
A Generalisation of the Conjugation Method for
Polynomial Selection for the Extended Tower

Number Field Sieve Algorithm

Palash Sarkar and Shashank Singh

Applied Statistics Unit
Indian Statistical Institute

palash@isical.ac.in, sha2nk.singh@gmail.com

Abstract. In a recent work, Kim and Barbulescu showed how to com-
bine previous polynomial selection methods with the extended tower
number field sieve algorithm to obtain improved complexity for the dis-
crete logarithm problem on finite fields Fpn for the medium prime case
and where n is composite and not a prime-power. A follow up work by
Sarkar and Singh presented a general polynomial selection method and
showed how to lower the complexity in the medium prime case even
when n is composite and a prime-power. This complexity, though, was
higher than what was reported for the case of n composite and not a
prime-power. By suitably combining the Conjugation method of polyno-
mial selection proposed earlier by Barbulescu et al. with the extended
tower number field sieve algorithm, Jeong and Kim showed that the same
asymptotic complexity is achieved for any composite n. The present work
generalises the polynomial selection method of Jeong and Kim for all
composite n. Though the best complexity that can be achieved is not
lowered, there is a significant range of finite fields for which the new al-
gorithm achieves complexity which is lower than all previously proposed
methods.
Keywords: finite fields, discrete logarithm, tower number field
sieve.

1 Introduction

One of the important problems in cryptography is to compute discrete logarithms
over the multiplicative group of a finite field. There are two known general
approaches to this problem which lead to sub-exponential run-time. These are
the function field sieve (FFS) [1, 2, 15, 17] and the number field sieve (NFS) [9,
16, 18] algorithms.

Let p be a prime, n ≥ 1 be an integer and Q = pn. Suppose that p = LQ(a, cp)
where

LQ(a, cp) = exp
(
(cp + o(1))(lnQ)a(ln lnQ)1−a

)
.

Depending on the value of a, fields FQ are classified into the following types: small
characteristic, if a ≤ 1/3; medium characteristic, if 1/3 < a < 2/3; boundary, if
a = 2/3; and large characteristic, if a > 2/3.

There has been tremendous progress in the FFS algorithm leading to a quasi-
polynomial time algorithm [5] for the small characteristic case. Using algorithms
given in [14, 5], a record computation of discrete log in the binary extension field
F29234 was reported by Granger et al [10]. The FFS algorithm also applies to the
medium prime case and this has been reported in [17, 13, 23].

The NFS algorithm is generally considered to be the state-of-the-art for
medium to large characteristic finite fields. The application of NFS to com-
pute discrete logarithms over finite fields was first proposed by Gordon [9] for
prime order fields, i.e., for n = 1. Application to composite order fields, i.e.,
for n > 1, was shown by Schirokauer [27]. Important improvements to the NFS
for prime order fields were given by Joux and Lercier [16]. Joux, Lercier, Smart
and Vercauteren [18] showed that the NFS algorithm is applicable to all finite
fields. When the prime p is of a special form, Joux and Pierrot [19] showed
the application of the special number field sieve algorithm to obtain improved
complexity.

The basic structure of the NFS algorithm is to construct two polynomials
f(x) and g(x) over the integers which have a common factor ϕ(x) of degree
n modulo p. The polynomial ϕ(x) defines the field Fpn while the polynomials
f(x) and g(x) define two number fields. The efficiency of the NFS algorithm is
crucially dependent on the properties of the polynomials f(x) and g(x) used to
construct the number fields. Consequently, polynomial selection is an important
step in the NFS algorithm and is an active area of research.

Sequence of recent works on NFS: Starting with the work of Barbulescu et
al. [4], there have been several recent works which continuously improve polyno-
mial selection algorithms.

1. Barbulescu et al. [4] introduced two new methods for polynomial selection,
namely, the generalised Joux-Lercier (GJL) and the Conjugation method.
For the boundary case, the best complexity obtained was LQ(1/3, (48/9)1/3).
The best complexities for the medium and the large prime cases were respec-
tively LQ(1/3, (96/9)1/3) and LQ(1/3, (64/9)1/3).

2. Pierrot [22] worked out the asymptotic complexity of the multiple NFS
(MNFS) for the GJL and the Conjugation methods and in all cases ob-
tained lower values of the second term in the corresponding sub-exponential
expressions.

3. Barbulescu et al. [6] provided a detailed analysis of the tower number field
sieve (TNFS) variant which had earlier been proposed by Schirokauer [27].

4. Sarkar and Singh [25] provided a method (called Algorithm-A) for polyno-
mial selection which both generalised and subsumed the GJL and the Con-
jugation methods. Asymptotic complexity for NFS and MNFS were worked
out. The best reported complexities in [4] and [22] are obtained for one par-
ticular value of cp. While the new method of [25] could not lower these com-
plexities, it was shown that there are significant ranges for the values of cp,
where in comparison to [4, 22], lower asymptotic complexities are obtained.

