
Single-Key to Multi-Key Functional Encryption with Polynomial
Loss?

Sanjam Garg?? and Akshayaram Srinivasan? ? ?

University of California, Berkeley

Abstract. Functional encryption (FE) enables fine-grained access to encrypted data. In a FE scheme,
the holder of a secret key FSKf (associated with a function f) and a ciphertext c (encrypting plaintext
x) can learn f(x) but nothing more.
An important parameter in the security model for FE is the number of secret keys that adversary has
access to. In this work, we give a transformation from a FE scheme for which the adversary gets access
to a single secret key (with ciphertext size sub-linear in the circuit for which this secret key is issued)
to one that is secure even if adversary gets access to an unbounded number of secret keys. A novel
feature of our transformation is that its security proof incurs only a polynomial loss.

1 Introduction

Functional encryption [SW05,BSW11,O’N10] generalizes the traditional notion of encryption by
providing recipients fine-grained access to data. In a functional encryption (FE) system, holder
of the master secret key MSK can derive secret key FSKf for a circuit f . Given a ciphertext c
(encrypting x) and the secret key FSKf , one can learn f(x) but nothing else about x is leaked.
Functional encryption emerged as a generalization of several other cryptographic primitives like
identity based encryption [Sha84,BF01,Coc01], attribute-based encryption [GPSW06,GVW13] and
predicate encryption [KSW08,GVW15].

Single-Key vs Multi-Key. Results by Sahai and Seyalioglu [SS10] and Goldwasser, Kalai, Popa,
Vaikuntanathan, and Zeldovich [GKP+13] provided FE scheme supporting all of P/poly circuits
(based on standard assumptions). However, these constructions provide security only when the
adversary is limited to obtaining a single functional secret key.1 We call such a scheme as a single-
key FE scheme. On the other hand, Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13]
construct an FE scheme for P/poly circuits and supporting security even when the adversary has
access to an unbounded (polynomial) number of functional secret keys. We call such as scheme as
a multi-key FE scheme. However, the work of Garg et al. assumes indistinguishability obfuscation
(iO) [GGH+13].

A single-key FE scheme is said to have weakly compact ciphertexts if the size of the encryption
circuit grows sub-linearly with the circuit for which secret key is given out. Ananth and Jain [AJ15]
and Bitansky and Vaikuntanathan [BV15] showed that using single-key FE with weakly compact

? This paper was jointly presented with the paper titled “Compactness vs Collusion Resistance in Functional En-
cryption” by Baiyu Li and Daniele Micciancio. Research supported in part from a DARPA/ARL SAFEWARE
Award, AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397 and a research grant from the Okawa Foun-
dation. The views expressed are those of the author and do not reflect the official policy or position of the funding
agencies.

?? Email: sanjamg@berkeley.edu
? ? ? Email: akshayaram@berkeley.edu

1 These results could be generalized to support an a priori bounded number of functional secret keys.

ciphertexts one can construct iO which can then be used to construct multi-key FE [GGH+13],
[Wat15]. However, this transformation incurs an exponential loss in security reduction. We ask:

Can we realize multi-key FE from single-key FE with only a polynomial loss in the security
reduction?

1.1 Our Results

In this work, we answer the above question positively. More specifically, we give a generic transfor-
mation from single-key, compact FE to multi-key FE. Below, we highlight two additional features
of our transformation:

1. Our transformation works even if the single key scheme we start with is weakly selective secure.
The selective notion of security considered in literature restricts the adversary to commit to
the challenge messages before seeing the public parameters but still allows functional secret key
queries to be adaptively made (after seeing the challenge ciphertext and the public parameters).
The weakly selective security (denoted by Sel∗) restricts the adversary to commit to her challenge
messages as well as make all the functional secret key queries before seeing the public parameters.
Nonetheless, the multi-key scheme that we obtain is selectively secure.

2. For our transformation to work it is sufficient if the single-key scheme has weakly compact
ciphertexts. However, the multi-key scheme resulting from our transformation has fully compact
ciphertexts (independent of the circuit size).

Comparison with Concurrent and Independent Work. In a concurrent and independent
work, Li and Micciancio [LM16] obtain a result similar to our, but using very different techniques.
Their construction is based on two building blocks: SUM and PRODUCT constructions. The SUM
and PRODUCT constructions take two FE schemes as input with security when q1 and q2 secret
keys are given to the adversary, respectively. These constructions output a FE scheme with security
when q1 + q2 and q1 · q2 secret keys are provided to the adversary, respectively. Using these two
building blocks, they present two constructions of multi-key FE with different security and effi-
ciency tradeoffs. A nice feature of their result is that their construction just uses length doubling
pseudorandom generator in addition to FE. However, their resultant multi-key FE scheme inherits
the security and compactness property of the single-key scheme they start with. In particular, if
the starting scheme in their transformation is weakly selectively secure (resp., weakly compact)
then the resulting multi-key scheme is also weakly selectively secure (resp., weakly compact). On
the other hand, our transformation always yields a selectively secure and fully compact scheme.

1.2 Obtaining Compactness and Adaptivity in FE

Using the transformation of Ananth, Brakerski, Segev and Vaikuntanathan [ABSV15] we can boost
the security of our transformation from selectively to adaptive (while maintaining a polynomial
loss). However, we note this transformation does not preserve compactness. In particular, even if
the input to this transformation is a fully compact scheme, the resulting FE scheme is non-compact
(where the ciphertext size can depend arbitrarily on the circuit size). In contrast, note that Ananth
and Sahai [AS16] do provide an adaptively secure fully compact FE scheme based on iO. Whether
adaptive security with full compactness can be obtained from poly-hard FE is an interesting open
problem. Partial progress on this question can be obtained using Hemenway et al. [HJO+15] who

2

note that using the transformation of Ananth and Sahai [AS16] (starting with a fully compact
selective FE, something that our transformation provides) along with adaptively secure garbled
circuits [BHR12,HJO+15] yields an adaptively secure FE scheme whose ciphertext size grows with
the on-line complexity of garbled circuits. The state of the art construction of adaptively secure
garbled circuits [HJO+15] achieves an online-complexity that grows with the width of the circuit
to be garbled. Hence, this yields a FE scheme with width compact ciphertexts (WidC); for which the
size of the ciphertext grows with the width of circuits for which secret-keys are given out. We note
that Ananth, Jain and Sahai [AJS15] and Bitansky and Vaikuntanthan [BV15] provide techniques
for obtaining compactness in FE schemes. However, these results are limited to the selective security
setting. Figure 1 shows known relationship between various notions of FE and the new relationships
resulting from this work.

(1,Sel∗,WC)

(Unb, Sel,FC) (Unb,Sel,NC)

(Unb,Adp,NC)(Unb,Adp,WidC)(Unb,Adp,FC)

iO

Our Work

[AJS15,BV15]

[ABSV15][AS16,HJO+15][AS16]

[BV15,AJ15], exponential loss

Fig. 1: Relationships between different notions of IND-FE parameterized by (xx, yy, zz). xx ∈
{1,Unb} denotes the number of functional secret keys. yy ∈ {Sel∗,Sel,Adp} denotes weakly selec-
tive, selective or adaptive security. zz ∈ {NC,WC,FC,WidC} denotes the efficiency of the system:
NC denotes non-compact ciphertexts, WC denotes weakly compact ciphertexts, FC denotes fully-
compact ciphertexts and WidC denotes width-compact ciphertexts. Non-trivial relationships are
given by solid arrows, and trivial relationships are given by dashed arrows.

