
Position-Based Cryptography and
Multiparty Communication Complexity

Joshua Brody1, Stefan Dziembowski2, Sebastian Faust3, and Krzysztof Pietrzak4?

1 Swarthmore College
2 University of Warsaw

3 Ruhr University Bochum
4 IST Austria

Abstract. Position based cryptography (PBC), proposed in the seminal work of Chandran, Goyal,
Moriarty, and Ostrovsky (SIAM J. Computing, 2014), aims at constructing cryptographic schemes
in which the identity of the user is his geographic position. Chandran et al. construct PBC schemes
for secure positioning and position-based key agreement in the bounded-storage model (Maurer, J.
Cryptology, 1992). Apart from bounded memory, their security proofs need a strong additional
restriction on the power of the adversary: he cannot compute joint functions of his inputs. Removing
this assumption is left as an open problem.
We first show that an answer to this question would resolve a long standing open problem in multiparty
communication complexity: finding a function that is hard to compute with low communication
complexity in the simultaneous message model, but easy to compute in the fully adaptive model.
On a more positive side: we also show some implications in the other direction, i.e.: we prove that
lower bounds on the communication complexity of certain multiparty problems imply existence
of PBC primitives. Using this result we then show two attractive ways to “bypass” our hardness
result: the first uses the random oracle model, the second weakens the locality requirement in the
bounded-storage model to online computability. The random oracle construction is arguably one of
the simplest proposed so far in this area. Our results indicate that constructing improved provably
secure protocols for PBC requires a better understanding of multiparty communication complexity.
This is yet another intriguing example where negative results in one area (in our case: lower bounds
in multiparty communication complexity) can be used to construct secure cryptographic schemes.

1 Introduction

The standard way to identify participants in cryptographic protocols is to check their knowledge
of some secret data (like a password or a key), to verify some biometric information, or the
possession of some hardware tokens. A new intriguing idea, known under the name of position-
based cryptography (PBC) [15] is to construct algorithms in which the participating parties are
identified by their geographic position. For example, consider the setting where we want to grant
access to a server only to the personnel within some military base. A position-based system
could be used to give access to every user that is physically located within the base, but deny it
to everybody outside. There are many other examples one can think of where position-based
authentication would be useful. Say, a protocol for sending confidential documents to everyone
who is present in some conference room, granting WiFi access to people within some building,
or checking if a food delivery was indeed ordered from some physical address. Of course, such
protocols can be combined with other means of authentication, and hence they can also serve
for providing an additional layer of security. See [15] for more on potential applications of this
concept.

PBC protocols are typically based on the physical characteristics of wireless communication
channels; concretely, they are based on the fact that electronic signals are traveling at the speed
of light, denoted c (and hence traveling from point Â to B̂ takes time ‖ÂB̂‖/c, where ‖·‖ denotes
the length of the segment ÂB̂). Thus, if a verifier V sends a message at time T and receives
a reply from a prover P within time T ′, the verifier can be sure that this reply was sent by a
machine that is positioned at distance no more than c · (T ′ − T)/2. A natural idea would be to

? Research supported by the European Research Council, ERC consolidator grant (682815 - TOCNeT).

exploit this fact, and use some standard trilateration techniques (like the one used in the GPS
system) by having a group of verifiers V1, . . . ,Vn positioned in space and letting them jointly
verify the distance from the prover. Unfortunately, as shown by Chandran et al. [15], the problem
of designing PBC protocols is harder than it may seem at the first sight. In fact, they show
that in the so-called vanilla model (i.e. without any additional assumptions), PBC is impossible:
There exists an adversarial strategy which places devices around some point Â, and these devices
can jointly convince the verifiers in any PBC protocol that they are at point Â, thus breaking
the scheme. One way to get around this would be to restrict the number of adversary’s devices
(as the number of devices required in their attack is as large as the number of the verifiers used
in the protocol). This however is not very realistic, as deploying several adversarial devices is
usually easy in practice, since modern wireless devices are cheap and small.

The idea of Chandran et al. is to use Maurer’s bounded-storage model [26], studied in a
number of papers, e.g., [26,3,10,19,36,25,27]) (see its variant called the bounded-retrieval model
[16,12,20]). In this model, it is assumed that the users of cryptographic protocols have short time
access to a long random string X that is so large that it cannot be stored by the adversary in
its entirety. The only thing that the adversary can do is to compute and store some function
adv on X (where |adv(X)| ≤ ξ|X|, for a constant 0 ≤ ξ � 1). On the other hand, the honest
parties of a protocol should be only required to access small parts of X in order to complete the
protocol. The way this model is used in [15] is as follows: it is assumed that there is a group of
verifiers Vi positioned in space. Suppose that a prover P claims to be at some position P̂. Each
of the verifiers broadcasts a long string Xi in such a way that all the Xi’s arrive at P̂ at the same
time T . When this happens, the prover computes some function f on the Xi’s, and takes some
actions that depend on the computed value (e.g. sends the computed value back to the verifiers
in order to prove that he is in point P̂). The function f should be very efficiently computable. In
particular, to compute it one should only have to access a small fraction of the Xi’s [15].

In this model Chandran et al. construct a positioning protocol, where a prover convinces
the verifiers that he is physically at some point P̂. In practice a protocol like this is not very
useful as a standalone primitive, since it comes with no guarantee that any future communication
will be happening with the machine that is indeed in P̂ (due to man-in-the-middle attacks).
Chandran et al. also construct a more advanced primitive, called a position-based key-agreement
protocol. Here the final output of the honest parties is a key K which is not known to a potential
adversary. Both the positioning and the position-based key agreement protocols have a very
simple structure (see Sect. 2.3). Namely, in case of the positioning protocol the prover just sends
back f(X1, . . . , Xn) to the verifiers (who check if this value is correct and was received at the
right time). For the position-based key agreement the prover simply lets the agreed key K be
equal to f(X1, . . . , Xn). Such protocols are called one-round, and are very attractive because of
their simplicity. They will also be the focus of this paper.

The proof in [15] requires one additional restriction on the power of the adversary, namely, it
is assumed (see [15], page 1294, Sect. 1.2) that whenever an adversarial device receives strings
Xi1 , . . . , Xia at the same time, it cannot compute an arbitrary joint function adv on Xi1 , . . . , Xia

(with short output). Instead, it can only compute several (adaptively chosen) functions on each
Xij independently (the same restriction applies to the honest parties). Removing this assumption
is left as an “important open problem” in [15] and studying this open question is the main topic
of this work. We show deep connections between the problem of constructing positioning and
position-based key agreement protocols in the unrestricted BRM model (i.e. without restrictions on
the adv function except of a bound on its output size), and the area of multiparty communication
complexity. Before describing our contribution in more detail (in Sect. 1.2) let us provide a
short introduction to this area (more formal definitions are given in Sect. 2.2, and for a more
comprehensive introduction see [24])

2

1.1 Multiparty communication complexity

In a typical communication complexity problem, there are k players, denoted plr1, . . . ,plrk.
There are also k inputs x1, . . . , xk ∈ {0, 1}n, and the players must communicate to compute some
function f(x1, . . . , xk) of the inputs. The communication cost of a protocol is measured as the
worst-case maximal number of bits communicated, taken over all possible inputs and all choices
for the random string.

In the multiplayer setting (when k > 2) there are two different models for how the input
is shared. In the number-in-hand (NIH) model, each player plri sees the ith input xi. In the
number-on-the-forehead (NOF) model, each plri sees all inputs except xi. One can imagine in
an NOF protocol that all players meet in a room, and plri has xi written on her forehead. In
this way, players can see all inputs except what is written on their foreheads.

When k = 2, the NIH and NOF models are one and the same, but for k > 2, they are quite
different. In particular, communication in the NOF model becomes intuitively very easy, because
so much information is shared. This makes proving NOF communication lower bounds harder. In
this paper, we focus on NOF communication complexity.

It is particularly interesting is to understand what role interaction plays in communication
complexity. In an arbitrary (“fully adaptive”) protocol, players are allowed to speak back and
forth, and messages are broadcast. It is also interesting to consider a more restrictive model, where
each player sends a single message to a referee, who does not see the inputs, and must compute
f(x1, . . . , xk) only from the messages sent by the players. This restricted model of communication
is called the Simultaneous Messages (SM) model. Occasionally, the communication complexity of
problems can be the same in the SM and interactive model, but for other problems, allowing
interactive communication can even lead to an exponential decrease in the communication
complexity. The NOF communication model was invented thirty years in [14], who also gave as
an application lower bounds for branching programs.

Position based cryptography was partly inspired an the area called secure positioning [7,33,37,11].
More recently there was work towards constructing PBC protocols based on other “physical”
assumptions, such as quantum channels [9,35,13]5 (see also [8] and the webpage [34]) or noisy
channels [21].