5. Gaudry et al. [8] discussed practical issues in relation collection and the
consequences of polynomial selection to this phase.

6. Kim and Barbulescu [21] (which is a merge of [20] and [3]) combined previous
polynomial selection methods with the extended TNFS (exTNFS) algorithm
to obtain improved complexities for the medium prime case when the exten-
sion degree n is composite and not a prime-power. The complexity they
achieved is LQ(1/3, (48/9)1/3) using classical NFS. An improvement of the
second term of the sub-exponential expression was obtained using MNFS.
The paper also reported improved complexities for special number field sieve
algorithm.

7. Sarkar and Singh [26] provided an extension of Algorithm-A to provide a
general method (called Algorithm-B) for polynomial selection for the case
considered in [21], i.e., for composite n which is not a prime power. It was
shown that in this setting, the GJL and the Conjugation method are special
cases of Algorithm-B.

8. Sarkar and Singh [24] provided an extension of Algorithm-B called Algorithm-
C which covered all composite n. When n is composite and a power of 2, the
best complexity in the medium prime case using NFS was obtained to be
LQ(1/3, (64/9)1/3). Progressively higher best complexities were reported for
other prime-power values of n.

9. Guillevic et al. [11] reported a computation of discrete logarithm on an 170-
bit MNT curve. They used the Conjugation method for selecting polynomi-
als.

10. Jeong and Kim [12] showed how to combine the Conjugation method with
exTNFS to cover all composite extension degrees. In particular, they showed
that using classical NFS, the best complexity obtained for composite n (ir-
respective of whether it is a prime-power or not) in the medium prime case
is LQ(1/3, (48/9)1/3).

The present paper provides a new general polynomial selection method, called
Algorithm-D. This algorithm works for all composite values of n and has the
Conjugation method as a special case in the exTNFS setting. The best complex-
ity achieved for the medium prime case is LQ(1/3, (48/9)1/3) for all composite
n. This complexity is the same as that reported by Jeong and Kim [12]. On the
other hand, for the medium prime case, there is a significant range of finite fields
for which lower complexity is achieved. Suppose that n = ηκ and that η can be
written as η = cη(lnQ/ln lnQ)2/3−a and let cθ = cpcη. For cθ ∈ [3.39, 20.91],
the complexity of exTNFS-D is lower than the complexities of all previous
algorithms whether classical or MTNFS. For cθ ∈ (0, 1.12) ∪ [1.45, 3.15], the
complexity of MexTNFS-D is the same as that of MexTNFS-Conj and for
cθ /∈ (0, 1.12) ∪ [1.45, 3.15], the complexity of MexTNFS-D is lower than that
of all previous methods.

We note that Algorithm-D does not subsume ether Algorithm-B or Algorithm-
C. Though the asymptotic complexity obtained by Algorithm-D is lower than
that of Algorithm-C, there are certain trade-offs in the norm bound that are
achieved using Algorithm-C but, not using Algorithm-D.

There is a mis-conception appearing in several works that the Sarkar-Singh
method from [25] (i.e., Algorithm-A) is applicable only when n is composite. We

have noted that such comments appear in [21, 11]. By extension, there may be a
mis-conception that for composite n = ηκ, Algorithms-B, C (from [26] and [24])
and D appearing here are applicable only when κ is prime. We would like to
clear this confusion.

1. Algorithm-A from [25] applies for all values of n. The algorithm has two pa-
rameters, namely a divisor d of n and a positive integer r such that r ≥ n/d.
For d = 1, Algorithm-A reduces to the GJL method. For d = n, Algorithm-A
provides a generalisation of the Conugation method; the conjugation method
is obtained by choosing r = 1; for certain ranges of cp, it is possible to choose
r > 1 to obtain asymptotic complexity which is lower than the Conjugation
method. The cases of d = 1 and d = n apply irrespective of whether n is
prime or composite. If further, n is composite, then it is possible to choose
1 < d < n to obtain new trade-offs on the norm bounds. We note that the
work [8] correctly describes this set-up.

2. For Algorithms-B and C the above statements apply with n replaced by
κ. For Algorithm-B, the condition gcd(η, κ) = 1 is required while no such
condition is required for Algorithm-C.

3. Algorithm-D has the parameters r and d with the condition that gcd(η, κ/d) =
1. By suitably choosing d (for example choosing d = κ), Algorithm-D can
be made to work for all composite n. Choosing d = κ and r = 1 provides
the Conjugation method in the exTNFS setting. Choosing r > 1 (or d < κ,
if appropriate) provides a generalisation of the Conjugation method.

2 The Set-Up of the Tower Number Field Sieve
Algorithm

The target is to compute discrete logarithm in the field Fpn where n is composite.
Suppose that n = ηκ is a non-trivial factorisation of n.

Let h(z) be a monic polynomial of degree η which is irreducible over both Z
and Fp. Let R = Z[z]/(h(z)). Also, note that Fpη = Fp[z]/(h(z)).

