
Horizontal Side-Channel Attacks and Countermeasures on the
ISW Masking Scheme?
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Abstract. A common countermeasure against side-channel attacks consists in using the masking
scheme originally introduced by Ishai, Sahai and Wagner (ISW) at Crypto 2003, and further gen-
eralized by Rivain and Prouff at CHES 2010. The countermeasure is provably secure in the probing
model, and it was showed by Duc, Dziembowski and Faust at Eurocrypt 2014 that the proof can be
extended to the more realistic noisy leakage model. However the extension only applies if the leakage
noise σ increases at least linearly with the masking order n, which is not necessarily possible in practice.
In this paper we investigate the security of an implementation when the previous condition is not
satisfied, for example when the masking order n increases for a constant noise σ. We exhibit two
(template) horizontal side-channel attacks against the Rivain-Prouff’s secure multiplication scheme
and we analyze their efficiency thanks to several simulations and experiments.
Eventually, we describe a variant of Rivain-Prouff’s multiplication that is still provably secure in the
original ISW model, and also heuristically secure against our new attacks.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical environment of
a cryptosystem to recover some leakage about its secrets. To secure implementations against this
threat, security developers usually apply techniques inspired from secret sharing [Bla79, Sha79] or
multi-party computation [CCD88]. The idea is to randomly split a secret into several shares such
that the adversary needs all of them to reconstruct the secret. For these schemes, the number of
shares n in which the key-dependent data are split plays the role of a security parameter.

A common countermeasure against side-channel attacks consists in using the masking scheme
originally introduced by Ishai, Sahai and Wagner (ISW) [ISW03]. The countermeasure achieves
provable security in the so-called probing security model [ISW03], in which the adversary can
recover a limited number of intermediate variables of the computation. This model has been argued
to be practically relevant to address so-called higher-order side-channel attacks and it has been the
basis of several efficient schemes to protect block ciphers [BFG15,CGP+12,Cor14,CRV15,GPQ11,
GPS14,PR11,RP10].

More recently, it has been shown in [DDF14] that the probing security of an implementation
actually implies its security in the more realistic noisy leakage model introduced in [PR13]. More
precisely, if an implementation obtained by applying the compiler in [ISW03] is secure at order n in
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the probing model, then [DFS15, Theorem 3] shows that the success probability of distinguishing
the correct key among |K| candidates is bounded above by |K| · 2−n/9 if the leakage Li on each
intermediate variable Xi satisfies:

I(Xi;Li) 6 2 · (|K| · (28n+ 16))−2 ,

where I(·; ·) denotes the mutual information and where the index i ranges from 1 to the total
number of intermediate variables.

In this paper we investigate what happens when the above condition is not satisfied. Since the
above mutual information I(Xi;Li) can be approximated by k/(8σ2) in the Hamming weight model
in F2k , where σ is the noise in the measurement (see Appendix A), this amounts to investigating
the security of Ishai-Sahai-Wagner’s (ISW) implementations when the number of shares n satisfies:

n > c · σ

As already observed in previous works [VGS14, CFG+10], the fact that the same share (or more
generally several data depending on the same sensitive value) is manipulated several times may
open the door to new attacks which are not taken into account in the probing model. Those
attacks, sometimes called horizontal [CFG+10] or (Template) algebraic [ORSW12, VGS14] exploit
the algebraic dependency between several intermediate results to discriminate key hypotheses.

In this paper, we exhibit two (horizontal) side channel attacks against the ISW multiplication
algorithm. These attacks show that the use of this algorithm (and its extension proposed by Rivain
and Prouff in [RP10]) may introduce a weakness with respect to horizontal side channel attacks if
the sharing order n is such that n > c ·σ2, where σ is the measurement noise. While the first attack
is too costly (even for low noise contexts) to make it applicable in practice, the second attack,
which essentially iterates the first one until achieving a satisfying likelihood, shows very good
performances. For instance, when the leakages are simulated by noisy Hamming weights computed
over F28 with σ = 1, it recovers all the shares of a 21-sharing. We also confirm the practicality of our
attack with a real life experiment on a development platform embedding the ATMega328 processor
(see Section 7). Actually, in this context where the leakages are multivariate and not univariate as
in our theoretical analyses and simulations, the attack appears to be more efficient than expected
and recovers all the shares of a n-sharing when n > 40.

Eventually, we describe a variant of Rivain-Prouff’s multiplication that is still provably secure
in the original ISW model, and also heuristically secure against our new attacks. Our new coun-
termeasure is similar to the countermeasure in [FRR+10], in that it can be divided in two steps:
a “matrix” step in which starting from the input shares xi and yj , one obtains a matrix xi · yj
with n2 elements, and a “compression” step in which one uses some randomness to get back to a
n-sharing ci. Assuming a leak-free component, the countermeasure in [FRR+10] is proven secure in
the constant-depth circuit leakage, where the leakage function is computed by an AC0 circuit, and
also in the noisy leakage model, in which the leakage function reveals all the bits of the internal
state of the circuit, perturbed by independent binomial noise. Our countermeasure does not use
any leak-free component, but is only heuristically secure in the noisy leakage model (see Section
8.2 for our security analysis).