1.2 Our contribution

We show that constructing a one-round positioning protocol in the unrestricted BSM gives a
construction of a function π with linear SM complexity (in the NOF model). If we additionally
require that the computation on the prover is local (i.e. he only needs to look at small parts
of the input), then π has low complexity in the fully adaptive model. Finding a function with
such properties is a longstanding open problem in communication complexity, and therefore this
result can be viewed as a “negative” answer to the question posted in [15].

On a more positive side: we show some implications in the other direction. Namely, we prove
that any protocol that has high communication complexity in the so-called “1-round almost
adaptive SM model” (see Sect. 1.1 for the definition) can be transformed into a secure positioning
protocol. The assumed hardness has to hold in a strong, randomized sense, i.e., the probability
that any “adaptive SM” protocol computes the output correctly has to be negligible. Fortunately,
we show a function that satisfies this requirement. Our function uses a hash function as a
building block, and the security proof models this hash function as a random oracle (hence, our
construction does not contradict the negative result mentioned above). The resulting positioning
protocol is very simple: essentially, one verifier sends a long string X, the other verifiers send
much shorter strings Zi, and the output is the sub-string of X on the positions determined by
the hash of the concatenated Zi’s.

5 Note that [35] uses the random oracle model, that we use in this work (in Sect. 4.1).

3

We also construct positioning and position-based key agreement schemes from any function
that has high complexity in the “2-round SM model” (see Sect. 1.1), which is a less standard
notion (but it is weaker than the fully adaptive model). For our construction to work we need
to assume even stronger hardness: the output of the function has to be “close to uniform” (in
the sense of “statistical distance”, see Sect. 2 for the definition). We show that the so-called
“generalized inner product” function has this property. The resulting protocol does not have the
“locality” property, i.e., the prover in the protocol needs to read its entire input. The good news
is that this computation is very simple, can be performed very efficiently in an “online” fashion,
and hence it may still be possible to implement it in practice.

2 Preliminaries

Let A and B be random variables distributed over set A. The statistical distance between A
and B is defined as ∆(A;B) := 1

2

∑
a∈A |P (A = a)− P (B = a)|. The statistical distance of A

from uniformity is defined as d(A) := ∆(A;UA), where UA has uniform distribution over A.
The statistical distance of A from uniformity conditioned on B is defined as d(A | B) =
∆((A,B); (UA, B) (where UA is uniform and independent from B). The min-entropy of a random
variable W is defined as H∞(W) := − log2(maxw P[W = w]). In other words, it is a negative
binary logarithm of the maximal probability of guessing W . We will use the following fact that
can be viewed as a chain-rule for the statistical distance from uniformity (see, e.g., [19], Lemma
3).

Lemma 1. For any random variables X1, . . . , Xn, and Y we have that

d(X1, . . . , Xn|Y) ≤
n∑
i=1

d(Xi|X1, . . . , Xi−1, Y).

We also have the following (see, e.g., [19], Lemma 1).

Lemma 2. For every random variables X and Y taking values from X and Y (respectively)
we have that maxα:Y→X (P (X = α(Y))) ≤ d(X | Y) + 1/|X |. Moreover, if X = {0, 1}, then
2 maxα:Y→X (P (X = α(Y)))− 1 = d(X | Y).

We also have the following lemma whose proof appears in Appx. A.

Lemma 3. For any variables X,Y, Z, and V we have that d(X,Y | Z, V) ≥ d(X | Z).

We will sometimes state our results in asymptotic terms. In this case, our constructions will
be parametrized by some security parameter t. We say that a function µ : N→ R is negligible in
t (and write µ(t) ≤ negl(t)) if |µ| approaches 0 faster than the inverse of any polynomial, i.e., for
every c ≥ 1 there exists t0 such that for every t > t0 we have |µ(t)| ≤ t−c. If A is a finite set,
then A← A denotes the fact that A is sampled uniformly at random from A. For a natural q the
symbol GF(q) denotes the Galois field of order q. The “||” symbol denotes the concatenation of
stings, and for X = (X1, . . . , Xn) ∈ X n (for some set X) and i, j ∈ {1, . . . , n} (such that i ≤ j)
by writing X[i] we mean Xi, and by X[i, . . . , j] we mean (Xi, . . . , Xj).

We will use the random oracle model (ROM). In this model all the participants of the protocol
(in our case: the prover, the verifiers, and the adversaries), have access to an interactive machine
Ω (called a random oracle) that contains a function H : X → Y (for some sets X and Y, where
Y has to be finite). We assume that H is chosen uniformly at random from the space of all
functions of type H : X → Y . Every participant of the protocol can query Ω on any x ∈ X . Each
such a query is answered by Ω with H(x).

If W takes values from {0, 1}n (for some n), then the min-entropy rate of W is defined as
H∞(W)/n. It is easy to see that the maximal min-entropy rate is 1 (attained when W is uniform),
and the minimal min-entropy rate is 0 (when W is constant).

4

2.1 Guessing bits from “compressed” information

The following machinery will be needed in Sect. 4.1. Consider the following natural question.
Suppose X ← {0, 1}n is chosen uniformly at random. Let compress : {0, 1}n → {0, 1}βn be any
function that “compresses” X, i.e., such that β < 1. Let us ask what is the maximal probability
that given compress(X) one can compute the substring consisting of t random positions in
X? More precisely, let guess : {1, . . . , n}t × {0, 1}βs → {0, 1}t be any function that tries to
“predict” these bits. We ask what is the maximal (over compress and guess) probability that
guess(R, compress(X)) = (X[R1], . . . , X[Rt]), where R = (R1, . . . , Ra)← {1, . . . , n}t is random.
This question was first answered by Nisan and Zuckerman [29]. In what follows, we use the
presentation from [15] (which, in turn, is partly based on [36]). The following lemma can be
derived (we do in Appx. B) from the discussion in Sect. 4.3 (page 1306) of [15].

Lemma 4 ([29,36,15]). Let β < 1 be some fixed parameter. For every t take n such that n > t.
Then for every compress : {0, 1}n → {0, 1}βn and guess : {1, . . . , n}t × {0, 1}βn → {0, 1}t and a
uniformly random X ← {0, 1}n and R = (R1, . . . , Rt)← {1, . . . , n}t we have that

P (guess(R, compress(X)) = (X[R1], . . . , X[Rt])) ≤ negl(t). (1)

2.2 Multiparty communication complexity

A brief introduction to the multiparty complexity was already given in Sect. 1.1. We now
introduce more formally the concrete computation models that are used later in this paper. A
protocol is a tuple prot := (plr1, . . . ,plrk,ref) of players (modeled as Turing machines) that
interact with each other. We assume that the protocol is the the public coins model, i.e., the
players have access to some common source of randomness. The input of the protocol is a tuple
(x1, . . . , xk) ∈ X1 × · · · × Xk (where Xi’s are some sets). Informally speaking, the goal of the
players is to jointly compute some function f : X1 × · · · × Xk → Y (where Y is some set). The
models that are considered in the literature differ in terms of what access the players have to
the input, and how can they communicate. The player ref is called the referee and typically
takes no input. In the number-on-the-forehead (NOF) model each plri sees all inputs except xi.
We also impose some restrictions on the communication between the parties. We say that the
protocol prot operates in t-round simultaneous message (SM) model if the parties communicate
as follows.

1. Every player plri (for i = 1 to k) receives input x1, . . . , xi−1, xi+1, . . . , xk (where each
xi ∈ Xi), and the referee ref receives no input.

2. The computation is structured in t rounds. In the jth round (for j = 1 to t) the following
happens:

For i = 1, . . . , k every player plri (for i = 1, . . . , k) broadcasts some value wji , which
is a function of his input variables and the messages broadcast by other players in the
previous rounds.

3. Finally, ref computes the output of the protocol, denoted prot(x1, . . . , xk), that is a function
of the values wji that were broadcast by the plri’s during the computation.

We will only consider the cases when t = 1, 2, or is unbounded. We note that for the case of t = 1
our notion is equivalent to the classic SM model, while the case of t = 2 can be viewed as its
generalization (which we need in Sect. 3.2). We comment about the case of t being unbounded in
a moment. The t-round almost adaptive SM model [31] is the same as the t-round SM model,
except that one of the players, plrk, say, is the referee (and hence there is no need to specify ref
separately, and we can write prot = (plr1, . . . ,plrk)). Compared to the t-round SM model the
only difference is in Step 3, that in case of the t-round almost adaptive SM model becomes:

3’. plrk computes the output of the protocol, denoted prot(x1, . . . , xk), that is a function of
his own input (x1, . . . , xk−1) and the values wji that were broadcast by the plri’s during the
computation.