Let f(x) and g(x) be polynomials in R[x] whose leading coefficients are from
Z. The other coefficients of f and g are polynomials in z of degrees at most η−1.
In particular, f and g can be viewed as bi-variate polynomials in x and z with
coefficients in Z. The following properties are required.

1. Both f(x) and g(x) are irreducible over R.
2. Over Fpη , f(x) and g(x) have a common factor ϕ(x) of degree κ.

The field Fpn is realised as Fpη [x]/(ϕ(x)) = (R/pR)[x]/(ϕ(x)).
Let Kf and Kg be the number fields associated with the polynomials f

and g respectively. The above set-up provides two different decompositions of a
homomorphism from R[x] to Fpn . One of these goes through R[x]/(f(x)) and
the other goes through R[x]/(g(x)).

With this set-up, it is possible to set up a factor base and perform the three
main steps (relation collection, linear algebra and descent) of the NFS algorithm.
For details we refer to [6, 21]. In this work, we will need only the following facts.

1. The factor base consists of B elements for some value B which determines
the overall complexity of the algorithm.

2. A polynomial φ(x) ∈ R[x] generates a relation if both the norms N(φ, f)
and N(φ, g) are B-smooth, where

N(φ, f) := Resz(Resx(φ(x), f(x)), h(z));

N(φ, g) := Resz(Resx(φ(x), g(x)), h(z)).

2.1 Bounds on Resultants

Let f(z, x) be a bivariate polynomial with integer coefficients where fi,j is the
coefficient of xizj . Then

‖f‖∞ = max|fi,j |.
Bounds on resultants of univariate and bivariate polynomials were given

in [7]. In the following, we summarise these bounds.

Univariate polynomials: Let a(u) and b(u) be two polynomials with integer
coefficients. From [7], we have

|Resu(a(u), b(u))|
≤ (deg(a) + 1)deg(b)/2(deg(b) + 1)deg(a)/2‖a‖deg(b)∞ × ‖b‖deg(a)∞ . (1)

Bivariate polynomials: Let a(u, v) and b(u, v) be two polynomials with integer
coefficients. Let c(u) = Resv(a(u, v), b(u, v)). Then

‖c‖∞
≤ (degv(a) + degv(b))! (max(degu(a),degu(b)) + 1)degv(a)+degv(b)+1

×‖a‖degv(b)∞ × ‖b‖degv(a)∞ . (2)

The bounds given by (1) and (2) combine to provide bounds on N(φ, f).
Let φ(x, z) and f(x, z) be two polynomials and

ρ(z) = Resx(φ(x, z), f(x, z)).

Further, suppose degxφ ≤ t − 1 and degzφ ≤ η − 1. For ‖φ‖∞ = E2/(tη), the
number of possible φ(x, z)’s is E2. Assuming that t, η,degxf and degzf are small
in comparison to E, using (2) we have

‖ρ‖∞ = O
(
E2degx(f)/(tη) · ‖f‖t−1∞

)
.

Suppose h(z) is a polynomial of degree η with ‖h‖∞ = H. Let

Γ = Resz (Resx(φ(x), f(x)), h(z)) .

Assuming that H is negligible in comparison to E, using (1) we have

|Γ| = O
((
‖ρ‖η∞ · ‖h‖deg(ρ)∞

))
= O

(
E2degxf/t · ‖f‖η(t−1)∞

)
.

Note that in the TNFS set-up described above N(φ, f) = Γ.

Sieving polynomials: Sieving is done using polynomials φ(x) ∈ R[x] of degrees
at most t − 1 with ‖φ‖∞ = E2/ηt. Then the number of sieving polynomials is
E2.

3 A New Polynomial Selection Method for exTNFS

The work [4] provides two methods for selecting polynomials for the classical
NFS algorithm. These are called the generalised Joux-Lercier (GJL) and the
Conjugation method. The GJL method is based on an earlier method due to
Joux and Lercier [16] and uses the LLL algorithm to select polynomials.

The GJL matrix: Given a monic polynomial ϕ(x) = ϕ0+ϕ1x+. . . ϕk−1x
k−1+

xk with integer coefficients and r ≥ k, define an (r + 1)× (r + 1) matrix in the
following manner.

Mϕ,r =



p
. . .

. . .

p
ϕ0 ϕ1 · · · ϕn−1 1

. . .
. . .

. . .

ϕ0 ϕ1 · · · ϕn−1 1


(3)

Apply the LLL algorithm to Mϕ,r and let the first row of the resulting LLL-
reduced matrix be [ψ0, . . . , ψr]. This vector is taken to represent a polynomial
ψ(x) = ψ0 + ψ1x+ · · ·+ ψrx

r and we write

LLL(Mϕ,r) = ψ(x) = ψ0 + ψ1x+ · · ·+ ψrx
r (4)

to denote the polynomial ψ(x). The determinant of Mϕ,r is pk and so by the LLL-
reduced property, ‖ϕ‖∞ = O(pk/(r+1)). If Q = pn, then ‖ϕ‖∞ = O(Qk/(n(r+1))).