2 Preliminaries

For two positive integers n and d, a (n, d)-sharing of a variable x defined over some finite field F2k

is a random vector (x1, x2, . . . , xn) over F2k such that x =
∑n

i=1 xi holds (completeness equality)
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and any tuple of d−1 shares xi is a uniform random vector over (F2k)d−1. If n = d, the terminology
simplifies to n-sharing. An algorithm with domain (F2k)n is said to be (n − 1)th-order secure in
the probing model if on input an n-sharing (x1, x2, . . . , xn) of some variable x, it admits no tuple
of n− 1 or fewer intermediate variables that depends on x.

Calligraphic letters, like X , are used to denote finite sets (e.g. F2n). The corresponding large
letter X denotes a random variable over X , while the lower-case letter x a value over X . The
probability of an event ev is denoted by Pr[ev]. The probability distribution function (pdf for short)
of a continuous random variable X is denoted by fX(·). It will sometimes be denoted by pX(·) if
X is discrete. The pdf of the random variable X|Y is denoted by fX|Y (·). The expectation and the
variance of a random variable X are respectively denoted by E [X] and Var [X]. The covariance
between two random variables X and Y is denoted by Cov [X,Y ]. The Signal to Noise Ratio
(SNR) of a univariate noisy observation L of a random variable X defined as the signal, is defined

as SNR
.
= Var[E[L|X]]

E[Var[L|X]] (where we recall that E [L | X] and Var [L | X] are both viewed as functions

of the random variable X).
The Gaussian distribution of dimension t with t-size expectation vector µ and t× t covariance

matrix Σ is denoted by N (µ, Σ). We recall that the corresponding probability density function
(pdf) is defined for every ` ∈ Rt as:

f(`) =
1√

(2π)tdet(Σ)
exp

(
−1

2
(`− µ)′ ·Σ−1 · (`− µ)

)
, (1)

where (·)′ denotes the transposition operation and det(·) denotes the matrix determinant. The
corresponding cumulative distribution function (cdf) F is defined for every (ai, bi)i∈[1..t] ∈ ((R ∪
{−∞,+∞})2)t by

F (a, b) =

∫ bt

at

· · ·
∫ b2

a2

∫ b1

a1

f(`1, `2, · · · , `t) d`1d`2 · · · d`t
.
=

∫ b

a
f(`) d` , (2)

with `
.
= (`1, `2, · · · , `t), a

.
= (a1, a2, · · · , at) and b

.
= (b1, b2, · · · , bt).

If the dimension t equals 1, then the Gaussian distribution is said to be univariate and its covari-
ance matrix is reduced to the variable variance denoted σ2. Otherwise, it is said to be multivariate.

The entropy H(X) of a discrete r.v. X defined over F2k aims at measuring the amount of
information provided by an observation of X. It is defined by H(X) = −

∑
x∈F

2k
fX(x) log fX(x).

The differential entropy extends the notion of entropy to continuous, and possibly t-dimensional
random variables; contrary to the entropy, the differential entropy can be negative. In the case of
a real valued random variable L, it is defined by:

H(L) = −
∫
`∈Rt

fL(`) log(fL(`))d` . (3)

If L is a t-dimensional Gaussian r.v. with covariance matrix Σ (i.e. its pdf is defined by (1)), then
its entropy satisfies the following equality:

H(L) =
1

2
log((2πe)tdet(Σ)) . (4)

In the general case, there is no analytical expression for the differential entropy of a r.v. X whose
pdf mixes more than one Gaussian pdf. However, upper and lower bounds can be derived [CP00].
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3 Secure Multiplication Schemes

In this section, we recall the secure multiplication scheme over F2 introduced in [ISW03] and its
extension to any field F2k proposed in [RP10].

Ishai-Sahai-Wagner’s Scheme [ISW03]. Let x? and y? be binary values from F2 and let
(xi)1≤i≤n and (yi)1≤i≤n be n-sharings of x? and y? respectively. To securely compute a sharing
of c = x? · y? from (xi)1≤i≤n and (yi)1≤i≤n, the ISW method works as follows:

1. For every 1 ≤ i < j ≤ n, pick up a random bit ri,j .
2. For every 1 ≤ i < j ≤ n, compute rj,i = (ri,j + xi · yj) + xj · yi.
3. For every 1 ≤ i ≤ n, compute ci = xi · yi +

∑
j 6=i ri,j .

The above multiplication scheme achieves security at order bn/2c in the probing security model
[ISW03].

The Rivain-Prouff Scheme. The ISW countermeasure was extended to F2k by Rivain and Prouff
in [RP10]. As showed in [BBD+15], the SecMult algorithm below is secure in the ISW probing
model against t probes for n ≥ t+ 1 shares; the authors also show that with some additional mask
refreshing, the Rivain-Prouff countermeasure for the full AES can be made secure with n ≥ t + 1
shares.

Algorithm 1 SecMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Output: the n-sharing (ci)i∈[1..n] of x? · y?
1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ←$ F2k

4: rj,i ← (ri,j + xi · yj) + xj · yi
5: end for
6: end for
7: for i = 1 to n do
8: ci ← xi · yi
9: for j = 1 to n, j 6= i do ci ← ci + ri,j

10: end for
11: return (c1, c1, . . . , cn)

In Algorithm 1, one can check that each share xi or yj is manipulated n times, whereas each
product xiyj is manipulated a single time. This gives a total of 3n2 manipulations that can be
observed through side channels.

