagnetic emanations of a microprocessor, where acquisitions are
treated in the same way [3, 4]. In the following, we shall refer to power con-
sumption acquisitions but the same treatment can be applied to acquisitions of
the electromagnetic emanations around a microprocessor.

Implementations of cryptographic algorithms need to be tested on certain
devices to ensure that they are not vulnerable to such attacks. Initially, this
involved testing whether the effect of specific intermediates could be observed
using a test based on a difference-of-means test [2] or Pearson’s correlation coef-
ficient [5]. However, this only assures that an attack on a specific intermediate
state is not possible and other intermediate states may still leak.

A more general approach for determining if the power consumption of a
device relates to the data it is manipulating, referred to as Test Vector Leak-
age Assessment (TVLA), has been proposed by Goodwill et al. [6] with further
detail provided by Schneider and Moradi [7]. TVLA uses a t-test to evaluate

1

the differences between sets of acquisitions to determine if one set can be dis-
tinguished from the other. This provides a robust test that is simultaneously
applied to numerous intermediates, providing a clear indication of leakage or
lack thereof.

In this document, we present a strategy for applying TVLA to public-key
algorithms, specifically focusing on RSA, ECDSA and ECDH as the most com-
monly used algorithms. We focus on determining if the leakage required to
conduct an attack is present, and provide details on how these tests can be
conducted, given that there are many different ways of implementing these al-
gorithms.

2 Background

One of the tests in TVLA is to determine whether there are statistically sig-
nificant differences in the mean traces of two sets of traces, one acquired with
a fixed plaintext and the other with random plaintexts. One would typically
randomly interleave acquisitions so that environmental effects are the same for
both sets and there are no erroneous indications of leakage, caused, for example,
by the least significant bit of a variable used to count the number of acquisi-
tions. In applying this, one would take two sets of data, and conduct Welch’s
t-test point-by-point to determine whether there is evidence against the null
hypothesis that the sets are the same.

Consider two sets of acquisitions, of n1 and n2 samples, respectively. We can
compute their respective sample means, x̄1 and x̄2, and respective sample stan-
dard deviations, σ1 and σ2. One can then compute a t-statistic using Welch’s
t-test

α =
x̄1 − x̄2√
σ2
1

n1
+

σ2
2

n2

,

where the result is distributed over a t-distribution with ν degrees of freedom
(i.e., α ∼ t(ν)). In practice, one would use the asymptotic result that the t-
distribution is equivalent to the standard normal distribution, so ν does not
need to be defined.

Goodwill et al. propose that observing α > 4.5 indicates the presence of
leakage. Specifically, an α > 4.5 gives the probability of indicating leakage
where no leakage is present, often referred to as a Type I error or false positive,
of approximately 1× 105. However, repeating an experiment can mitigate this
problem. The probability of no leakage being indicated where leakage is present,
often referred to as a Type II error or false negative, is not defined but, again,
repeating an experiment can mitigate this problem. To detect side-channel
leakage that could be used to conduct an attack, one would typically use this
test on a set of power consumption traces where the t-statistic is computed in
a point-wise manner. That is, one can test for leakage at each point in time
using two sets of acquisitions. This can be extended to a second-order analysis
(where we have α > 5 indicating leakage) in the same way one would for any
other side channel analysis [8].

2

To avoid false positive caused by plaintexts being manipulated before being
masked, one can specifically target the middle of a cryptographic operation,
allowing inputs and outputs that are indistinguishable from random values via
some side-channel. For example, by generating random-seeming inputs to an
algorithm that produce a fixed value in an algorithm at a chosen point, similar
to the approach described by Mizaki and Hayashi [9]. Rather than having
a test where we are comparing a fixed input with a random input, we have
an input that we refer to as “semi-fixed” as it produces a fixed value at a
specific point in time. The resulting set of inputs can be randomly interleaved
with random inputs to provide a robust method of detecting leakage using the
methods described by Goodwill et al. We note that a specific cryptographic key
must accompany the plaintexts, so such a test requires the ability to set the
cryptographic keys in the targeted device.