Algorithm D describes the polynomial selection method for the extended
TNFS. It has the condition gcd(η, k) = 1, where k = κ/d. The reason is the
following. The polynomial A1(x) has integer entries and we wish to factorise
A1(x) over Fp to obtain a factor A2(x) of degree k. This A2(x) is later used
to define the polynomial ϕ(x) which is required to be irreducible over Fpη . A
necessary condition is that A2(x) must itself be irreducible over Fpη . Since A2(x)
is a polynomial of degree k with coefficients from Fp which is required to be
irreducible over Fpη , it is necessary that gcd(η, k) = 1. This condition, however,
does not restrict applicability. One can always choose d = κ to obtain k = 1 and
so gcd(η, k) = 1. Other values of d may also be appropriate, eg., if η = 3 and
κ = 4, then one can choose d = 2.

If d = κ and r = 1, then we obtain exactly the polynomial selection method
proposed by Jeong and Kim [12] which is essentially the Conjugation method

Algorithm: D: Polynomial selection for TNFS.

Input: p, n = ηκ, d (such that d|κ and gcd(η, d/κ) = 1) and r ≥ d/κ.
Output: h(z), f(x), g(x) and ϕ(x).

Choose h(z) to be a monic polynomial of degree η with small integer
coefficients such that h(z) is irreducible over Fp;
let k = κ/d;
let R = Z[z]/(h(z));
let Fpη = Fp[z]/(h(z));
repeat

randomly choose a monic polynomial A1(x) ∈ Z[x] having the following
properties:
degA1(x) = r + 1;
A1(x) is irreducible over Z;
A1(x) has coefficients of size O(ln(p));
over Fp, A1(x) has a factor A2(x) of degree k such that A2(x) is irreducible over Fpη .

randomly choose monic polynomials C0(x) and C1(x) in R such that
‖Ci‖∞ is small for i = 0, 1; degC0(x) = d and degC1(x) < d;
define

f(x) = Resy (A1(y), C0(x) + y C1(x)) ;

ϕ(x) = Resy (A2(y), C0(x) + y C1(x)) mod p;

ψ(x) = LLL(MA2,r);

g(x) = Resy (ψ(y), C0(x) + y C1(x)) .

until f(x) and g(x) are irreducible over Q[z]/(h(z)) (and hence over R) and
ϕ(x) is irreducible over Fpη = Fp[z]/(h(z)).

return h(z), f(x), g(x) and ϕ(x).

in the exTNFS setting. Allowing r > 1 (or d < κ) provides a generalisation and
leads to lower asymptotic complexity for certain ranges of finite fields.

The following result states the basic properties of Algorithm D. Bounds on
the norms are obtained from the bounds on resultants given in [7] (see Sec-
tion 2.1).

Proposition 1. The outputs f(x), g(x) and ϕ(x) of Algorithm D satisfy the
following.

1. deg(f) = d(r + 1); deg(g) = rd and deg(ϕ) = κ;

2. over Fpn , both f(x) and g(x) have ϕ(x) as a factor;

3. ‖f‖∞ = O(ln(p)) and ‖g‖∞ = O(Qk/(n(r+1))).

Consequently, if φ is a sieving polynomial, then

N(φ, f) = E2d(r+1)/t × LQ(2/3, o(1)); (5)

N(φ, g) = E2dr/t ×Q
(t−1)k
κ(r+1) × LQ(2/3, o(1))

= E2κr/t ×Q
t−1

d(r+1) × LQ(2/3, o(1)); (6)

N(φ, f)×N(φ, g) = E(2d(2r+1))/t ×Q
t−1

d(r+1)LQ(2/3, o(1)). (7)

We explain the main differences between Algorithm-D and Algorithms-C
and B described in [26] and [24] respectively.

Differences in Algorithm-D and Algorithm-B: Following [21], Algorithm-
B requires the condition gcd(η, κ) = 1. On the other hand, Algorithm-D has
the condition gcd(η, k) = 1. The two conditions are not equivalent and neither
do one follow from the other. Further, in Algorithm-B, the polynomials C0(x)
and C1(x) are restricted to have integer coefficients, while in Algorithm-D these
polynomials have coefficients from R.

Differences in Algorithm-D and Algorithm-B: In Algorithm-C, the poly-
nomials A1(x) and A2(x) were allowed to have coefficients from Fpη while the
polynomials C0(x) and C1(x) were restricted to have coefficients in Z. On the
other hand, Algorithm-D restricts A1(x) and A2(x) to have coefficients in Z
whereas polynomials C0(x) and C1(x) are allowed to have coefficients from Fpη .

4 Examples

We provide examples of polynomials obtained using Algorithm-D.

