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Abstract. One of the submissions to the CAESAR competition for the design
of a new authenticated encryption scheme is Offset Merkle-Damg̊ard (OMD). At
FSE 2015, Reyhanitabar et al. introduced p-OMD, an improvement of OMD that
processes the associated data almost for free. As an extra benefit, p-OMD was
claimed to offer integrity against nonce-misusing adversaries, a property that
OMD does not have. In this work we show how a nonce-misusing adversary
can forge a message for the original p-OMD using only 3 queries (including the
forgery). As a second contribution, we generalize and simplify p-OMD. This is
done via the introduction of the authenticated encryption scheme Spoed. The
most important difference is the usage of a generalized padding function GPAD,
which neatly eliminates the need for a case distinction in the design specification
and therewith allows for a significantly shorter description of the scheme and a
better security bound. Finally, we introduce the authenticated encryption scheme
Spoednic, a variant of Spoed providing authenticity against a nonce-misusing
adversary at a modest price.

Keywords: Authenticated encryption, CAESAR, p-OMD, nonce-misuse, forgery,
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1 Introduction

The principle of authenticated encryption, where both the confidentiality as well as the
integrity of data is guaranteed has gained renewed attention in the last couple of years.
Emerged from this is the CAESAR competition for the design of new authenticated
encryption schemes [5]. CAESAR has received 57 submissions, 30 of which have recently
advanced to the second round. Many of these designs have already received further
attention via attacks, supporting security proofs, or generalizations.

One of the second round candidates of the CAESAR competition is Offset Merkle-
Damg̊ard (OMD) by Cogliani et al. [8,9]. It is characterized by the usage of a full-fledged
compression function, and in fact the CAESAR submission takes the SHA256 compres-
sion function. OMD is proven to achieve birthday-bound security on the state against
adversaries that are not allowed to re-use the nonce. At ProvSec 2014, Reyhanitabar et
al. [17] showed how to generalize the scheme to achieve security against nonce-misusing
adversaries. On the downside, these schemes are not online and are less efficient than
OMD. At FSE 2015 Reyhanitabar et al. [18] presented p-OMD (pure OMD). p-OMD
improves over classical OMD in that the associated data is processed almost for free.
This is achieved by processing the message blocks as normal message inputs to the com-
pression function and by XORing the associated data into the state. The authors prove
that p-OMD inherits all security features of OMD, particularly birthday-bound security
against nonce-respecting adversaries. In [19], an early version of [18], it was suggested
that p-OMD also offers integrity against nonce-misusing adversaries.

1.1 Nonce-Misuse Forgery on p-OMD (Damaging)

As first contribution of this work, we point out that this claim is incorrect. In more detail,
we present a nonce-misusing adversary that can forge a message for p-OMD in only 3



queries, including the forgery itself. At a high level, the attack relies on the observation
that if an evaluation for p-OMD is made for a certain nonce, the adversary learns (most
of) the corresponding state values. If the adversary is allowed to misuse the nonces,
this means that it can effectively influence the state values, and henceforth generate a
forgery. We also point out where the mistake occurs in the proof. We stress that this
attack does not invalidate the security of p-OMD (nor OMD) in the nonce-respecting
setting: that proof seems sound and the scheme achieves confidentiality and integrity.

1.2 Spoed (Simplifying)

One may argue that the flaw slipped into [19] in part due to the complex character of
p-OMD. Indeed, the specification of p-OMD consists of 6 cases (or in fact 13, if you
consider the scheme in full detail), depending on the number of associated data and
message blocks. The forking of one scheme into a plurality of cases entails difficulties
both on the theory side, leading to longer and more cumbersome proofs (which are
incidentally harder to verify, as in the case above), and on the practical side, forcing less
efficient and error-prone implementations. Additionally, it does not particularly facilitate
an easy understanding and adoption of the scheme.

Driven by these conclusions and the potential that p-OMD offers for certain scenarios,
we next explore the possibilities to generalize and simplify p-OMD. In more detail, we
introduce Spoed,1 a variant of p-OMD that aims to provide a higher level of simplicity
at the same efficiency as p-OMD. In more detail, Spoed is an authenticated encryption
mode that can use any keyed compression function FK : {0, 1}2n → {0, 1}n for n ≥ 1 as
its underlying primitive. Spoed differs from p-OMD in the following aspects:

– Most importantly, Spoed uses a generalized padding scheme GPAD. It takes as input
the associated data A and the message M , and injectively maps those to generalized
message blocks of size 2n bits. As GPAD includes the length encodings of A and M
as one of the generalized message blocks, it allows to give a unified description of
the scheme: one scheme for all variants;

– p-OMD relies on Gray codes for case separation. Due to the usage of the generalized
padding scheme, we can resort to the simpler-to-grasp powering-up approach [20]
or word-based LFSR approach by Granger et al. [11]. Note that the usage of these
approaches for state sizes larger than 128 bits has only been validated recently [11].

We prove that, assuming FK is a sufficiently secure keyed compression function, Spoed
redeems the security results of p-OMD in the nonce-respecting setting. To instantiate
FK , one can use the SHA256 or SHA512 compression functions. These functions have
been the target of extensive cryptanalysis, and their security is well understood. They
are also in wide use and efficient implementations of them can be found for practically
any platform.

Spoed makes exactly the same number of compression function calls as p-OMD,
except in the rare case where a > m and a + m is odd (in which case Spoed makes
one extra compression function call due to the length encoding of A and M). We see
this as a modest price to pay for achieving a scheme that (i) has a shorter and simpler
description, making it easier to implement, (ii) requires less precomputational overhead,
and (iii) has a proof of about 1/4th the size of the proof of p-OMD, making it easier
to verify. The fact that Spoed has a slightly improved security bound can be seen as a
bonus.

1 The name is an acronym for “Simplified Pure OMD Encryption and Decryption.”
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1.3 Spoednic (Salvaging)

For the cases where nonce-misuse resistance is needed, we introduce Spoednic.2 Spoednic
is a variant of Spoed preserving integrity, up to the birthday bound, in the nonce-
misuse scenario at the cost of one additional finite field multiplication per primitive call.
Intuitively, the finite field multiplication is used to obfuscate the value XORed into the
state, thus preventing an adversary from choosing a “convenient” value.

We prove that Spoednic inherits all security traits of Spoed, and has the added
benefit of preserving the integrity against a nonce-reusing adversary. Surprisingly, the
proof for this case leads to a better security bound than the flawed one claimed for
p-OMD [19].

We stress that the reader should not take Spoednic as a recommendation for allow-
ing the nonce to repeat. The question about who is responsible for dealing with the
uniqueness of the nonce is debated in the cryptographic community. One side to this
discussion believes that making sure the nonce is unique is an implementation matter
while the other side believes that it should be dealt with by the algorithms designers.
Both sides agree that a repeating nonce is an unwanted scenario, and the contribution
of Spoednic is to allow for a graceful fail rather than a disastrous one in this unwanted
event.