If one reveals a leak using semi-fixed inputs, the results do not specifically
reveal a particular type of leak or indicate how to exploit the leakage to de-
termine a secret key. However, by using the same technique, one can generate
more specific plaintexts, with associated secret keys, to help isolate where, and
how, a leakage manifests. The interested reader is referred to Schneider and
Moradi [7] for a thorough treatment of this topic and leakage detection using
the t-test.

3 Outline of Evaluation Strategy

The following details the general process that we follow when evaluating an
implementation of a public-key cryptographic algorithm. The tests to be con-
ducted for specific algorithms are detailed in subsequent sections. The steps of
the attack are as follows:

3.1 Theoretical Analysis

The first step of the attack is to conduct a theoretical analysis of the imple-
mentation to determine which specific attacks need to be evaluated. That is,
look for specific weaknesses that could be exploited by providing specific in-
puts to an algorithms or making hypotheses based on some particular state of
a register/variable. Further detail is given below for the particular algorithms.

3.2 Timing Analysis

As a general principle, an implementation of a public-key cryptographic algo-
rithm should conduct the same operations in the same order for all possible
inputs. However, in some cases it may be necessary to break this rule. For
example, using the extended GCD algorithm to compute a modular inverse,
which is significantly faster than alternative algorithms.

To test if operations that will take a variable amount of time can be identified
they should be timed for 1 × 106 operations where we interleave a fixed input

3

Figure 1: A sample trace showing the voltage applied to GPIO pins isolating
four individual operations.

with a random input and conduct a t-test, as described above. To determine
that there is no leakage there should be no observed t-statistic greater than 4.5.

One straightforward method of measuring the time required to compute a
given operation is to use GPIO pins to generate a trace, as shown in Figure 1,
and measuring the time between the events on an I/O pin a posteriori. If GPIO
pins cannot be affected then a power consumption trace can be acquired and
the operation measured by looking for patterns in the power consumption. The
methods one would use to conduct these measurements are beyond the scope
of this document. However, one would require that the measurement be cycle
accurate to give a clear indication of whether an attack is feasible.

3.3 Simple Power Analysis

A side-channel resistant implementation of a cryptographic algorithm should be
straight-line code, i.e., the same sequence of opcodes should be executed irre-
spective of the input or cryptographic key. If this is not the case one should not
be able to observe any secret information by observing a small number of power
consumption traces. It is advantageous to evaluate some specific functions, e.g.,
the conditional subtraction in Montgomery multiplication, but is not obligatory
as leakage detection will reveal a SPA leak very quickly.

3.4 Leakage Detection

Leakage detection, as described above, is used to determine if sets of traces can
be distinguished and, hence, if an attacker could attempt an attack based on
distinguishing sets of traces. These tests are typically conducted to determine
if a fixed parameter can be distinguished from a random parameter. Typically,
this results in two tests:

1. A fixed message versus a random message with a fixed key, and

2. A fixed cryptographic key versus a random cryptographic key with a fixed
or random message.

In all cases we take a set of randomly interleaved acquisitions from the fixed
and random set, and conduct the t-test as described above, where the number

4

of traces taken indicates the security level required. To determine that there is
no leakage there should be no observed t-statistic greater than 4.5.

Ideally, one would acquire traces that capture the power consumption dur-
ing the entire computation required for a cryptographic algorithm. In practice,
this may not be possible, since the required sampling frequency may produce
acquisitions that are prohibitively large. In some cases, we therefore take two
sets of traces showing the beginning and the end of the algorithm, where the
missing part is known to be the repeated loops of an exponentiation algorithm
(for example). That is, we assume that if the loops of an exponentiation al-
gorithm do not leak at the beginning and the end of the operation, then the
middle loops will be equally secure.

In practice, further tests may be required. These are listed below for each
algorithm we describe in this document.

3.5 Collision Attacks

A collision attack in our context is where an attacker seeks to determine whether
the input or output of one operation is used as the input to another operation
in a group exponentiation algorithm. The way that a collision attack functions
will depend on the exponentiation algorithm that has been chosen and will
requires some effort to determine where group operations are represented in
power consumption traces.

