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Abstract. Quadratic form reduction and lattice reduction are fundamen-
tal tools in computational number theory and in computer science, especially
in cryptography. The celebrated Lenstra–Lenstra–Lovász reduction algorithm
(so-called lll) has been improved in many ways through the past decades and
remains one of the central methods used for reducing integral lattice basis. In
particular, its floating-point variants—where the rational arithmetic required
by Gram–Schmidt orthogonalization is replaced by floating-point arithmetic—
are now the fastest known. However, the systematic study of the reduction
theory of real quadratic forms or, more generally, of real lattices is not widely
represented in the literature. When the problem arises, the lattice is usually
replaced by an integral approximation of (a multiple of) the original lattice,
which is then reduced. While practically useful and proven in some special
cases, this method doesn’t offer any guarantee of success in general. In this
work, we present an adaptive-precision version of a generalized lll algorithm
that covers this case in all generality. In particular, we replace floating-point
arithmetic by Interval Arithmetic to certify the behavior of the algorithm. We
conclude by giving a typical application of the result in algebraic number theory
for the reduction of ideal lattices in number fields.

1. Introduction

In a general setting, a lattice Λ is a free Z-module of finite rank, endowed with a
positive-definite bilinear form on its ambient space Λ⊗ZR, as presented for instance
in [16]. In particular, this definition implies that Λ is discrete in its ambient space
for the topology induced by the scalar product. This formalism encompasses the
well-known Euclidean lattices when taking the canonical scalar product of Rd, but
also lattices arising from ideals in rings of integers of number fields. The rank of the
lattice Λ is defined as the dimension of the vector space Λ ⊗Z R. By definition of
a finitely-generated free module, there exists a finite set of vectors b1, . . . , brk Λ ∈ Λ

such that Λ =
⊕rk Λ

i=1 biZ. Such a family is called a basis of the lattice and is not
unique. In fact, as soon as rk Λ ≥ 2 there are infinitely many bases of Λ. Some
among those have interesting properties, such as having reasonably small vectors
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and low orthogonality defects. They are informally called reduced bases and finding
them is the goal of lattice reduction.

Numerous algorithms arising in algebraic number theory heavily rely on lat-
tice reduction, for example, the computation of normal forms of integral matrices
(see [10] for the Hermite Normal Form and [9] for the Smith Normal Form), class
group computations in a number field [7, 2], or even the enumeration of points of
small height near algebraic curves [6].

Even for lattices that use the canonical scalar product, there is a deep link with
bilinear forms that clearly appears when considering the Gram matrix of a basis
B = {b1, . . . , bd}, that is, the real symmetric matrix G = (〈bi, bj〉)i,j .

The study of these reduction problems is not recent and goes back to the works
of Lagrange and Gauss. These early works were expressed in terms of reduction
of quadratic form, more precisely integral binary quadratic forms1 and led to a
method often called Gauss’ algorithm. This method can be seen as a 2-dimensional
extension of the Euclid algorithm for computing the greatest common divisor of two
integers. In 1850, Hermite proved a general upper bound on the length of the short-
est vector in a lattice, given as a function of the dimension and of a very important
invariant called the determinant, which is defined in Section 2.1. This bound in-
volves the so-called Hermite constant and has recently been rephrased in algorithmic
terms [20, Hermite’s Algorithms]. A century later, in 1982, Lenstra, Lenstra and
Lovász designed the lll algorithm [14], with the polynomial factorization problem
as an application, following the work of Lenstra on integer programming [15]. This
algorithm constitutes a breakthrough in the history of lattice reduction algorithm,
since it is the first to have a runtime polynomial in terms of the dimension. It was
followed by many improvements lowering its complexity or improving the output’s
quality.

Current implementations of lll often work with low precision approximations in
order to greatly speed-up the computations. Indeed, the algorithm works surprins-
ingly well even with such reduced precisions, even if some care needs to be taken to
avoid infinite loops. Moreover, once the result is obtained, it can verified efficiently
as shown in [30].

We propose here an alternative strategy where we not only certify that the end-
result is a reduced basis but also that the algorithm followed a valid computation
path to reach it. This strongly deviates from other approaches that have been taken
to obtain guaranteed lattice reduced basis. At first, this may seems irrelevant. After
all, one might claim that a basis satisfying the end conditions of lll is what is
desired and that the computation path doesn’t matter. However, as shown in [13]
for Siegel-reduced bases, a reduced basis chosen uniformely at random behaves
as the worst-case allowed by the final inequalities. By constrast, bases produced
by the lll algorithm are usually much better than this worst-case. This argues
in favor of trying to follow the algorithm defintion exactly to better understand
the phenomenon. In particular, this option might be invaluable for experiments
performed toward analyzing this gap.

The present article also relies on Interval Arithmetic, a representation of re-
als by intervals—whose endpoints are floating-point numbers—that contain them.

1This can be viewed as the reduction of integral dimension-two lattices.
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Arithmetic operations, in particular the basic operations +,−,×,÷ can be rede-
fined in this context. The main interest of this representation lies in its certification
property: if real numbers are represented by intervals, the interval resulting from
the evaluation of an algebraic expression contains the exact value of the evaluated
expression.

For some authors, Interval Arithmetic was introduced by R. Moore in 1962 in
his Ph.D. thesis [18]. For others, it can be dated back to 1958, in an article of T.
Sunaga [28] which describes an algebraic interpretation of the lattice of real inter-
vals, or even sooner in 1931 as a proposal in the Ph.D. thesis [31] of R.C. Young at
Cambridge. Its main asset—calculating directly on sets—is nowadays used to deter-
ministically determine the global extrema of a continuous function [24] or localizing
the zeroes of a function and (dis)proving their existence [11]. Another application
of Interval Arithmetic is to be able to detect lack of precision at run-time of numer-
ical algorithms, thanks to the guarantees it provides on computations. This can, in
particular, be used to design adaptive-precision numerical algorithms.

In the present paper, we propose to transform and generalize the lll algorithm
into an adaptive-precision version, which can reduce arbitrary lattices and follows
a certified flow of execution. More precisely, it uses Interval Arithmetic to validate
the size-reduction and exchange steps that occur within lll.

The interested reader may download an implementation of the algorithm from
the webpage http://almacrypt.eu/outputs.php.

Organisation of the paper. In Section 2, we briefly introduce reduction theory
and present the l2 variant of the lll algorithm. Section 3 aims at describing the
basics of Interval Arithmetic used in Section 4 to handle the problem of represen-
tation of real lattices. The framework of this latter section is then used in Section
5 to derive a certified reduction algorithm for real lattices. Section 6 presents an
application to algorithmic number theory.

Notations and conventions.

General notations. As usual, the bold capitals Z, Q, R and C refer respectively to
the ring of integers and the fields of rational, real and complex numbers. Given a
real number x, the integral roundings floor, ceil and round to nearest integer are
denoted respectively by bxc, dxe, bxe. Note that the rounding operator is ambiguous
when operating on half-integers. However, either choice when rounding is acceptable
in lattice reduction algorithms. In fact, in this context, it is often enough to return
an integer close to x, not necessarily the closest.

These operators are extended to operate on vectors and matrices by point-wise
composition. The complex conjugation of z ∈ C is denoted by the usual bar z̄
whereas the real and imaginary parts of a complex z are indicated by respectively
R(z) and I(z). All logarithms are taken in base 2.