4 Horizontal DPA Attack

4.1 Problem description.

Let (xi)i∈[1..n] and (yi)i∈[1..n] be respectively the n-sharings of x? and y? (namely, we have x? =
x1 + · · ·+ xn and y? = y1 + · · ·+ yn). We assume that an adversary gets, during the processing of
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Algorithm 1, a single observation of each of the following random variables for 1 ≤ i, j ≤ n:

Li = ϕ(xi) +Bi (5)

L′j = ϕ(yj) +B′j (6)

L′′ij = ϕ(xi · yj) +B′′ij (7)

where ϕ is an unknown function which depends on the device architecture, where Bi, B
′
j are

Gaussian noise of standard deviation σ/
√
n, and B′′ij is Gaussian noise with standard deviation σ.

Namely we assume that each xi and yj is processed n times, so by averaging the standard deviation
is divided by a factor

√
n, which gives σ/

√
n if we assume that the initial noise standard deviation

is σ. The random variables associated to the ith share xi and the jth share yj are respectively
denoted by Xi and Yj . Our goal is to recover the secret variable x? (and/or y?).

4.2 Complexity Lower Bound: Entropy Analysis of Noisy Hamming Weight Leakage

For simplicity, we first restrict ourselves to a leakage function ϕ equal to the Hamming weight of the
variable being manipulated. In that case, the mutual information I(X;L) between the Hamming
weight of a uniform random variable X defined over F2k and a noisy observation L of this Hamming
weight can be approximated as:

I(X;L) ' k

8σ2
, (8)

if the noise being modeled by a Gaussian random variable has standard deviation σ. This approx-
imation, whose derivation is given in Appendix A, is only true for large σ.

To recover a total of 2n shares (n shares of x? and y? respectively) from 3n2 Hamming weight
leakages (namely each manipulation leaks according to (5)-(7) with ϕ = HW), the total amount of
information to be recovered is 2n ·k if we assume that the shares are i.i.d. with uniform distribution
over F2k . Therefore, since we have a total of 3n2 observations during the execution of Algorithm 1,
we obtain from (8) that the noise standard deviation σ and the sharing order n must satisfy the
following inequality for a side channel attack to be feasible:

3 · n2 · k

8σ2
> 2n · k . (9)

We obtain an equality of the form n > c · σ2 for some constant c, as in a classical (vertical) side
channel attack trying to recover x? from n observations of intermediate variables depending on
x? [CJRR99]. This analogy between horizontal and vertical attacks has already been noticed in
previous papers like [CFG+10] or [BJPW13]. Note that in principle the constant c is independent
of the field degree k (which has also been observed in previous papers, see for instance [SVO+10]).

4.3 Attack With Perfect Hamming Weight Observations

We consider the particular case of perfect Hamming weight measurements (no noise). We show that
even with perfect observations of the Hamming weight, depending on the finite-field representation,
we are not always guaranteed to recover the secret variable x?.

More precisely, we consider the pdf of the random variable corresponding to perfect Hamming
weight measurements:

H | Xi
.
= (HW(Xi),HW(Yj),HW(Xi · Yj)) | Xi
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defined for every xi ∈ F2k and every triplet (h1, h2, h3) ∈ [0..k]3 by:

fH|Xi
((h1, h2, h3), xi)

.
= Pr[HW(Xi) = h1,HW(Yj) = h2,HW(Xi · Yj) = h3 | Xi = xi] . (10)

If the probability distributions fH|Xi=xi
are distinct for every xi ∈ F2k , then one can recover the

secret variable x? with overwhelming probability from enough measurements. However this property
depends on the finite field F2k and its representation. For example in F24 , if the representation
F24 ' F2[t]/(t

4 + t + 1) is used then it may be checked that the finite field elements xi = t + 1
and x′i = t3 + t2 are associated to identical distributions fxi and fx′i ; so we cannot distinguish
between xi and x′i (the other field elements have distinct probability distributions). In F28 , for the
representation F28 ' F2[t]/(t

8+t4+t3+t+1) (as used in AES), all finite field elements have distinct
probability distributions, but this is not always the case with other irreducible polynomials.

In summary, even with perfect observations of the Hamming weight, depending on the finite-
field representation, we are not always guaranteed to recover the secret variable x?; however for
the finite field representation used in AES the attack enables to recover the secret x? for a large
enough number of observations.