2 Security Model

Throughout, n ≥ 1 denotes the state size. By ⊕ we denote the exclusive-or (XOR)
operation, and by ⊗ or · finite field multiplication over 2n. Concatenation is denoted
using ‖. Denote by {0, 1}∗ the set of binary strings of arbitrary length and by {0, 1}n the
set of blocks of size n. Denote by ({0, 1}n)+ the set of strings of length a positive multiple
of n. For an arbitrary string X, |X| denotes its length, and 〈|X|〉n denotes its encoding
in n ≥ 1 bits. By leftn(X) (resp. rightn(X)) we denote its n leftmost (resp. rightmost)
bits. We use little-endian notation, which means the three notations “bit position 0”,
“the rightmost bit”, and “the least significant bit” all refer to the same bit.

In Sect. 2.1, we describe our model for the security of authenticated encryption. Then,
we present some theoretical background on keyed compression functions in Sect. 2.2.

2.1 Authenticated Encryption

Let Π = (E ,D) be an authenticated encryption scheme, where

E : (K,N,A,M) 7→ (C, T ) and

D : (K,N,A,C, T ) 7→M/⊥

are the encryption and decryption functions of Π. Let $ be a random function that

returns (C, T )
$←− {0, 1}|M | × {0, 1}τ on every new tuple (N,A,M). In other words,

E and $ have the same interface, but the latter outputs a uniformly randomly drawn
ciphertext and tag for every new input.

An adversary A is a probabilistic algorithm that has access to one or more oracles
O, denoted AO. By AO = 1 we denote the event that A, after interacting with O,
outputs 1. In below games, the adversaries have oracle access to EK or its counterpart
$, and possibly DK . The key K is randomly drawn from {0, 1}k at the beginning of
the security experiment. We say that A is nonce-respecting (nr) if it never queries its

2 The name is an acronym for “Simplified Pure OMD Encryption and Decryption with Nonce-
misuse Integrity Conserved.”
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encryption oracle under the same nonce twice, and nonce-misusing (nm) if it is allowed
to make multiple encryption queries with the same nonce. The security definitions below
follow [1,4, 10,12,13].

We define the advantage of A in breaking the confidentiality of Π as follows:

Advconf
Π (A) =

∣∣∣Pr
(
K

$←− {0, 1}k , AEK = 1
)
−Pr

(
A$ = 1

)∣∣∣ .
For n ∈ {nr, nm}, we denote by Advconf

Π (n, q, `, σ, t) the maximum advantage over all
n-adversaries that make at most q queries, each of length at most ` generalized message
blocks and together of length at most σ generalized message blocks, and that run in
time t.

For integrity, we consider an adversary that tries to forge a ciphertext, which means
that DK ever returns a valid message (other than ⊥) on input (N,A,C, T ) and no
previous encryption query EK(N,A,M) returned (C, T ) for any M . Formally:

Advint
Π (A) = Pr

(
K

$←− {0, 1}k , AEK ,DK forges
)
.

For n ∈ {nr, nm}, we denote by Advint
Π (n, qE , qD, `, σ, t) the maximum advantage over

all n-adversaries that make at most qE encryption and qD decryption queries, each of
length at most ` generalized message blocks and together of length at most σ generalized
message blocks, and that run in time t. We remark that the nonce-respecting condition
only applies to encryption queries: the adversary is always allowed to make decryption
queries for “old” nonces, and to make an encryption query using a nonce which is already
used in a decryption query before.

2.2 (Tweakable) Keyed Compression Function

Let F : {0, 1}k × {0, 1}n+m → {0, 1}n be a keyed compression function. Denote by
Func({0, 1}n+m, {0, 1}n) the set of all compression functions from n+m to n bits. We
define the PRF security of F as

Advprf
F (A) =

∣∣∣∣∣∣
Pr
(
K

$←− {0, 1}k , AFK = 1
)
−

Pr
(
R

$←− Func({0, 1}n+m, {0, 1}n) , AR = 1
)
∣∣∣∣∣∣ .

We denote by Advprf
F (q, t) the maximum advantage over all adversaries that make at

most q queries and that run in time t.

A tweakable keyed compression function F̃ : {0, 1}k × T × {0, 1}n+m → {0, 1}n

takes as additional input a tweak t ∈ T . Denote by F̃unc(T , {0, 1}n+m, {0, 1}n) the set
of all tweakable compression functions from n + m to n bits, where the tweak inputs
come from T . Formally, a tweakable keyed compression function is equivalent to a keyed
compression function with a larger input, but for our analysis it is more convenient to

adopt dedicated notation. We define the tweakable PRF (P̃RF) security of F̃ as

Advp̃rf

F̃
(A) =

∣∣∣∣∣∣
Pr
(
K

$←− {0, 1}k , AF̃K = 1
)
−

Pr
(
R̃

$←− F̃unc(T , {0, 1}n+m, {0, 1}n) , AR̃ = 1
)
∣∣∣∣∣∣ .

We denote by Advp̃rf
F (q, t) the maximum advantage over all adversaries that make at

most q queries and that run in time t.
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Fig. 1: p-OMD for the specific case of |A| = 2n and |M | = m.

3 p-OMD

Let k,m, n, τ ∈ N such that m ≤ n. Let F : {0, 1}k × {0, 1}n+m → {0, 1}n be a keyed
compression function. p-OMD is a mapping that takes as input a key K ∈ {0, 1}k, a
nonce N ∈ {0, 1}≤n−1, an arbitrarily sized associated data A ∈ {0, 1}∗, and an arbi-
trarily sized message M ∈ {0, 1}∗, and it returns a ciphertext C ∈ {0, 1}|M | and tag
T ∈ {0, 1}τ .

For our attack it suffices to describe p-OMD for the specific case where |A| = 2n
and |M | = m (or in other words, the associated data consists of two integral blocks and
the message of one integral block). It is depicted in Fig. 1 (and corresponds to Case A
of [19]). Here,

∆N,1,0 = FK(N‖10n−1−|N |, 0m)⊕ 16FK(0n, 0m) ,

∆N,2,4 = FK(N‖10n−1−|N |, 0m)⊕ (32⊕ 16⊕ 4)FK(0n, 0m) ,

but our attack will not effectively use these masking values.

3.1 Preliminary Security Claims of p-OMD

In [19], Reyhanitabar et al. proved the following security levels for p-OMD:

Theorem 1. We have

Advconf
p-OMD(nr, q, `, σ, t) ≤ 3σ2

2n
+ Advprf

F (2σ, t′) ,

Advint
p-OMD(nr, qE , qD, `, σ, t) ≤

3σ2

2n
+
`qD
2n

+
qD
2τ

+ Advprf
F (2σ, t′) ,

Advint
p-OMD(nm, qE , qD, `, σ, t) ≤

3σ2

2n
+
`(q2E + qE)qD

2n
+
qD
2τ

+ Advprf
F (2σ, t′) ,

where t′ ≈ t.