5

Observe that in case of the t-round almost adaptive SM model we can assume that the the
message vtk (sent by plrk in the last round) is empty, since the only receiver of this message is
plrk himself. If there is no restriction on the number t of rounds then we will call a t-round SM
model a fully adaptive model. Note that in this case there is no difference between the SM and
the almost adaptive SM version, and in particular we can assume that there is no referee, and
the output of the protocol is produced by plrk.

For a protocol prot the maximal total length of the vji ’s (where the maximum is taken over
all (x1, . . . , xk) ∈ X1 × · · · × Xk) is called the communication complexity of prot. As explained
above, we are mostly interested in the average-case complexity of the multiparty protocols.

Definition 1. We say that a function f : X1 × · · · × Xk → Y is (s, ε)-hard in the t-round SM
model (or t-round almost adaptive SM model, or fully adaptive model) if for every protocol prot
whose communication complexity is at most s, and that operates in the t-round SM model (or
t-round almost adaptive SM model, or fully adaptive model, respectively), the probability that
prot computes f correctly is at most ε, i.e.,

P (prot(X1, . . . , Xk) = f(X1, . . . , Xk)) ≤ ε, (2)

where the probability is taken over (X1, . . . , Xk) ← X1 × · · · × Xk and the public randomness
available to the players (the probability in Eq. (2) is called the correctness probability).

Observe that the adversary can always achieve ε = 1/|Y|. As we will be interested in protocols
where ε is negligible, we will usually use Y ’s that are of size exponential in the security parameter
t (e.g., Y can consist of bit strings of length t). We will also use a stronger notion of hardness
that informally speaking requires that the information about f(X1, . . . , Xk) obtained by a referee
in a multiparty protocol with communication complexity s is small.

Definition 2. We say that a function f : X1 × · · · × Xk → Y is (s, ε)-strongly-hard in the
t-round SM model (or fully adaptive model) if for every protocol prot whose communication
complexity is at most s, and that operates in the t-round SM model (or fully adaptive model,
respectively) we have that

d
(
f(X1, . . . , Xk) | {W j

1 , . . . ,W
j
k}

t
j=1

)
≤ ε, (3)

where the experiment in (3) consists of sampling (X1, . . . , Xk)← X1 × · · · × Xk and the public
randomness of the players, and each W j

i is the message broadcast by plri in the jth round.

It is natural to ask what is the relative strength of these models. Firstly, it is easy to see that every
protocol in the t-round SM model is also a protocol in the t-round almost adaptive SM model.
Moreover, obviously, every t-round protocol can also be viewed as a t′-round model for t′ ≥ t. To
see why the notion defined in Def. 1 is at least as strong as the one from Def. 2, observe that, by
Lemma 2, Eq. (3) implies that P (prot(X1, . . . , Xk) = f(X1, . . . , Xk)) ≤ 1/|Y|+ ε (see Eq. (2)),
which is small for large Y (and small ε).

2.3 Secure Positioning and the Position-Based Key Agreement

In this section we describe in details the model that was already informally discussed in Sect. 1
(for the full formal definition see [15]). A secure positioning protocol in D dimensions is a tuple
Π = (V1, . . . ,VD+1, P), where the Vi’s are the verifiers positioned in a D-dimensional space
(and not lying on one (D − 1)-dimensional hyperspace) and a P is a prover, positioned within
the polytope determined by the verifiers. The protocol will be attacked be a set of adversaries
{A1, . . . ,At}, each Ai positioned in place Âi. The Vi’s, Ai’s, and P are modeled as randomized
Turing machines. We also assume that the Ai’s have access to the common public randomness.6

6 This assumption is made in order to keep this model consistent with the model from Sect. 2.2. Clearly it can be
done without loss of generality, as such common randomness can be easily sampled by one of the Ai’s and sent
to the other ones via a private channel.

6

We assume that all the machines are equipped with perfect clocks and that their computation
takes no time. Each machine is aware of its own position in space (more formally: it gets it as
an auxiliary input). The position of each verifier Vi is denoted by V̂i. The verifiers also get as
input a position P̂ where the prover “claims to be”. Their goal is to check if he indeed is in this
position. The decision (yes/no) of the verifiers is communicated at the end of the protocol by
one of them (V1, say).

The only messages that are sent are of a broadcast type (i.e. there are no directional antennas).
A message sent by a machine positioned in point U arrives to a machine in point U ′ in time
‖UU ′‖/c, where c is the speed of light. We assume that the adversary cannot block or delay the
messages sent between the honest participants. It is clear that such an assumption is unavoidable,
as, by blocking all the messages, the adversary can always prevent any protocol from succeeding.
The communication links between the verifiers are secure (secret and authenticated). Obviously,
this can be achieved by standard cryptographic techniques.

As already highlighted in Sect. 1, the important difference between our model and the one of
[15] is that we assume that if in some moment T several messages Xi1 , . . . , Xi` meet at point

Âi, then Ai can compute any joint function advTi of (Xi1 , . . . , Xi`). Let ATi be the result of this
computation, and let A be the random variable denoting the concatenation of all the ATi . We
require that |A| ≤ s, where s is called the retrieval bound. Informally speaking, the adversary
can either broadcast ATi or store it in his memory, but to keep the model as simple as possible
we will make no distinction between these two cases. Namely, we assume that (1) each adversary
always broadcasts every value immediately after he computed it, (2) each adversary stores all the
messages that he sent, and (3) each adversary stores every message broadcast by any verifier.7

Hence function advTi can depend on all the adversarial messages received by Ai at time T the
latest (including the messages sent by Ai himself in time T). We say that Π is an (s, ρ)-secure
positioning protocol if the following two conditions hold:

correctness: If the prover P is placed in the claimed position P̂ ∈ G then V1 produces as output
“yes”,

security: Suppose the prover is not in position P̂. Then any set of adversaries {A1, . . . ,At}
with retrieval bound s the verifier V1 produces as output “yes” with probability at most ρ.
(If V1 produced “yes” then we say that the adversaries broke the scheme.)

Following [15], we also consider a stronger type of protocols called the position-based key agreement.
In such a protocol the goal of the prover and the verifiers is to agree on a key K ∈ {0, 1}m. More
formally, at the end of the execution the prover produces as output KP , and one of the verifiers,
V1 (say) produces KV . We say that Π is an (s, ρ)-secure position-based key agreement protocol
in D dimensions if the following two conditions hold (assuming the prover P is placed in the
claimed position P̂ ∈ G):

correctness: The agreed keys are identical, i.e., KP = KV .
security: For any set of adversaries {A1, . . . ,At} with retrieval bound s (such that no adversary

is in position P̂) we have that d(KP | A) ≤ ρ (recall that A is the random variable denoting
all the information computed by the adversaries).8

For reasons explained in the introduction we are interested in protocols that have the following
simple structure (let T be some moment in time):

1. Each Vi sends a message Xi ← Xi (where Xi is some set) to P in time T − ‖V̂iP̂‖/c (in this
way all Xi’s arrive to P in time T).

7 Observe that the assumptions (1)–(3) can be made without loss of generality, as storing the computed values
does not affect the retrieval bound.

8 In [15] the security of a key agreement is defined using the “indistinguishability” paradigm (cf. Def. 2.2 in [15]):
no adversary, after learning A, should be able to distinguish KP from a uniformly random key, with advantage
larger than ρ. It is easy to see that these definitions are equivalent.

7

2. P computes Y = π(X1, . . . , XD+1) (for some function π : X1 × · · · × XD+1 → Y) and

– in case of the positioning protocols: P broadcasts Y ,

– in case of the key-agreement protocols: P sets KP = Y .

3. In the last step the verifiers compute π(X1, . . . , XD+1) in some way (e.g., they may simply
send to one of the all the inputs and let him compute the output). The details of this
computation depend on the function that they compute. In many cases there also exist
techniques that allow to save on the communication and space complexities of this procedure,
e.g., each Xi can be generated pseudorandomly from some seed Si, in which case it is enough
that the verifiers store and send to each other only the Si’s. We write more about it when we
consider the concrete implementations in Sect. 4.

– in case of the positioning protocols: each Vi accepts the proof only if y that he
received is indeed equal to π(X1, . . . , XD+1) and it arrived to him in time T + ‖V̂iP̂‖/c,

– in case of the key-agreement protocols: the verifier V1 produces KV = π(X1, . . . ,
XD+1) as the agreed key.