4.4 Maximum Likelihood Attack: Theoretical Attack with the full ISW State

For most field representations and leakage functions, the maximum likelihood approach used in the
previous section (in particular in (10)), recovers the i-th share of x? from an observation of Li and
an observation of (L′j , L

′′
ij) for every j ∈ [1..n]. It extends straightforwardly to noisy scenarios and

we shall detail this extension in Section 5.1. However, the disadvantage of this approach is that it
recovers each share separately, before rebuilding x? and y? from them. From a pure information
theoretic point of view this is suboptimal since (1) the final purpose is not to recover all the shares
perfectly but only the shared values and (2) only 3n observations are used to recover each share
whereas the full tuple of 3n2 observations brings more information. Actually, the most efficient
attack in terms of leakage exploitation consists in using the joint distribution of (Li, L

′
j , L
′′
ij)i,j∈[1..n]

to distinguish the correct hypothesis about x? = x1 + x2 + · · ·+ xn and y? = y1 + y2 + · · ·+ yn.
As already observed in Section 3, during the processing of Algorithm 1, the adversary may

get a tuple (`ij)j∈[1..n] (resp. (`′ij)i∈[1..n]) of n observations for each Li (resp. each L′j) and one
observation `′′ij for each L′′ij . The full tuple of observations (`ij , `

′
ij , `
′′
ij)i,j is denoted by `, and we

denote by L the corresponding random variable 1. Then, to recover (x?, y?) from `, the maximum
likelihood approach starts by estimating the pdfs fL|X?=x?,Y ?=y? for every possible (x?, y?), and
then estimates the following vector of distinguisher values for every hypothesis (x, y):

d?
ML(`)

.
=
(
fL|(X?,Y ?)(`, (x, y))

)
(x,y)∈F2

2k

(11)

The pair (x, y) maximizing the above probability is eventually chosen.
At a first glance, the estimation of the pdfs fL|X?=x?,Y ?=y? seems to be challenging. However,

it can be deduced from the estimations of the pdfs associated to the manipulations of the shares.
Indeed, after denoting by px,y each probability value in the right-hand side of (11), and by using
the law of total probability together with the fact that the noises are independent, we get:

22kn · px,y =
∑

x1,··· ,xn∈F2k
x=x1+···+xn

∑
y1,··· ,yn∈F2k
y=y1+···+yn

n∏
i,j=1

fLi|Xi
(`ij , xi) · fL′j |Yj

(`′ij , yj) · fL′′ij |XiYj
(`′′ij , xiyj) .

1 In (5)-(7), it is assumed that the observations (`ij)j∈[1..n] and (`′ij)i∈[1..n] are averaged to build a single observation
with noise divided by

√
n. This assumption is not done here in order to stay as general as possible.
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Unfortunately, even if the equation above shows how to deduce the pdfs fL|(X?,Y ?)(·, (x?, y?))
from characterizations of the shares’ manipulations, a direct processing of the probability has
complexity O(22nk). By representing the sum over the xi’s as a sequence of convolution products,
and thanks to Walsh transforms processing, the complexity can be easily reduced to O(n2n(k+1)).
The latter complexity stays however too high, even for small values of n and k, which led us to
look at alternatives to this attack.

5 First Attack: Maximum Likelihood Attack on a Single Matrix Row

5.1 Attack Description

In this section, we explain how to recover each share xi of x? separately, by observing the processing
of Algorithm 1. Applying this attack against all the shares leads to the full recovery of the sensitive
value x? with some success probability, which is essentially the product of the success probabilities
of the attack on each share separately.

Given a share xi, the attack consists in collecting the leakages on (yj , xi ·yj) for every j ∈ [1..n].
Therefore the attack is essentially a horizontal version of the classical (vertical) second-order side-
channel attack, where each share xi is multiplicatively masked over F2k by a random yj for j ∈ [1..n].

The most efficient attack to maximize the amount of information recovered on Xi from a tuple of
observations `

.
= `i, (`

′
j , `
′′
ij)j∈[1..n] ←↩ L

.
= Li, (L

′
j , L
′′
ij)j∈[1..n] consists in applying a maximum likeli-

hood approach [CJRR99,GHR15], which amounts to computing the following vector of distinguisher
values:

dML(`)
.
=
(
fL|Xi

(`, x̂i)
)
x̂i∈F2k

(12)

and in choosing the candidate x̂i which maximizes the probability.
Let us respectively denote by f(·, ·), f ′(·, ·) and f ′′(·, ·) the pdfs fLi|Xi

(·, ·), fL′j |Yj
(·, ·) and

fL′′ij |XiYj
(·, ·). Since the variables Li | Xi = x̂i and all the variables (L′j , L

′′
ij | Xi = x̂i) are mu-

tually independent whatever x̂i ∈ F2k , we have:

fL|Xi
(`, x̂i) = f(`i, x̂i)

n∏
j=1

f(L′j ,L′′ij)|Xi
((`′j , `

′′
ij), x̂i) . (13)

Applying the law of total probability, the pdf of (L′j , L
′′
ij) | Xi = x̂i can moreover be developed such

that:
f(L′j ,L′′ij)|Xi

((`′j , `
′′
ij), x̂i) =

∑
y∈F

2k

f(L′j ,L′′ij)|(Xi,Yj)((`
′
j , `
′′
ij), (x̂i, y)) · pYj (y) , (14)

that is
f(L′j ,L′′ij)|Xi

((`′j , `
′′
ij), x̂i) = 2−k

∑
y∈F

2k

f ′(`′j , y) · f ′′(`′′ij , x̂i · y) , (15)

since the Yj ’s are assumed to have uniform distribution and since the variables L′j | Yj = y and
L′′ij | XiYj = x̂i · y are independent.