To conduct an evaluation one can, for example, choose the group operations
of the third round of an exponentiation algorithm, and compare them with
the group operations of the fourth round. Rather than try to generate specific
test vectors, we acquire 1 × 104, or a sufficiently large number to conduct the
analysis below, power consumption/EM acquisitions where the exponent used
is randomly generated. Assuming a one-bit treatment of the exponent, a typical
evaluation would proceed as follows:

1. For a fixed bit value for the third bit and fourth bit of the exponent, say
0, in both cases, we take 1 × 103 traces, taken from the 1 × 104 power
consumption/EM acquisitions referred to above, where this is the case
and extract the power consumption/EM subtraces corresponding to the
operations in the third and fourth round. That is, for some trace O we
split the trace up into subtraces

O = {o1, o2, o3, ...on}

where oi, for 1 ≤ i ≤ n, corresponds to the i-th subtrace taken while the
i-th operation was being computed. For example, in an exponentiation
algorithm that treats an exponent bit-by-bit there will typically be two
operations per round of the algorithm.

2. Generate a mean subtrace ō by extracting the subtraces from all the ac-
quisitions and generating a mean trace.

5

3. Subtract the mean trace ō point-by-point from each subtrace giving

Ô = {o1 − ō, o2 − ō, o3 − ō, ..., on − ō}
= {ô1, ô2, ô3, ..., ôn} ,

where we define ôi = oi − ō for 1 ≤ i ≤ n.

4. For each trace, we take each subtrace representing each operation in the
third round, compute the pointwise difference with the subtraces repre-
senting each operation in the fourth round, producing difference traces.
If, for example, we assume the Montgomery Ladder [10, 11] is being used
there are two operations used per round, so {o5, o6} represent the third
round and {o7, o8} represent the fourth round.

5. Concatenate the difference traces produced from each trace to create a
combined difference of operation trace. Giving, in our example, a trace

∆ = {ô5 − ô7, ô5 − ô8, ô6 − ô7, ô6 − ô8} ,

where the subtraction occurs point-by-point.

6. Steps 2–5 are repeated with different traces to produce 1× 103 difference
traces.

7. Repeat the process with randomly selected traces, resulting in a second
set of 1× 103 difference traces.

8. Apply the t-test, as described above, to the two sets of difference traces.
That is, try to find evidence against the null hypothesis that the two sets
are the same.

As previously, to determine that there is no leakage, there should be no observed
t-statistic greater than 4.5. This test should be repeated with all the possible
combinations of the third and fourth bits of the exponent. That is, the bits
from the set {00, 01, 10, 11}.

Note that the algorithm outlined above assumes that an exponent is read bit-
by-bit, such as used in the Montgomery powering ladder [10, 11] or the binary
exponentiation algorithm. Some further modifications may be required for other
algorithms. For example, if we consider the 4-ary exponentiation algorithm [12],
each loop of the exponentiation algorithm will treat two bits of the exponent and
use a look-up table based on the value of these two bits. The above would then
need to be modified to determine if the multiplications used for two identical
sets of two bits are distinguishable from the multiplications used for random
sets of two bits.

In this test, we only consider the input of one operation being used in the
input of another operation. It has been shown in the literature that it is possible
to determine where the output of one operation has been used as the input to
another operation [13]. However, only one example of this technique exists on
a target that provides very clean acquisitions. It has not yet been shown that
such an attack is possible on any device with even a moderate amount of noise
in the acquisitions.

6

4 RSA

In this section we shall consider RSA computed as a single exponentiation that
does not use the Chinese remainder theorem. In the following, we assume that
the computation is the modular exponentiation of a message m, raised to the
power of the private exponent d modulo n, where {e = 216 + 1, n} is an RSA
public key and {d} is an RSA private key. Hence we are evaluating the security
of the operation:

s = md mod n

We also consider the RSA computed using the Chinese remainder theorem,
where the private key is {p, q, d mod p − 1, d mod q − 1, q−1 mod p} where
n = p q.

The tests required to evaluate an implementation of this operation are de-
tailed below. We shall assume that n is a k-bit integer, and p and q are k/2-bit
integers.

4.1 Theoretical Analysis

The choice of algorithm used to implement RSA can have a large impact on
the security of the resulting implementation [14]. As part of the evaluation,
one determines if any of the following values could have an impact on the side-
channel resistance of the implementation. That is, whether could they provoke
any behavior different to a randomly generated input.