A protocol of this type will be called a one-round protocol parametrized by π. We say that a
protocol is for positions in the set W ⊆ RD if it works only if P̂ ∈ W (note, however, that we do
not restrict the set of positions where the adversary can be placed). Let us also comment on
the assumption that Xi is sampled uniformly from some set. This is done mostly for the sake of
simplicity, and to keep our model consistent with the one in Sect. 2.2. We could also have more
general definition where the Xi’s would come from some more general class of distributions, e.g.,
the distributions with high min-entropy (as it is done in [15]). For the equivalence results shown
in Sect. 3 to hold, we would need to extend the hardness definitions in Sect. 2.2 to cover also
the case when the Xi’s are not uniform, but this can be done in a straightforward way. Also our
constructions can be easily generalized to cover the case when the inputs come from a high-min
entropy source (this generalization will be described in the full version of this paper).

It is natural to ask how do these two primitives relate to each other. Obviously, every (s, ρ)-
secure position-based key agreement protocol can be converted into an (s, ρ′)-secure positioning
protocol with ρ′ = 2−|K|+ρ in the following way: let the prover send KP to V1, and let V1 output
“yes” only if KP = KV . It easily follows from Lemma 2 that if P is not in the position P̂ then the
probability that he can guess KP is at most ρ′.

On the other hand, it is also possible to convert every secure (s, ρ)-secure positioning protocol
(for some negligible ρ) into an (s, ρ′)-secure position-based key agreement protocol (for negligible
ρ′), at a cost of introducing computational assumptions. We refer to [15] (Section 6, page 1311)
for further details.

2.4 Prover’s efficiency

The function π needs to be computed also by the prover P , and it is important to choose π such
that this computation can be done efficiently. Note that the advantage of P over the adversaries
is that he has simultaneous access to all the π’s inputs X1, . . . , XD+1. Since the Xi’s are very
long, we would ideally like to be able to compute π by looking only on some small parts of
the inputs (polylogaritmic in |X|, say). This property, called locality, was stated as an explicit
requirement in [15]. It is also common in the previous papers on the bounded-storage model
[26,3,20,18]. One of our constructions in this paper (see Sec. 4.2) does not have this property (the
one in Sect. 4.1 has it). Instead it has the property of being online computable which means that
π reads its input by just processing its input online in small memory. We remark that in some
cases such algorithms may actually be easier to implement than some of the locally computable
ones (think of a locally computable algorithm that is required to access many bits on its input
that are located far away).

8

3 The reductions

In this section we show strong connections between the two areas described in Sect. 2. We
start (Sect. 3.1) with showing that a construction of a positioning protocol immediately gives
a construction of a function with a high 1-round SM complexity. Note that this means that
a similar implication holds for position-based key agreement (since, as explained in Sect. 2.3,
position-based key agreement is a stronger primitive than secure positioning). Then, in Sect. 3.2,
we show an implication in the opposite direction, namely, we prove that every function with high
1-round almost adaptive SM complexity gives rise to a secure positioning protocol, and every
function with high 2-round SM complexity gives rise to a secure position-based key agreement
protocol.

From the point of view of the position-based cryptography applications, the results in Sect. 3.1
can be viewed as “negative”, because they show that in order to construct secure positioning
protocols (and they position-based key agreement protocols) we need to show multiparty functions
that have high communication complexity, which seems to be non-trivial, especially if the locality
is required (see end of Sect. 3.1 for a discussion on this). On the other hand, the results
from Sect. 3.2 can be viewed as “positive” ones, since they provide a way to construct secure
positioning (and position-based key agreement) protocols. Notice that these positive results
yield a constructive use of lower bounds in communication complexity. We instantiate these
constructions with concrete protocols is Sect. 4.

3.1 Secure positioning implies lower bounds for SM complexity

We now show that existence of a one-round protocol for secure positioning implies lower bounds
for the multiparty communication complexity. Note that, as described in Sect. 2.3, the secure
positioning protocols are a weaker primitive than the position-based key agreement protocols,
and a similar implication also holds for the position-based key agreement. To keep the exposition
simple we address only the case when the verifiers are placed on vertices of a regular D-dimensional
simplex, but it should be clear that our argument can be easily extended to more general cases.
The statement of the lemma assumes that D = 2 or D = 3. This is because, obviously, the case
of D > 3 has no practical relevance, and for D = 1 the function π has only two arguments, so, as
described in the introduction, it makes little sense to talk about the NOF complexity. Recall that
a regular 2-dimensional simplex is an equilateral triangle, and a regular 3-dimensional simplex is
a regular tetrahedron. We now have the following lemma.

Lemma 5. Suppose Π is an (s, ρ)-secure one-round protocol in D dimensions (for D = 2 or
D = 3) parametrized by π : X1× · · ·×XD+1 → Y with verifiers positioned on vertices of a regular
D-dimensional simplex. Then π is (s/2, ρ)-hard in the 1-round SM model.

Proof. Let a denote the length of the edge of the simplex, or, in other words, the distance
between any pair of verifiers. For the sake of contradiction suppose π can be computed in a
1-round SM model by a protocol prot = (plr1, . . . ,plrD+1,ref) with communication com-
plexity s′ = s/2 and correctness probability ρ′ > ρ. For every plrj ∈ {plr1, . . . ,plrD+1} let
Msgj(X1, . . . , Xj−1, Xj+1, . . . , XD+1) denote the message computed by plri, and let Ref(y1, . . . , yD+1)
be the value computed by the referee ref (equal to π(X1, . . . , XD+1) with probability ρ′). We
now show a set of adversaries A1, . . . ,AD+1,B1, . . . ,BD+1 with retrieval bound s that break Π
with probability ρ′ (and none of them is positioned in position P̂).

We assume that position P̂ is the center of mass of the simplex determined by the verifiers.
Hence, P̂ is in the same distance to all the verifiers, and therefore all the messages Xi are sent in
the same moment U = T − ‖P̂V̂1‖/c, where (as it can be easily verified using basic geometric
arguments) ‖P̂V̂1‖ is equal to a

√
3/3 (if D = 2) and is equal to a

√
6/4 (if D = 3). This situation

is depicted on Fig. 1 for the case D = 2.

9

V1 V2

V3

P

a

a a

a
√
3/3

V1 V2

V3

P

X1

X
2

X
3

Y

Y

Y

Fig. 1. On the left: the configuration of the prover and the verifiers for in the two-dimensional case. On the right:
the execution of the positioning protocol in this configuration. The dashed lines indicate the messages sent back by
the prover. Note that the Xi’s and Y are broadcast (there are no directional antennas in our model), and the lines
are only indicating the communication that matters for the protocol.

Obviously, all the verifiers expect to receive the answer from the prover in time T +
‖P̂V̂1‖/c = U + 2‖P̂V̂1‖/c. The adversaries A1, . . . ,AD+1,B1, . . . ,BD+1 behave in the following
way (see Fig. 2).

V1 V2

V3

A3

A2 A1

X1

X
1

X2

X
2

X
3

X
3

W1 W1

W
2

W
2

W
3

W
3

V1,B1
W1

V2,B2
W2

V3,B3
W3

X1

X
1

X2

X
2

X
3

X
3

Fig. 2. On the left: the actions of the Ai’s, on the right: the actions of the Bi’s (recall that each Wi is a function
of all the Xj ’s except of Xi).

– Each Aj is positioned in point Âj defined as follows: Âj is the center of mass of the facet

determined by the points V̂1, . . . , V̂j−1, V̂j+1, . . . , V̂D+1. This facet is either a line segment
— in case D = 2, or an equilateral triangle — in case D = 3. From the regularity of
this facet we get that the messages X1, . . . , Xj−1, Xj+1, . . . , XD+1 (send by the verifiers

V1, . . . ,Vj−1,Vj+1, . . . ,VD+1) arrive to point Âj in the same moment. In the moment when
they arrive there, the adversary Aj computes Wj = Msgj(X1, . . . , Xj−1, Xj+1, . . . , XD+1)

and broadcasts the result. This happens in time U + ‖ÂjV̂i‖/c.
– Each Bi is positioned in point V̂i.9 He does the following:

9 The reader may object that it is not realistic to assume that an adversary is positioned at zero distance from a
verifier. At the end of the proof we argue that Bi can actually be put at some place far from any verifier. We
decided to assume that Bi is positioned exactly in point V̂i to keep the exposition simple.

10

• When the messages X1, . . . , Xi−1, Xi+1, . . . , XD+1 arrive to him (observe that, from the
regularity of the simplex, they all arrive in the same moment T ′ = U + a/c) he computes
Wi := Msgj(X1, . . . , Xi−1, Xi+1, . . . , XD+1) and stores the result.