2 Our Techniques

We now give an overview of the techniques used in constructing multi-key, selective FE from single-
key, weakly selective FE. We first give a description of a multi-key, selective FE scheme based on
indistinguishability obfuscation (iO). Though this result is not new, our construction is arguably
different than the schemes of Garg et al. [GGH+13] and Waters [Wat15] and makes use of garbled
circuits [Yao86]. Later, using techniques from works of Garg et al. [GPS15,GPSZ16] we obtain a
FE scheme whose security can be based on polynomially hard single-key, weakly selective FE. The
main novelty lies in designing a FE scheme from iO that is “amenable” to the techniques of Garg
et al. [GPS15,GPSZ16] to avoid exponential loss in security.

iO based construction. Recall that a circuit garbling scheme (or randomized encoding in gen-
eral) allows to encode an input x and a circuit C to obtain garbled input labels x̃ and garbled
circuit C̃ respectively. Informally, the security of garbled circuits ensures that given x̃ and C̃, it is
possible to learn C(x) but nothing else. An additional feature of Yao’s garbled circuits is that it is
possible to encode the input x and the circuit C separately as long as the two encoding schemes
share the same random tape.

3

At a high level, the ciphertext of our FE scheme corresponds to garbled input labels and the
functional secret key corresponds to the garbled circuit. Intuitively, from the security of garbled
circuits we can deduce that given the FE ciphertext c (encrypting x) and the functional secret key
FSKf it is possible to learn f(x) but nothing else. But as mentioned before, to enable encoding
the input x and the circuit C separately, the random coins used must be correlated in a certain
way. The main crux of the construction is in achieving this correlation using indistinguishability
obfuscation (iO).

The correlation between the randomness used for garbling the input labels and the circuit is
achieved by deriving the coins pseudorandomly using a PRF key S. This PRF key S also serves as
the master secret key of our FE scheme. We now give the details of how the public key and the
functional secret keys are derived from the master secret key S.

The public key of our FE scheme is an obfuscation of a program that takes as input some
randomness r and outputs a “token” t = PRG(r) where PRG is a length doubling pseudorandom
generator and a key K = PRF(S, t). The key K is used for deriving the input labels for the garbled
circuit scheme say, that the two labels of the i-th input wire are given by {PRF(K, i‖b)}b∈{0,1}. The
FE ciphertext encrypting a message m is given by the token t and the input labels corresponding
to m i.e (t, {PRF(K, i‖mi)}i∈[n]). The description of the program implementing the public key is
given in Figure 2.

Input: r
Constants: PRF key S

1. Compute t = PRG(r).
2. Output (t,K = PRF(S, t))

Fig. 2: Program implementing the Public Key

The functional secret key for a circuit Cf is an obfuscation of another program that takes as

input the token t and first derives the key K = PRF(S, t). It then outputs a garbled circuit C̃f
where the garbled input labels are derived using key K. In particular, the input labels “encrypted”
in the garbled evaluation table of C̃f are given by {PRF(K, i‖b)}i∈[n],b∈{0,1}. The description of the
program implementing the functional secret key is given in Figure 3. The FE decryption corresponds
to evaluation of this garbled circuit using the input labels given in the ciphertext. We now argue
correctness and security.

The correctness of the above construction follows from having the “correct” input labels en-
crypted in the garbled evaluation tables in C̃f . It remains to show that the security holds when the
obfuscation is instantiated with iO. To achieve this, we use the punctured programming approach
of Sahai and Waters [SW14].

We now give a high level overview of the security argument. The goal is to change from a hybrid
where the adversary is given a challenge ciphertext encrypting message mb for some b ∈ {0, 1} to
a hybrid where she is given a challenge ciphertext independent of the bit b. This is accomplished
via a hybrid argument. In the first hybrid, we change the token t in the challenge ciphertext to an
uniformly chosen random string t∗ relying on the pseudorandomness property of the PRG. Next,

4

Input: Token t
Constants: PRF key S, PRF key Sf , Circuit Cf

1. Compute K = PRF(S, t).
2. Compute Li,bi = PRF(K, i‖bi) for all i ∈ [n] and bi ∈ {0, 1}.
3. Output the garbled circuit C̃f with {Li,bi}i∈[n],bi∈{0,1} as the input labels and using PRF(Sf , t) as the random

coins.

Fig. 3: Program implementing the Functional Secret Key for a circuit Cf

we change the public key to be an obfuscation of a program that has the PRF key S punctured at
t∗ hardwired instead of S. The rest of the program is same as described in Figure 2. Intuitively, the
indistinguishability follows from iO security as the PRG has sparse images. In the next hybrid, the
functional secret keys are generated as described in Figure 4 where C̃∗f hardwired in the program

is exactly equal to garbled circuit C̃f with {PRF(K, i‖bi)}i∈[n],bi∈{0,1} (where K = PRF(S, t∗)) as
the input labels and generated using PRF(Sf , t

∗) as the random coins. The indistinguishability of
the two hybrids follows from iO security as the two programs described in Figure 3 and Figure 4
are functionally equivalent. Now, relying on the pseudorandomness at punctured point property of
the PRF we change the input labels in the challenge ciphertext as well as the random coins used
for generating C̃∗f to uniformly chosen random strings. We can now change the challenge ciphertext
to be independent of the bit b by relying on the security of garbled circuit. To be more precise,
we change the input labels in the challenge ciphertext and C̃∗f to be output of the garbled circuit
simulator. Notice that we can still use the security of garbled circuits even if several garbled circuits
share the same input labels. Thus, the above construction achieves security against unbounded
collusions.

Input: Token t
Constants: t∗, PRF key S{t∗}, PRF key Sf{t∗}, Circuit Cf , C̃∗f

– If t 6= t∗

1. Compute K = PRF(S{t∗}, t).
2. Compute Li,bi = PRF(K, i‖bi) for all i ∈ [n] and bi ∈ {0, 1}.
3. Output the garbled circuit C̃f with {Li,bi}i∈[n],bi∈{0,1} as the input labels and using PRF(Sf{t∗}, t) as

the random coins.
– Else, output C̃∗f .

Fig. 4: Program implementing the Functional Secret Key for a circuit Cf in the Security Proof

Construction from poly hard FE. The main idea behind our construction from polynomially
hard, single-key, selectively secure FE is to simulate the effect of the obfuscation in the above
construction using FE. To give a better insight into our construction we would first recall the
FE to iO transformation of Ananth and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15].

5

We note that this reduction suffers an exponential loss in security and we will be modifying this
construction to achieve our goal of relying only on polynomially hard FE scheme. For this step,
we rely on the techniques built by Garg et al. in [GPS15,GPSZ16] to avoid the exponential loss in
security reduction. Parts of this section are adapted from [GPS15,GPSZ16].

FE to iO transformation. We describe a modification of iO construction from FE of Bitansky
and Vaikuntanathan [BV15] (Ananth and Jain [AJ15] take a slightly different route to achieve the
same result). We note that the modified construction is not sufficient to obtain iO security but is
“good enough” for our purposes.

The “obfuscation” of a circuit C : {0, 1}κ → {0, 1}κ consists of the following components: a FE
ciphertext CTφ and κ+ 1 functional secret keys FSK1, · · · ,FSKκ+1 generated using independently
sampled master secret keys MSK1, · · · ,MSKκ+1. CTφ encrypts the empty string φ under the public
key PK1. The first κ functional secret keys FSK1, · · · ,FSKκ implement the bit-extension function-
ality. To be more precise, FSKi implements the function Fi that takes as input an (i− 1)-bit string
x and outputs two ciphertexts CTx‖0 and CTx‖1 encrypting x‖0 and x‖1 respectively under PKi+1.
The final function secret key FSKκ+1 implements the circuit C.