Eventually, each score fL|Xi
(`, x̂i) in (12) may be computed based on the following expression:

fL|Xi
(`, x̂i) = 2−nkf(`i, x̂i) ·

n∏
j=1

( ∑
y∈F

2k

f ′(`′j , y) · f ′′(`′′ij , x̂i · y)
)
,

7



where all the distributions are Gaussian ones (and hence can be easily evaluated). Hence, an ap-
proximation of the pdf in (12) can be deduced from the approximations (aka templates) of the
distributions associated to the manipulations of the shares Xi, Yj and XiYj .

In practice, one often makes use of the equivalent (averaged) log-likelihood distinguisher d′ML(·)
which, in our case, may be defined as:

d′ML(`) =
1

n
log dML(`) + k log 2 (16)

'

 1

n

(
log f(`i, x̂i) +

n∑
j=1

log{
∑
y∈F

2k

f ′(`′j , y) · f ′′(`′′ij , x̂i · y)}
)

x̂i∈F2k

. (17)

Remark 1. The same approach described in this section can be applied to iteratively recover each
share yj of y. The attack description can be straightforwardly deduced by exchanging the roles of
Xi and Yj (and the indices i and j). For instance, (14) becomes:

f(Li,L′′ij)|Yj
((`i, `

′′
ij), ŷj) =

∑
x∈F

2k

f(Li,L′′ij)|(Xi,Yj)((`i, `
′′
ij), (x, ŷj)) · pXi(x) . (18)

5.2 Complexity Analysis

As mentioned previously, given a share xi, the attack consists in collecting the leakages on (yj , xi ·
yj) for every j ∈ [1..n]. Therefore the attack is essentially an horizontal version of the classical
(vertical) second-order side-channel attack. In principle the number n of leakage samples needed
to recover xi with good probability (aka the attack complexity) should consequently be n = O(σ4)
[CJRR99, GHR15, SVO+10]. This holds when multiplying two leakages both with noise having σ
as standard deviation. However here the leakage on yj has a noise with a standard deviation σ/

√
n

instead of σ (thanks to the averaging step). Therefore the noise of the product becomes σ2/
√
n

(instead of σ2), which gives after averaging with n measurements a standard deviation of σ2/n,
and therefore an attack complexity satisfying n = O(σ2), as in a classical first-order side-channel
attack.

5.3 Numerical Experiments

The attack presented in Sect. 5.1 has been implemented against each share xi of a value x, with
the leakages being simulated according to (5)-(7) with ϕ = HW. For the noise standard deviation
σ and the sharing order n, different values have been tested to enlighten the relation between these
two parameters. We stated that an attack succeeds iff the totality of the n shares xi have been
recovered, which leads to the full recovery of x?. We recall that, since the shares xi are manipulated
n times, measurements for the leakages Li and L′j have noise standard deviations σ/

√
n instead of

σ. For efficiency reasons, we have chosen to work in the finite field F24 (namely k = 4 in previous
analyses).

For various noise standard deviations σ with SNR = k(2σ)−2 (i.e. SNR = σ−2 for k = 4),
Table 1 gives the average minimum number n of shares required for the attack to succeed with
probability strictly greater than 0.5 (the averaging being computed over 300 attack iterations).
The attack complexity n = O(σ2) argued in Sect. 5.2 is confirmed by the trend of these numerical
experiments. Undeniably, this efficiency is quickly too poor for practical applications where n is
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small (clearly lower than 10) and the SNR is high (smaller than 1). However, it must be noticed
that the attack quickly recovers 90% of the shares even for σ = 2, 3 (see Figure 1a), and the shares
which are not recovered (because they are not given the maximum likelihood) have a good ranking.
Consequently, combining this attack with one of the Key Enumeration (KEA) techniques recently
developed (see e.g. [GGP+15,MOOS15]) should significantly increase the attack efficiency.

σ (SNR) 0 (+∞) 0.2 (25) 0.4 (6.25) 0.6 (2.77) 0.8 (1.56) 1 (1)

n 12 14 30 73 160 284

Table 1: First attack: number of shares n as a function of the noise σ to succeed with probability
> 0.5
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(a) Basic Attack
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(b) Iterative Attack

Fig. 1: Percentage of recovered shares with respect to n for σ = 2, 3, 3.5 and k = 4

6 Second Attack: Iterative Attack

6.1 Attack Description

From the discussions in Sect. 4.4, and in view of the poor efficiency of the previous attack, we
investigated another strategy which targets all the shares simultaneously. Essentially, the core idea
of our second attack described below is to apply several attacks recursively on the xi’s and yj ’s, and
to refine step by step the likelihood of each candidate for the tuple of shares. Namely, we start by
applying the attack described in Section 5.1 in order to compute, for every i, a likelihood probability
for each hypothesis Xi = x (x ranging over F2k); then we apply the same attack in order to compute,
for every j, a likelihood probability for each hypothesis Yj = y (y ranging over F2k) with the single
difference that the probability pXi(x) in (18) is replaced by the likelihood probability which was just
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computed2. Then, one reiterates the attack to refine the likelihood probabilities (pXi(x))x∈F
2k

, by
evaluating (14) with the uniform distribution pYj (y) being replaced by the likelihood probability
new-pYj (y) which has been previously computed. The scheme is afterwards repeated until the
maximum taken by the pdfs of each share Xi and Yj is greater than some threshold β. In order to
have better results, we perform the whole attack a second time, by starting with the computation
of the likelihood probability for each hypothesis Yj = y instead of starting by Xi = x.