• He also stores each message Wj broadcast by Aj (for j ∈ {1, . . . , i− 1, i+ 1, . . . , D + 1})
when it arrives to him. This happens in time T ′′ = U + ‖ÂjV̂i‖/c+ ‖ÂjB̂i‖/c (where B̂i
is the position of Bi, which is equal to V̂i). Hence T ′′ is equal to U + 2‖ÂjV̂i‖/c.
Observe also that, by the triangle inequality ‖ÂjV̂i‖+‖ÂjB̂i‖ ≥ ‖ÂjV̂i‖ = a, and therefore
T ′′ ≥ T ′.
• After the two steps above are completed (which happens in time max(T ′, T ′′) = T ′′)

the adversary Bi knows all W1, . . . ,WD+1 and he can simply compute the output Y as
Ref(W1, . . . ,WD+1), and pass it Vi (which takes zero time, since Bi is positioned exactly
in V̂i). Moreover, he can do it exactly in time U + 2‖P̂V̂1‖/c when Vi expects to receive y.
This is possible, because (as we show below)

T ′′ < U + 2‖P̂V̂1‖/c. (4)

We now show (4). Let us start with case D = 2. Since in this case each facet of the simplex is a
line segment of length a, hence ‖ÂjV̂i‖ = a/2. Therefore (4) becomes

U + a/c < U + 2a
√

3/(3c), (5)

which holds because 1 < 2
√

3/3. In case D = 3 each facet is a regular triangle with edge of length
a. Thus ‖ÂjV̂i‖ =

√
3/3, and therefore (4) becomes

U + 2a
√

3/(3c) < U + 2a
√

6/(4c), (6)

which holds because 2
√

3/3 < 2
√

6/4. Clearly the adversaries constructed this way compute
function π correctly with exactly the same probability σ′ as the SM protocol computes it. It
remains to calculate how much information was retrieved by the adversaries. Observe that each
Msgj was computed twice (by Aj and Bj). Hence, the total amount of retrieved information if
2s′ = s. This finishes the proof.

Finally, note that both inequalities (5) and (6) are sharp, and the differences between the
left hand sides and the right hand sides are non-negligible. This means that Bi has to wait some
noticeable amount of time before he sends y to the verifier Vi. Hence, it is also ok to place Bi in
some position B̂i further away from Vi (as long as the B̂i is in equal distance to the remaining
verifiers). ut

Recall that according to the standard definitions (see Sect. 2.4) we want function π to be
locally computable, which means that it should be possible to compute it by looking only at
a polylogarithmic number of bits of its input (X1, . . . , XD+1). It is easy to see that such an
algorithm is trivial to implement by a multiparty protocol that has polylogarithmic communication
complexity in the fully adaptive settings. On the other hand, function π, by Lemma 5, needs
to have a linear complexity in the 1-round SM model. Since finding such functions is an open
problem we view this result as an indication why showing 1-round positioning protocols in the
unrestricted BRM model is hard. The reader may object that typically the communication
complexity literature is more focused on deterministic functions that compute one bit, while here
we consider randomized functions (with small correctness probability) with multi-bit output.
This is not a problem for the following reasons: (1) it is easy to see that a lower bound on the
communication complexity of our multi-bit output randomized function also implies a lower
bound on a single-bit output functions (since there has to be at least one bit of output that is
hard to guess with good probability), and (2) randomized lower bounds imply the deterministic
ones.

11

3.2 Lower bounds for SM complexity imply results for PBC

In this section we show implications in the other direction than in Sect. 3.1, i.e., we show how
to build positioning and position-based key agreement protocols from functions that have high
communication complexity. Unlike in case of Sect. 3.1 we consider these two cases separately
(the first one in Lemma 6), and the second one in Lemma 71. Although in principle the second
construction would suffice for showing the general implication (as the key agreement is a stronger
primitive than the positioning), such a separation makes sense, since the requirements for the
communication complexity that we need in Lemma 6 are weaker (and hence Lemma 6 does not
directly follow from Lemma 7). Also the conditions on the position of the prover P are more
restrictive in Lemma 7.

Lemma 6. Suppose D ∈ {2, 3}. Let π : X1 × · · · × XD+1 → Y be an (s, ρ)-hard function in the
1-round almost adaptive SM model. Let Π be a 1-round positioning protocol parametrized by π.
Then Π is (s, ρ)-secure for positions within the D-dimensional simplex whose vertices are the
positions of the verifiers V̂1, . . . , V̂D+1.

Proof. Set k := D + 1. Let P be the prover, and V1, . . . ,VD+1 be the verifiers. Assume the
position P̂ of P is within the D-dimensional simplex whose vertices are the positions of the
verifiers V̂1, . . . , V̂D+1. For the sake of contradiction assume that Π can be broken by adversaries
with retrieval bound s with probability ρ′ > ρ. This means that one of the adversaries, A1, say,
was able to send to the verifiers a message Y equal to π(X1, . . . , Xk) with probability ρ′ (assuming
(X1, . . . , Xk)← X1 × · · · × Xk), and this message arrived to Vk in time T + ‖V̂kP̂‖/c. The value
of Y is a result of computation that depended on some subset of the variables X1, . . . , Xk and
possibly some messages sent by the other adversaries (that, in turn, may depend on some other
subset of variables, other messages, and so on). Hence we can view this message exchange as a
multiparty protocol. From the assumption that π is (s, ρ)-hard in the 1-round almost adaptive
SM model, it follows that Y could not be computed by a 1-round almost adaptive protocol with
communication complexity s. Therefore at some point of computing Y one of the following had
to happen:

1. a joint function α of (X1, . . . , Xk) was computed, or

2. a function β was computed on some subset of variables S ⊆ {X1, . . . , Xk} and β was chosen
adaptively after learning some function β′ of another subset of variables S ′ ⊆ {X1, . . . , Xk},
and S and S ′ are such that (a) S ∪ S ′ = {X1, . . . , Xk} and (b) Xk ∈ S ∩ S ′.

We consider only the second case, as it is clearly more general than the first one. Let B̂ be the
point in which β is computed. Since Xk ∈ S thus this computation happens exactly in ‖B̂V̂k‖/c
time after Xk was sent by Vk, i.e. in time T − ‖P̂V̂k‖/c+ ‖B̂V̂k‖/c. Communicating the result
of this computation back to Vk takes time at least ‖B̂V̂k‖/c. Hence the reply arrives to Vk at
earliest at time T − ‖P̂V̂k‖/c + 2‖B̂V̂k‖/c. On the other hand, if Vk accepts this reply then it
has to arrive to it exactly at time T + ‖P̂V̂k‖/c. We thus get the following inequality

T − ‖P̂V̂k‖/c+ 2‖B̂V̂k‖/c ≤ T + ‖P̂V̂k‖/c,

which implies that ‖B̂V̂k‖/c ≤ ‖P̂V̂k‖/c. This, in turn, means that β was computed in time T at
the latest. On the other hand, at the moment when it was computed, the adversary B located in
point B̂ has already learned all the variables in {X1, . . . , Xk} — this is because he learns the
variables in S exactly in this moment and he learns the variables in S ′ even earlier (from the
triangle inequality). Therefore for every i ∈ {1, . . . , k} we have that T − ‖P̂V̂i‖ + ‖B̂V̂i‖ ≤ T ,
which implies that ‖B̂V̂i‖ ≤ ‖P̂V̂i‖. From a geometric argument used in [15] (see page 1310)
we get that there is only one point B̂ that satisfies it, namely B̂ = P̂ (provided P̂ lies within
the simplex whose vertices are the positions of the verifiers V̂1, . . . , V̂D+1). This completes the
proof. ut

12

We now show Lemma 7 that is similar to Lemma 6, but it holds for position-based key
agreement. Observe that for the lemma to hold we need a slightly stronger assumption than
in Lemma 6, namely that π is hard in the 2-round SM model. Also, unlike in Lemma 6, we do
not specify explicitly what geometric configurations of the verifiers and the prover are allowed.
Instead, we simply say that they need to be such that the messages sent by the verifier (see
Sect. 2.3) never “meet” at any place other than the position P̂ of the prover. More precisely, we
require that there does not exist time U and place Ẑ 6= P̂ such that at time U all the Xi’s are in
Ẑ. For the detailed analysis on what are the possible configurations of the parties in order for
this assumption to holds we refer the reader to [15], Sect. 7.3.1.

Lemma 7. Suppose D ∈ {2, 3}. Let π : X1× · · · ×XD+1 → Y be an (s, ρ)-strongly-hard function
in the 2-round SM model. Let Π be a one-round key-agreement protocol in D dimensions
parametrized by π. Then Π is a (s, ρ)-secure key-agreement protocol assuming all the messages
sent by the verifiers never meet at any other place than the position P̂ of the prover.