In the updated version [18], the authors removed the last claim of the three as a result
of this attack also presented in [2]. In the remainder of the section, we demonstrate why
the bound does not hold.

3.2 Nonce-Misusing Attack on p-OMD

We consider a nonce-misusing adversary that operates as follows:

(i) Fix N = ε and choose arbitrary M ∈ {0, 1}m and A1, A2, A
′
1 ∈ {0, 1}n such that

A1 6= A′1;
(ii) Query p-OMDK(N,A1A2,M)→ (C, T );
(iii) Query p-OMDK(N,A′1A2,M)→ (C ′, T ′);
(iv) Set A′2 = C ⊕ C ′ ⊕A2;
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(v) Query forgery p-OMD−1K (N,A′1A
′
2, C

′, T ).

For the first and second evaluation of p-OMD, it holds that the state difference right
before the second F -evaluation equals C ⊕ C ′. The forgery is formed simply by adding
this value to A2. Consequently, it holds that the first call to p-OMD and the forgery
attempt have the exact same input to the second F -evaluation, and thus the same tag.
Therefore, the forgery attempt succeeds as

p-OMD−1K (N,A′1A
′
2, C

′, T ) = M

by construction. In other words, for some negligibly small t,

Advint
p-OMD(nm, 2, 1, 2, 6, t) = 1 .

The issue appears in the proof of [19] in Lemma 4 case 4, and more specifically the
analysis of probability Pr(intcol | E4). The authors claim that an adversary can, indeed,
find an internal collision, but that any such collision happens with a birthday bound
only. This reasoning, however, assumes that the input to every F -call is random, which
is not the case given that the adversary can re-use the nonce and thus observe and
modify the state using encryption queries.

4 Spoed

We introduce the authenticated encryption scheme Spoed with the motivation of gener-
alizing and simplifying p-OMD. As a bonus, the simplification allows for a better bound
and a significantly shorter proof, making the scheme less susceptible to mistakes hiding
in one of the lemmas.

4.1 Syntax

Let k, n, τ ∈ N such that τ ≤ n. Here and throughout, we assume Spoed to process
blocks of m = n bits. However, the results easily generalize to arbitrary (but fixed)
block sizes. Let F : {0, 1}k×{0, 1}2n → {0, 1}n be a keyed compression function. Spoed
consists of an encryption function E and a decryption function D.

– The encryption function E takes as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}n,
an arbitrarily sized associated data A ∈ {0, 1}∗, and an arbitrarily sized message
M ∈ {0, 1}∗. It returns a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}τ ;

– The decryption function D takes as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}n,
an arbitrarily sized associated data A ∈ {0, 1}∗, an arbitrarily sized ciphertext C ∈
{0, 1}∗, and a tag T ∈ {0, 1}τ . It returns either a message M ∈ {0, 1}|C| such that
M satisfies E(K,N,A,M) = (C, T ) or a dedicated failure sign ⊥.

The encryption and decryption function are required to satisfy

D(K,N,A, E(K,N,A,M)) = M

for any K,N,A,M .

4.2 Generalized Padding

Spoed uses a generalized padding function

GPADn,τ : {0, 1}∗ × {0, 1}∗ →
(
{0, 1}2n

)+
.
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It is indexed by state sizes n, τ , and it maps the associated data and message to gen-
eralized message blocks. Formally, it is defined as follows: First, A (associated data)
and X (message or ciphertext) are padded into n-bit message blocks A1‖ · · · ‖Aa =
A‖0n−|A| mod n andX1‖ · · · ‖Xm = X‖0n−|X| mod n, respectively. Denote ` = max

{
m, da+m2 e

}
+

1, and define len(A,X) = 〈|A|〉n/2‖〈|X|〉n/2.3 The function GPADn,τ (A,X) outputs
Z1, . . . , Z` as follows:

if a ≤ m:

Z1 = 〈τ〉n ‖ A1

Z2 = X1 ‖ A2

· · ·
Za = Xa−1 ‖ Aa
Za+1 = Xa ‖ 0n

· · ·
Z`−1 = Xm−1 ‖ 0n

Z` = Xm ‖ len(A,X)

if a > m, a+m even:

Z1 = 〈τ〉n ‖ A1

Z2 = X1 ‖ A2

· · ·
Zm+1 = Xm ‖ Am+1

Zm+2 = Am+2 ‖ Am+3

· · ·
Z`−1 = Aa−2 ‖ Aa−1
Z` = Aa ‖ len(A,X)

if a > m, a+m odd:

Z1 = 〈τ〉n ‖ A1

Z2 = X1 ‖ A2

· · ·
Zm+1 = Xm ‖ Am+1

Zm+2 = Am+2 ‖ Am+3

· · ·
Z`−1 = Aa−1 ‖ Aa
Z` = 0n ‖ len(A,X)

The encoding of the message length is included in order to circumvent the need for a
case distinction in the description of Spoed. Note that, in fact, almost any injective
padding rule would do the job; however, for our purposes the described GPADn,τ is the

most suitable. We generically write Zi = Z0
i ‖ Z1

i , and denote Zβ = Zβ1 ‖ · · · ‖Z
β
` for

β ∈ {0, 1}.

4.3 Data Processing

Spoed is designed with the SHA256 and SHA512 compression functions in mind as its
underlying primitive. SHA256 is a compression function

SHA256 : {0, 1}256 × {0, 1}512 → {0, 1}256 .

Similarly, SHA512 is a compression function SHA512 : {0, 1}512×{0, 1}1024 → {0, 1}512.
In the sequel, we will define Spoed using SHA256, or in other words used keyed com-
pression function

FK(Z) = SHA256(K,Z) ,

where K is injected through the chaining value interface, and the block is injected
through the message interface. Note that this implicitly means that we take k = n = 256.
We nevertheless continue to use k and n for clarity. Note that Spoed can be equivalently
designed using the SHA512 compression function, but a proper change in the sizes of
Z0
i and Z1

i should be introduced.
We now informally describe how to use Spoed, and refer the reader to Algorithms 1

and 2 for a formal specification. Define L = FK(N‖0). First, the associated data and
message are padded into

(Z1, . . . , Z`) = GPADn,τ (A,M) ,

where each Zi is a (2n = 512)-bit block consisting of two blocks Zi = Z0
i ‖ Z1

i of size
256 bits each. Spoed reads all blocks but the last one sequentially and processes them
by

ti = FK(ti−1 ⊕ 2iL⊕ Z0
i ‖ Z1

i ) ,

3 As we show in Sect. 6, Spoed achieves birthday bound security, and the limitation of the
length of X and A to 2n/2 − 1 does not pose any issues.
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Fig. 2: Spoed encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1) and T . Here, L =
FK(N‖0)

where t0 = 0n. The ciphertext block Ci is generated as Ci = ti ⊕Mi, chopped to the
appropriate length if Mi does not contain a full amount of n message bits. The last
block Z` contains the lengths of the message and the associated data and is processed
through

t` = FK(t`−1 ⊕ 2`3L⊕ Z0
` ‖ Z1

` ) .