Matrices and norms. For a field K, let us denote by Kd×d the space of square
matrices of dimension d over K, Gld(K) its group of invertible elements and Sd(K)
its subspace of symmetric matrices. For a complex matrix A, we write A† for its
conjugate transpose. For a vector v, we denote by ‖v‖∞ its absolute (or infinity)
norm, that is the maximum of the absolute value of its entries. We similarly define
the matrix max norm ‖B‖max = max(i,j)∈[1 ··· d]2 |Bi,j |, for any matrix B.

http://almacrypt.eu/outputs.php
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Computational setting. The generic complexity model used in this work is the
random-access machine (RAM) model and the computational cost is measured in
bits operations. M(k) denotes the complexity of the multiplication of two integers
of bit length at most k. It is also the cost of the multiplication of two floating-point
numbers at precision k, since the cost of arithmetic over the exponents is negligible
with regards to the cost of arithmetic over the mantissae.

2. Basics of Lattice Reduction

2.1. Orthogonalization. Let us fix an Euclidean space (E, 〈·, ·〉), i.e. a real vector
space E together with a positive-definite bilinear form 〈·, ·〉 : E×E → R. As usual,
two vectors x, y ∈ E are said to be orthogonal—with respect to the form 〈·, ·〉—
if 〈x, y〉 = 0. More generally a family of vectors is orthogonal if its elements are
pairwise orthogonal.

Now consider S = (b1, . . . , br), a family of linearly independent vectors of E. The
flag FS associated to S is the finite increasing chain of subspaces:

b1R ⊂ b1R⊕ b2R ⊂ · · · ⊂
r⊕
i=1

biR.

The orthogonal complement S⊥ is defined as the subspace {x ∈ E | ∀i, 〈x, bi〉 = 0}.
Denote by πi the orthogonal projection on (b1, . . . , bi−1)⊥, with the convention that
π1 is the identity map. The Gram–Schmidt orthogonalization process—shorthanded
as gso—is an algorithmic method for orthogonalizing S while preserving its flag.
It constructs the orthogonal set S∗ = (π1(b1), . . . , πr(br)). The computation S∗ can
be done inductively as follows:

π1(b1) = b1

∀1 < i ≤ r, πi(bi) = bi −
i−1∑
j=1

〈bi, πj(bj)〉
〈πj(bj), πj(bj)〉

bj .

Define the Gram matrix, associated to a family of vectors S = (b1, . . . , br), as the
symmetric matrix of scalar products: GS = (〈bi, bj〉)(i,j)∈[1 ··· r]2 . The (co)volume
of S, also called its determinant, is defined as the square root of the Gram de-
terminant detGS . It can be easily computed from the Gram-Schmidt vectors S∗
as:

covol(S) =

r∏
i=1

‖πi(bi)‖

2.2. Lattices and reduction.

Definition 2.1. A (real) lattice Λ is a finitely generated free Z-module, endowed
with a positive-definite bilinear form 〈·, ·〉 on its ambient space Λ⊗Z R.

By definition of the tensor product, there is a canonical injection that sends a
vector v to v⊗1 in the ambient space and preserves linear independence. Thus, the
rank of Λ as a Z-module, is equal to the dimension of the vector space Λ⊗Z R.

Denoting by d the rank of the lattice, a basis of Λ is a family b1, . . . , bd of elements
of Λ such that Λ =

⊕d
i=1 biZ.

In the sequel, we identify Λ with its canonical image Λ ⊗ 1 and thus view the
lattice as an additive subgroup of its ambient space Λ ⊗Z R. When the context
makes it clear, we may omit to write down the bilinear form associated to a lattice
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Λ. Throughout this section, ‖ · ‖ stands for the Euclidean norm induced by 〈·, ·〉,
unless stated otherwise. As usual, any two bases (b1, . . . , bd) and (b′1, . . . , b

′
d) of Λ

are related by a unimodular transformation, i.e., a linear transformation represented
by a d× d integer matrix of determinant ±1.

Lemma 2.2. A lattice Λ is discrete for the topology induced by the given norm on
its ambient space. I.e., there exists a real εΛ > 0 such that for any pair (x, y) of
elements of Λ with x 6= y we have:

‖x− y‖ ≥ εΛ.

The largest possible value for εΛ in the above inequality is equal to the norm of
the shortest non-zero vector of Λ, which is traditionally called the first minimum or
the minimum distance of the lattice and denoted by λ1(Λ).

Proof. Let B = (b1, . . . , bd) be a basis of Λ. Let B∗ = (π1(b1), . . . , πd(bd)) be
the orthogonal basis obtained by applying Gram-Schmidt orthogonalization to the
canonical image of B in Λ ⊗Z R. This orthogonalization is taken using as scalar
product the given bilinear form.

Assume by contradiction that there exist pairs of distinct vectors with the norm
of their difference arbitrarily small. Since the difference is also an element of Λ,
there are non-zero elements of arbitrarily small norm in Λ. For any integer i > 0,
choose a vector xi in Λ with ‖xi‖2 ≤ 2−i. Decompose xi in the basis B∗ as xi =∑d
j=1 χ

(j)
i πj(bj). For any pair of integers i, j we see that |χ(j)

i |2 ‖πj(bj)‖2 ≤ ‖xi‖2 ≤
2−i. As a consequence, each sequence χ(j) converges to zero. Multiplying by the
basis-change matrix, we see that the coordinates of xi in the basis b1, . . . , bd also
converge to zero. Since these coordinates are integral, the sequences are ultimately
constant and x is also ultimately constant (and null). This contradicts the choice
of xi as a non-zero element. �

2.3. The LLL reduction algorithm. In 1982, Lenstra, Lenstra and Lovász [14]
proposed a notion called lll reduction and a polynomial-time algorithm that com-
putes an lll-reduced basis from arbitrary basis of the same lattice. Their reduction
notion is formally defined as follows:

Definition 2.3 (lll reduction). A basis B = (b1, . . . , bd) of a lattice is said to be
δ-lll-reduced for a parameter 1/4 < δ < 1, if the following conditions are satisfied:

(1) ∀i < j, |〈bj , πi(bi)〉| ≤
1

2
‖πi(bi)‖2 (size-reduction condition)

(2) ∀i, δ‖πi(bi)‖2 ≤
(
‖πi+1(bi+1)‖2 +

〈bi+1, πi(bi)〉
‖πi(bi)‖2

)
(Lovász condition)

In order to find a basis satisfying these conditions, it suffices to iteratively modify
the current basis at any point where one of these conditions is violated. This yields
the simplest version of the lll algorithm. As in [14], it is only defined for full-
rank sublattice of Zd. It was remarked by Lovász and Scarf in [17] that the same
algorithm also works with an arbitrary integral-valued scalar product. The method
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can be extended to deal with lattices described by a generating family rather than
by a basis [23].
Algorithm 1: The original lll algorithm.