Let us discuss how to evaluate the “obfuscated” circuit on an input x = x1 · · ·xκ where xi ∈
{0, 1}. The first step is to decrypt CTφ using FSK1 to obtain CT0,CT1. Depending on x1 we choose
either the left encryption (CT0) or the right encryption (CT1) and recursively decrypt the chosen
ciphertext under FSK2 and so on. After κ + 1 FE decryptions, we obtain the output of the circuit
on input x1 · · ·xκ.

An alternate way to view this evaluation (which would be useful for this work) is as a traversal
along a path from the root to a leaf node of a complete binary tree. The binary tree has the empty
string at the root and traversal chooses either the left or the right child depending on the bits
x1, x2, · · · , xκ i.e at level i, bit xi is used to determine whether to go left or right. We would refer
to this binary tree as the evaluation binary tree.

Our Construction. Recall that our main idea is to simulate the effect of obfuscation by appro-
priately modifying the above FE to iO transformation. We first explain the modifications to the
“obfuscation” computing the master public key.

Let Cpk[S] (having S hardwired) be the circuit that implements the public key of our iO-based
construction. Recall that this circuit takes as input some randomness r, expands it using the PRG
to obtain the token t and outputs (t,PRF(S, t)). The goal is to produce an “obfuscation” of this
circuit using FE to iO transformation explained above. Recall that the FE to iO transformation has
κ+ 1 functional secret keys FSK1, · · · ,FSKκ+1 and an initial ciphertext CTφ encrypting the empty
string. The final functional secret key FSKκ+1 implements the circuit Cpk[S]. The first observation
is that we cannot naively hardwire the PRF key in the circuit Cpk. This is because to achieve some
“meaningful” mechanisms of hiding the PRF key (via puncturing) we need to go via the iO route
that incurs an exponential loss in security. Therefore, the first modification is to change Cpk such
that it takes the PRF key S as input instead of having it hardwired. We now include the PRF key
S in the initial ciphertext CTφ i.e CTφ is now an encryption of (φ, S). We run into the following
problem: the initial ciphertext now contains the PRF key S whereas we actually need S to be given
as input to the final circuit Cpk that is implemented in FSKκ+1. Therefore, we need a mechanism
to make the PRF key S “available” to the final functional secret key FSKκ+1 so that it can compute
PRF evaluation on the token. In other words, we need to “propagate” the PRF key S from the root
to every leaf.

6

To propagate the PRF key, we make use of the “puncturing along the path” idea of Garg, Pandey
and Srinivasan [GPS15]. This idea uses a primitive called as prefix puncturable PRF introduced in
[GPS15]. Informally, prefix puncturable PRF allows to puncture the PRF key S at a specific prefix
z to obtain Sz. The correctness guarantee is that given Sz, one can evaluate the PRF on any input
x such that z is a prefix of x. The security guarantee is that as long as any adversary does not
get access to Sz where z is a prefix of x, PRF(S, x) is indistinguishable from random string. An
additional feature is that prefix puncturing can be done recursively i.e given Sz one can obtain Sz‖0
and Sz‖1. Additionally, if we need to puncture the PRF key at an input x it is sufficient to change
the distribution of FE ciphertexts only along the root to the leaf x in the evaluation binary tree.
This gives us hope of basing security on polynomially hard FE. As a result, if we were to use this
primitive, the problem reduces to the following: design a mechanism wherein the PRF key S prefix
punctured at token t is available at the final functional secret key FSKκ+1 as this can then be used
to derive PRF(S, t).

Recall that the circuit Cpk generates the token t as PRG(r) by taking r as input. If we naively
try to combine this circuit with the “puncturing along the way” trick of Garg et al., we obtain Sr
at the final functional secret key. It is not clear if there is a way of obtaining SPRG(r) from Sr. Garg
et al. [GPSZ16] faced a similar challenge in designing the sampler for trapdoor permutation and
fortunately the solution they provide is applicable to our setting. The solution given in their work
is to consider a different token generation mechanism. To be more precise, instead of generating the
token as an output of a PRG on the input randomness r, the token now corresponds to a public key
of a semantically secure encryption scheme. To give more details, the circuit Cpk now takes as input
P which is a public key that also functions as the token. The circuit now computes PRF(S, P) and
outputs a public key encryption of PRF(S, P) using P as the public key.2 We combine this circuit
with the “puncturing along the way” technique of Garg et al. to obtain the “obfuscation” of our
public key.

The functional secret key for a function Cf (denoted by FSKf) is constructed similarly to that
of the public key. Recall that the functional secret key takes as input the token t (which is now
given by the public key P) and computes K = PRF(S, t). It then uses the key K to derive the input
garbled labels and outputs a garbled circuit C̃f . FSKf also implements the “puncturing along the
way” trick of Garg et al. to obtain SP (which is the PRF key prefix punctured at P) which is used
by the final circuit to derive the garbled input labels.

Proof Technique: “Tunneling.” We now briefly explain the main proof technique called as
the “tunneling” technique which is adapted from Garg et al.’s works [GPS15,GPSZ16]. Recall that
the proof of our iO based construction relies on the punctured programming approach of Sahai
and Waters [SW14]. We also follow a similar proof strategy. Let us explain how to “puncture” the
master public key on the token P . At a high level, if we have punctured the PRF key at P then
relying on the security guarantee of prefix punctured PRF to replace PRF(S, P) with a random
string.

Recall that puncturing the PRF key S at a string P involves “removing” Sz for every z such that
z is a strict prefix of P from the “obfuscation.” To get better intuition on how the puncturing works
it would be helpful to view the “obfuscation” in terms of the evaluation binary tree. As mentioned
before, the crucial observation that helps us to base security on polynomially hard FE is that Sz
where z is a prefix of P occurs only along the path from the root to the leaf node P in this tree.

2 Notice that if we know the secret key corresponding to the public key P , then we can recover PRF(S, P) which
can then be used to derive the input garbled labels.

7

Hence, it is sufficient to change the distribution of the FE ciphertexts only along this path in such
a manner that they don’t contain Sz. To implement this change, we rely on the “Hidden trapdoor
mechanism” (also called as the Trojan method) of Ananth et al. in [ABSV15]. To give more details,
every functional secret key FSKi implements a function Fi that has two “threads” of operation. In
thread-1 or the normal mode of operation, it performs the bit-extension on input x and the prefix
puncturing on input Sx. In thread-2 or the trapdoor mode, it does not perform any computation
on the input (x, Sx) and instead outputs some fixed value that is hardwired. We change the FE
ciphertexts in such a way that the trapdoor thread is invoked in every functional secret key when
the “obfuscation” is run on input P . Metaphorically, we create a “tunnel” (i.e. a path from the root
to a leaf where the trapdoor mode of operation is invoked in every intermediate node) from the root
to the leaf labeled P in the complete binary tree corresponding to the obfuscation. Additionally,
we change the FE ciphertexts along the path from root to leaf P such that they do not contain
any prefix punctured keys. A consequence of our “tunneling” is that along the way we would have
removed Sz for every z which is a strict prefix of P from the “obfuscation.”