The tag T is generated by removing the leftmost 256-τ bits of t`. Spoed is depicted in
Fig. 2.

Decryption goes fairly the same way: a ti and a Ci value are used to recover Mi, and
the state is set to Ci. This eventually leads to a verification tag T ′, and the message M
is released if T = T ′.

Algorithm 1 Spoed encryption E
Input: (K,N,A,M)
Output: (C, T )
1: (Z1, . . . , Z`) = GPADn,τ (A,M)
2: m = d|M |/ne
3: L = FK(N‖0)
4: t0 = 0n

5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1 ⊕ 2iL⊕ Z0

i ‖ Z1
i )

7: Ci = ti ⊕ Z0
i+1

8: t` = FK(t`−1 ⊕ 2`3L⊕ Z0
` ‖ Z1

` )
9: C = left|M|(C1‖ · · · ‖C`−1)

10: T = leftτ (t`)
11: return (C, T )

Algorithm 2 Spoed decryption D
Input: (K,N,A,C, T )
Output: M or ⊥
1: (Z1, . . . , Z`) = GPADn,τ (A,C)
2: m = d|C|/ne , ρ = |C| mod n
3: L = FK(N‖0)
4: t0 = 0n , M0 = Z0

1

5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1 ⊕ 2iL⊕Mi−1 ‖ Z1

i )
7: if i < m then Mi = ti ⊕ Z0

i+1

8: if i = m then Mi = leftρ(ti)⊕ Z0
i+1

9: if i > m then Mi = Z0
i+1

10: t` = FK(t`−1 ⊕ 2`3L⊕ Z0
` ‖ Z1

` )
11: M = left|C|(M1‖ · · · ‖M`−1)
12: T ′ = leftτ (t`)
13: return T = T ′ ? M : ⊥

4.4 Security of Spoed

Spoed achieves confidentiality and integrity against nonce-respecting adversaries. Note
that we do not claim security against nonce-misusing adversaries.

Theorem 2. We have

Advconf
Spoed(nr, q, `, σ, t) ≤ 1.5σ2

2n
+ Advprf

F (2σ, t′) ,

Advint
Spoed(nr, qE , qD, `, σ, t) ≤

1.5σ2

2n
+
`qD
2n

+
qD
2τ

+ Advprf
F (2σ, t′) ,

where t′ ≈ t.
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Fig. 3: Spoednic encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1) and T . Here,
L = FK(N‖0) and L′ = FK(N‖1)

These bounds, surprisingly, improve over the ones of p-OMD (see Thm. 1), but with a
much shorter proof. The proof is given in Sect. 6.

5 Spoednic

Spoed is simpler and more efficient than p-OMD, but it also falls victim to nonce-misuse
attacks. In this section, we introduce Spoednic, a strengthened version of Spoed that
retains some level of security if the nonce gets reused. As a matter of fact, Spoednic differs
from Spoed in (and only in) the fact that it uses an additional subkey L′ = FK(N‖1) and
that the input values Z0

i are blinded by L′. More formally, Spoednic inherits the syntax
and generalized padding from Spoed (see Sect. 4.1 and Sect. 4.2). The data processing
is fairly similar to that of Spoed (Sect. 4.3); we only present the depiction in Fig. 3 and
the formal description in Algorithms 3 and 4. Both algorithms differ from Algorithms 1
and 2 only in lines 3 and 6. Spoednic boils down to Spoed (Fig. 2) if one would use
L′ = 1 instead of L′ = FK(N‖1).

Algorithm 3 Spoednic encryption E
Input: (K,N,A,M)
Output: (C, T )
1: (Z1, . . . , Z`) = GPADn,τ (A,M)
2: m = d|M |/ne
3: L = FK(N‖0), L′ = FK(N‖1)
4: t0 = 0n

5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1 ⊕ 2iL⊕ (Z0

i · L′) ‖ Z1
i )

7: Ci = ti ⊕ Z0
i+1

8: t` = FK(t`−1 ⊕ 2`3L⊕ Z0
` ‖ Z1

` )
9: C = left|M|(C1‖ · · · ‖C`−1)

10: T = leftτ (t`)
11: return (C, T )

Algorithm 4 Spoednic decryption D
Input: (K,N,A,C, T )
Output: M or ⊥
1: (Z1, . . . , Z`) = GPADn,τ (A,C)
2: m = d|C|/ne , ρ = |C| mod n
3: L = FK(N‖0), L′ = FK(N‖1)
4: t0 = 0n , M0 = Z0

1

5: for i = 1, . . . , `− 1 do
6: ti = FK(ti−1 ⊕ 2iL⊕ (Mi−1 · L′) ‖ Z1

i )
7: if i < m then Mi = ti ⊕ Z0

i+1

8: if i = m then Mi = leftρ(ti)⊕ Z0
i+1

9: if i > m then Mi = Z0
i+1

10: t` = FK(t`−1 ⊕ 2`3L⊕ Z0
` ‖ Z1

` )
11: M = left|C|(M1‖ · · · ‖M`−1)
12: T ′ = leftτ (t`)
13: return T = T ′ ? M : ⊥

5.1 Security of Spoednic

We prove that Spoednic achieves confidentiality against nonce-respecting adversaries
and integrity against both nonce-respecting and nonce-misusing adversaries. Note that
we do not claim confidentiality against nonce-misusing adversaries.
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Theorem 3. We have

Advconf
Spoednic(nr, q, `, σ, t) ≤

1.5σ2

2n
+ Advprf

F (3σ, t′) ,

Advint
Spoednic(nr, qE , qD, `, σ, t) ≤

1.5σ2

2n
+
`qD
2n

+
qD
2τ

+ Advprf
F (3σ, t′) ,

Advint
Spoednic(nm, qE , qD, `, σ, t) ≤

1.5σ2

2n
+
`q2E/2

2n
+
`qEqD

2n
+
qD
2τ

+ Advprf
F (3σ, t′) ,

where t′ ≈ t.

The proof is given in Sect. 7.

6 Security of Spoed (Theorem 2)

The proof of Thm. 2 is given in Sect. 6.2. It relies on a preliminary result on a tweakable
keyed compression function, which will be given in Sect. 6.1.

6.1 Security of Tweakable Keyed Compression Function

In the proof of Spoed we will use the following result. It is in fact an abstraction of the
XE tweakable blockcipher [20] to compression functions, and it has also been used for
OMD [9] and p-OMD [18], albeit with a worse bound.

Lemma 1. Let F : {0, 1}k × {0, 1}2n → {0, 1}n be a keyed compression function. Let

T = [1, 2n/2]× [0, 1]× {0, 1}n, and define F̃ : {0, 1}k × T × {0, 1}2n → {0, 1}n as

F̃ (K, (α, β,N), S) = F (K, (2α3β · FK(N‖0) ‖ 0n)⊕ S) . (1)

Then, we have

Advp̃rf

F̃
(q, t) ≤ 1.5q2

2n
+ Advprf

F (2q, t′) ,

where t′ ≈ t.