Parameters: δ ∈ (1/4, 1)
Input: Initial basis B = (b1, . . . , bd)
Result: A δ-lll-reduced basis

1 k ← 2;
2 Compute the πi(bi)’s with the gso process (Paragraph 2.1);
3 while k ≤ d do
4 for j = k − 1 downto 1 do bk ← bk −

⌈
〈bk,πj(bj)〉
‖πj(bj)‖2

⌋
· bj ;

5 if δ‖πk−1(bk−1)‖2 ≤ ‖πk(bk)‖2 + 〈bk, πk−1(bk−1)〉2/‖πk−1(bk−1)‖2 then
6 k ← k + 1;
7 else
8 Swap bk and bk−1; Update πk(bk) and πk−1(bk−1);
9 k ← max(k − 1, 2);

10 end
11 return (b1, . . . , bd)

2.3.1. Decrease of the potential and complexity. The algorithm can only terminate
when the current lattice basis is lll-reduced. Moreover, as shown in [14], it termi-
nates in polynomial time when δ < 1. Indeed, consider the (square of the) product
of the covolumes of the flag associated with a basis:

∏d
i=1 ‖π(bi)‖2(d−i+1), which

is often called its potential. This value decreases by a factor at least δ−1 in each
exchange step and is left unchanged by other operations. Indeed:

• The flag is not modified by any operation other than swaps.
• A swap between bk and bk−1 only changes the sublattice spanned by the

first k−1 vectors. The corresponding covolume
∏k−1
i=1 ‖π(bi)‖2 decreases by

a factor at least δ−1 and so does the potential.
Since the total number of iterations can be bounded by twice the number of

swaps plus the dimension of the lattice, this suffices to conclude that it is bounded
by O

(
d2 log ‖B‖max

)
where B is the matrix of the initial basis.

As the cost of a loop iteration is of O
(
d2
)
arithmetic operations on rational

coefficients of length at most O(d log ‖B‖max), the total cost in term of arithmetic
operations is loosely bounded by O

(
d6 log3 ‖B‖max

)
. By being more precise in the

majoration of the bit length of the integers appearing in lll, this analysis can be
improved. Kaltofen in [12] bounds the complexity by

O
(
d5 log2 ‖B‖max

d+ log ‖B‖max
M(d+ log ‖B‖max)

)
.

2.3.2. A bound on the norm of reduced elements.

Proposition 1. Let 1/4 < δ < 1 be an admissible lll parameter. Let (b1, . . . , bd)
be a δ-lll reduced basis of rank-d lattice (Λ, 〈·, ·〉). Then for any 1 ≤ k ≤ d:

covol(b1, . . . , bk) ≤
(
δ − 1

4

)− (d−k)k
4

covol(Λ)
k
d .
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Note that this is an easy generalization of the bound on the norm of b1 which
is given in most texts. It appears among other related inequalities in [22]. For
completeness, a proof is given in Appendix.

2.3.3. Floating point representation. The total cost of the lll algorithm is domi-
nated by the computation to handle arithmetic on rational values. A first idea of
De Weger [5] to overcome this issue is to avoid the use of denominators by multiply-
ing all the quantities by their common denominator. This is slightly more efficient
in practice but doesn’t improve the asymptotics. Another idea is to remark that
the norms of the rational values remain small and to try to use approximations
instead of exact values. However, directly replacing rationals in the lll algorithm
by floating-point approximations leads to severe drawbacks. The algorithm might
not even terminate, and the output basis is not guaranteed to be lll-reduced.

The first provable floating-point version of the algorithm is due to Schnorr in [26],
with complexity O

(
d4 log(‖B‖max)M(d+ log ‖B‖max)

)
. One of the key ingredients

to achieve this reduction is to slightly relax the definition of the size-reduction, in
order to compensate for the approximation errors introduced by the use of floating-
point arithmetic. We call admissible any parameters (δ, η) satisfying 1/4 < δ < 1,
and 1/2 < η <

√
δ and define:

Definition 2.4 ((δ, η)-lll reduction). Let (δ, η) be admissible parameters. A basis
B of a lattice is said to be (δ, η)-LLL-reduced if the following condition is satisfied:

(3) ∀i < j, |〈bj , πi(bi)〉| ≤ η‖πi(bi)‖2 (Approximate size-reduction condition)

together with the Lovász condition, which is kept unchanged from Definition 2.3.

Using naive multiplication, the cost of Schnorr’s algorithm is cubic in the size of
the numbers, i.e. in log(‖B‖max). The introduction of approximate size reduction
removes the need to know with extreme precision values close to half-integers. In-
stead, approximate size reduction of such values can be achieved by rounding either
up or down in an arbitrary (possibly randomized) manner. In our pseudo-code, we
use a function called η-Closest-Integer to achieve this rounding, returning an
integer at distance at most η of the function’s argument.

2.4. The L2 algorithm. The l2 algorithm is a variant of Schnorr-Euchner ver-
sion [27] of lll. By contrast with the original algorithm, l2 computes the gso
coefficients on the fly as they are needed instead of doing a full orthogonalization at
the start. It also uses a lazy size reduction inspired by the Cholesky factorization
algorithm. These optimizations yield an improved lattice reduction with running
time

O
(
d5(d+ log(‖B‖max)) log(‖B‖max)

)
.

As usual in lattice reduction, while performing the Gram-Schmidt orthogonal-
ization of B, we also compute QR-decomposition of B into B∗ · M where B∗ is
the matrix representing the (πi(bi))1≤i≤d, and M is the upper unitriangular ma-
trix, whose coefficients with j ≥ i are Mi,j =

〈bj ,πi(bi)〉
‖πi(bi)‖2 . Thus, the Gram matrix

associated to the basis, i.e., G = BTB satisfies:

G = MT ·B∗T ·B∗ ·M = MT ·D ·M

where D is a diagonal matrix whose entries are ‖πi(bi)‖2. We denote by R the
matrix D ·M , and thus have G = RT ·M = MT ·R.
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We give the pseudo-code of the Lazy Size-Reduction procedure as Algorithm 2
and of the l2 algorithm as Algorithm 3. Both use classical formulas relating R, M
and B∗ to perform the computations.

2.4.1. Precision required. The precision required by the l2-Algorithm is

d log

(
(1 + η)2

(δ − η)2
+ ε

)
+ o(d)

bits for any ε > 0, i.e., almost linear in the dimension of the lattice. Moreover,
as discussed in [21], it appears that—even though this bound can be shown to be
sharp by specific examples—experiments indicate that the number of bits required
on average is, in fact, lower.

This phenomenom is well-known and is often used in existing algorithms and
softwares in the form of a compute-and-verify paradigm. For example, this is default
strategy of the well-known FPLLL [29]. It relies on the fact that verifying that a
lattice basis is indeed reduced is much less costly than the reduction itself, as shown
in [30]. In addition, it is necessary to take several conservative measures in order
to prevent the implementation to enter potentially infinite loops.

The approach we propose deviates from this paradigm. Instead of guarantee-
ing the end-result, we want to make sure that the whole computation follows the
mathematical definition of the algorithm. With low-precision approximations, it is
unclear how this could be done. However, interval-arithmetic offers a neat solution
to achieve this goal.

3. Interval Arithmetic and its certification property

Interval arithmetic is a representation of reals by intervals that contain them. For
instance, one can specify a value x with an error ε by giving an interval of length ε
containing x. For example, the constant π can be represented with an error of 10−2

by the interval [3.14, 3.15]. Interval arithmetic is crucial in the context of certified
numerical computations, where reals can only be represented with finite precision.
For more details, the interested reader can consult an extensive reference, such
as [19].