Example 1. Let p be a 201-bit prime given below

p = 1606938044258990275541962092341162602522202993782792835301611 (8)

and n = 18. Let η = 3, κ = 6. If we take d = 3, we have k = κ/d = 2 and
so the condition gcd(η, k) = 1 is satisfied. Taking r = k, we get the following
polynomials.

h(z) = z3 + 15z2 + 10z + 11

f(x) = x9 + (12z2 + 18z + 9)x8 + (8355z2 + 5364z + 6372)x7

+ (2081986z2 + 1338976z + 1595132)x6

+ (7693226z2 + 4947849z + 5894445)x5

+ (15696735z2 + 10095449z + 12026805)x4

+ (19245585z2 + 12378042z + 14746018)x3

+ (15661935z2 + 10073185z + 12000266)x2

+(7649910z2 +4920112z+5861422)x+2055692z2 +1322108z+1575062

g(x) = 1253481697694142518890648051413304251003x6

+ (10027853581553140151125184411306434008024z2

+ 15041780372329710226687776616959651012036z

+ 7520890186164855113343888308479825506018)x5

+ (3497213936566657627704908063443118860298370z2

+ 2251253129058679963927603900338294434801388z

+ 2666155570995441137680408405356098141883381)x4

+ (8646516750694195095307690258648972723418694z2

+ 5535375177017333363421101795041151572429248z

+ 6601193205447400271614585729228052887147128)x3

+ (12351989508940569307175287612517657590593879z2

+ 7922902360069561179688603579794225770279937z

+ 9419737232643924188353628729776346246132532)x2

+ (8675886274993695066405449968208028923767410z2

+ 5583369201254688631192629848776772136387996z

+ 6609431266413656661000795798507718115383806)x

+ 3516197021894558691515109498105275925273732z2

+ 2278474275352837417124015404280116728013428z

+ 2686420920194049198847046634636431608274369

φ(x)

= x6 + (8z2 + 12z + 6)x5 + (2790z2 + 1796z + 2127)x4 + (6898z2 + 4416z

+1539114311133374769092067983630802456647141242065219672273746)x3

+ (1335643111756528249742385657499722019021955986912500183178940z2

+ 1199995645505297236842597440079001727271832483477353857109144z

+1403466844882143756192279766210082164897017738630073346209732)x2

+ (1267819378630912743292491548789361873146894235194927020142876z2

+ 1064348179254066223942809222658281435521708980042207531041015z

+ 1403466844882143756192279766210082164897017738630073346207490)x

+ 1335643111756528249742385657499722019021955986912500183171891z2

+ 1199995645505297236842597440079001727271832483477353857104641z

+ 80450031359825478498910474719960420915595056784930981621164

(9)

Note that we have ‖g‖∞ ≈ 2143. If we take d = 6(i.e., k = 1 and so gcd(η, k) = 1)
and r = k, we get the following polynomials.

h(z) = z3 + 14z2 + 11z + 9

f(x) = x12 + (4z2 + 16z + 14)x11 + (396z2 + 354z + 279)x10

+ (2942z2 + 2338z + 2018)x9 + (9119z2 + 7144z + 6221)x8

+ (15438z2 + 12050z + 10504)x7 + (19707z2 + 15345z + 13383)x6

+ (27596z2 + 21546z + 18809)x5 + (32861z2 + 25651z + 22383)x4

+ (24795z2 + 19352z + 16890)x3 + (18601z2 + 14519z + 12667)x2

+ (16288z2 + 12733z + 11085)x+ 6394z2 + 4978z + 4349

g(x) = −856642525227914948330703783790x6

+ (−1713285050455829896661407567580z2

− 6853140201823319586645630270320z

− 5996497676595404638314926486530)x5

+ (−5139855151367489689984222702740z2

− 5996497676595404638314926486530z

− 5996497676595404638314926486530)x4

+ (−5996497676595404638314926486530z2

− 5139855151367489689984222702740z

− 5139855151367489689984222702740)x3

+ (−3426570100911659793322815135160z2

− 2569927575683744844992111351370z

− 1713285050455829896661407567580)x2

+ (−6853140201823319586645630270320z2

− 5996497676595404638314926486530z

− 2569927575683744844992111351370)x

− 5139855151367489689984222702740z2

− 1713285050455829896661407567580z

− 6300317563233813341455730238701

φ(x) = x6 + (2z2 + 8z + 7)x5 + (6z2 + 7z + 7)x4 + (7z2 + 6z + 6)x3

+ (4z2 + 3z + 2)x2 + (8z2 + 7z + 3)x+ 6z2 + 2z

+ 160925807199202358283751469410514542803176784794567058060684

We note that ‖g‖∞ ≈ 2102. Taking d = κ and r > k, we get the following
polynomials which are not obtained by Conjugation method.