1. 0

2. 1

3. 2

4. n− 1

5. n− 2

6. 2−k mod n (i.e. Montgomery form equal to 1 modulo n)

7. 2−k+1 mod n (i.e. Montgomery form equal to 2 modulo n)

8. 2− k
2 mod n (i.e. square of input has Montgomery form equal to 1 modulo n)

9. input whose Montgomery form is 2k−1 − 1 mod n

10. input congruent 1 mod p

11. input congruent 2 mod p

12. 2− k
2 mod p (i.e. Montgomery form equal to 1 modulo p)

13. 2− k
2
+1 mod p (i.e. Montgomery form equal to 2 modulo p)

14. 2− k
4 mod p (i.e. square of input has Montgomery form equal to 1 modulo p)

15. input whose Montgomery form is 2
k
2
−1 − 1 mod p

16. input congruent 1 mod q

17. input congruent 2 mod q

7

18. 2− k
2 mod q (i.e. Montgomery form equal to 1 modulo q)

19. 2− k
2
+1 mod q (i.e. Montgomery form equal to 2 modulo q)

20. 2− k
4 mod q (i.e. square of input has Montgomery form equal to 1 modulo q)

21. input whose Montgomery form is 2
k
2
−1 − 1 mod q

Ideally, one would test all of these inputs to determine how they affect the behavior
of a side-channel. This may not be possible because of the time required to take nu-
merous sets of acquisitions and is best done by analyzing the algorithms implemented.
The above list is not exhaustive and care needs to be taken to look for other special
cases that may arise in a specific implementation.

One example of the effect of a specifically chosen input is shown in Figure 2, which
shows the power consumption of a device during the generation of an RSA signature
with two different inputs. The upper traces shows the power consumption where the
input has a bit length similar to the modulus n. In the lower trace, the input is set to
2, which has a significant impact on the power consumption.

Figure 2: Two power consumption traces taken during the computation of an
RSA signature generation. The upper trace is with an input with the same bit
length as the exponent. The lower with the input set to 2.

4.2 Leakage Detection

An evaluation of the side-channel information available to an attacker is conducted by
determining whether a fixed input or private key can be distinguished from a random
input or private key, respectively.

The first test is to generate random private keys and compare the acquisitions
taken with those taken using a fixed private key, using the method described in Sec-
tion 3.4. No t-statistic greater than 4.5 should be visible treating traces representing
the beginning and end of the RSA operation. It is assumed that each key is blinded
and stored as it is loaded. Otherwise, one will see leakage where the key blinding takes
place.

8

We then treat the input in the same way. However, we wish to determine if there
is any leakage without getting false positives from the input directly affecting the
side-channel. We therefore generate inputs that will produce a fixed state after a
certain number of bits of the private exponent have been treated. Acquisitions are
taken and compared to those taken for random inputs, using the method described in
Section 2. To generate these inputs we generate an RSA key, and arbitrarily choose
some random value g < n which will be the state we will consider. We can then
generate pairs of inputs and private key exponents that will produce an intermediate
state g after a certain number of, say 16, bits of the private exponent have been treated
using Algorithm 1. To conduct a test where we wish to compare a fixed input with
a random input we instead compare a fixed state with a random state, for which we
generate a pairs of inputs and private exponents for each case. Note that the bits of
the exponent after the chosen state g is produced will be fixed so, for a fixed g, all
subsequent states should also be fixed in a näıve implementation.

Algorithm 1: Generating input/key pair for RSA leakage detection

Input: An RSA key pair {e, n} and {d}, state g, b the bit length of d, bit
length of random exponent bits `.

Output: m, d′

1 r ← 2 ;
2 while gcd(r, φ(n)) 6= 1 do

3 r
R←− {1, 3, 5, ..., 2` − 1} ;

4 end

5 r ← r + 2` ;

6 d′ ←
(
d ∧

(
2b−ell−1 − 1

))
+ 2b−`−1r ;

7 k ← r−1 mod φ(n) ;

8 m← gk mod n ;

9 return m, d′

If we consider RSA computed using the CRT, we can conduct a similar analysis but
we are able to generate pairs of inputs and private keys where the analysis described
above can be applied to both of the required exponentiations. That is, we can generate
inputs and private keys that will provide a fixed state after each exponentiation has
treated a given number of bits of each exponent. The algorithms for computing these
inputs is provided in Algorithm 2. One can then conduct a leakage detection test by
comparing traces acquired where the internal state is fixed compared to an input that
will produce a random state.