In the following, we denote by x a closed interval [x−, x+]. We define its diameter
as the positive real x+ − x− and its center as the real 1

2 (x+ + x−).
Given a real-valued function f(x1, . . . , xn) an interval-arithmetic realization of

f is an interval-valued function F such that the interval F (x1, . . . , xn) contains all
the values f(x1, . . . , xn) for (x1, . . . , xn) in x1 × · · · × xn.

If F always returns the smallest possible interval, it is called a tight realization,
otherwise it is called loose. In practice, tight realizations can only be achieved in
very simple specific cases. However, even a loose realization can suffice to certify
the correctness of a computation.

Another important property of interval arithmetic is that it can be used to com-
pare numbers in a certified way, as long as the intervals that represent them are
disjoint.

3.1. Some useful interval-arithmetic realizations.
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Algorithm 2: The lazy size reduction algorithm, η-LazyRed.

Input: Initial basis B = (b1, . . . , bd), with G, R and M . An integer 1 ≤ k ≤ d.
Result: Size-reduces bk, updates G, R, M and returns s(k)

1 done ← false;
2 while done = false do
3 for j = 1 to k − 1 do
4 Rk,j ← Gk,j ; for i = 1 to j − 1 do Rk,j ← Rk,j −Mj,iRk,i;
5 Mk,j ← Rk,j/Rj,j ;
6 end
7 s

(k)
1 ← Gk,k; for j = 2 to k do s

(k)
j ← s

(k)
j−1 −Mk,j−1 ·Rk,j−1;

8 Rk,k ← s
(k)
k ;

9 if (maxj<k |Mk,j |) ≤ η then done ← true;
10 else
11 for i = k − 1 downto 1 do
12 Xi ← η-Closest-Integer(Mk,i);
13 for j = 1 to i− 1 do Mk,j ←Mk,j −XiMi,j ;
14 end
15 bk ← bk −

∑k
i=1Xibi; Update G accordingly;

16 end
17 end

Algorithm 3: The L2 Algorithm.

Parameters: δ ∈ (1/4, 1), η ∈ (1/2,
√
δ).

Input: Initial basis B = (b1, . . . , bd)
Result: A (δ, η)-lll-reduced basis

1 Compute G = G(b1, · · · , bd) in exact integer arithmetic;
2 R1,1 ← G1,1;
3 k ← 2;
4 while k ≤ d do
5 Apply size reduction η-LazyRed(k);
6 k′ ← k;
7 while (k ≥ 2 and δRk−1,k−1 > sk

′

k−1) do k ← k − 1 ;
8 Rk,k ← sk

′

k ;
9 if k 6= k′ then

10 for i = 1 to k − 1 do Mk,i ←Mk′,i; Rk,i ← Rk′,i ;
11 Rk,k ← sk

′

k ;
12 Insert bk′ at pos k (before bk) and update matrix G accordingly;
13 end
14 k ← k + 1;
15 end
16 return (b1, · · · , bd)
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3.1.1. Integral representation of fixed length. A first convenient way to represent
reals at finite precision is to use integers as an approximate representation.

Definition 3.1 (Integral representation of reals). Let x ∈ R be an arbitrary real
number and n ≥ 0 a non-negative integer. Define an integral representation at
accuracy2 n as an interval of diameter 2:

xn = [Xn − 1, Xn + 1]

together with a guarantee that 2nx belongs to xn.

This representation is very compact, since it only requires to store the center Xn

of the interval using n+dlog xe bits. However, computing with this form of represen-
tation is not convenient. As a consequence, we only use it to represent immutable
values and we convert to a different representation for computations. The reason for
using the interval [Xn − 1, Xn + 1] of diameter 2 rather than [Xn − 1/2, Xn + 1/2]
(of diameter 1) is that when 2nx is very close to a half-integer, it remains possible
to easily provide a valid value for Xn without computing extraneous bits of the
representation of x.

3.1.2. Fixed-point representations. In the context of lattice reduction, it is useful
to compute linear combinations with exact integral coefficients. In order to do that
with approximate values initially given by centered integral representation, it is
possible to use a fixed-point representation.

Definition 3.2 (Fixed point representation of reals). Let x ∈ R be an arbitrary
real number and n ≥ 0 a non-negative integer. Define a fixed-point representation
at accuracy n of radius δ as an interval:

xn = [Xn − δ,Xn + δ]

together with a guarantee that 2nx belongs to xn.

It is easy to add or subtract such intervals by doing the computation on the
center and by adding the two radii. It is also easy to multiply by an exact integer by
multiplying the center by the integer and the radius by its absolute value. Integral
representations are a special case of fixed-point representations, with radius equal
to 1.

3.1.3. Floating-point representation. Another way to handle real values is to use
floating point representations of the two bounds of each interval. For example, if we
denote by bxcn and dxen respectively the largest floating-point number below x and
the lowest floating-point number above x written with n bits, the tightest floating-
point representation of x with n bits of precision is the interval In(x) = [bxcn, dxen].

With such a representation, it becomes possible to create a realization of the
elementary operations by using careful rounding when computing approximations
of the bounds of the resulting interval, as shown in Figure 1. When speaking of
the precision of such a representation, we simply refer to the common floating-point
precision of the upper and lower bounds.

Once the elementary operations are available, they can be used to implement
certified versions of any function that can classically be computed with floating
point arithmetic.

2 We use here the denomination of “accuracy” instead of “precision” to avoid confusions with
the floating-point precision as defined in paragraph 3.1.3.
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[
x−, x+

]
+

[
y−, y+

]
=

[
x− +− y−, x+ ++ y+

][
x−, x+

]
−

[
y−, y+

]
=

[
x− −− y−, x+ −+ y+

][
x−, x+

]
×

[
y−, y+

]
=

[
min−(ρ),max+(ρ)

]
where ρ = x−y−, x+y−, x−y+, x+y+[

x−, x+
]−1

=

[
min−

(
1

x+
,
1

x−

)
,max+

(
1

x+
,
1

x−

)]
++, +− are here respectively the + operator with rounding up or down.

The same goes for the −+,−−,min−,max+ operators.

Figure 1. Basic arithmetic operators in Interval Arithmetic

4. Approximate lattices

The need to reduce lattices given by approximations, especially for number-
theoretic applications as been known for long. In particular, Buchmann gives in [3] a
bound on the required precision to achieve this goal by using a direct approximation
of the input basis. However, this bound is computed in terms of a quantity called
the defect that can be very large and also involves the first minimum of the lattice.

Using interval arithmetic, it becomes possible to get finer control on the precision
required to perform the lattice reduction, even with approximate lattices.

4.1. Approximate representation of a positive-definite matrix. A matrix
with real entries can easily be represented with the integral representation from
Definition 3.1, using the same accuracy for all of its entries.

Definition 4.1 (Matrix integral representation). Let A = (ai,j)i,j ∈ Rd×d be an
arbitrary real matrix of dimension d and n > 0 be a fixed positive integer. A matrix
of intervals

An = (ai,j
n
)(i,j)∈[1 ··· d]2 ,

where each ai,j
n
is an integral representation of ai,j is said to integrally represent A

at accuracy n.

We may omit the subscript n when the accuracy is clear from the context. Given
a matrix A, and a matrix B ∈ An, there exists a unique d×d matrix ∆ with entries
in [−2, 2] such that B = 2nA+ ∆.