We give the formal description of the attack processing in Algorithm 2 (in order to have the
complete attack, one should perform the while loop a second time, by rather starting with the
computation of new-pYj (y) instead of new-pXi(x)).

Algorithm 2 Iterative Maximum Likelihood Attack

Input: a threshold β, an observation `i of each Li, an observation `′j of each L′j and one observation `′′ij of each L′′ij
(the random variables being defined as in (5)-(7))

Output: a n-tuple of pdfs (pXi)i (resp. (pYi)i) such that, for every i ∈ [1..n], at least one x̂i (resp. ŷj) satisfies
pXi(x̂i) > β (resp. pYi(ŷj) > β)

1: for i = 1 to n do
2: for x ∈ F2k do # Initialize the likelihood of each candidate for Xi

3: pXi(x) = fLi|Xi
(`i, x)

4: end for
5: for y ∈ F2k do # Initialize the likelihood of each candidate for Yi

6: pYi(y) = fL′
i|Yi

(`′i, yi)
7: new-pYi(y) = pYi(y)
8: end for
9: end for

10: while end 6= n do
11: end← 0
12: for i = 1 to n do
13: for x ∈ F2k do # Compute/Update the likelihood of each candidate for Xi

14: new-pXi(x) = 2−(2n+1)k pXi
(x)∑

x′∈F
2k

pXi
(x′)

∏n
j=1

∑
y∈F

2k

new-pYj
(y)∑

y′∈F
2k

new-pYj
(y′) · fL′′

ij |XiYj
(`′′ij , x · y)

15: end for
16: end for
17: for i = 1 to n do
18: for y ∈ F2k do # Compute/Update the likelihood of each candidate for Yi

19: new-pYi(y) = 2−(2n+1)k pYi
(y)∑

y′∈F
2k

pYi
(y′)

∏n
j=1

∑
x∈F

2k

new-pXj
(x)∑

x′∈F
2k

new-pXj
(x′) · fL′′

ij |XiYj
(`′′ij , x · y)

20: end for
21: end for
22: for i = 1 to n do
23: if maxx(new-pXi(x)) > β and maxy(new-pYi(y)) > β then
24: end + +
25: end if
26: end for
27: end while

2 Actually to get the probability of Xi | L instead of L | Xi, Bayes’ Formula is applied which explains the division
by the sum of probabilities in the lines 14 and 19 in Algorithm 2.
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6.2 Numerical Experiments

The iterative attack described in Algorithm 2 has been tested against leakages simulations defined
exactly as in Section 5.3. As previously we stated that an attack succeeds if the totality of the n
shares xi have been recovered, which leads to the full recovery of x?. For various noise standard
deviations σ with SNR = k(2σ)−2, Table 2 gives the average minimum number of shares n required
for the attack to succeed with probability strictly greater than 0.5 (the averaging being computed
over 300 attack iterations). The first row corresponds to k = 4, and the second row to k = 8 (the
corresponding SNRs are SNR4 = σ−2 and SNR8 = (

√
2σ2)−1). Numerical experiments yield greatly

improved results in comparison to those obtained by running the basic attack. Namely, in F24 , for
a noise σ = 0, the number of shares required is 2, while 12 shares were needed for the basic attack,
and the improvement is even more confirmed with a growing σ: for a noise σ = 1, the number of
shares required is 25, while 284 shares were needed for the basic attack. It can also be observed
that the results for shares in F24 and F28 are relatively close, the number of shares being most likely
slightly smaller for shares in F24 than in F28 . This observation is in-line with the lower bound in
(9), where the cardinality 2k of the finite field plays no role. Once again, it may be observed that
the attack quickly recovers 90% of the shares even for σ ∈ {2, 3, 3.5} (see Figure 1b), and the shares
which are not recovered (because they are not given the maximum likelihood) have a good ranking.
Consequently, combining this attack with KEA should still increase the attack efficiency.

σ (SNR4, SNR8) 0 (+∞,+∞) 0.2 (25, 17.67) 0.4 (6.25, 4.41) 0.6 (2.77, 1.96) 0.8 (1.56, 1.10) 1 (1, 0.7071)

n (for F24) 2 2 3 6 13 25

n (for F28) 5 6 8 11 16 21

Table 2: Iterative attack: number of shares n as a function of the noise σ to succeed with probability
> 0.5 in F24 (first row) and in F28 (second row).

7 Practical Results

7.1 Setup

In order to provide real life experiments of the attack described in this work we have mounted it
against a development platform embedding the ATMega328 processor. The presence of decoupling
capacitors between the ground pins of the processor and the reference ground did not allowed us
to correctly measure the power consumption of the processor. We therefore de-soldered the ground
pins of the processor and connected them to a 20 Ohm resistor whose other end was connected to
the reference ground. After this preparation, we used a passive probe connected to an oscilloscope
in order to register the current absorbed by the processor by measuring the difference of potential at
the ends of the resistor. Thanks to a probe bandwidth of 500MHz, we pre-filtered all the frequencies
higher than 200MHz. We moreover used a sampling rate of 100MHz on the oscilloscope as the best
compromise between accuracy and measurement trace size.