Proof. The proof is performed using the H-coefficient technique [7,16]. It closely follows
the proof of [11, Thm. 2]; the only significant differences appear in the fact that the
underlying primitive is a one-way function instead of a permutation, and hence various
bad events have become redundant. To wit, in the terminology of [11, Thm. 2], the events
bad1,2 and bad2,K are inapplicable (as the adversary has no access to the underlying
primitive), and for the events bad1,1, bad1,K , and badK,K , we only have to consider
input collisions to the primitives. Checking the corresponding bounds reveals a term
1.5q2/2n.

As a first step, we replace the evaluations of FK for K
$←− {0, 1}k by a random

function R : {0, 1}2n → {0, 1}n. As every evaluation of F̃ renders at most 2 evaluations

of FK , this step costs us Advprf
F (2q, t′), where t′ ≈ t, and allows us to consider

F̃ : ((α, β,N), S) 7→ R((2α3β ·R(N‖0) ‖ 0n)⊕ S) , (2)

based on R
$←− Func({0, 1}2n, {0, 1}n). As we have replaced the underlying function F by

a secret random primitive, we can focus on adversaries with unbounded computational
power, and consider them to be information theoretic. Without loss of generality, any
such adversary is deterministic. For the remainder of the analysis, consider any fixed

10



deterministic adversary A. Without loss of generality, we assume that A does not repeat
any queries.

Let R
$←− Func({0, 1}2n, {0, 1}n) and R̃

$←− F̃unc(T , {0, 1}2n, {0, 1}n). Consider any

fixed deterministic adversary A. In the real world, it has access to F̃ of (2), while in

the ideal world it has access to R̃, and its goal is to distinguish both worlds. It makes q
queries to the oracle, which are summarized in a view

νF = {(α1, β1, N1, S1, T1), . . . , (αq, βq, Nq, Sq, Tq)} .

Note that, as A is deterministic, this view νF properly summarizes the interaction with
the oracle. To suit the analysis, we will provide A with additional information after its
interaction with its oracle. In more detail, it is given a subkey transcript νL that includes
the computations of R(N‖0) for all N ∈ {N1, . . . , Nq}. As the latter set may include
duplicates, i.e., it may be that Ni = Nj , the formalism of νL requires some notation. Let
{M1, . . . ,Mr} be a minimal set that includes N1, . . . , Nq. Then, after the interaction of
A with its oracle, we reveal

νL = {(M1, L1), . . . , (Mr, Lr)} ,

In the real world the values L1, . . . , Lr are defined as Li = R(Mi‖0), while in the

ideal world, these values are randomly generated dummy subkeys Li
$←− {0, 1}n. Clearly,

the disclosure of νL is without loss of generality as it only increases the adversary’s
chances. The complete view is defined as ν = (νF , νL). It is important to note that, as
A never repeats queries, νF does not contain any duplicate elements. Neither does νL,
by minimality of the set {M1, . . . ,Mr}.

H-Coefficient Technique. For brevity, denoteA’s distinguishing advantage by∆A(F̃ ; R̃).

Denote by XF̃ the probability distribution of views when A is interacting with F̃ and

by XR̃ the probability distribution of views when A is interacting with R̃. Let V be the

set of all attainable views, being the views that can be generated from R̃ with non-zero
probability. Let V = Vgood ∪ Vbad be a partition of the set of attainable views. The
H-coefficient technique states the following. Let 0 ≤ ε ≤ 1 be such that for all ν ∈ Vgood
we have

Pr
(
XF̃ = ν

)
Pr
(
XR̃ = ν

) ≥ 1− ε .

Then, the distinguishing advantage of A satisfies

∆A(F̃ ; R̃) ≤ ε+ Pr
(
XR̃ ∈ Vbad

)
. (3)

We refer to [6] for a proof.

Bad Transcripts. Note that every tuple in νF uniquely fixes a subkey in νL and
therewith uniquely fixes one evaluation R(s) = t. On the other hand, the evaluations
in νL represent evaluations of R themselves. Informally, we will consider a transcript as
bad if there exist two different tuples that have the same input to R. Formally, we say
that a view ν is bad if it satisfies one of the following conditions:

Bad1. There exist (α, β,N, S, T ) ∈ νF and (N,L), (M∗, L∗) ∈ νL such that:

(2α3β · L ‖ 0n)⊕ S = M∗ ‖ 0n ;

11



Bad2. There exist distinct (α, β,N, S, T ), (α∗, β∗, N∗, S∗, T ∗) ∈ νF and (not necessarily
distinct) (N,L), (N∗, L∗) ∈ νL such that:

(2α3β · L ‖ 0n)⊕ S = (2α
∗
3β
∗
· L∗ ‖ 0n)⊕ S∗ .

Probability of Bad Transcripts. Consider a view ν in the ideal world R̃. We will
consider both bad events separately.

Bad1. Consider any query (α, β,N, S, T ) ∈ νF with corresponding subkey (N,L) ∈ νL,
and let (M∗, L∗) ∈ νL (q2 choices in total). The queries render a bad view if

2α3β · L = S0 ⊕M∗ .

As in the ideal world L
$←− {0, 1}n, this equation is satisfied with probability 1/2n.

Summing over all possible choices of queries, Bad1 is satisfied with probability at
most q2/2n;

Bad2. Consider any distinct (α, β,N, S, T ), (α∗, β∗, N∗, S∗, T ∗) ∈ νF with correspond-
ing (N,L), (N∗, L∗) ∈ νL (

(
q
2

)
choices in total). The queries render a bad view if

2α3β · L⊕ S0 = 2α
∗
3β
∗
· L∗ ⊕ S∗0 ∧ S1 = S∗1 .

Clearly, if N 6= N∗, then L
$←− {0, 1}n is generated independently of the remaining

values, and the first part of the condition holds with probability 1/2n. Similar for
the case where N = N∗ but 2α3β 6= 2α

∗
3β
∗
. On the other hand, if N = N∗ and

2α3β =α∗ 3β
∗
, we necessarily have (N,α, β) = (N∗, α∗, β∗) (due to the non-colliding

property of 2α3β). As the two queries in νF are distinct, we have S 6= S∗, making
above condition false. Concluding, Bad2 is satisfied with probability at most

(
q
2

)
/2n.

We thus obtained that Pr
(
XR̃ ∈ Vbad

)
≤ 1.5q2/2n.

Good Transcripts. Consider a good view ν. Denote by ΩF̃ the set of all possible
oracles in the real world and by compF̃ (ν) ⊆ ΩF̃ the set of oracles compatible with view
ν. Define ΩR̃ and compR̃(ν) similarly. The probabilities Pr

(
XF̃ = ν

)
and Pr

(
XR̃ = ν

)
can be computed as follows:

Pr
(
XF̃ = ν

)
=
|compF̃ (ν)|
|ΩF̃ |

and Pr
(
XR̃ = ν

)
=
|compR̃(ν)|
|ΩR̃|

.