3 Preliminaries

λ denotes the security parameter. A function µ(·) : N → R+ is said to be negligible if for all
polynomials poly(·), µ(λ) < 1

poly(λ) for large enough λ. For a probabilistic algorithm A, we denote

A(x; r) to be the output of A on input x with the content of the random tape being r. We will omit
r when it is implicit from the context. We denote y ← A(x) as the process of sampling y from the
output distribution of A(x) with a uniform random tape. For a finite set S, we denote x← S as the
process of sampling x uniformly from the set S. We model non-uniform adversaries A = {Aλ} as
circuits such that for all λ, Aλ is of size p(λ) where p(·) is a polynomial. We will drop the subscript
λ from the adversary’s description when it is clear from the context. We will also assume that
all algorithms are given the unary representation of security parameter 1λ as input and will not
mention this explicitly when it is clear from the context. We will use PPT to denote Probabilistic
Polynomial Time algorithm. We denote [λ] to be the set {1, · · · , λ}. We will use negl(·) to denote
an unspecified negligible function and poly(·) to denote an unspecified polynomial. We assume
without loss of generality that all cryptographic randomized algorithms use λ-bits of randomness.
If the algorithm needs more than λ-bit of randomness it can extend to arbitrary polynomial stretch
using a pseudorandom generator (PRG).

A binary string x ∈ {0, 1}λ is represented as x1 · · ·xλ. x1 is the most significant (or the highest
order bit) and xλ is the least significant (or the lowest order bit). The i-bit prefix x1 · · ·xi of the
binary string x is denoted by x[i]. We use x‖y to denote concatenation of binary strings x and y.
We say that a binary string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such
that x = y‖z.

Puncturable pseudorandom Function. We recall the notion of puncturable pseudorandom
function from [SW14]. The construction of pseudorandom function given in [GGM86] satisfies the
following definition [BW13,KPTZ13,BGI14].

Definition 1. A puncturable pseudorandom function PRF is a tuple of PPT algorithms (KeyGenPRF,
PRF,Punc) with the following properties:

– Efficiently Computable: For all λ and for all S ← KeyGenPRF(1λ), PRFS : {0, 1}poly(λ) →
{0, 1}λ is polynomial time computable.

8

– Functionality is preserved under puncturing: For all λ, for all y ∈ {0, 1}λ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF(1λ) and S{y} ← Punc(S, y).

– Pseudorandomness at punctured points: For all λ, for all y ∈ {0, 1}λ, and for all poly
sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uλ, S{y}) = 1]| ≤ negl(λ)

where S ← KeyGenPRF(1λ), S{y} ← Punc(S, y) and Uλ denotes the uniform distribution over
{0, 1}λ.

Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a tuple of algo-
rithms (SK.KeyGen,SK.Enc,SK.Dec) with the following syntax:

– SK.KeyGen(1λ) : Takes as input an unary encoding of the security parameter λ and outputs a
symmetric key SK.

– SK.EncSK(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the symmetric key SK.

– SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all λ and for all messages m ∈ {0, 1}∗, Pr[SK.DecSK(C) =
m] = 1 where SK ← SK.KeyGen(1λ) and C ← SK.EncSK(m).

Definition 2. For all λ and for all polysized adversaries A,∣∣Pr[Expt1λ,0,A = 1]− Pr[Expt1λ,1,A = 1]
∣∣ ≤ negl(λ)

where Expt1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0 and m1 such that
|m0| = |m1| for all i ∈ [n].

– The challenger samples SK ← SK.KeyGen(1λ) and generates the challenge ciphertext C where
C ← SK.EncSK(mb). It then sends C to A.

– Output is b′ which is the output of A.

Remark 1. We will denote range of a secret key FSK (denoted by Rangen(SK)) to be {SK.Enc(SK, x)}x∈{0,1}n
for a specific n. We will require that for any two secret keys SK1, SK2 where SK1 6= SK2 we have
Rangen(SK1) ∩ Rangen(SK2) = φ with overwhelming probability. We will also require that the
existence of an efficient procedure that checks if a given ciphertext c belongs to Rangen(SK) for
a particular secret key SK. We call such a scheme to be symmetric key encryption with disjoint
range. We note that symmetric key encryption with disjoint ranges can be obtained from one-way
functions [LP09].

9

Public Key Encryption. A public-key Encryption scheme PKE is a tuple of algorithms (PK.KeyGen,
PK.Enc,PK.Dec) with the following syntax:

– PK.KeyGen(1λ) : Takes as input an unary encoding of the security parameter λ and outputs a
public key, secret key pair (pk, sk).

– PK.Encpk(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the public key pk.

– PK.Decsk(C): Takes as input a ciphertext C and outputs a message m′.

We say that PKE is correct if for all λ and for all messagesm ∈ {0, 1}∗, Pr[PK.Decsk(C) = m] = 1
where (pk, sk)← PK.KeyGen(1λ) and C ← PK.Encpk(m).

Definition 3. For all λ and for all polysized adversaries A and for all messages m0,m1 ∈ {0, 1}∗
such that |m0| = |m1|,

|Pr[A(pk,PK.Encpk(m0)) = 1]− Pr[A(pk,PK.Encpk(m1)) = 1]| ≤ negl(λ)

where (pk, sk)← PK.KeyGen(1λ).

Prefix Puncturable pseudorandom Functions. We now define the notion of prefix punc-
turable pseudorandom function PPRF. We note that the construction of the pseudorandom function
in [GGM86] is prefix puncturable according to the following definition.

Definition 4. A prefix puncturable pseudorandom function PPRF is a tuple of PPT algorithms
(KeyGenPPRF,PrefixPunc) satisfying the following properties:

– Functionality is preserved under repeated puncturing: For all λ, for all y ∈ ∪poly(λ)k=0 {0, 1}k
and for all x ∈ {0, 1}poly(λ) such that there exists a z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF.
– Pseudorandomness at punctured prefix: For all λ, for all x ∈ {0, 1}poly(λ), and for all poly

sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1]− Pr[A(Uλ,Keys) = 1]| ≤ negl(λ)

where S ← KeyGenPRF(1λ) and Keys = {PrefixPunc(S, x[i−1]‖(1 − xi))}i∈[poly(λ)] where x[0] de-
notes the empty string.

Remark 2. For brevity of notation, we will be denoting PrefixPunc(S, y) by Sy.

Garbled Circuits. We now define the circuit garbling scheme of Yao [Yao86] and state the
required properties.

Definition 5. A circuit garbling scheme is a tuple of PPT algorithms given by (Garb.Circuit,Garb.Eval)
with the following syntax:

– Garb.Circuit(C) : This is a randomized algorithm that takes in the circuit to be garbled and
outputs garbled circuit and the set of garbled input labels: C̃, {Inpi,bi}i∈[λ],bi∈{0,1}.

10

– Garb.Eval(C̃, {Inpi,xi}i∈[λ]) : This is a deterministic algorithm that takes in {Inpi,xi}i∈[λ] and C̃
as input and outputs a string y.

Definition 6 (Correctness). We say a circuit garbling scheme is correct if for all circuits C and
for all inputs x:

Pr[Garb.Eval(C̃, {Inpi,xi}i∈[λ]) = C(x)] = 1

where C̃, {Inpi,bi}i∈[λ],bi∈[λ] ← Garb.Circuit(K,C).

Definition 7 (Security). There exists a simulator Sim such that for all circuits C and input x:

{C̃, {Inpi,xi}i∈[λ]}
c
≈ {Sim(1λ, C, C(x))}

Lemma 1 ([Yao86],[LP09]). Assuming the existence of one-way functions there exists a circuit
garbling scheme satisfying the security notion given in Definition 7.