In particular, we may apply this representation to symmetric matrices. In that
case, we obtain the following useful lemma:

Lemma 4.2. Let S = (si,j)i,j ∈ Sd(R) be a symmetric matrix of dimension d
and Sn an integral representation of S at accuracy n. Then, for any symmetric
matrix S′ in Sn, we have:

2nλd(S)− 2d ≤ λd(S′) ≤ 2nλd(S) + 2d,

where λd(T ) denotes the smallest eigenvalue of a d-dimensional symmetric ma-
trix T .

Proof. This is a direct consequence of Weyl’s inequalities for Hermitian matrices
and of the relation S′ = 2nS+ ∆, where ∆ is real symmetric with entries in [−2, 2].
Note that the eigenvalues of ∆ all belong to [−2d, 2d]. �
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4.2. Representation of lattices. In order to represent arbitrary lattices, we first
need a description of their ambient space. We simply describe the ambient space V
of dimension d by providing a basis γ = (γ1, . . . , γd). Then, the scalar product 〈·, ·〉
on V can be encoded by a Gram matrix Gγ = (〈γi, γj〉)(i,j)∈[1 ··· d]2 .

When the Gram matrix Gγ is integral, this already is a standard description
of the lattice Γ spanned by γ. This representation appears in particular in [4,
Proposition 2.5.3]. We now extend this in order to represent bases and generating
families of arbitrary sublattices of Γ. Let Λ be a rank r ≤ d sublattice of Γ given
by a generating family ` = (`1, . . . , `p). Since any vector in ` belongs to Γ, it can
be expressed with integral coordinates in the basis γ. As a consequence, we can
represent ` by a p× d integral matrix L. Moreover, the knowledge of Gγ allows us
to easily compute the scalar product of any pair of vectors in Λ.

All this leads to the following definition:

Definition 4.3 (Approximate representation of a lattice). Let Gγ and L be as
above and n be a non-negative integer. Denote by G the matrix of centers of an
integral representation Gγ

n
at accuracy n of the Gram matrix Gγ . Then the pair

(G,L) ∈ Zd×d × Zp×d of integral matrices is said to represent at accuracy n the
lattice Λ in the basis γ of Γ.

4.2.1. Computation of the inner product in Interval Arithmetic. Let a and b be two
vectors of Λ described by their vectors A and B of coordinates in the basis γ. We
know that:

〈a, b〉 = AT · Gγ ·B.
Thus:

2n〈a, b〉 = AT ·G ·B +AT ·∆ ·B, where |AT ·∆ ·B| ≤

(∑
i

|Ai|

)(∑
i

|Bi|

)
.

This directly gives an interval representation of 〈a, b〉.

4.3. Lattice reduction of approximate lattices. Suppose now that the Gram
matrix Gγ = (〈γi, γj〉)(i,j)∈[1 ··· d]2 representing the inner product of the ambient
space Γ⊗ZR in the basis γ is given indirectly by an algorithm or an oracle Oγ that
can compute each entry at any desired accuracy. We can restate the definition of a
reduced basis in this framework as:

Definition 4.4 ((δ, η)-lll reduction). Let (δ, η) be admissible lll parameters.
Given an integral matrix L ∈ Zp×d which describes the vectors of a basis of a
lattice Λ in the basis γ, we say that (Gγ , L) is a (δ, η)-lll reduced basis of Λ if
and only if there exists an n0 > 0 such that for any n ≥ n0 there exists a pair
(Gn, L), where Gn is an integral representation of Gγ at accuracy n, which is a
(δ, η)-lll reduced basis.

The computational problem associated with reduction theory can then be written
as:

Problem (Lattice Reduction for approximate representation). Let δ, η be admis-
sible lll parameters. Given as input an algorithm or oracle to compute Gγ at
arbitrary precision and an integral matrix L ∈ Zp×d that describes the vectors of a
generating family of a lattice Λ in the basis γ: find a basis L′ of Λ such that (Gγ , L′)
is a (δ, η)-lll reduced basis in the sense of Definition 4.4.
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Note that using interval arithmetic it suffices to check the (δ, η)-lll reduction
condition at accuracy n0 to be sure it holds at any larger accuracy. Indeed, an in-
tegral representation that satisfies the condition can be refined into a more precise
integral representation by scaling up the integer representing the center by an ade-
quate power of two. This refined representation continues to satisfy the condition.

4.3.1. Accuracy of representation and space complexity. Let (Gn, L) be an integral
representation of Λ, at accuracy n. Then, the magnitude of the entries of G is
2n times the magnitude of the entries of Gγ . Thus, Gn can be encoded using
O
(
d2(n+ log ‖Gγ‖max)

)
bits.

5. Generalized LLL reduction with Interval Arithmetic

In this Section, we adapt lattice reduction algorithms to our setting. More pre-
cisely, we represent the information related to Gram-Schmidt vectors by interval
arithmetic using a floating-point representation as described in Section 3.1.3. For
the representation of the lattice itself, we consider two cases: either the underlying
Gram matrix is integral, or it is given by an approximate integral representation
as in Section 4.1. In the latter case, our algorithm also asks for representations
with higher accuracy until it is sufficient to yield a reduced basis for the given lat-
tice. The canonical case with the standard Euclidean scalar product is achieved by
setting the Gram matrix to the (exact) identity matrix.

5.1. Interval Arithmetic L2 reduction with fixed precision. We first consider
the simplified case where the lattice representation is fixed. It can be either exact
or approximate with a given accuracy. In both cases, we fix a basis γ = (γ1, . . . , γd)
and a representation of a lattice Λ in this basis. It is respectively an exact integral
representation (G,L) or an approximate representation (Gn, L) at accuracy n of
(Gγ , L).

5.1.1. Using Interval Arithmetic in lll. We now modify the l2 algorithm of [21]
in a few relevant places to make use of interval arithmetic instead of floating-point
arithmetic for the Gram-Schmidt-related values. Since the description of the lattice
Λ is already using intervals, it seems natural to use interval arithmetic in the lattice
reduction algorithm. For completeness, when the input Gram matrix is exact, we
make the updates to the Gram-Schmidt orthogonalized matrix used by lll explicit
in the algorithm (except the simple displacements). This also emphasizes a subtle
difference with the case of an approximate input Gram matrix. Indeed, in that
case, we update the gso-values but recompute the errors rather than relying on the
interval arithmetic to do it. This is important to gain a fine control on the error
growth during updates.

In addition, when using the technique from [23] to be able to deal with lattices
given by a generating family instead of a basis, we make a slightly different choice
than in [21]. Instead of moving the zero vectors that are encountered during the
computation during the reduction to the start of the basis, we simply remove them.
Note that with an approximate matrix, if we discover a non-zero vector whose length
is given by an interval containing 0, it is not possible to continue the computation.
This means that the accuracy of the input is insufficient and we abort. The core
modification with interval arithmetic appears while testing the Lovász condition.
If it is not possible to decide whether the test is true or false because of interval
overlap, we also abort due to lack of precision. To be more precise, when testing
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the Lovász condition, we also need to check that the corresponding µ coefficient is
indeed smaller than η. The reason for this is that, when called with insufficient
precision, the Lazy reduction routine may fail to ensure that property.

In addition, if a negative number occurs when computing the norm of a vector, it
means that the given Gram matrix is not positive-definite and the algorithm returns
an error accordingly.

Algorithm 4: The (interval) lazy size reduction algorithm, η-ILazyRed.