Note that |ΩF̃ | = (2n)2
2n

and |ΩR̃| = (2n)|T |+22n · (2n)r (taking into account that
in the ideal world ν contains r dummy subkeys). The computation of the number of
compatible oracles is a bit more technical. Starting with compF̃ (ν), as ν is a good
view, every tuple in ν represents exactly one evaluation of R, q + r in total, and hence
the number of functions R compatible with ν is |compF̃ (ν)| = (2n)2

2n−(q+r). Next, for

compR̃(ν), the tuples in νF all define exactly one evaluation of R̃, q in total, and νL
fixes all dummy keys. Therefore, the number of compatible oracles in the ideal world is
|compR̃(ν)| = (2n)|T |+22n−q. We consequently obtain

Pr
(
XF̃ = ν

)
Pr
(
XR̃ = ν

) =
|compF̃ (ν)| · |ΩR̃|
|ΩF̃ | · |compR̃(ν)|

=
(2n)2

2n−(q+r) · (2n)|T |+22n · (2n)r

(2n)22n · (2n)|T |+22n−q = 1 ,

putting ε = 0.

Conclusion. The proof is concluded via (3) and above computations. ut
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Note that p-OMD uses tweaks of the form 2α, while we use 2α3β . This is not a prob-
lem as long as the offsets are unique [20] (i.e., there is no (α, β) 6= (α′, β′) such that
2α3β = 2α

′
3β
′
). For the case of n = 128, Rogaway [20] proved—via the computation of

discrete logarithms—that the tweak domain [1, 2n/2]× [0, 1] works properly, but this re-
sult is inadequate for our purposes as we use a compression function with n ∈ {256, 512}.
Granger et al. [11] recently computed discrete logarithms for n ≤ 1024, therewith con-
firming properness of the tweak set domain. Note that the tweak sets computed in [11,20]
commonly exclude the all-zero tweak (α, β) = (0, 0) because it is a representative of 1
and hence problematic for XEX: see also [20, Sect. 6] and [15, Sect. 4]. Because F is
a one-way function, its security analysis follows the one of XE, and this issue does not
apply.

Also from an efficiency point of view, there is a difference between the masking of F̃ in
p-OMD and in Spoed. In more detail, p-OMD uses the Gray code masking (also used in
OCB1 and OCB3) while for Spoed we have opted to describe it with powering-up (used
in OCB2 and in various CAESAR candidates). Krovetz and Rogaway demonstrated
that Gray codes are more efficient than powering-up [14], but on the downside they
require more precomputation. Granger et al. [11] revisited the principle of masking of
tweakable blockciphers, and presented a masking technique based on word-based linear
feedback shift registers that improves over both Gray codes and powering-up in terms
of efficiency and simplicity. The new masking technique can be implemented with Spoed
with no sacrifice in security (and the result of Lem. 1 still applies).

6.2 Proof of Theorem 2

Let K ∈ {0, 1}k. Note that all evaluations of FK are done in a tweakable manner,
namely via (1). We replace these tweakable evaluations of FK by a random tweakable

compression function R̃
$←− F̃unc([1, 2n/2] × [0, 1] × {0, 1}n, {0, 1}2n, {0, 1}n). Note that

for both confidentiality and integrity, the underlying F̃K is invoked at most σ times. In
other words, this step costs (cf. Lem. 1)

Advp̃rf

F̃
(σ, t) ≤ 1.5σ2

2n
+ Advprf

F (2σ, t′) ,

where t′ ≈ t. This step has led us to an idealized version of Spoed, called IdSpoed.
IdSpoed is depicted in Fig. 4. Concretely, we have obtained that

Advconf
Spoed(nr, q, `, σ, t) ≤ Advconf

IdSpoed(nr, q, `, σ) +
1.5σ2

2n
+ Advprf

F (2σ, t′) ,

Advint
Spoed(nr, qE , qD, `, σ, t) ≤ Advint

IdSpoed(nr, qE , qD, `, σ) +
1.5σ2

2n
+ Advprf

F (2σ, t′) ,

where t dropped out of the advantage function for IdSpoed because it has become
irrelevant (formally, we proceed by considering an adversary that is unbounded in time).
We prove in Lem. 2 that its confidentiality security satisfies Advconf

IdSpoed(nr, q, `, σ) = 0,

and in Lem. 3 that it provides integrity up to bound Advint
IdSpoed(nr, qE , qD, `, σ) ≤

`qD
2n + qD

2τ .

Lemma 2. The advantage of any nonce-respecting adversary trying to break the confi-
dentiality of IdSpoed is bounded as:

Advconf
IdSpoed(nr, q, `, σ) = 0 .

Proof. The functions R̃Ni,j for i = 1, . . . , `−1, j = 0, 1, and N ∈ {0, 1}n are independently
and randomly distributed compression functions. As the adversary is assumed to be
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Fig. 4: IdSpoed encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1) and T

nonce-respecting, every nonce is used at most once. Every nonce is used in at most `
calls to R̃, but these calls are by design all for different tweaks (i, j) ∈ [1, 2n/2]× [0, 1].
Therefore, all responses are randomly generated from {0, 1}n, and all ciphertext blocks
and tag values are perfectly random. ut

Lemma 3. The advantage of any nonce-respecting adversary trying to break the in-
tegrity of IdSpoed is bounded as:

Advint
IdSpoed(nr, qE , qD, `, σ) ≤ `qD

2n
+
qD
2τ

.

Proof. Assume that A has made encryption queries (N j , Aj ,M j) for j = 1, . . . , qE , and
denote the ciphertexts and tags by (Cj , T j). Write (Zj1 , . . . , Z

j
`j ) = GPADn,τ (Aj ,M j)

and denote the in- and outputs of the random functions by (sji , t
j
i ) for i = 1, . . . , `j .

Consider any forgery attempt (N,A,C, T ), and denote its length by `. Denote the
message computed upon decryption by M . Refer to the state values as (si, ti) for i =
1, . . . , `, and write (Z1, . . . , Z`) = GPADn,τ (A,M). The forgery is successful if T =
leftτ (t`).

Denote by col the event that there exists an encryption query j with N j = N , `j = `,
and an index i ∈ {1, . . . , `}, such that

tji−1 ⊕ Z
0j
i ‖ Z

1j
i 6= ti−1 ⊕ Z0

i ‖ Z1
i ∧ tji = ti .