4 Functional Encryption: Security and Efficiency

We recall the syntax and security notions of functional encryption [BSW11,O’N10].
A functional encryption FE with the message space {0, 1}∗ and function space F is a tuple of

PPT algorithms (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) having the following syntax:

– FE.Setup(1λ) : Takes as input the unary encoding of the security parameter λ and outputs a
public key PK and a master secret key MSK.

– FE.Enc(PK,m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption c of m under
the public key PK.

– FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a function f ∈ F (given
as a circuit) as input and outputs the function key FSKf .

– FE.Dec(FSKf , c): Takes as input the function key FSKf and the ciphertext c and outputs a
string y.

Definition 8 (Correctness). The functional encryption scheme FE is correct if for all λ and for
all messages m ∈ {0, 1}∗ and for all f ∈ F ,

Pr

y = f(m)

∣∣∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1λ)
c← FE.Enc(PK,m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , c)

 = 1

Security. We now give the formal definitions of the security notions. We start with the weakest
notion of security namely weakly selective security.

Definition 9 (Weakly Selective Security). The functional encryption scheme is said to be
multi-key, weakly selective secure if for all λ and for all poly sized adversaries A,∣∣Pr[ExptSel∗,1λ,0,A = 1]− Pr[ExptSel∗,1λ,1,A = 1]

∣∣ ≤ negl(λ)

where ExptSel,1λ,b,A is defined below:

11

– Challenge Message Queries: The adversary A outputs two messages m0, m1 such that
|m0| = |m1| and a set of functions f1, · · · , fq ∈ F to the challenger. The parameter q is a priori
unbounded.

– The challenger samples (PK,MSK)← FE.Setup(1λ) and generates the challenge ciphertext c←
FE.Enc(PK,mb). The challenger also computes FSKfi ← FE.KeyGen(MSK, fi) for all i ∈ [q]. It
then sends (PK, c), {FSKfi}i∈[q] to A.

– If A makes a query fj for some j ∈ [q] to such that for any , fj(m0) 6= fj(m1), output of the
experiment is ⊥. Otherwise, the output is b′ which is the output of A.

Remark 3. We say that the functional encryption scheme FE is single-key, weakly selectively
secure if the adversary A in ExptSel∗,1λ,b,A is allowed to obtain the functional key for a single
function f .

We now give the definition of selectively secure FE.

Definition 10 (Selective Security). The functional encryption scheme is said to be multi-key,
selectively secure FE if for all λ and for all poly sized adversaries A,∣∣Pr[ExptSel,1λ,0,A = 1]− Pr[ExptSel,1λ,1,A = 1]

∣∣ ≤ negl(λ)

where ExptSel,1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two message vectors m0, m1 such
that |m0| = |m1| to the challenger.

– The challenger samples (PK,MSK)← FE.Setup(1λ) and generates the challenge ciphertext c←
FE.Enc(PK,mb). It then sends (PK, c) to A.

– Function Queries: A adaptively chooses a function f ∈ F and sends it to the challenger. The
challenger responds with FSKf ← FE.KeyGen(MSK, f). The number of function queries made
by the adversary is unbounded.

– If A makes a query f to functional key generation oracle such that, f(m0) 6= f(m1), output of
the experiment is ⊥. Otherwise, the output is b′ which is the output of A.

Remark 4. In the adaptive variant, the adversary is allowed to give challenge messages after seeing
the public parameters and functional secret key queries.

Efficiency. We now define the efficiency requirements of a FE scheme.

Definition 11 (Fully Compact). A functional encryption scheme FE is said to be fully compact
if for all λ ∈ N and for all m ∈ {0, 1}∗ the running time of the encryption algorithm FE.Enc is
poly(λ, |m|).

Definition 12 (Weakly Compact). A functional encryption scheme is said to be weakly compact
if the running time of the encryption algorithm FE.Enc is |F|1−ε.poly(λ, |m|) for some ε > 0 where
|F| = maxf∈F |Cf | where Cf is the circuit implementing f .

A functional encryption scheme is said to have non-compact ciphertexts if the running time
of the encryption algorithm can depend arbitrarily on the maximum circuit size of the function
family.

12

5 Our Transformation

In this section we describe our transformation from single-key, weakly selective secure functional en-
cryption with fully compact ciphertexts to multi-key, selective secure functional encryption scheme.
We later (in Section 6) show that it is sufficient for the single-key scheme to have weakly compact
ciphertexts. We state the main theorem below.

Theorem 1. Assuming the existence of single-key, weakly selective secure FE scheme with fully
compact ciphertexts, there exists a multi-key, selective secure FE scheme with fully compact cipher-
texts.

The transformation from single-key, weakly selective secure FE scheme to multi-key, selective
secure FE scheme uses the following primitives that are implied by single-key, weakly selective
secure FE.

– A single-key, weakly selective FE scheme (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).
– A prefix puncturable PRF (PPRF,KeyGenPPRF,PrefixPunc).
– A Circuit garbling scheme (Garb.Circuit,Garb.Eval).
– A public key encryption scheme (PK.KeyGen,PK.Enc,PK.Dec).
– A symmetric key encryption scheme (SK.KeyGen,SK.Enc,SK.Dec) with disjoint range.

Notation. λ will denote our security parameter. Let the length of the secret key output by
SK.KeyGen be λ1, let length of the key output by KeyGenPPRF be λ2. We will denote length of
public key output by PK.KeyGen to be κ. The message space is given by {0, 1}γ and the function
space is the set of all poly sized circuits taking γ-bit inputs.

The output of the transformation is a FE scheme (MKFE.Setup,
MKFE.KeyGen,MKFE.Enc,MKFE.Dec). The formal description our construction appears in Fig-
ure 5.

5.1 Correctness and Security

We first show correctness of our construction

Correctness. Recall that we need to show that if we decrypt a FE ciphertext encrypting m using
a functional secret key for a function f then we obtain f(m). We first argue that our FE ciphertext
is distributed as (pk, {PRF(Spk, i‖mi)}i∈[κ]). From the correctness of FE decryption, we note that
by iteratively decrypting CTφ under FSK1, · · · ,FSKκ+1 using the bits of pk we obtain a public key
encryption of Spk under public key pk. From the correctness of public key decryption, we correctly
recover Spk. Hence our FE ciphertext is distributed as (pk, {PRF(Spk, i‖mi)}i∈[κ]).

We now look at the decryption procedure. We notice from the correctness of FE decryption
procedure that by iteratively decrypting CTfφ under FSKf

1 , · · ·FSKf
κ+1 using the bits of pk, we obtain

C̃f , {ci,bi}i∈[γ],bi∈{0,1} where ci,bi ← SK.Enc(PRF(Spk, i‖mi), Inpi,bi) for every i ∈ [γ] and bi ∈ {0, 1}.
It follows from the correctness of SK.Dec and the fact that the symmetric key encryption we use
has disjoint ranges, we correctly obtain {Inpi,mi}i∈[κ]. The correctness of our MKFE decryption now
follows from the correctness of garbled circuit evaluation.

We note that length of the ciphertexts (and the size of the encryption circuit) in our MKFE
scheme is independent of the circuit size of functions. Hence, the MKFE scheme has fully compact
ciphertexts. We now state the main lemma for security.