Input: Initial basis L = (L1, . . . , Ld), precomputed (internal) Gram matrix
Gram, interval matrices R and M , an integer 1 ≤ k ≤ d.

Result: Size-reduce the k-th vector of L and update the Gram matrix Gram.

1 done ← false;
2 while done = false do
3 for j = 1 to k − 1 do
4 Rk,j ← ConvertToFPinterval(Gramk,j);
5 for i = 1 to j − 1 do Rk,j ← Rk,j −Mj,iRk,i ;
6 Mk,j ← Rk,j/Rj,j ;
7 end
8 s

(k)
1 ← ConvertToFPinterval(Gramk,k);

9 for j = 2 to k do s
(k)
j ← s

(k)
j−1 −Mk,j−1 ·Rk,j−1 ;

10 Rk,k ← s
(k)
k ;

11 τ ← (maxj<kMk,j);
12 ret ← (τ ≤ η);
13 if ret 6= false then done ← true;
14 else
15 for i = k − 1 downto 1 do
16 Xi ← η-IntervalClosestInteger(Mk,i);
17 for j = 1 to i− 1 do Mk,j ←Mk,j −XiMi,j ;
18 Lk ← Lk −XiLi;

// Update the Gram matrix accordingly
19 Gramk,k ← Gramk,k − 2XiGramk,i +X2

i Grami,i;
20 for j = 1 to i do Gramk,j ← Gramk,j −XiGrami,j ;
21 for j = i+ 1 to k − 1 do Gramk,j ← Gramk,j −XiGramj,i;
22 for j = k + 1 to d do Gramj,k ← Gramj,k −XiGramj,i;
23 end
24 end
25 end

5.1.2. Internal precision in the exact-input case. For the classical l2 algorithm,
Section 2.4.1 states that the precision that is needed for the computations only
depends on the dimension of the lattice. It is natural to ask a similar question about
the algorithm ll: can the required internal accuracy be bounded independently of
the entries appearing in the matrices G and L. When G is exact, i.e., integral, the
adaptation is straightforward and we obtain the following result.
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Algorithm 5: The ll Algorithm.

Parameters: δ ∈ (1/4, 1), η ∈ (1/2,
√
δ) admissible lll parameters, ` ∈ N

the internal precision used for floating-point representation.
Input: Exact representation (G,L) or approximate representation (Gn, L) of

a lattice given by p generating vectors in dimension d.
Result: A (δ, η) lll-reduced basis L′ (with dim(L) vectors).

1 k ← 2 ;
// Compute the Gram matrix of the basis represented by L

2 for i = 1 to p for j = 1 to i do
3 if Exact then GramLi,j ← LTi GLj ;
4 else GramLi,j ← Interval of center LTi GnLj and radius ‖Li‖1‖Lj‖1 ;
5 end
6 R1,1 ← ConvertToFPinterval(GramL1,1);
7 while k ≤ p do

// Size-reduce Lk with interval on the family (L1, . . . , Lk−1)

8 η-ILazyRed(k, Exact);
9 if Exact = false then for j = 1 to k do

10 Update radius of GramLk,j to ‖Lk‖1‖Lj‖1 (rounded up with `
significant bits)

11 end
12 k′ ← k;
13 while k ≥ 2 do
14 ret ←

(
Mk′,k−1 ≤ η

)
and

(
δ ·Rk−1,k−1 > s

(k′)
k−1

)
;

15 if ret = true then k ← k − 1;
16 else if ret = false then break;
17 else return ErrorPrecision ;
18 end
19 if k 6= k′ then
20 for i = 1 to k − 1 do Mk,i ←Mk′,i; Rk,i ← Rk′,i ;
21 Rk,k ← sk

′

k ; Ltmp ← Lk′ ; for i = k′ downto k + 1 do Li ← Li−1 ;
22 Lk ← Ltmp; Move values in GramL accordingly;
23 else
24 Rk,k ← s

(k′)
k ;

25 if 0 ∈ Rk,k and Lk 6= 0 then return ErrorAccuracy ;
26 if Rk,k < 0 then return ErrorNonPosDefinite ;
27 end
28 if Lk = 0 then
29 for i = k to p− 1 do Li ← Li+1 ;
30 p← p− 1; k ← k − 1; Move values in GramL accordingly;
31 end
32 k ← max(k + 1, 2);
33 end
34 return (L)
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Theorem 5.1. Let (δ, η) be admissible lll parameters. Let c > log (1+η)2

δ−η2 and let
(Λ, 〈·, ·〉) denote a rank-d lattice, exactly described by the pair (G,L). Let B denotes
the maximum entry in absolute value in LTGL. Then, the ll of Figure 5 used with
` = cd+o(d) outputs a (δ, η)-lll-reduced basis in time O

(
d3 logB(d+ logB)M(d)

)
.

Furthermore, if τ denotes the number of main loop iterations, the running time is
O(d(τ + d log dB)(d+ logB)M(d)).

In fact, the bound on ` is made explicit in [21]. More precisely, it states that for
any arbitrary C > 0 and an ε ∈]0, 1/2], it suffices to have:

` ≥ 10 + 2 log2 d− log2 min(ε, η − 1/2) + d(C + log2 ρ) where ρ =
(1 + η)2 + ε

δ − η2
.

For example, choosing C = ε = η − 1/2 it suffices to have:

` ≥ T (d, δ, η) = 10 + 2 log2 d− log2 (η − 1/2) + (η − 1/2 + log2 ρ) d.

When δ is close to 1 and η to 1/2, the constant before d becomes smaller than 1.6.

5.1.3. Dealing with approximate inputs. When dealing with lattices given in an ap-
proximate form, i.e., by a representation (Gn, L) at accuracy n of (Gγ , L), the
analysis of the algorithms differs in three main places:

• When bounding the number of rounds τ , we can no longer assume that the
potential is an integer. As a consequence, in order to keep a polynomial
bound on τ , we need to provide a lower bound on the possible values of the
potential, rather than rely on the trivial lower bound of 1 for an integral-
valued potential.

• Since the notion of lll-reduction is only well-defined for a positive definite
G, we need to make sure that Gn is positive-definite during the algorithm.
Otherwise, it should output an error; Algorithm 5 returns an error that Gn
is incorrect whenever it encounters a vector with a negative norm.

• When Gn is approximate, the scalar products between lattice vectors can
no longer be exactly computed. Thus, we need to able to make sure that
the errors are small enough to be compatible with the inner precision used
for Gram-Schmidt values. At first glance, this might seem easy. However,
when using update formulas to avoid recomputation of scalar products, the
estimates on errors provided by interval arithmetic can grow quite quickly.
In fact,it would prevent the update strategy from working. The key insight
is to remark that since the centers of the intervals are represented by in-
tegers, any computation on them is exact and we can use update formulas
to compute them. However, it is essential to recompute the radii of the
intervals, i.e., the errors, to prevent them from growing too quickly.

Number of rounds. Since interval arithmetic allows up to emulate exact compu-
tations as long as no failures are detected, we can analyze the number of rounds
by assuming that all computations on non-integral values are done using an exact
arithmetic oracle. In this context, the number of rounds can be studied by consid-
ering the potential as usual. Remember that the initial setting where lll operates
on a basis the potential is defined as

D(B) =

d∏
i=1

covol
(
B[1...i]

)
.
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The key argument is that it decreases by a multiplicative factor whenever an ex-
change is performed.