Both Algorithm 1 and Algorithms 2 assume that the exponent is being treated
left-to-right (i.e., most-significant bit to least-significant bit). If one wishes to test a
right-to-left implementation, it is straightforward to modify these algorithms to insert
random values in the least significant bits of exponents.

We note that the inputs generated to conduct these tests will not generate a
verifiable signature, which may be problematic if the implementation being analyzed
contains countermeasures to prevent fault attacks. If countermeasures to fault attacks
are present, a strategy for conducting an analysis will need to be implemented. For
example, a device may need to be reset if it mutes itself after an attack is detected.

9

Algorithm 2: Generating input/key pair for RSA-CRT leakage detection

Input: An RSA key pair {e, n} and {p, q, dp, dq, iq}, state g, bp and bq
the bit length of dp and dq respectively, bit length of random
exponent bits `.

Output: m, {p, q, d′p, d′q, iq}

1 rp ← 2 ;
2 while gcd(rp, φ(p)) 6= 1 do

3 rp
R←− {1, 3, 5, ..., 2` − 1} ;

4 end

5 rp ← rp + 2` ;
6 rq ← 2 ;
7 while gcd(rq, φ(q)) 6= 1 do

8 rq
R←− {1, 3, 5, ..., 2` − 1} ;

9 end

10 rq ← rq + 2` ;

11 d′p ←
(
dp ∧

(
2bp−ell−1 − 1

))
+ 2bp−`−1rp ;

12 d′q ←
(
dq ∧

(
2bq−ell−1 − 1

))
+ 2bq−`−1rp ;

13 kp ← r−1p mod φ(p) ;

14 kq ← r−1q mod φ(q) ;

15 mp ← gkp mod p ;

16 mq ← gkq mod q ;
17 m← CRT(mp mod p,mq mod q) ;

18 return m, {p, q, d′p, d′q, iq}

4.3 Collision Attacks

A collision attack applied to the implementation of exponentiation algorithms used in
RSA can be applied as described in Section 3.5.

5 Elliptic Curve-based Algorithms

In this section, we shall consider elliptic curve-based algorithms, which use the elliptic
curve E over finite field Fq consists of points (x, y), with x, y in Fq, that satisfy the
short Weierstraß equation

E : y2 = x3 + a x+ b

with a = −3 and b ∈ Fq, and the point at infinity denoted OOO. The set E(Fq) is defined
as

E(Fq) = {(x, y) ∈ E |x, y ∈ Fq} ∪ {OOO} ,
where E(Fq) forms an Abelian group under the chord-and-tangent rule and OOO is the
identity element. The scalar multiplication of a given point is a group exponentiation
in E that uses elliptic curve arithmetic, i.e. [k]PPP for some integer k < |E|.

In an implementation of ECDSA, we take base point PPP = (x, y) for an elliptic
curve E over Fp, with private key d and a hash function h. To sign a message m, the

10

signer picks a random k < |E| and computes

r
x←− [k]PPP and s← k−1 (h(m) + d r) mod |E| .

We denote the extraction of the x-coordinate of a point and its assignment to a variable
by

x←−. The signature ofm is the pair: {r, s}. We note that the security of this signature
scheme relies on the random value k remaining unknown to an attacker.

In an implementation of ECDH, which also uses an elliptic curve E over finite field
Fq consists of points (x, y), with x, y in Fq, that satisfy a short Weierstraß equation.

If we consider two people with public keys (curve points) Q1Q1Q1 and Q2Q2Q2 with corre-
sponding private keys d1 and d2 one party computes

RRR = [d1]Q2Q2Q2

and the other computes
RRR = [d2]Q1Q1Q1

where the point RRR is the same in both cases. While these keys are often ephemeral
one needs to evaluate the case, where private keys are fixed for some use cases.