13

– MKFE.Setup(1λ) :
1. Sample S ← KeyGenPPRF(1λ) and Kφ ← KeyGenPPRF(1λ). Sample sk ← SK.KeyGen(1λ) and compute

Ψi ← SK.Enc(sk, 0leni(λ)) for all i ∈ [κ+1] where leni(·) is a length function that would be specified later.
2. Sample (PKi,MSKi) ← FE.Setup(1λ) for i ∈ [κ + 1]. Compute FSKi ←

FE.KeyGen(MSKi,BitExti[Ψi,PKi+1]) for all i ∈ [κ] and FSKκ+1 ← FE.KeyGen(MSKκ+1,Output1[Ψκ+1])
where BitExti[·, ·] and Output1[·] are described in Figure 6.

3. Compute CTφ ← FE.Enc(PK1, (φ, S,Kφ, 0
λ1 , 0)) where φ denotes a string of length 0 (a.k.a the empty

string).
4. Output the master public key PK to be (CTφ, {FSKi}i∈[κ]) and the master secret key MSK = S.

– MKFE.Enc(PK,m) :
1. Sample (pk, tk)← PK.KeyGen(1λ).
2. For i = 1, · · · , κ compute: (CTpk[i−1]‖0,CTpk[i−1]‖1)← FE.Dec(FSKi,CTpk[i−1]

) where CTpk[0] is defined
to be CTφ.

3. Compute c := FE.Dec(FSKκ+1,CTpk) and recover Spk = PK.Dec(tk, c).
4. Compute {Li,mi}i∈[γ] ← PRF(Spk, i‖mi) where mi denotes the i-th bit of the message m.
5. Output (pk, {Li,mi}i∈[γ]).

– MKFE.KeyGen(MSK, f) :

1. Sample Kf
φ ← KeyGenPPRF(1λ). Sample skf ← SK.KeyGen(1κ) and compute Ψfi ← SK.Enc(skf , 0len

f
i (κ))

for all i ∈ [κ+ 1] where lenfi (·) is a length function that would be specified later.
2. Sample (PKfi ,MSKfi)← FE.KeyGen(1λ) for i ∈ [κ+ 1].
3. Compute FSKfi ← FE.KeyGen(MSKfi ,BitExti[Ψ

f
i ,PKfi+1]) for all i ∈ [κ] and FSKfκ+1 ←

FE.KeyGen(MSKfκ+1,Output2[Ψfκ+1, Cf]) where BitExti[·, ·] and Output2[·, ·] are described in Figure 6
and Cf is the description of the circuit computing f .

4. Compute CTfφ ← FE.Enc(PKf1 , (φ, S,K
f
φ , 0

λ1 , 0)).

5. Output FSKf = (CTfφ, {FSKfi }i∈[κ+1]).
– MKFE.Dec(FSKf ,CT) :

1. Parse CT as (pk, {Li,mi}i∈[γ])
2. For i = 1, · · · , κ compute (CTf(pk)[i−1]‖0

,CTf(pk)[i−1]‖1
) ← FE.Dec(FSKi,CTf(pk)[i−1]

) where CTf(pk)[0]
is

defined to be CTfφ.

3. Compute C̃f , {ci,bi}i∈[γ],bi∈{0,1} ← FE.Dec(FSKκ+1,CTfpk). Decrypt ci,mi using Li,mi as the key and
obtain Inpi,mi

for every i ∈ [γ](to be more precise, first test if ci,0 or ci,1 is in the range of Li,mi and
then decrypt ci,b ∈ Rangeλ(Li,mi) Inpi,mi

).

4. Output Garb.Eval(C̃f , {Inpi,mi
}i∈[γ]).

Fig. 5: Transformation from Single key to Unbounded Key Secure

14

BitExti[Ψ,PK]

Input. x ∈ {0, 1}i−1, Sx, Kx, sk, mode
Constants. Ψ , PK

– If mode = 0, compute Sx‖b ← PrefixPunc(Sx, b), Kx‖b ← PrefixPunc(Kx, b‖0) and K′x‖b ←
PrefixPunc(Kx, b‖1) for b ∈ {0, 1} and output {FE.Enc(PK, x‖b, Sx‖b,Kx‖b, sk,mode;K′x‖b)}b∈{0,1}.

– Else, recover (x‖0,CTx‖0) and (x‖1,CTx‖1) from SK.Dec(sk, Ψ) and output {CTx‖0,CTx‖1}.

Output1[Ψ]

Input. x ∈ {0, 1}κ, Sx, Kx, sk, mode
Constants. Ψ

– If mode = 0, output PK.Enc(x, Sx;Kx).
– Else, recover (x,Valx) from SK.Dec(sk, Ψ) and output Valx.

Output2[Ψ,Cf]

Input. x where x ∈ {0, 1}κ, Sx, Kf
x , skf , mode

Constants. Ψ,Cf

– If mode = 0,
1. Compute (C̃f , {Inpi,bi}i∈[γ],bi∈{0,1}) = Garb.Circuit(Cf ;Kf

x‖0‖0).

2. Compute Li,bi ← PRF(Sx, i‖bi) for all i ∈ [γ] and bi ∈ {0, 1}.
3. Compute ci,bi ← SK.Enc(Li,bi , Inpi,bi ;K

f
x‖1‖i‖bi

) for all i ∈ [γ] and bi ∈ {0, 1}. For each bit i ∈ [γ],

permute ci,0 and ci,1 as per the bits of Kf
x‖0‖1.

4. Output C̃f , {ci,bi}i∈[γ],bi∈{0,1}.
– Else, recover (x,Valx) from SK.Dec(skf , Ψ) and output Valx.

Fig. 6: Auxiliary circuits

Lemma 2. Assuming single-key, weakly selective security of FE, semantic security of SKE, seman-
tic security of PKE, and the security of prefix puncturable pseudorandom function PPRF, the MKFE
construction described in Figure 5 is multi-key, selectively secure.

Before we describe the proof of Lemma 2, we first set up some notation.

Notation. Let x ∈ {0, 1}κ. Let Prefixes(x) denote the set of all prefixes (κ in number) of the
string x. Formally,

Prefixes(x) := {x[i]}i∈[κ]

Let Siblings(x) denote the set of siblings of all prefixes of x. Formally,

Siblings(x) := {y[i−1]‖(1− yi) : ∀y ∈ Prefixes(x), i ∈ [κ] where |y| = i}

Proof of Lemma 2. The proof proceeds via a hybrid argument.

15

– Hyb0 : In this hybrid, the adversary is given the challenge ciphertext encrypting the message mb.
To be more precise, the challenge ciphertext is given by (pk∗, {Li,(mb)i}i∈[κ]) where (pk∗, sk∗)←
PK.KeyGen(1κ) and Li,(mb)i ← PRF(Spk∗ , i‖(mb)i) for all i ∈ [κ]. All key generation queries are
generated as per the construction described in Figure 5.

– Hyb1 : In this hybrid, we are going to “tunnel” through the path from root to the leaf node
labeled pk∗ in the master public key. This step is realized through a couple of intermediate
hybrids.
Let P1 := Prefixes(pk∗) and Q1 = Siblings(pk∗)\P1. For every z ∈ P1∪Q1, let CTz be the result
of the iterated decryption procedure on the master public key with z as input.3 Additionally,
let Valpk∗ be the output of the decryption of CTpk∗ under FSKκ+1. Let

stri = ‖z∈P1∪Q1∧|z|=i(z,CTz)

strκ+1 = (pk∗,Val1pk∗)

We set leni(λ) to be the maximum length of stri over all choices of pk∗. We pad stri to this size.