7.2 Leakage Characterization

For our implementation of Algorithm 1, the mov instruction is used to manipulate the shares xi,
yj and the multiplication results xi · yj . We therefore chose to target it in our attack experiments.
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An advantage of targeting a single instruction that manipulates all the values is that we obtain
homogeneous leakages for all the manipulated data. Furthermore, the mov instruction may be
found in many different architectures and we therefore think that our attack can be reproduced
quite easily.

For the leakage characterization phase, we measured 200, 000 leakages of the mov instruction
parametrized with randomly generated values. Each measure was composed of 340 points, which
is essentially the size of a relevant sample of instantaneous measures for the mov instruction in our
setup. This campaign allowed us to characterize the leakage related to the processing mov y,x for x
ranging between 0 and 255 and for y being constant (our implementation uses the same destination
register for all the shares); more precisely, each x was associated to a mean vector µx ∈ R340 and
a covariance matrix Σx ∈ R340 × R340. The 256 means are plotted in Figure 2a. To reduce the
dimension of our templates, we afterwards estimated the signal-to-noise ratio of the acquisitions at
each point in order to identify the best points of interest for our attack. The results are plotted in
Figure 2b.
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Fig. 2: Results of the leakage characterization phase.

The peaks in 2b allowed us to choose a first set of points. In addition, a simple maximum
likelihood attack on each of these points separately has also been mounted in order to find those
who provided the most information. This step finally provided us with a set of 11 points to mount
our attack. It may be observed that the best SNR obtained with our setup is around 0.07 which,
for our simulations, corresponds to the case k = 16 and σ = 3.75, and k = 256 and σ = 3.2. Our
experiments should therefore be compared to the simulations plotted in the gray dot-and-dashed
curve in Fig. 1a (for the basic attack) and in Fig. 1b (for the iterative attack).

7.3 Attacks

Thanks to the characterization described in the previous section, we performed the attacks of
Sect. 5.1 and Sect. 6 against our implementation of Algorithm 1 parametrized with different orders
n.
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Maximum Likelihood Attack Experiments As a first experiment we tested the attack of
Section 5.1 in order to evaluate the evolution of the rank of the correct hypothesis on a single
share xi when n varies. In 3a we plot the ranking of the correct hypothesis, in red, among all 256
byte values, for each n between 1 and 40. The results have been obtained by averaging the result
among 100 repetitions of the same attack for each order. From 3a we can observe that the correct
hypothesis is ranked among the first 50 values as soon as n > 10. We also observe that we need
n > 35 for the correct hypothesis to be firmly ranked first by the basic attack.

During the same attack we have also evaluated the average number of shares of x? correctly
retrieved for each order n. This allowed us to obtain an estimation of the minimum order n required
to successfully mount the attack. The result of such evaluation is depicted in 3b. Even if n = 40
appears to be a necessary condition to directly recover all the shares, the post-processing of our
attack results with a KEA algorithm [GGP+15,MOOS15] should allow to recover them for smaller
n (n = 10 seems to be achievable at a reasonable cost).
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Fig. 3: Results for the attack of Section 5.1 when n varies between 1 and 40.

Iterative Attack Experiments We have afterwards mounted the attack described in Section 6
in order to measure the success probability with respect to the masking order. As before we provide
the average ranking of the correct hypothesis (in red) for different values of the order n. Due to
time constraints only 10 repetitions of the attack have been averaged. The evolution of the rank of
the correct hypothesis is depicted in 4a. As before, we also provide the average number of shares
correctly retrieved for each order n in 4b.

Even if we did not got results as smooth as for previous experiments, we can observe an overall
better detection rate for the iterative attack if we compare to the basic one (as actually expected).
Furthermore, we have averaged the results of the above attack on 10 repetitions when n = 20, 30, 40.
For such order we have obtained an average number of correctly retrieved shares of 0.88, 0.93 and
0.97, respectively. We thus remark again that by using KEA post-processing on the results of our
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Fig. 4: Results for the attack of Section 6 when n varies between 1 and 10.

attack the correct hypothesis should be recovered with a reasonable number of shares. In particular
it seems reasonable to assume that n = 10 provides better results and lower costs with respect to
the basic attack.

Experiments Conclusions. We have successfully proved the effectiveness of our attack on a real
implementation using the ATMega328 processor. We obtain better results on our experiments than
those predicted by theory in 5.1 and 6 for similar SNR values. We have investigated such behavior
and we conjecture that the better results are due to the use of a multi-variate attack on 11 points
for the experimental attacks, where the theoretical results are computed for a mono-variate attack.
The more points allows for an improvement of the global SNR which can explain the disparity
between theory and practice success probabilities.

8 A Countermeasure against the previous Attacks

8.1 Description

In the following, we describe a countermeasure against the previous attack against the Rivain-Prouff
algorithm. More precisely, we describe a variant of Algorithm 1, called RefSecMult, to compute an
n-sharing of c = x? · y? from (xi)i∈[1..n] and (yi)i∈[1..n]. Our new algorithm is still provably secure in
the original ISW probing model, and heuristically secure against the horizontal side-channel attacks
described the in previous sections.