Note that, as the adversary is nonce-respecting, there is at most one query j with
N j = N . We have, using shorthand notation [i = `] for 0 if i 6= ` and 1 if i = `,

Pr (col) ≤
∑̀
i=1

Pr
(
sji 6= si ∧ R̃Ni,[i=`](s

j
i ) = R̃Ni,[i=`](si)

)
≤ `

2n
. (4)

We make the following, fairly simple, case distinction:

(i) N /∈ {N1, . . . , NqE}. This particularly means that R̃ has never been queried for

tweak (`, 1, N), and thus that R̃N`,1 responds with t`
$←− {0, 1}n. The forgery is

successful with probability 1/2τ ;
(ii) N = N j for some (unique) j. As the different evaluations of IdSpoed for different

tweaks are independent, it suffices to focus on these two construction queries (the
jth encryption query and the forgery). We proceed with a further case distinction:

– ` 6= `j . This, again, means that R̃ has never been queried for tweak (`, 1, N).
The forgery is successful with probability 1/2τ ;

– ` = `j . We proceed with a further case distinction:
• s` 6= sj`j . In this case, R̃ has been queried before for tweak (`, 1, N), but

only once (as the adversary must be nonce-respecting) and never on input
s`. Consequently, the response t` is uniformly randomly drawn from {0, 1}n
and the forgery is successful with probability 1/2τ ;
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• s` = sj`j . As the forgery must be different from the encryption queries, and
as GPADn,τ is an injective mapping, this case implies the existence of a
non-trivial state collision. Hence, the forgery is successful with probability
at most Pr (col).

Concluding, the forgery is successful with probability at most Pr (col) + 1/2τ , where
Pr (col) is bounded in (4). A summation over all qD forgery attempts (cf. [3]) gives our
final bound. ut

7 Security of Spoednic (Theorem 3)

The proof of Thm. 3 is given in Sect. 7.2. It relies on a preliminary result on a tweakable
keyed compression function, which will be given in Sect. 7.1.

7.1 Security of Tweakable Keyed Compression Function

We will use a slightly more complex version of the tweakable keyed compression function
of Sect. 6.1, where the masking using Z0

i · L′ is included within the function. The proof
is a fairly straightforward extension of the one of Lem. 1.

Lemma 4. Let F : {0, 1}k × {0, 1}2n → {0, 1}n be a keyed compression function. Let

T = [1, 2n/2]× [0, 1]× {0, 1}n × {0, 1}n, and define F̃ : {0, 1}k ×T × {0, 1}2n → {0, 1}n
as

F̃ (K, (α, β,A,N), S) = F (K, (2α3β · FK(N‖0)⊕A · FK(N‖1) ‖ 0n)⊕ S) . (5)

Then, we have

Advp̃rf

F̃
(q, t) ≤ 1.5q2

2n
+ Advprf

F (3q, t′) ,

where t′ ≈ t.

Proof. The proof is a slight extension of the one of Lem. 1, where now we have twice as
many subkeys. We only sketch the major differences.

Again, the first step is the replacement of FK for K
$←− {0, 1}k by a random function

R : {0, 1}2n → {0, 1}n. As every query to F̃ renders at most 3 evaluations of F , this

step costs us Advprf
F (3q, t′), where t′ ≈ t, and allows us to consider

F̃ : ((α, β,A,N), S) 7→ R((2α3β ·R(N‖0)⊕A ·R(N‖1) ‖ 0n)⊕ S) , (6)

based on R
$←− Func({0, 1}2n, {0, 1}n). The movement to information theoretic, deter-

ministic, adversary A goes as before.

Let R
$←− Func({0, 1}2n, {0, 1}n) and R̃

$←− F̃unc(T , {0, 1}2n, {0, 1}n). Consider any

fixed deterministic adversary A. In the real world, it has access to F̃ of (6), while in

the ideal world it has access to R̃, and its goal is to distinguish both worlds. It makes q
queries to the oracle, which are summarized in a view

νF = {(α1, β1, A1, N1, S1, T1), . . . , (αq, βq, Aq, Nq, Sq, Tq)} .

As an extension to the proof of Lem. 1, we now reveal to the adversary two subkey
transcripts νL and νL′ , the former captures the evaluations R(N‖0) and the latter the
evaluations R(N‖1) for all N ∈ {N1, . . . , Nq}. More formally, let {M1, . . . ,Mr} be a
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minimal set that includes N1, . . . , Nq. Then, after the interaction of A with its oracle,
we reveal

νL = {(M1, L1), . . . , (Mr, Lr)} ,
νL′ = {(M1, L

′
1), . . . , (Mr, L

′
r)} .

In the real world, the subkeys are generated as Li = R(Mi‖0) and L′i = R(Mi‖1), while

in the ideal world they are randomly generated dummy subkeys Li, L
′
i

$←− {0, 1}n. The
complete view is defined as ν = (νF , νL, νL′).

Bad Transcripts. Formally, we say that a view ν is bad if it satisfies one of the following
conditions:

Bad1. There exist (α, β,A,N, S, T ) ∈ νF , (N,L) ∈ νL, (N,L′) ∈ νL′ , and (M∗, L∗) ∈
νL ∪ νL′ such that:

(2α3β · L⊕A · L′ ‖ 0n)⊕ S = M∗ ‖ 0n ∨M∗ ‖ 1n ;

Bad2. There exist distinct (α, β,A,N, S, T ), (α∗, β∗, A∗, N∗, S∗, T ∗) ∈ νF , (N,L), (N∗, L∗) ∈
νL, and (N,L′), (N∗, L′∗) ∈ νL′ such that:

(2α3β · L⊕A · L′ ‖ 0n)⊕ S = (2α
∗
3β
∗
· L∗ ⊕A∗ · L′∗ ‖ 0n)⊕ S∗ .

Probability of Bad Transcripts. Consider a view ν in the ideal world R̃. We will
consider both bad events separately.

Bad1. Consider any query (α, β,A,N, S, T ) ∈ νF with corresponding subkeys (N,L) ∈
νL and (N,L′) ∈ νL′ , and let (M∗, L∗) ∈ νL ∪ νL′ . Note that we have q choices for
the query from νF , and q possible values M∗ (even though νL ∪ νL′ may contain up
to 2q tuples). The queries render a bad view if

2α3β · L⊕A · L′ = S0 ⊕M∗ .

As in the ideal world L
$←− {0, 1}n, this equation is satisfied with probability 1/2n.

Summing over all possible choices of queries, Bad1 is satisfied with probability at
most q2/2n;

Bad2. Consider any distinct (α, β,A,N, S, T ), (α∗, β∗, A∗, N∗, S∗, T ∗) ∈ νF , (N,L), (N∗, L∗) ∈
νL, and (N,L′), (N∗, L′∗) ∈ νL′ (

(
q
2

)
choices in total). The queries render a bad view

if

2α3β · L⊕A · L′ ⊕ S0 = 2α
∗
3β
∗
· L∗ ⊕A · L′∗ ⊕ S∗0 ∧ S1 = S∗1 .

The case N 6= N∗ and the case N = N∗ but 2α3β 6= 2α
∗
3β
∗

are as in Lem. 1.
Similarly, if N = N∗ but A 6= A∗, we can rely on the randomness of L′ to argue that
the condition is satisfied with probability 1/2n. On the other hand, if (α, β,A,N) =
(α∗, β∗, A∗, N∗), this necessarily implies that S 6= S∗, making above condition false.
Concluding, Bad2 is satisfied with probability at most

(
q
2

)
/2n.