• Hyb0,1 : In this hybrid we are going to change how Ψi is generated. Instead of encrypting
the all zeroes string of length leni(κ), we encrypt stri. Indistinguishability follows from the
semantic security of the symmetric key encryption since the key sk is not needed to simulate
Hyb0 or Hyb0,1.
• Hyb0,2 : In this hybrid we change how CTφ is generated. Instead of generating CTφ to be

FE.Enc(PK1, (φ, S,Kφ, 0
λ1 , 0)), we generate it as FE.Enc(PK1, (φ, 0

λ2 , 0λ2 , sk, 1)). We now
argue that Hyb0,2 is indistinguishable from Hyb0,1. Notice that output of BitExt1[Ψ1,PK2] is

same on (φ, S,Kφ, 0
λ1 , 0) and (φ, 0λ2 , 0λ2 , sk, 1). Also, the choice of the two messages and the

functionality for which the secret key is obtained do not depend on the public parameters.
Hence, it follows from the weakly selective security of FE scheme under PK1 that Hyb0,1 and
Hyb0,2 are indistinguishable.
• Hyb0,3 : In this hybrid we are going to tunnel through the path from the root to the leaf

labeled pk∗. To achieve this, we are going to change CTz that is encrypted in Ψ1 for every
z ∈ P1. We don’t change the encryption when z ∈ Q1. In particular, we change CTz =
FE.Enc(PK|z|+1, (z, Sz,Kz, 0

λ1 , 0);K ′z) to FE.Enc(PK|z|+1,

(z, 0λ2 , 0λ2 , sk, 1); rz) where rz is chosen uniformly at random. Notice that as a result Sz for
every z that is a strict prefix of pk∗ does not appear in the public key of our MKFE scheme.
We first introduce an ordering of strings in P1. For every string x, y ∈ P1 x ≺ y if and only
if |x| < |y|. This induces a partial ordering of the strings in P1. We let Hyb0,2,x to denote
the hybrid where for all z ≺ x, CTz has been changed from FE.Enc(PK|z|+1,

(z, Sz,Kz, 0
λ1 , 0);K ′z) to FE.Enc(PK|z|+1, (z, 0

λ2 , 0λ2 , sk, 1); rz). We prove for any two adja-
cent strings x, x′ where x′ ≺ x in ordered P1 that Hyb0,2,x is indistinguishable to Hyb0,2,x′ .
Since |P1| ≤ κ, we get Hyb0,2 is indistinguishable to Hyb0,3 through a series a κ hybrids.

∗ Hyb0,2,x′,1: In this hybrid we change CTx to FE.Enc(PK|x|+1,

(x, Sx,Kx, 0
λ1 , 0); rx) where rx is chosen uniformly at random. Notice that for all strings y

that are prefixes of x, CTy has already been changed to FE.Enc(PK|y|+1, (y, 0
λ2 , 0λ2 , sk, 1); ry)

because y ≺ x by our ordering. For every y that is a prefix of x, Ky is not needed to
simulate Hyb0,2,x′ and Hyb0,2,x′,1. It follows from the pseudorandomness at prefix punc-
tured point property of PRF key Kφ we have Hyb0,2,x′ is indistinguishable to Hyb0,2,x′,1.
Illustration for this hybrid change is given in Figure 7.

16

K1
φ

K1
0 K1

0
′

K1
1

K1
10 K1

10
′

K1
11 K1

11
′

K1
1
′

Fig. 7: Illustration for Hyb0,2,x′,1 where x′ = 1 and x = 10. The blackened nodes are not needed for
simulation.

∗ Hyb0,2,x′,2 : In this hybrid we change CTx to FE.Enc(PK|x|+1,

(x, 0λ2 , 0λ2 , sk, 1); rx). Notice that decrypting FE.Enc(PK|x|+1,

(x, 0λ2 , 0λ2 , sk, 1); rx)) and FE.Enc(PK|x|+1, (x, Sx,Kx, 0
λ2 , 0)) under the secret key FSK|x|+1

has the same output due to the choice of Ψ∗|x|+1. Also, the choice of the two messages
and the functionality for which the secret key is obtained do not depend on the pub-
lic parameters. Hence, it follows from the weakly selective security of FE scheme under
PK|x|+1 that Hyb0,2,x′,1 and Hyb0,2,x′,2 are indistinguishable.

Notice that Hyb0,2,x′,2 is distributed identically to Hyb0,2,x.
– Hyb2 : In this hybrid we are going to change Valpk∗ encrypted in Ψ∗1 . Notice that in Hyb2, Valpk∗

is set to be an public key encryption of Spk∗ under the public key pk∗ (using pseudorandomly
generated coins). In this hybrid we are going to change Valpk∗ to be an public key encryption
of all zeroes string (0λ) under pk∗.
• Hyb1,1 : In this hybrid we generate the randomness used for encrypting Spk∗ under the public

key pk∗ uniformly instead of generating it pseudorandomly using the key Kpk∗ . Notice that
Kz for every z that is a prefix of pk∗ is not needed to simulate either Hyb1 or Hyb1,1.
Therefore, from the pseudorandomness at prefix punctured point property of PRF under
key Kφ, Hyb1 is indistinguishable from Hyb1,1.
• Hyb1,2 : In this hybrid we change Valpk∗ to be an encryption of 0κ under pk∗. Indistinguisha-

bility of Hyb1,1 and Hyb1,2 follows from the semantic security of public key encryption.
– Hyb3 : In this hybrid we are going to tunnel through the paths from the root to the leaf pk∗

in each function secret key FSKf that is queried by the adversary. We explain the details for a
single function key FSKf and we can extend to all function secret keys by a standard hybrid
argument. The indistinguishability argument for a single function secret key FSKf is similar to
our argument to show indistinguishability between Hyb0 and Hyb1.
Let P2 := Prefixes(pk∗) and Q2 = Siblings(pk∗). For every z ∈ P2 ∪Q2 let CTfz be the result of
the iterated decryption procedure on the function secret key FSKf with z as input. Additionally,

let C̃f , {ci,bi}i∈[γ],bi∈{0,1} be the output of the decryption of CTpk∗ under FSKf
κ+1. Let

strfi = ‖z∈P2∪Q2∧|z|=i(z,CTz)

3 By iterated decryption procedure on input z we mean decrypting CTφ under FSK1, · · · ,FSK|z| using the bits of z

17

strfκ+1 = (pk∗, C̃f , {ci,bi}i∈[γ],bi∈{0,1})

We set lenfi (κ) to be the maximum length of strfi over all choices of f . We pad strfi to this size.

• Hyb2,1 : In this hybrid we are going to change how Ψfi is generated. Instead of encrypting

the all zeroes string of length len′i(κ) we encrypt strfi . Indistinguishability follows from the
semantic security of the symmetric key encryption since the key skf is not needed to simulate
Hyb2 or Hyb2,1..