However, in our context, the starting upper bound and the ending lower bound
are different from the integer lattice setting. The initial upper bound needs to ac-
count from the presence of the positive definite matrix. So if the lattice is described
by a pair (Gγ , L) the upper bound becomes:

D(B)2 ≤
(
d2‖Gγ‖max‖L‖2max

)d(d+1)/2
.

More importantly, it is no longer possible to claim that the potential is an integer.
Instead, we derive a lower bound by considering the smallest eigenvalue of Gγ and
find:

D(B)2 ≥ λd(Gγ)d(d+1)/2.

As a consequence, if we let τ denote the number of rounds of the algorithm, we
can conclude that:

τ ≤ O
(
d2(log(‖L‖max) + log(‖Gγ‖max/λd(Gγ)) + log(d)

)
.

When the lattice is given by a generating family L rather than a basis B, we
need a slightly different invariant. Following [21], we define di to be the product
of the first i non-zero values ‖b∗j‖. Note that they are not necessarily consecutive,
since zeroes may occur anywhere. We then let:

D′(L) =

(
dimL∏
i=1

di

)
·

 ∏
i,b∗i =0

2i

.
This generalized potential is needed for the proof of Theorem 5.2. Note that, for
lattices given by a basis, the two definitions coincide.

Necessary accuracy for the scalar products. In order to preserve the correctness of
the algorithm when computing with internal precision `, we need to check that all
conversions of scalar product values, using the calls to ConvertToFPinterval
in Algorithms 4 and 5, have sufficient precision. For a pair of lattice elements,
described by vectors Li and Lj , the relative precision on the value of their scalar
product is:

‖Li‖1‖Lj‖1
|LTi GnLj |

.

When the vectors are close to orthogonal with respect to the scalar product given by
Gn, the error can be arbitrarily large. However, by carefully following the analysis
of Theorem 3 in [21, Section 4.1], we can show that this Theorem remains true in
our context. This suffices to ensure the correctness part of Theorem 5 of [21]. The
first check is to verify that quantity called err1 in the proof of the Theorem remains
upper bounded by 2−`. Since the value is defined as the error on the scalar product
of the vectors number i and 1 divided by the norm of the first vector, we have:

err1 ≤
‖Li‖1‖L1‖1
|LT1 GnL1|

≤ maxi ‖Li‖21
λd(Gn)

≤ dmaxi ‖Li‖2

λd(Gn)
≤ dmaxi ‖bi‖2

λd(Gn)2
.

Thus:

err1 ≤
d3‖Gn‖max‖L‖2max

λd(Gn)2
≤ d3(2n‖Gγ‖max + 1)‖L‖2max

(2nλd(Gγ)− 2d)
2 .

As a consequence, it suffices to have:

n ≥ `+ O(log(‖L‖max) + log(‖Gγ‖max/λd(Gγ)) + log(d)).
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l2 with approximate inputs. To complete the above properties on the number of
rounds and necessary accuracy, it suffices to remark that the only additional line of
code in the approximate l2 is the recomputation of interval radii on line 10. Since
it suffices to know the ` high-order bits of the values, this recomputation can fully
be done using arithmetic on `. Indeed, during the computations of ‖Li‖1 no cancel-
lation occurs. As a consequence, we get the following adaptation of Theorem 5.1.
For completeness, we give here the case where the lattice is initially given by a gen-
erating family of p vectors, has rank d and lives in an ambient space of dimension
D.

Theorem 5.2. Let (δ, η) be such that 1/4 < δ < 1 and 1/2 < η <
√
δ. Let

c > log (1+η)2

δ−η2 . Assume that we are given as input (Λ, 〈·, ·〉) a rank-d lattice (G, L)

described by p ≥ d generating vectors in a ambient space of dimension D ≥ d. Fur-
ther assume that it is approximately represented at accurary N by the pair (GN , L)

and let B denote the maximum entry in absolute value in LTGL. Let ` = cd+ o(d)
and

N ≥ `+ log(B/λD(G)) + log(d).

Then, the ll of Figure 5 outputs a (δ, η)-lll-reduced basis in time

O
(
DN

(
d2N + p(p− d)

)
M(d)

)
.

Furthermore, if τ denotes the number of main loop iterations, the running time is
O(DN(dN + τ)M(d)).

5.2. L2 reduction with adaptive precision and accuracy.

5.2.1. Adaptive precision. Since by construction the ll Algorithm can detect that
the choice for internal precision ` is insufficient to correctly reduce the lattice Λ.
The procedure can be wrapped in a loop that geometrically increases precision `
after each unsuccessful iteration. This yields an adaptive precision reduction al-
gorithm adaptive-lll. Since the complexity of floating-point multiplication is
superlinear, the use of a geometric precision growth guarantees that the total com-
plexity of this lattice reduction is asymptotically dominated by its final iteration.3

Moreover, the cost of operations in the floating-point realization of interval arith-
metic is at most four times the cost of floating-point arithmetic at the same pre-
cision. Depending on the internal representation used, this constant can even be
improved. As a consequence, for lattices that can be reduced with a low-enough
precision, it can be faster to use interval arithmetic than floating-point arithmetic
with the precision required by the bound from Section 2.4.1.

5.2.2. Adaptive accuracy. We now turn to the setting of Section 4.3, where an al-
gorithm or oracle Oγ can output an integral representation of the Gram matrix
Gγ = (〈γi, γj〉)(i,j)∈[1 ··· r]2 at arbitrary accuracy n. In that context, we need to
determine both the necessary accuracy and internal precision. When running Al-
gorithm 5 with some given accuracy and precision, three outcomes are possible:

• Either the reduction terminates in which case the lattice is lll-reduced,
which implies that both accuracy and precision are sufficient.

3In practice, for lattices of rank few hundreds it appears nonetheless that the computational
cost of the previous iterations lies between 20% and 40% of the total cost.
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• The Lovász condition fails to be tested correctly, which indicates an insuffi-
cient precision. In that case, we need to test whether the precision is lower
than theoretical bound T (d, δ, η) given after Theorem 5.1 or not. In the
latter case, we know that the accuracy needs to be increased.

• The algorithm detects a non-zero vector whose norm is given by an interval
containing 0. This directly indicates insufficient accuracy.

Depending on the result of Algorithm 5, we increase the precision or the accuracy
and restart. The corresponding pseudo-code is given in Algorithm 6. Since the pre-
cision and accuracy both follow a geometric growth, the computation is dominated
by its final iteration. In particular, we may use the complexity bound given by
Theorem 5.2.

Note that when we increase the accuracy in Algorithm 6, we also reset the pre-
cision to its minimal value. This is a matter of preference that doesn’t affect the
asymptotic complexity. In practice, it seems to be preferable.

It is important to note that we do need to precompute the eigenvalues of the
Gram matrix, since Algorithm 6 automatically detects the needed accuracy.

5.3. Possible generalizations. The adaptative strategy we describe for lll can
be generalized to other lattice reduction algorithm. In particular, enumeration
algorithms are possible within our framework, which allows the implementation of
the BKZ algorithm of [25].

It would be interesting to study a generalization to sieving techniques to adapt
them to approximate lattices.

6. Application to Algebraic Number Theory

We now present a direct application of our lattice reduction strategy in algo-
rithmic number theory. Namely, we consider some interesting lattices sitting inside
number fields: ideal lattices.