Proof. For the sake of contradiction suppose Π is not (s, ρ)-secure, i.e. there exists adversaries
A1, . . . ,At, each positioned in Âi, . . . , Ât (resp.), such that

d(π(X1, . . . , XD+1) | A) = ρ′ > ρ, (7)

where X1, . . . , XD+1 ← X1 × · · · × XD+1 are the input variables, and A is a concatenation of the
outputs ATi of the advTi functions computed by the adversaries when the protocol Π is executed
on input (X1, . . . , XD+1). To finish the proof we show an NOF protocol with communication
complexity s such that

d(π(X1, . . . , XD+1) |W) = ρ′, (8)

where W is a concatenation of the messages W 1
1 , . . . ,W

1
D+1,W

2
1 , . . . ,W

2
D+1 sent by the players

when the NOF protocol is executed on variables (X1, . . . , XD+1). Clearly, showing (8) will
contradict the assumption that π is (s, ρ)-strongly-hard in the NOF model. Call the ATi the
intermediate variables (as opposed to the input variables Xi).

We now recursively define the dependence relation among the intermediate variables. We say
that (a) every ATi depends on itself, and (b) ATi depends on AUj if the adversary Ai at time T

the latest received some other variable ASk that depends on AUj . Clearly the dependence relation
is a partial order. We also say that Ai depends on an input variable Xj if either Ai is a function
of an input variable Xj or it depends on some intermediate Ak that is a function of Xj .

The NOF protocol that we construct consists of the following phases:

– Computation Phase 1: Compute every ATi such that the set X̂ Ti of input variables that it
depends on is a proper subset of X . Obviously, since this subset is proper hence there exists a
player that knows all the variables in this subset, and hence each such ATi can be computed
in this phase by some player.

– Computation Phase 2: Compute all the remaining ATi ’s.

– Output Phase: Output all the ATi ’s computed in the previous phases.

What remains to show is that all the variables that remained after Phase 1 can be computed in
Phase 2. Suppose it is not the case. Then there exists an intermediate variable, call it B3, that
was not computed in the first two phases, but depends only on the variables that were computed
in these two phases. Let Q3 be the set of variables that B3 is a function of. Clearly B3 has to
depend on some other variable B2 that was computed in Phase 2. Let Q2 be the set of input
variables that B2 is a function of. Of course B3 cannot be a subset of Q2, as otherwise B3 would
be computed in Phase 2. Let x be any element of Q3 \ Q2. Since B2 was computed in Phase 2
thus it has to depend on all input variables Q (otherwise it would have been computed in Phase
1), and hence it has to depend on some variable B1 that is a function of x.

13

To summarize: B3 and B1 are both functions of x. Moreover B3 depends on B2 which, in
turn, depends on B1. The only way that could happen is that B2 would lie on a line connecting
B3 and B1, and B2 would also be a function of x. Since x 6∈ Q2 we obtain contradiction.

ut

4 Concrete constructions

In this section we provide two concrete constructions of positioning and position-based key
agreement protocols. This is done using the theory developed in Sect. 3.2, i.e., we first prove that
some function π has high communication complexity, and then use this function to construct
a position-based protocol. We start with a construction of a positioning protocol that has the
“locality” property (see Sect. 2.4), and works in the random oracle model. Note, that using the
techniques from [15], this positioning protocol can be transformed into a position-based key
agreement, using the computational assumptions (see Sect. 2.3). Then, in Sect. 4.2, we show a
construction of a position-based key agreement in the plain model (i.e. without a random oracle
assumption). This second construction comes without the locality property, i.e., the prover has
to read the entire random strings Xi that are sent to him by the verifiers. On the other hand,
it has the on-line-computability property, i.e., the Xi’s need to be read only once in an on-line
fashion, by an a machine with very small memory (see Sect. 2.4).

4.1 Protocols in the Random Oracle Model

As proven in Sect. 3.2 (see Lemma 6), to construct such a protocol it is enough to show
a function π : X1 × · · · × Xk → Y whose 1-round almost adaptive SM complexity is high.
Let t be a security parameter. We assume that the parties have access to t random oracles
containing functions {Hj : {0, 1}∗ → {1, . . . ,m}}ti=1 (let H denote this family of functions).
The function π will depend on the functions in H. Also every party will have access to the
functions in H. More concretely, let πH,tk,n : ({0, 1}t)k−1 × {0, 1}n → {0, 1}t be a function defined

as: πH,tk,n (Z1, . . . , Zk−1, X) := (X[H1(Z)], . . . , X[Ht(Z)]) , where Z = (Z1|| · · · ||Zk−1).
Our positioning protocol ΠH,tD,n in D dimensions (for D ∈ {2, 3}) is simply the one-round

positioning protocol parametrized by πH,tD+1,n (see Sect. 2.3). More concretely: it consists of D+ 1

verifiers V1, . . . ,VD+1 (positioned in V̂1, . . . , V̂D+1, resp.). Each Vi (for i ≤ D) sends a random
Zi ← {0, 1}t in time T − ‖V̂iP̂‖ (where P̂ is the claimed position of the prover), and VD+1 sends
a random X ← {0, 1}n (in time T − ‖V̂iP̂‖). All the messages arrive to P in time T . Then, P
computes X[H1(Z)], . . . , X[Ht(Z)], and sends the result back to VD+1, who checks if the result
is correct (at the end of this section we discuss how this check can be done very efficiently). The
security of ΠH,tD,n follows directly from Lemma 7, and the following fact.

Lemma 8. Consider an almost adaptive 1-round SM protocol plr1, . . . ,plrk with plrk being
the referee, and every player having random oracle access to the functions in H. Let βn denote
the total communication complexity of this protocol (where n ∈ N and β < 1 is some constant)
and let q be the number of times the parties query the random oracles. Assume q is polynomial in
t and n > t. Let Y denote the output of plrk. Then we have

P
(
Y = πH,tk,n (Z1, . . . , Zk−1, X)

)
≤ negl(t), (9)

where the probability in (9) is taken over random X ← {0, 1}m, (Z1, . . . , Zk−1)← ({0, 1}t)k−1,
and the random choice of the functions on H.

Proof. Suppose we have a almost adaptive 1-round SM protocol plr1, . . . , plrk (with plrk
being the referee) such that the probability in (9) is non-negligible. Recall the guessing game from

14

Sect. 2.1. We now show how to use plr1, . . . ,plrk to construct a pair of functions compress :
{0, 1}n → {0, 1}βn and guess : {1, . . . , n}t × {0, 1}βn → {0, 1}t such that the probability that
guess(R, compress(X)) = (X[R1], . . . , X[Rt]) is non-negligible in t, where X ← {0, 1}n and
R = (R1, . . . , Rt) ← {1, . . . , n}t. Since by Lemma 4 we know that this is impossible, we will
obtain that the probability in (9) has to be negligible.

The functions compress and guess that we construct are randomized, i.e., they depend on
some external fresh randomness. In particular, we will assume that the hash functions H that
the players have access to (via the random oracle) were sampled in advance. Of course, such
sampling cannot be done efficiently (since the set of all such functions is of exponential size), but
this is ok, since our construction is anyway information-theoretic (note that Lemma 4 does not
involve any complexity-theoretic assumptions). We will later argue why the assumption about
the availability of external randomness can be done without loss of generality. First, however, let
us present the definitions of the functions compress and guess.

The function compress is defined as follows. First it samples (Z1, . . . , Zk−1)← ({0, 1}t)k−1.
Then, on input (X,R1, . . . , Rk−1) it produces as output a tuple (V1, . . . , Vk−1), where each Vi is
equal to the output of player plri on input (R1, . . . , Ri−1, Ri+1, . . . , Rk−1, X) (recall that in this
model the referee plrk does not produce any output in the first phase). Note that simulating
the plri’s may require replying to their random oracle queries. We reply to each such a query
using the hash functions H that were sampled beforehand. Observe that |(V1, . . . , Vk−1)| ≤ βn,
and therefore compress can fit this output in the set {0, 1}βn.

On input (R1, . . . , Rt) and X the function guess does the following. It simulates the referee
plrk on input (Z1, . . . , Zk−1) (which are the values that were already sampled by compress). It
answers all the random oracle queries using H, with one important exception. Namely, every
query of a form (Z1|| · · · ||Zk−1) to an oracle containing a hash function Hj (for j = 1, . . . , t) is
answered with Rj .