• Hyb2,2 : In this hybrid we change how CTfφ is generated. Instead of generating CTfφ to be

FE.Enc(PKf
1 , (φ, S,K

f
φ , 0

λ1 , 0)) we generate it as FE.Enc(PKf
1 , (φ, 0

λ2 , 0λ2 , skf , 1)). We now

argue that Hyb2,2 is indistinguishable from Hyb2,1. Notice that output of BitExt1[Ψ
∗
f ,PKf

2]

is same on (φ, S,Kf
φ , 0

λ1 , 0) and (φ, 0λ2 , 0λ2 , skf , 1). Also, the choice of the two messages
and the functionality for which the secret key is obtained do not depend on the public
parameters. Hence, it follows from the weakly selective security of FE scheme under PKf

1

that Hyb2,1 and Hyb2,2 are indistinguishable.
• Hyb2,3 : In this hybrid we are going to tunnel through the paths from the root to the leaf la-

beled pk∗ in FSKf . To achieve this we are going to change CTz that is encrypted in Ψfi for ev-
ery z ∈ P2. As before, we don’t change the encryption when z ∈ Q2. In particular, we change
CTfz = FE.Enc(PKf

|z|+1, (z, Sz,K
f
z , 0λ1 , 0);K ′fz) to FE.Enc(PKf

|z|+1, (z, 0
λ2 , 0λ2 , skf ; rz) where

rz is chosen uniformly at random. The proof of indistinguishability between Hyb2,2 and
Hyb2,3 is exactly same as the one between Hyb0,2 and Hyb0,3.

– Hyb4 : In this hybrid we are going to change Spk∗ used to generate the challenge ciphertext to
an uniformly chosen random κ-bit string T ∗. We observe that for z that is a prefix of pk∗, Sz is
not needed to simulate either Hyb3 or Hyb4 because we have “tunneled” through from the root
to leaf node pk∗ in the master public key and in all the function secret keys FSKf . Hence from
the pseudorandomness at prefix punctured point property of the PRF under the key S, Hyb4

is computationally indistinguishable to Hyb3. Notice that this also implies (from the property
of the pseudorandom function) that {Li,bi} for every i ∈ [γ] and for every bi ∈ {0, 1} can be
changed to uniformly chosen random strings. This change is made to challenge ciphertext as
well as encryption keys used for generating {ci,bi}i∈[γ],bi∈{0,1} in Ψfκ+1 in each functional secret
key FSKf .

– Hyb5 : In this hybrid we are going to change to change the randomness used for generating
garbled circuit, the encryptions ci,bi that are encrypted in Ψfκ+1 and the randomness used for
permuting ci,bi in each of the function secret keys FSKf to uniformly chosen random strings.
Observe that since we have “tunneled” through pk∗ in each of the function secret keys it follows
from pseudorandomness of prefix punctured point property of the PRF under the key Kf

φ , Hyb5

is computationally indistinguishable to Hyb4.
– Hyb6 : In this hybrid we are going to change ci,1−(mb)i to encrypting all zeroes string instead of

encrypting Inpi,1−(mb)i . This change is made in Ψfκ+1 in each of the function secret keys FSKf .
Indistinguishablity of Hyb5 and Hyb6 follows from the semantic security of secret key encryption
under Li,1−(mb)i .

– Hyb7 : In this hybrid we are going to change {Inpi,(mb)i}i∈[γ], C̃f to be output of the simulator

for the garbled circuit. This change is made in Ψfκ+1 in each of the function secret keys FSKf .

More precisely, we set {Inpi,(mb)i}i∈[γ], C̃f ← Sim(1κ, Cf , f(m0)) (note that f(m0) = f(mb)).
Indistinguishability of Hyb6 and Hyb7 follows from the security of garbled circuits.

18

In Hyb7, the view of the adversary is independent of the challenge bit b. Hence the advantage that
the adversary has in guessing the bit b is 0 in Hyb7.

6 Efficiency Analysis

In this section we relax the requirement of full compactness from our single-key selectively secure
FE scheme to weakly compact ciphertexts. Parts of this section are taken verbatim from Bitansky
and Vaikuntanathan [BV15].

Recall that a FE scheme with weakly compact ciphertexts has an encryption circuit whose size
grows sub-linearly with the circuit size of functions for which function secret keys are given.

Let F1, F2, · · · , Fκ+1 be the functionalities implemented by the secret keys FSKf
1 , · · · ,FSKf

κ+1.
4 Notice that for any i = {1, · · · , κ}, Fi implements the encryption circuit Ei+1 for the functional
encryption scheme under PKi+1, symmetric decryption circuit and a prefix puncturing circuit.
The size of the functional encryption circuit and the symmetric decryption circuit is bounded by
|Ei+1|.poly(κ) and the size of the prefix puncturing circuit is bounded by poly(κ). Therefore,

|Fi| ≤ |Ei+1|.poly(κ)

From our assumption that the underlying FE scheme is weakly compact we get:

|Ei| ≤ |Fi|1−ε.poly(κ)

Notice that:
|Fκ+1| ≤ |Cf |.poly(κ)

Hence we get:
|Ei| ≤ |Fi|1−ε.poly(κ) ≤ |Ei+1|1−ε.(poly(κ))1−ε.poly(κ)

By recursively enumerating we get:

|Ei| ≤ |Cf |1−ε.poly(κ).
κ+2−i∏
j=1

poly(κ)(1−ε)
j

We observe that:
κ+2−i∏
j=1

poly(κ)(1−ε)
j ≤

∞∏
j=0

poly(κ)(1−ε)
j ≤ (poly(κ))

1
ε

Hence, for all i ∈ [κ+ 1] we get:

|Ei| ≤ |Cf |1−ε.poly(κ)1+
1
ε

which implies efficiency of our underlying construction.

7 Acknowledgements

We would like to thank the anonymous TCC reviewers for useful feedback. Additionally, we thank
Divya Gupta, Peihan Miao, Omkant Pandey and Mark Zhandry for insightful discussions.

4 We restrict our attention to the functional secret keys of our scheme. The analysis of the master public key is
exactly the same.

19

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adaptive se-
curity in functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 657–677, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryp-
tion. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 308–326, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generically: Indistinguisha-
bility obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive, 2015:730,
2015.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing machines. In Theory
of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part I, pages 125–153, 2016.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, pages 213–229, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
Public-Key Cryptography - PKC 2014 - 17th International Conference on Practice and Theory in Public-
Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796, Raleigh, NC, USA, October 16–18,
2012. ACM Press.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Theory
of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30,
2011. Proceedings, pages 253–273, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In
Venkatesan Guruswami, editor, 56th FOCS, pages 171–190, Berkeley, CA, USA, October 17–20, 2015.
IEEE Computer Society Press.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Advances
in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and Application of
Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, pages
280–300, 2013.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Cryptography and
Coding, 8th IMA International Conference, Cirencester, UK, December 17-19, 2001, Proceedings, pages
360–363, 2001.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49,
Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society Press.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 555–564, 2013.

[GPS15] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. On the exact cryptographic hardness of
finding a nash equilibrium. Cryptology ePrint Archive, Report 2015/1078, 2015. http://eprint.iacr.

org/2015/1078.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98,
2006.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the sub-exponential
barrier in obfustopia. Cryptology ePrint Archive, Report 2016/102, 2016. http://eprint.iacr.org/2016/
102.

20

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 545–554, Palo
Alto, CA, USA, June 1–4, 2013. ACM Press.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[HJO+15] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs. Adaptively
secure garbled circuits from one-way functions. IACR Cryptology ePrint Archive, 2015:1250, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseudo-
random functions and applications. In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 669–684, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17,
2008. Proceedings, pages 146–162, 2008.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional encryption. Cryptology
ePrint Archive, Report 2016/561, 2016. http://eprint.iacr.org/2016/561.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation. J.
Cryptology, 22(2):161–188, 2009.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, 2010:556,
2010.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, pages 47–53, 1984.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In
Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484, New York, NY, USA, May 31 – June 3,
2014. ACM Press.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryption. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
678–697, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

21