In evaluating implementations of ECDSA and ECDH the tests are somewhat sim-
ilar. We highlight the differences below.

5.1 Theoretical Analysis

A theoretical analysis of the elliptic curve-based algorithm will look at how the choice
of algorithms affects the side-channel resistance of the implementation. Specifically,

1. The algorithm used to invert the nonce, i.e., compute k−1. If, for example, the
extended GCD is used, a timing analysis will need to be conducted to ensure
that the time required to compute the extended GCD is not dependent on the
nonce k.

2. The group exponentiation algorithm used in ECDSA or ECDGH should, as
much as possible, be determined to enable further testing. In particular, it
is important to ensure that the algorithm is highly regular, i.e., the sequence
of operations is not dependent on the nonce k (ECDSA) or the private key
(ECDH).

5.2 Leakage Detection

An evaluation of the side-channel information available to an attacker is conducted
by determining whether a known input or private key can be distinguished from a
random input or private key, respectively.

To test the implementation of a group exponentiation algorithm the strategy is
different depending on the algorithm.

5.2.1 ECDSA

The first test is to generate random private keys and compare the acquisitions taken
with those taken using a fixed private key, using the method described in Section 3.4.
To conduct this test one can take acquisitions during the signature generation at the
end of the ECDSA computation, and the nonce can be random in all cases. No t-
statistic greater that 4.5 should be visible treating traces representing the beginning

11

and end of the ECDSA operation. It is assumed that each key is blinded and stored
as it is loaded. Otherwise, one will see leakage where the key blinding takes place.

We can then treat the other known input h(m) in the same way. However, this
values will be unblinded and, if there is any visible leakage, we may have false positives.
We therefore generate inputs that will produce a fixed state after a given operation.
We note that to conduct these tests one does need to be able to fix, or predict, the
nonces that will be used during the acquisitions.

To conduct a test where we wish to compare a fixed state with a random state, for
which we generate a pairs of nonces and inputs (we assume the private key is fixed).
We generate inputs for the fixed state by generating some arbitrary value g and, for
each known nonce, we compute a value for h(m) that will give us g. One can then
conduct a leakage detection test by comparing traces acquired where the internal state
is fixed compared to an input that will produce a random state.

Algorithm 3: Generating input/nonce pairs for ECDSA leakage detection

Input: An ECDSA private key d, point PPP ∈ E state g and the nonce k.
Output: h(m) paired with k.

1 r
x←− [k]PPP ;

2 m← g − d r mod |E| ;

3 return m

5.2.2 ECDH

The only test we need to conduct on the ECDH primitive is to generate random private
keys and compare the acquisitions taken with those taken using a fixed private key,
using the method described in Section 3.4. No t-statistic greater than 4.5 should be
visible treating traces representing the beginning and end of the ECDH operation. It
is assumed that each key is blinded and stored as it is loaded. Otherwise, one will see
leakage where the key blinding takes place.

5.3 Collision Attacks

A collision attack applied to the implementation of the scalar multiplications can be
applied to the ECDSA or ECDH in much the same way as described in Section 3.5.
However, one cannot compare subtraces in the same way.

Using our example from Section 3.5, we can split an acquisition into subtraces

O = {o1, o2, o3, ...on}

where oi, for 1 ≤ i ≤ n, correspond to the i-th subtrace taken while the i-th operation
was being computed. If we use the double-and-add-always algorithm as an example
then, O will be a series of addition and doubling operations

T = {δ1, α1, δ2, α2 . . . , δn, αn} ,

where a doubling operation δi and addition αi for i ∈ {1, . . . , n}.