Now, let E denote the event that it never happened that any of the plr1, . . . ,plrk−1 queried
any of the random oracles on (Z1|| · · · ||Zk−1). It is easy to see that we have the following:

P
(
Y = πH,tk,n (Z1, . . . , Zk−1, X) | E

)
= P (guess(R, compress(X)) = (X[R1], . . . , X[Rt]) | E) . (10)

This is because if E occurred then the functions compress and guess perfectly “emulated” the
execution of plr1, . . . ,plrk. Observe that here we use the assumption that the Rj ’s are uniform,
which implies that our answers to the “(Z1|| · · · ||Zk−1)” queries are indistinguishable from the
answers of the “real” random oracle. Of course, this would not be true if such a query was earlier
asked by one of plr1, . . . ,plrk−1, but this did not happen, since in (10) we condition on the
event E .

On the other hand, it is clear that P (¬E) ≤ q/2t. This is because querying the oracle on
“(Z1|| · · · ||Zk−1)” requires the knowledge of all the Zi’s, and every plri (for i = 1, . . . , k−1) does
not know one of them. Hence the probability that any plri guesses “(Z1|| · · · ||Zk−1)” in one
query is 2−t (remember that each of them is uniformly random on {0, 1}t). Consequently, the
probability that it guesses it in at least one of its q queries is at most q/2t. Since we assumed
that q is polynomial in t, thus we get that P (¬E) ≤ negl(t). Combining it with (10) we obtain

P
(
Y = πH,tk,n (Z1, . . . , Zk−1, X)

)
(11)

≤ P (guess(R, compress(X)) = (X[R1], . . . , X[Rt])) + negl(t). (12)

Thus, since we assumed that (11) is non-negligible, we obtain the the probability in (12) is
non-negligible.

What remains is to describe how to “derandomize” the compress and guess functions that we
constructed. This can be done via a very standard argument. Since the inequality (12) holds

15

when the probability is computed including the internal randomness ρ of compress and guess
thus there has to exist a concrete value ρ0 such that (12) holds if we fix ρ to ρ0. We can therefore
derandomize these functions by simply “hardwiring” these randomness into them. This finishes
the proof. ut

Let us also discuss the nature of the πH,tk,n function, focusing on the (simplest) case when t = 1,
i.e., only on bit is produced as output. The reader familiar with the communication complexity
literature may observe that this function is similar to so-called shift function [28], and more
general notion of called the general addressing function (GAF) [31,4]. The shift function is
defined very similarly to πH,1k,n , except that the Zi’s take values in the Zn group, and H1 is defined
as H(Z1, . . . , Zn) := Z1 + · · ·Zk−1 (in case of GAF we can also have groups other than Zn).
Somewhat surprisingly it appears very hard to prove the lower bounds for the SM complexity
in this model. The only known non-trivial lower bound in the shift function is Ω(n1/k) [28,31].
Moreover, sublinear upper bounds on this complexity are known [31,30,1,2]. The hardness of
this problem can in some sense serve as a justification for the use of the random oracles in our
construction. Lemma 7 and 8 together imply the following.

Corollary 1. For any β < 1 and for n > t the protocol ΠH,tD,n is a (βn, negl(t))-secure positioning
protocol for positions within the the D-dimensional simplex whose vertices are the positions of
the protocol’s verifiers.

Let us also now mention that in a practical implementation one can let the verifiers choose the
Zi’s in advance. Therefore VD+1 can compute Hi(Zi)’s and store only the X[Hi(Zi)]’s. Thus, the
storage requirements of this protocol are very low.

4.2 Protocols in the Plain Model

In this section we propose an alternative construction of positioning and key agreement protocols.
The protocols presented in this section are online computable (see Sect. 2.4), and do not require
the random oracle assumption. Let us first recall the definition of the generalized inner product
function [5]. Let F = GF(2m) be a finite field (for simplicity we restrict ourselves to the Galois
fields of order 2m, but our results can be generalized to arbitrary finite fields). For some natural
parameters ` and k (such that k ≥ 2) define the generalized inner product (GIP) function as
GIP`,k : (F`)k → F as GIPF

`,k((x
1
1, . . . , x

1
`), . . . , (x

k
1, . . . , x

k
`)) =

∑`
i=1

∏k
j=1 x

j
i .

The positioning and the position-based key agreement protocols (in D ∈ {2, 3} dimensions),
denoted Γ pos

`,D,t and Γ ka
`,D,t (resp.), are simply the one-round protocols parameterized by GIPF

`,D+1

(see Sect. 2.3), i.e., the verifiers V1, . . . ,VD+1 broadcast random strings Xi ← F`, and the prover
computes GIP(X1, . . . , XD+1), which he either keeps as the agreed key, or broadcasts back to
the verifiers (depending on whether the protocol is for key agreement or for positioning). The
verifiers compute GIP(X1, . . . , XD+1) and keep it as the agreed key (in the first case), or simply
check if it is identical to what they got from the prover (in the second case). We now have the
following lemma that states that GIP is hard in the fully adaptive model. Note that this lemma
implies hardness also in the 2-round SM model and the almost adaptive 1 round SM model
(since these models are more restrictive), and hence, together with Lemmas 6 and 7, implies
security of the Γ pos

`,D,t and Γ ka
`,D,t protocols. The communication complexity of the GIP function

has been studied in multiple papers [5,6,32,23,22], but up to our knowledge, not in the strong
randomized settings that we need in this work. Our proof is a rather straightforward adaptation
of the techniques form this prior work.

Lemma 9. Suppose F = GF(2m) (for any m such that 2m ≥ k1+ξ for some ξ > 0). Then
for every `, k, the GIPF

`,k function is (s, δ)-strongly hard in the fully adaptive model, for some

s = Ω(m`/2k) and δ = negl(`).

16

Proof. Consider an arbitrary fully adaptive protocol (plr1, . . . , plrk). Let s denote its commu-

nication complexity. Suppose that
−→
X 1, . . . ,

−→
X k are sampled uniformly and independently, each

from F`. Let V denote the sequence of all the messages that were broadcast by the parties during

the execution of the protocol on input (
−→
X 1, . . . ,

−→
X k). Let Y := GIPF

`,k(
−→
X 1, . . . ,

−→
X k). We will now

treat Y ∈ GF(2m) as a bit-strings of length m. We start with the following.

Claim. For any i ∈ 1, . . . ,m and s = Ω(m`/2k) we have that

d(Y [i] | Y [1, . . . , i− 1], V)) ≤ negl(`). (13)

Proof (Proof of the Claim). We use the results of [5] which introduced the so-called multiparty
communication complexity with help. More precisely, in [5] the authors consider protocols where
the players can obtain an extra “help” from an external entity in a form of a function H that
gets as input all the inputs of all the players, the only restriction being that the output of H has
to be one bit shorter than the output of the computed function. Hence, in our case H is any
function of a type H : (F`)k → {0, 1}m−1. What they prove in their Lemma 3.3 can be translated
to our notation as follows:

For any protocol whose communication complexity is at most

log

(
1/2− ε
Γ (f, C)

)
(14)

(we will comment on the “Γ (f, C)” term in a moment) and for any H : (F`)k → {0, 1}m−1
and any function α we have that

P
(
GIPF

`,k(
−→
X 1, . . . ,

−→
X k) = α(H(

−→
X 1, . . . ,

−→
X k), V)

)
≤ 1− ε. (15)

(provided 2m ≥ k1+ξ for some ξ > 0).

Above Γ (f, C) is a value called the strong discrepancy of f in C (for this discussion it is irrelevant
what C is). Moreover, as inspection of the proof of Corollary 4.12 [5] shows we have that

log(1/Γ (f, C)) ≥ Ω(m`/2k). (16)

Now, set ε := 1/2−
√
Γ (f, C). It is easy to see that (14) now becomes equal to

log(1/
√
Γ (f, C)) ≥ Ω(m`/2k).

This also implies that ε− 1/2 is negligible in `. Moreover, by Lemma 2, we have that

d(GIPF
`,k(
−→
X 1, . . . ,

−→
X k) | H(

−→
X 1, . . . ,

−→
X k), V) ≤ 2(1− ε)− 1 ≤ negl(`), (17)

Now set H(
−→
X 1, . . . ,

−→
X k) := (Y [1, . . . , i− 1], Y [i+ 1], . . . , Y [m]). Then, (17) becomes

negl(`) ≥ d(Y | Y [1, . . . , i− 1], Y [i+ 1], . . . , Y [m], V)

≥ d(Y [i] | Y [1, . . . , i− 1], V), (18)

where (18) follows from Lemma 2. Hence (13) is proven.

To finish the proof of Lemma 9 we just apply the chain-rule for the statistical distance (Lemma
1), obtaining

d(Y | V) ≤ m · negl(`) = negl(`).

We therefore obtain that for any protocol with the communication complexity Ω(m`/2k) we have

d(GIPF
`,k(
−→
X 1, . . . ,

−→
X k) | V) ≤ negl(`), and the lemma is proven. ut

Now, combining Lemma 9 with Lemmas 6 and 7 we obtain the following.