We thus obtained that Pr
(
XR̃ ∈ Vbad

)
≤ 1.5q2/2n.

Good Transcripts. The analysis is fairly identical to the one of Lem. 1, and henceforth
omitted.

Conclusion. The proof is concluded via (3) and above computations. ut
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Fig. 5: IdSpoednic encryption, which outputs C = left|M |(C1‖ · · · ‖C`−1) and T . The

boxes in R̃ indicate that Z0
i also functions as a tweak

7.2 Proof of Theorem 3

Let K ∈ {0, 1}k. Note that all evaluations of FK are done in a tweakable manner,
namely via (5). We replace these tweakable evaluations of FK by a random tweakable

compression function R̃
$←− F̃unc([1, 2n/2] × [0, 1] × {0, 1}n × {0, 1}n, {0, 1}2n, {0, 1}n).

Note that for both confidentiality and integrity, the underlying F̃K is invoked at most
σ times. In other words, this step costs (cf. Lem. 4)

Advp̃rf

F̃
(σ, t) ≤ 1.5σ2

2n
+ Advprf

F (3σ, t′) ,

where t′ ≈ t. This step has led us to an idealized version of Spoednic, called IdSpoednic.
IdSpoednic is depicted in Fig. 5. Concretely, we have obtained that

Advconf
Spoednic(nr, q, `, σ, t) ≤ Advconf

IdSpoednic(nr, q, `, σ) +
1.5σ2

2n
+ Advprf

F (3σ, t′) ,

Advint
Spoednic(n, qE , qD, `, σ, t) ≤ Advint

IdSpoednic(n, qE , qD, `, σ) +
1.5σ2

2n
+ Advprf

F (3σ, t′) ,

where n ∈ {nr, nm}, and where t dropped out of the advantage function for IdSpoednic
because it has become irrelevant. The remainder of the proof centers around this scheme.
For the nonce-respecting setting, the bounds of Lem. 2 and Lem. 3 carry over almost
verbatim, with the same security bound. We consider integrity in the nonce-misuse

setting in Lem. 5 and prove that Advint
IdSpoednic(nm, qE , qD, `, σ) ≤ `q2E/2

2n + `qEqD
2n + qD

2τ .

Lemma 5. The advantage of any nonce-misusing adversary trying to break the integrity
of IdSpoednic is bounded as:

Advint
IdSpoed(nm, qE , qD, `, σ) ≤ `q2E/2

2n
+
`qEqD

2n
+
qD
2τ

.

Proof. At a high level, the proof follows the one of Lem. 3, with the difference that now,
potentially, nonces may be the same. This leads to a slightly worse pre-forgery-attempt
bounding of the collision probability from `qD

2n to `qEqD
2n , as well as to an addition of

the term
`q2E/2
2n to the final bound, which accounts for the number of inner collision in

different encryption queries under the same nonce.
Assume that A has made encryption queries (N j , Aj ,M j) for j = 1, . . . , qE , and

denote the ciphertexts and tags by (Cj , T j). Write (Zj1 , . . . , Z
j
`j ) = GPADn,τ (Aj ,M j)

and denote the in- and outputs of the random functions by (sji , t
j
i ) for i = 1, . . . , `j .

Denote by colE the event that there exist two distinct encryption queries j, j′ with
N j = N j′ , and an index i ∈ {1, . . . , `j}, such that

tji−1 ‖ Z
1j
i 6= tj

′

i−1 ‖ Z
1j′

i ∧ tji = tj
′

i .

17



We have, using shorthand notation [i = `] for 0 if i 6= ` and 1 if i = `,

Pr (colE) ≤
qE∑

j,j′=1
j 6=j′

min{`j ,`j
′
}∑

i=1

Pr
(
sji 6= sj

′

i ∧ R̃
N
i,[i=`j ](Z

0j
i , s

j
i ) = R̃N

i,[i=`j′ ]
(Z0j′

i , sj
′

i )
)
≤
`
(
qE
2

)
2n

.

(7)

The remainder of the analysis is under the assumption that ¬colE applies, and we add
the term of (7) at the end.

Consider any forgery attempt (N,A,C, T ), and denote its length by `. Denote the
message computed upon decryption by M . Refer to the state values as (si, ti) for i =
1, . . . , `, and write (Z1, . . . , Z`) = GPADn,τ (A,M). The forgery is successful if T =
leftτ (t`).

Denote by colD the event that there exists an encryption query j with N j = N ,
`j = `, and an index i ∈ {1, . . . , `}, such that

tji−1 ‖ Z
1j
i 6= ti−1 ‖ Z1

i ∧ tji = ti .

We have

Pr (colD | ¬colE) ≤
qE∑
j=1

∑̀
i=1

Pr
(
sji 6= si ∧ R̃Ni,[i=`](s

j
i ) = R̃Ni,[i=`](si)

)
≤ `qE

2n
. (8)

We make the following, fairly simple, case distinction:

(i) N /∈ {N1, . . . , NqE}. This particularly means that R̃ has never been queried for

tweak (`, 1, Z0
` , N), and thus that R̃N`,1(Z0

` , ·) responds with t`
$←− {0, 1}n. The

forgery is successful with probability 1/2τ ;
(ii) N = N j for j ∈ {1, . . . , q′E} for some 1 ≤ q′E ≤ qE . Note that we have implicitly

reordered the encryption queries such that the ones for nonce N are the first q′E .
This is without loss of generality, as the different evaluations of IdSpoednic for
different tweaks are independent. We proceed with a further case distinction:
– ` /∈ {`1, . . . , `q′E}. This, again, means that R̃ has never been queried for tweak

(`, 1, Z0
` , N). The forgery is successful with probability 1/2τ ;

– ` = `j for j ∈ {1, . . . , q′′E} for some 1 ≤ q′′E ≤ q′E . Note that we have implicitly
reordered the encryption queries such that the ones for nonce N and length `
are the first q′′E . This is, again, without loss of generality. We proceed with a
further case distinction:
• s` /∈ {s1`1 , . . . , s

q′′E

`q
′′
E
}. In this case, R̃ has been queried before for tweak

(`, 1, ∗, N), where ∗ denotes any tweak input Z0j
` which is left irrelevant,

but never on input s`. Consequently, the response t` is uniformly randomly
drawn from {0, 1}n and the forgery is successful with probability 1/2τ ;
• s` = sj`j for some j ∈ {1, . . . , q′′E}. As the forgery must be different from the

encryption queries, as GPADn,τ is an injective mapping, and moreover as
¬colE , this case implies the existence of a non-trivial state collision. Hence,
the forgery is successful with probability at most Pr (colD | ¬colE).

Concluding, the forgery is successful with probability at most Pr (col | ¬colE) + 1/2τ ,
where Pr (col | ¬colE) is bounded in (8). A summation over all qD forgery attempts
(cf. [3]) gives our final bound. ut
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