h(z) = z3 + 19z2 + 12z + 20

f(x) = x18 + (24z2 + 15z + 6)x17 + (62625z2 + 37131z + 68196)x16

+ (54727718z2 + 32447633z + 59463133)x15

+ (37282287z2 + 22104906z + 40509642)x14

+ (149160537z2 + 88436031z + 162067191)x13

+ (166343264z2 + 98624459z + 180739748)x12

+ (276943888z2 + 164198071z + 300908938)x11

+ (290533998z2 + 172256569z + 315676422)x10

+ (335619487z2 + 198986295z + 364663865)x9

+ (321699136z2 + 190734514z + 349537809)x8

+ (283120090z2 + 167859584z + 307621251)x7

+ (220526020z2 + 130748936z + 239609783)x6

+ (152665575z2 + 90514923z + 165877425)x5

+ (95525536z2 + 56636128z + 103791992)x4

+ (49105732z2 + 29114769z + 53355671)x3

+ (19530669z2 + 11579565z + 21220837)x2

+ (5146409z2 + 3051304z + 5591790)x+ 611432z2 + 362490z + 664458

g(x) = −40473748126610473965x12 + (−647579970025767583440z2

− 404737481266104739650z − 161894992506441895860)x11

+ (−844970439639246864967305z2 − 501145949303690888634630z

− 920373032399122177964100)x10 + (−383205447262747967500620z2

− 225438777065220339985050z − 412751283395173613495070)x9

+ (−1491821882198735459875935z2 − 884351396566438856135250z

− 1624130564824625099267520)x8 + (−1377078806259794766185160z2

− 815303182262441387550960z − 1492752778405647500777130)x7

+ (−1918131871216323582149280z2 − 1136745689883981771780990z

− 2084874106187870207374193)x6 + (−1518498171229716763079704z2

− 897700170645904285463230z − 1648476546576667549572676)x5

+ (−1319951133032970332398771z2 − 783968938410128853621580z

− 1433584247660087988701134)x4 + (−983242459565381772403466z2

− 581257193171886544983086z − 1066899652435313121658704)x3

+ (−568162913399041806440200z2 − 336945997661804696189042z

− 617045593825898731479033)x2

+ (−238220918670913222677520z2 − 141103137787225140183294z

− 258781582719231343451740)x− 42680589653396995011301z2

− 25329003524942129621620z − 45734925053230840890464

φ(x) = x6 + (8z2 + 5z + 2)x5 + (2z2 + 5z + 8)x4 + (7z2 + 7z + 3)x3

+ (5z2 + 4z + 6)x2 + (5z2 + 3z + 5)x+ 2z2 + 5z

+ 767869984178104009596895403201206240913024003192382360193243

Note that ‖g‖∞ ≈ 280.

Example 2. Consider n = 4 and p given in the equation (8). Taking η = κ =
d = 2 and r = 1, we get the following set of polynomials.

h(z) = z2 + 10z + 4

f(x) = x4 + (12z + 2)x3 + (−334z − 141)x2 + (−814z − 334)x− 476z − 189

g(x) = −715200327398308039994565525361x2

+ (−4291201964389848239967393152166z

− 715200327398308039994565525361)x

− 5006402291788156279961958677527z

− 1095735527680881755438067740325

φ(x) = x2 + (6z + 1)x+ 7z

+ 436504189383491355398355525988746242042734043988487290063285

Note that we have ‖g‖∞ ≈ 2101. Taking, in addition, r = 2, we get the following.

h(z) = z2 + 9z + 12

f(x) = x6 + (6z + 18)x5 + (−24z − 20)x4 + (−104z − 168)x3

+ (656z + 1032)x2 + (2640z + 4272)x+ 2400z + 3895

g(x) = −50949855279956892174x4

+ (−203799421119827568696z − 611398263359482706088)x3

+ (203799421119827568696z − 118077227605609660905)x2

+ (3432235124945676914718z + 5405519267961169095450)x

+ 4418877196453423005084z + 7212668194946536537940

φ(x) = x2 + (2z + 6)x+ 4z

+ 137087365995105203648510808728833596484775436658713484246590

Note that ‖g‖∞ ≈ 272.

Example 3. Consider n = 12 and p as above. Take η = 3 and κ = 4 and d = 2,
r = k = 2.

h(z) = z3 + 11z2 + 15z + 3

f(x) = x6 + (18z2 + 9z + 3)x5 + (10341z2 + 15912z + 3239)x4

+ (1770504z2 + 2751672z + 562214)x3

+ (4945296z2 + 7686900z + 1570620)x2

+ (4638000z2 + 7209540z+ 1473100)x+ 1452552z2 + 2257944z+ 461359

g(x) = −2590185369923851726963189986530447004677x4

+ (−31082224439086220723558279838365364056124z2

− 15541112219543110361779139919182682028062z

− 5180370739847703453926379973060894009354)x3

+ (−8943910082347060013203895023489633507149681z2

− 13753884314295652670174538828476673594834870z

− 2798849538935544762656115377660476093397307)x2

+ (−16808638345832811686298471405882039242411904z2

− 26043481542097836103768559511213363723056322z

− 5313919533131604789537372854581540134938674)x

− 7919122156254152559360803372109545122360440z2

− 12301715802165309681382520829319061454273924z

− 2503815420625589839572203514700699220768970

φ(x)