Corollary 2. For D ∈ {2, 3} and for k,m, and ` as in Lemma 9, we have that Γ pos
`,D,t is one-round

(Ω(m`), negl(`))-secure positioning protocol in D dimensions for positions inside of a simplex
determined by the verifiers, and Γ ka

`,D,t is a one-round (Ω(m`), negl(`))-secure key agreement
protocol in D dimensions for positions such that the messages sent by the verifiers never meet at
any other position than the one claimed by the prover (see [15], Sect. 7.3.1).

17

4.3 Practical considerations for the GIP-based protocol

Note that, unlike in the case of protocol ΠH,tD,n (see remark after Corollary 1), there is no simple
trick to avoid the need for the verifiers to store large amounts of data (the Xi’s), as long as we want
the protocols to be information-theoretically secure. However, if we move to the “computational
world” we can simply let the Xi’s be generated pseudorandomly: for i = 1, . . . , D + 1 sample
a short random seed Si, and let Xi := prg(Si), where prg is a pseudorandom generator. In this
case, the verifiers need to store only the Si’s. Also, instead of sending the Xi’s (via a private
channel) to each other, they can just send the Si.

References

1. Andris Ambainis. Upper bounds on multiparty communication complexity of shifts. In Claude Puech and
Rüdiger Reischuk, editors, STACS 96, 13th Annual Symposium on Theoretical Aspects of Computer Science,
Grenoble, France, February 22-24, 1996, Proceedings, volume 1046 of Lecture Notes in Computer Science,
pages 631–642. Springer, 1996.

2. Andris Ambainis and Satyanarayana V. Lokam. Imroved upper bounds on the simultaneous messages
complexity of the generalized addressing function. In Gaston H. Gonnet, Daniel Panario, and Alfredo Viola,
editors, LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,
April 10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer Science, pages 207–216. Springer,
2000.

3. Yonatan Aumann and Michael O. Rabin. Information theoretically secure communication in the limited
storage space model. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 65–79, Santa
Barbara, CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

4. László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communication complexity of
simultaneous messages. SIAM J. Comput., 33(1):137–166, January 2004.

5. László Babai, Thomas P. Hayes, and Peter G. Kimmel. The cost of the missing bit: Communication complexity
with help. Combinatorica, 21(4):455–488, 2001.

6. László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols, pseudorandom generators for logspace,
and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, 1992.

7. Stefan Brands and David Chaum. Distance-bounding protocols (extended abstract). In Tor Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 344–359, Lofthus, Norway, May 23–27, 1994. Springer,
Heidelberg, Germany.

8. G. Brassard. Quantum information: The conundrum of secure positioning. Nature, 479:307–308, November
2011.

9. Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal, Rafail Ostrovsky, and Christian
Schaffner. Position-based quantum cryptography: Impossibility and constructions. SIAM Journal on Computing,
43(1):150–178, 2014.

10. Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded adversaries. In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 292–306, Santa Barbara, CA, USA,
August 17–21, 1997. Springer, Heidelberg, Germany.

11. S. Capkun and J.-P. Hubaux. Secure positioning of wireless devices with application to sensor networks.
In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 3, pages 1917–1928 vol. 3, March 2005.

12. David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lipton, and Shabsi Walfish. Intrusion-
resilient key exchange in the bounded retrieval model. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 479–498, Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.

13. Kaushik Chakraborty and Anthony Leverrier. Practical position-based quantum cryptography. Phys. Rev. A,
92:052304, Nov 2015.

14. Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In Proc. 15th Annual
ACM Symposium on the Theory of Computing, pages 94–99, 1983.

15. Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky. Position-based cryptography. SIAM
Journal on Computing, 43(4):1291–1341, 2014.

16. Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 207–224, New York, NY, USA, March 4–7, 2006. Springer,
Heidelberg, Germany.

17. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-source extractors.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 239–257,
Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

18. Stefan Dziembowski and Ueli M. Maurer. Tight security proofs for the bounded-storage model. In 34th ACM
STOC, pages 341–350, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

18

19. Stefan Dziembowski and Ueli M. Maurer. Optimal randomizer efficiency in the bounded-storage model.
Journal of Cryptology, 17(1):5–26, January 2004.

20. Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In 48th FOCS, pages 227–237,
Providence, USA, October 20–23, 2007. IEEE Computer Society Press.

21. Stefan Dziembowski and Maciej Zdanowicz. Position-based cryptography from noisy channels. In David
Pointcheval and Damien Vergnaud, editors, AFRICACRYPT 14, volume 8469 of LNCS, pages 300–317,
Marrakesh, Morocco, May 28–30, 2014. Springer, Heidelberg, Germany.

22. Jeff Ford and Anna Gál. Hadamard tensors and lower bounds on multiparty communication complexity.
Computational Complexity, 22(3):595–622, 2013.

23. Fan Chung Graham. Quasi-random hypergraphs revisited. Random Struct. Algorithms, 40(1):39–48, 2012.
24. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, Cambridge,

1997.
25. Chi-Jen Lu. Encryption against storage-bounded adversaries from on-line strong extractors. Journal of

Cryptology, 17(1):27–42, January 2004.
26. Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology,

5(1):53–66, 1992.
27. Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma. Non-interactive timestamping in the bounded-storage

model. Journal of Cryptology, 22(2):189–226, April 2009.
28. Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. In 23rd ACM STOC, pages

419–429, New Orleans, Louisiana, USA, May 6–8, 1991. ACM Press.
29. Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–52,

February 1996.
30. Pavel Pudlák. Unexpected upper bounds on the complexity of some communication games. In Serge Abiteboul

and Eli Shamir, editors, Automata, Languages and Programming, 21st International Colloquium, ICALP94,
Jerusalem, Israel, July 11-14, 1994, Proceedings, volume 820 of Lecture Notes in Computer Science, pages
1–10. Springer, 1994.

31. Pavel Pudlk, Vojtech Rdl, and Jir Sgall. Boolean circuits, tensor ranks, and communication complexity. SIAM
Journal on Computing, 26(3):605–633, 1997.

32. Ran Raz. The bns-chung criterion for multi-party communication complexity. Computational Complexity,
9(2):113–122, 2000.

33. Naveen Sastry, Umesh Shankar, and David Wagner. Secure verification of location claims. In Proceedings of
the 2Nd ACM Workshop on Wireless Security, WiSe ’03, pages 1–10, New York, NY, USA, 2003. ACM.

34. Christian Schaffner. Position-based quantum cryptography. webpage http://homepages.cwi.nl/~schaffne/

positionbasedqcrypto.php, accessed on Feb 17, 2016.
35. Dominique Unruh. Quantum position verification in the random oracle model. In Juan A. Garay and Rosario

Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 1–18, Santa Barbara, CA, USA,
August 17–21, 2014. Springer, Heidelberg, Germany.

36. Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage model.
Journal of Cryptology, 17(1):43–77, January 2004.

37. Adnan Vora and Mikhail Nesterenko. Secure location verification using radio broadcast. In Proceedings of
the 8th International Conference on Principles of Distributed Systems, OPODIS’04, pages 369–383, Berlin,
Heidelberg, 2005. Springer-Verlag.

A Proof of Lemma 3

Let UX and UY be uniform random variables distributed over the same sets as X and Y ,
respectively. We have

d(X,Y | Z, V) = ∆((X,Y, Z, V); (UX , YY , Z, V))

≥ ∆((X,Z); (UX , Z)) (19)

= d(X | Z)

where (19) comes from the fact that form any random variables and any function ϕ we have
∆(A;B) ≥ ∆(ϕ(A);ϕ(B)) (see, e.g., Lemma 4 of the extended version of [17]). ut

B Proof of Lemma 4

Simple inspection of the argument in Sect. 4.3 of [15]. Observe that EG in [15] is defined as
EG(X,R) := (X[Z1], . . . , X[Zt]). The argument in [15] uses parameters β and δ in, where β is

19

http://homepages.cwi.nl/~schaffne/positionbasedqcrypto.php
http://homepages.cwi.nl/~schaffne/positionbasedqcrypto.php

defined as the “adversarial storage rate“ (and is the same parameter as in our notation), and
the δ is such that the min-entropy rate of X is β + δ. Since in our case X is uniform, thus we
can simply set δ := (1− β). Observe that δ > 0. In [15] the authors use a security parameter κ
and require that t ≥ (2/δ)κ. We can however also treat t as the security parameter, and then set
κ := tδ/2. In [15] it is shown that the probability p of guessing EG(X,R) correctly is negligible
in κ. Therefore it is also negligible in t (as δ is a positive constant). ut

20

	Position-Based Cryptography and Multiparty Communication Complexity