6.1. Number fields, integers and ideal lattices.

Number fields. A number field K is a finite-dimensional algebraic extension of Q.
It can be described as:

K ∼= Q[X]�(P ) = Q(α),

where P is a monic irreducible polynomial of degree d in Z[X] and where α denotes
the image of X in the quotient.

Let (α1, . . . , αd) ∈ Cd denote the distinct complex roots of P . Then, there are d
distinct ring-embeddings of K in C. We define the i-th embedding σi : K → C as
the field homomorphism sending α to αi.

It is classical to distinguish embeddings induced by real roots, a.k.a., real em-
beddings from embeddings coming from (pairs of conjugate) complex roots, called
complex embeddings. Those arising from complex roots called complex embeddings.

Assume that P has r1 real roots and r2 pairs of conjugate complex roots, with
d = r1 + 2r2. Since the embeddings corresponding to conjugate roots are related by
conjugation on C, we can either keep a single complex root in each pair or replace
each pair by the real and imaginary part of the chosen root. This leads to the
Archimedean embedding σ defined as:

σ : K −→ Rd

x 7−→
(
σ1(x), . . . , σr1(x),

√
2R(σr1+1(x)),

√
2I(σr1+1(x)), . . .

)T
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Algorithm 6: The adaptive-lll algorithm.

Parameters: δ ∈ (1/4, 1), η ∈ (1/2,
√
δ), `0 ∈ N initial precision of the

algorithm for floating-point representation, n0 initial accuracy
for representing the scalar product, g > 1 geometric growth
factor.

Input: γ a basis of a lattice (Γ, 〈·, ·〉), and Oγ(n) an oracle that compute the
integral representation of the inner product 〈·, ·〉 at accuracy n.

Input: A generating family represented by L in γ of a sublattice Λ ⊂ Γ.
Result: A (δ, η) lll-reduced basis of Λ represented as L′ ∈ Zrk(Λ)×rk(Λ).

// Set initial values for accuracy and precision
// T(d, δ, η) is the theoretical bound given after Theorem 5.1

1 `← `0;
2 n← n0;
3 G← Oγ(n);
4 succeed ← false;
5 repeat
6 retcode ← ll(G,L);
7 if retcode=ErrorNonPosDefinite then return ErrorNonPosDefinite;
8 if retcode=OK then succeed ← true;
9 else if retcode=ErrorPrecision then

10 `′ ← `;
11 `← min(dg `e, T (d, δ, η), n);
12 if `′ = ` then retcode ← ErrorAccuracy;
13 end
14 if retcode=ErrorAccuracy then
15 `← `0;
16 n← dg ne;
17 G← Oγ(n);
18 end
19 until succeed = true;
20 return L

This embedding allows us to define a real symmetric bilinear form on K:

〈a, b〉σ = σ(a) · σ(b) =

d∑
i=1

σi(a)σi(b).

The second equality explains the presence of the normalization factors
√

2 in the
definition of σ. Note that the form is positive definite, thus endowing K with an
Euclidean structure.

Integers. Any element γ of K has a minimal polynomial, defined as the unique
monic polynomial of least degree among all polynomials of Q[X] vanishing at γ.
The algebraic number γ is said to be integral if its minimal polynomial lies in Z[X].
The set of all integers in K forms a ring, called the ring of integers of K and denoted
oK. It is also a free Z-module of rank d. A basis (w1, . . . , wd) of oK (as a Z-module)
is called an integral basis of K.
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As a consequence, using the bilinear form 〈·, ·〉σ, we can view oK as a lattice.

Ideals. An ideal of oK is defined as an oK-submodule of oK. In particular, it
is a Z-submodule of rank d. Every ideal I can be described by a two-element
representation, i.e. expressed as I = αoK +βoK, with α and β in oK. Alternatively,
every ideal can also be described by a Z-basis formed of d elements.

6.2. Lattice reduction for ideals. With the above notations, we can directly use
our lattice reduction algorithm to reduce an ideal lattice. More precisely, given an
integral basis (w1, . . . , wd) and a two-element representation of I by α and β, we
proceed as follows:

(1) Define the Gram matrix Gw with entries 〈wi, wj〉σ. It can be computed
to any desired precision from approximations of the roots of P . The roots
themselves can be computed, using, for example, the Gourdon-Schönhage
algorithm [8].

(2) Let L be the matrix formed of the (integral) coordinates of (αw1, . . . , αwd)
and (βw1, . . . , βwd) in the basis (w1, . . . , wd).

(3) Directly apply Algorithm 6 to (Gw, L).

The same thing can be done, mutantis mudantis, for an ideal described by a
Z-basis.

A well-known special case. For some number fields, the Gram matrix is Gw is in-
tegral. In that case, the use of Algorithm 6 isn’t necessary and one can directly
work with an exact lattice. This is described for the special case of reducing the full
lattice corresponding to the ring of integers in [1, Section 4.2] for totally real fields.
It can be generalized to CM-fields, since they satisfy the same essential property
of having an integral Gram matrix. The same application is also discussed in [4,
Section 4.4.2].

Non integral case. For the general case where the Gram matrix is real, [1] propose
to multiply by 2e and round to the closest integer. It also gives a bound on the
necessary accuracy e as the logarithm of (the inverse of) the smallest diagonal entry
in the Cholesky decomposition of the Gram matrix. In some sense, this is similar
to our approach. However, without any auxiliary information on this coefficient, it
is proposed to continue increasing e as long as it is deemed unsatisfactory.

By contrast, termination of our algorithm guarantees that lattice reduction is
completed and that the output basis is lll-reduced.
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Appendix A. Proof of Proposition 1

We now show the more general statement for a (δ, η)-lll reduced basis (b1, . . . , bd)
of (Λ, 〈·, ·〉). Namely that for any 1 ≤ k ≤ d we have:

covol(b1, . . . , bk) ≤
(
δ − η2

)− (d−k)k
4 covol(Λ)

k
d .

Proof. Using the Lovász condition at index 1 ≤ i < d, we write:

δ‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2 = ‖πi+1(bi+1)‖2 + µ2
i,i+1‖πi(bi)‖2

https://github.com/fplll/fplll
https://github.com/fplll/fplll
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Thanks to the size-reduction condition, this implies:

(4) ∀i ∈ {1, . . . , d− 1}, ‖πi(bi)‖2 ≤
(
δ − η2

)−1‖πi+1(bi+1)‖2.

Let K denote
(
δ − η2

)−1/2 and `i be the norm of the vector πi(bi). Then, Equa-
tion (4) becomes:

∀i ∈ {1, . . . , d− 1}, `i ≤ K`i+1.

Recall that covol(b1, . . . , bk) =
∏k
i=1 `i. This implies that for any j > k:

covol(b1, . . . , bk) ≤
k∏
i=1

Kj−i`j = Kk(2j−k−1)/2 · `kj .

Thus:

covol(b1, . . . , bk)
d

=

(
k∏
i=1

`i

)d
≤

(
k∏
i=1

`i

)k d∏
j=k+1

Kk(2j−k−1)/2 · `kj

≤

(
d∏
i=1

`i

)k
K

∑d
j=k+1 k(2j−k−1)/2

≤ covol(Λ)
k
K

d(d−k)k
2 .
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