12

We can compute mean traces for addition ᾱ and doubling operations δ̄ using an
entire set of acquisitions and subtract them from each subtrace, as previously, giving

T̄ = {δ1 − δ̄, α1 − ᾱ, δ2 − δ̄, α2 − ᾱ, . . . , δn − δ̄, αn − ᾱ} ,

= {δ̂1, α̂1, δ̂2, α̂2, . . . , δ̂n, α̂n}

where we define δ̂i = δi − δ̄ and α̂i = α− ᾱ for 1 ≤ i ≤ n.
As, in our example in Section 3.5, we wish to compare all the operations in the

third loop of the exponentiation algorithm with those in the fourth loop. Then we
have comparisons

{δ̂3 − δ̂4, α̂3 − α̂4, δ̂3 − α̂4, α̂3 − δ̂4} .
The same operations can be compared using the method outlined in Section 3.5. How-
ever, when comparing an addition and a doubling operation we can note that these
operations typically take different times to compute so one cannot subtract one sub-
trace from another. However, we can compare the field multiplications, each of which
will take a fixed time to compute, for all operations.

In the trace T the doubling operations δi and additions αi will have f and h
field multiplications, respectively, where the values of f and h depend on the choice of
algorithm and how points are represented. From each subtrace one can extract further
subtraces representing the field multiplications.

δ̂i = {di,1, . . . , di,f}
α̂i = {ai,1, . . . , ai,h}

for i ∈ {1, . . . , n}.
One can then compare, for example, all of the field multiplications in a doubling

operation with all of those in the following addition, giving an f × h element set

Ci = {di,1−ai,1, . . . , di,f −ai,1, di,1−ai,2, . . . , di,f −ai,2, . . . , di,1−ai,h, . . . , di,f −ai,h}

for i ∈ {1, . . . , n}. Each Ci can be stored as a single trace and processed in the same
way as a t-test where the subtraces are the same length. That is, we generate a set
where the exponent bits are fixed and another where they are random, as described in
Section 3.5 and compare the traces created by the above process. Again, to determine
that there is no leakage, there should be no observe t-statistic greater than 4.5.

6 Conclusion

In this paper we describe how one can test implementations of public-key crypto-
graphic algorithms using Test Vector Leakage Assessment (TVLA) initially proposed
by Goodwill et al. [6]. Given the numerous choices that are made when implementing
public-key cryptographic algorithms, the above can only act a guide to a side-channel
evaluation and will need to be modified for each case.

References

[1] Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Koblitz, N., ed.: CRYPTO ’96. Volume 1109 of LNCS.,
Springer (1996) 104–113

13

[2] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In Wiener, M.J., ed.:
CRYPTO ’99. Volume 1666 of LNCS., Springer (1999) 388–397

[3] Quisquater, J.J., Samyde, D.: Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In Attali, I., Jensen, T.P., eds.: E-smart 2001.
Volume 2140 of LNCS., Springer (2001) 200–210

[4] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In Koç, C.K., Naccache, D., Paar, C., eds.: CHES 2001. Volume 2162 of LNCS.,
Springer (2001) 251–261

[5] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In Joye, M., Quisquater, J.J., eds.: CHES 2004. Volume 3156 of LNCS.,
Springer (2004) 16–29

[6] Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation (September 2011)

[7] Schneider, T., Moradi, A.: Leakage assessment methodology—a clear roadmap
for side-channel evaluations. In Güneysu, T., Handschuh:, H., eds.: CHES 2015.
Volume 9293 of LNCS., Springer (2015) 495–513

[8] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks — Revealing the
Secrets of Smart Cards. Springer (2007)

[9] Mizuki, T., Hayashi, Y.: AES cipher keys suitable for efficient side-channel
vulnerability evaluation. Cryptology ePrint Archive, Report 2014/770

[10] Montgomery, P.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177) (1987) 243–264

[11] Joye, M., Yen, S.M.: The Montgomery powering ladder. In Jr., B.S.K., Ç. K. Koç,
Paar, C., eds.: CHES 2002. Volume 2523 of LNCS., Springer (2003) 291–302

[12] Knuth, D.E.: The Art of Computer Programming. 2nd edn. Volume 2 / Seminu-
merical Algorithms. Addison-Wesley (1981)

[13] Hanley, N., Kim, H., Tunstall, M.: Exploiting collisions in addition chain-based
exponentiation algorithms using a single trace. In Nyberg, K., ed.: CT-RSA 2015.
Volume 9048 of LNCS., Springer (2015) 431–448

[14] Jaffe, J., Rohatgi, P., Witteman, M.: Efficient side-channel testing for public key
algortihms: RSA case study (September 2011)

14