= x4 + (12z2 + 6z + 2)x3 + (3453z2 + 5310z

+1315331713618185406528953724242137493097570276948578321744414)x2

+ (1464238104673151337005873976088174548496609686560298589260046z2

+ 732119052336575668502936988044087274248304843280149294636833z

+ 1315331713618185406528953724242137493097570276948578321745385)x

+ 1464238104673151337005873976088174548496609686560298589256614z2

+ 1464238104673151337005873976088174548496609686560298589258306z

+ 322228932000664690046916185828988637220258086337079350758475

Note that we have ‖g‖∞ ≈ 2144. If we take η = 2, κ = 6 and d = 2. Taking
r = k, we get the following polynomials.

h(z) = z2 + 8z + 8

f(x) = x8 + (4z + 12)x7 + (−4z + 32)x6 + (2z + 118)x5 + (180z + 482)x4

+ (196z + 672)x3 + (−446z − 38)x2 + (−853z − 683)x− 402z − 479

g(x) = 214663917737897766700082569221192487083470187x6

+ (643991753213693300100247707663577461250410561z

+ 1931975259641079900300743122990732383751231683)x5

+ 6073509755711768401355621385527818450390423402x4

+ (340504035839159634206701463890050111189986519z

+ 16047986349170322571625884237153624429412872647)x3

+ (12147019511423536802711242771055636900780846804z

+ 49742108153186859242573891728738575241919126521)x2

+ (18153174512080024529042751074527429510031408668z

+ 62231874886318877199823229687139684905922619888)x

+ 11050039368017364524102069421187191066472460224z

+ 52873044996489967312005407670014308454664366784

φ(x)

= x6 + (3z + 9)x5

+ 1330637839946222153453245513400690382027118201408777173688835x4

+ (1054337635633454031364528934460218161532033409034761512076004z

+1556074862641371818551624711039491882073897233321491700926471)x3

+ (1054337635633454031364528934460218161532033409034761512076059z

+1166952413861877438683137190060418390120028255410623190154664)x2

+ (541504527394046900378336978445684610427996920133780742816963z

+ 315860038460594384818795094368482067510428549060075044498849)x

+ 479545464544939099588903417708754059417518495058229028032985z

+ 461243242085699950300079186153386681206871949929904822860464

Note that ‖g‖∞ ≈ 2155.

5 Asymptotic Run Times for the Medium Prime Case

The norm bounds given by Proposition 1 are the same as those obtained in [25].
Consequently, the calculations for the asymptotic complexity follows almost ver-
batim from the calculations in [25] and leads to the following result for the
classical NFS.

Theorem 1. Let n = ηκ; d is a divisor of κ such that k = κ/d is co-prime to η;
r ≥ k; t ≥ 2; p = LQ(a, cp) with 1/3 < a ≤ 2/3; and η = cη(lnQ/ln lnQ)2/3−a. It
is possible to ensure that the runtime of the exTNFS algorithm with polynomials
chosen by Algorithm D is LQ(1/3, 2cb) where

cb =
2r + 1

3cθkt
+

√(
2r + 1

3cθkt

)2

+
(t− 1)kcθ
3(r + 1)

and (10)

cθ = cpcη. (11)

The best complexity of LQ(1/3, (48/9)1/3) is achieved for cθ = 121/3, r = k = 1
and t = 2. The choice of r = k = 1 and t = 2 are not necessarily the best possible
choices for other values of cθ.

For the case of multiple NFS we obtain a similar result.

Theorem 2. Let n = ηκ; d is a divisor of κ such that k = κ/d is co-prime to η;
r ≥ k; t ≥ 2; p = LQ(a, cp) with 1/3 < a ≤ 2/3; and η = cη(lnQ/ln lnQ)2/3−a. It
is possible to ensure that the runtime of the exTNFS algorithm with polynomials
chosen by Algorithm D is LQ(1/3, 2cb) where

cb =
4r + 2

6kcθt
+

√
r(3r + 2)

(3kcθt)2
+

(t− 1)kcθ
3(r + 1)

and (12)

cθ = cpcη. (13)

From Theorem 2, the entire analysis carried out in Sections 8.1 and 8.2 of [25]
apply with the constant cp replaced by cθ. This leads to the new asymptotic
complexity results for the medium prime case that has been mentioned in the
introduction.

6 Conclusion

In this paper, we have presented a new polynomial selection method for the
exTNFS algorithm. This method provides a generalisation of the Conjugation
method in the setting of exTNFS proposed by Jeong and Kim [12]. For certain
ranges of finite fields, the new method provides lower asymptotic complexity
than the Conjugation method of Jeong and Kim.

References

1. Leonard M. Adleman. The function field sieve. In Leonard M. Adleman and Ming-
Deh A. Huang, editors, ANTS, volume 877 of Lecture Notes in Computer Science,
pages 108–121. Springer, 1994.

2. Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for
discrete logarithms over finite fields. Inf. Comput., 151(1-2):5–16, 1999.

3. Razvan Barbulescu. An appendix for a recent paper of kim. IACR Cryptology
ePrint Archive, 2015:1076, 2015.

4. Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Im-
proving NFS for the discrete logarithm problem in non-prime finite fields. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, volume 9056 of Lecture Notes in Computer Science, pages 129–155.
Springer Berlin Heidelberg, 2015.

5. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A
heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small
characteristic. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
1–16. Springer, 2014.

6. Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower number
field sieve. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer
Science, pages 31–55. Springer, 2015.

7. Yuval Bistritz and Alexander Lifshitz. Bounds for resultants of univariate and
bivariate polynomials. Linear Algebra and its Applications, 432(8):1995 – 2005,
2010. Special issue devoted to the 15th ILAS Conference at Cancun, Mexico, June
16-20, 2008.

8. Pierrick Gaudry, Laurent Grémy, and Marion Videau. Collecting relations for the
number field sieve in gf(p6). Cryptology ePrint Archive, Report 2016/124, 2016.
http://eprint.iacr.org/.

9. Daniel M. Gordon. Discrete logarithms in GF(p) using the number field sieve.
SIAM J. Discrete Math., 6(1):124–138, 1993.

10. Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Discrete logarithms in
GF(29234). NMBRTHRY list, January 2014.

11. Aurore Guillevic, Franois Morain, and Emmanuel Thomé. Solving discrete loga-
rithms on a 170-bit mnt curve by pairing reduction. Cryptology ePrint Archive,
Report 2016/507, 2016. http://eprint.iacr.org/.

12. Jinhyuck Jeong and Taechan Kim. Extended tower number field sieve with appli-
cation to finite fields of arbitrary composite extension degree. Cryptology ePrint
Archive, Report 2016/526, 2016. http://eprint.iacr.org/.

13. Antoine Joux. Faster index calculus for the medium prime case: Application to
1175-bit and 1425-bit finite fields. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
177–193. Springer, 2013.

14. Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in
small characteristic. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, edi-
tors, Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume 8282
of Lecture Notes in Computer Science, pages 355–379. Springer, 2013.

15. Antoine Joux and Reynald Lercier. The function field sieve is quite special. In
Claus Fieker and David R. Kohel, editors, ANTS, volume 2369 of Lecture Notes
in Computer Science, pages 431–445. Springer, 2002.

16. Antoine Joux and Reynald Lercier. Improvements to the general number field sieve
for discrete logarithms in prime fields. A comparison with the gaussian integer
method. Math. Comput., 72(242):953–967, 2003.

17. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime
case. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 254–270. Springer, 2006.

18. Antoine Joux, Reynald Lercier, Nigel P. Smart, and Frederik Vercauteren. The
number field sieve in the medium prime case. In Cynthia Dwork, editor, Advances
in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 2006, Proceedings, volume 4117
of Lecture Notes in Computer Science, pages 326–344. Springer Berlin Heidelberg,
2006.

19. Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn - Appli-
cation to pairing-friendly constructions. In Zhenfu Cao and Fangguo Zhang, ed-
itors, Pairing-Based Cryptography - Pairing 2013 - 6th International Conference,

Beijing, China, November 22-24, 2013, Revised Selected Papers, volume 8365 of
Lecture Notes in Computer Science, pages 45–61. Springer, 2013.

20. Taechan Kim. Extended tower number field sieve: A new complexity for medium
prime case. IACR Cryptology ePrint Archive, 2015:1027, 2015.

21. Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new
complexity for medium prime case. Cryptology ePrint Archive, Report 2015/1027,
2015. http://eprint.iacr.org/.

22. Cécile Pierrot. The multiple number field sieve with conjugation and generalized
Joux-Lercier methods. In Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 156–170.
Springer Berlin Heidelberg, 2015.

23. Palash Sarkar and Shashank Singh. Fine tuning the function field sieve
algorithm for the medium prime case. IEEE Transactions on Informa-
tion Theory, 62(4):2233–2253, April 2016. http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?reload=true&arnumber=7405328.
24. Palash Sarkar and Shashank Singh. A general polynomial selection method and

new asymptotic complexities for the tower number field sieve algorithm. Cryptol-
ogy ePrint Archive, Report 2016/485, 2016. http://eprint.iacr.org/.

25. Palash Sarkar and Shashank Singh. New complexity trade-offs for the (multi-
ple) number field sieve algorithm in non-prime fields. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 429–458. Springer, 2016.

26. Palash Sarkar and Shashank Singh. Tower number field sieve variant of a recent
polynomial selection method. Cryptology ePrint Archive, Report 2016/401, 2016.
http://eprint.iacr.org/.

27. Oliver Schirokauer. Using number fields to compute logarithms in finite fields.
Math. Comp., 69(231):1267–1283, 2000.