As observed in [FRR+10], the ISW and Rivain-Prouff countermeasures can be divided in two
steps: a “matrix” step in which starting from the input shares xi and yj , one obtains a matrix xi ·yj
with n2 elements, and a “compression” step in which one uses some randomness to get back to a
n-sharing ci. Namely the matrix elements (xi · yj)1≤i,j≤n form a n2-sharing of x? · y?:

x? · y? =

(
n∑

i=1

xi

)
·

 n∑
j=1

yj

 =
∑

1≤i,j≤n
xi · yj (19)
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Algorithm 3 RefSecMult

Input: n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Output: an n-sharing (ci)i∈[1..n] of x? · y?
1: Mij ← MatMult((x1, . . . , xn), (y1, . . . , yn))
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: ri,j ←$ F2k

5: rj,i ← (ri,j +Mij) +Mji

6: end for
7: end for
8: for i = 1 to n do
9: ci ←Mii

10: for j = 1 to n, j 6= i do ci ← ci + ri,j
11: end for
12: return (c1, c1, . . . , cn)

and the goal of the compression step is to securely go from such n2-sharing of x? · y? to a n-sharing
of x? · y?.

Our new countermeasure (Algorithm 3) uses the same compression step as Rivain-Prouff, but
with a different matrix step, called MatMult (Algorithm 4), so that the shares xi and yj are not
used multiple times (as when computing the matrix elements xi · yj in Rivain-Prouff). Eventually
the MatMult algorithm outputs a matrix (Mij)1≤i,j≤n which is still a n2-sharing of x? · y?, as in
(19); therefore using the same compression step as Rivain-Prouff, Algorithm 3 outputs a n-sharing
of x? · y?, as required.

Algorithm 4 MatMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x? and y? respectively
Output: the n2-sharing (Mij)i∈[1..n],j∈[1..n] of x? · y?
1: if n = 1 then
2: M ← [x1 · y1]
3: else
4: X(1) ← (x1, . . . , xn/2), X(2) ← (xn/2+1, . . . , xn)

5: Y (1) ← (y1, . . . , yn/2), Y (2) ← (yn/2+1, . . . , yn)

6: M (1,1) ← MatMult(X(1),Y (1))
7: X(1) ← RefreshMasks(X(1)), Y (1) ← RefreshMasks(Y (1))
8: M (1,2) ← MatMult(X(1),Y (2))
9: M (2,1) ← MatMult(X(2),Y (1))

10: X(2) ← RefreshMasks(X(2)), Y (2) ← RefreshMasks(Y (2))
11: M (2,2) ← MatMult(X(2),Y (2))

12: M ←
[
M (1,1) M (1,2)

M (2,1) M (2,2)

]
13: end if
14: return M

As illustrated in Fig. 5, the MatMult algorithm is recursive and computes the n × n matrix in
four sub-matrix blocs. This is done by splitting the input shares xi and yj in two parts, namely
X(1) = (x1, . . . , xn/2) and X(2) = (xn/2+1, . . . , xn), and similarly Y (1) = (y1, . . . , yn/2) and Y (2) =

(yn/2+1, . . . , yn), and recursively processing the four sub-matrix blocs corresponding to X(u)×Y (v)
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for 1 ≤ u, v ≤ 2. To prevent the same share xi from being used twice, each input block X(u) and
Y (v) is refreshed before being used a second time, using a mask refreshing algorithm. An example
of such mask refreshing, hereafter called RefreshMasks, can for instance be found in [DDF14]; see
Algorithm 5. Since the mask refreshing does not modify the xor of the input n/2-vectors X(u) and
Y (v), each sub-matrix block M (u,v) is still a n2/4-sharing of (⊕X(u)) · (⊕X(v)), and therefore the
output matrix M is still a n2-sharing of x? · y?, as required. Note that without the RefreshMasks,
we would have Mij = xi · yj as in Rivain-Prouff.

Algorithm 5 RefreshMasks

Input: a1, . . . , an
Output: c1, . . . , cn such that

∑n
i=1 ci =

∑n
i=1 ai

1: For i = 1 to n do ci ← ai
2: for i = 1 to n do do
3: for j = i+ 1 to n do do
4: r ← {0, 1}k
5: ci ← ci + r
6: cj ← cj + r
7: end for
8: end for
9: return c1, . . . , cn

Since the RefreshMask algorithm has complexity O(n2), it is easy to see that the complexity of
our RefSecMult algorithm is O(n2 log n) (instead of O(n2) for the original Rivain-Prouff counter-
measure in Alg. 1). Therefore for a circuit of size |C| the complexity is O(|C| · n2 log n), instead of
O(|C| · n2) for Rivain-Prouff. The following lemma shows the soundness of our RefSecMult coun-
termeasure.

Lemma 1 (Soundness of RefSecMult). The RefSecMult algorithm, on input n-sharings (xi)i∈[1..n]
and (yj)j∈[1..n] of x? and y? respectively, outputs an n-sharing (ci)i∈[1..n] of x? · y?.

Proof. We prove recursively that the MatMult algorithm, taking as input n-sharings (xi)i∈[1..n] and
(yj)j∈[1..n] of x? and y? respectively, outputs an n2-sharing Mij of x? ·y?. The lemma for RefSecMult
will follow, since as in Rivain-Prouff the lines 2 to 12 of Alg. 3 transform a n2-sharing Mij of x? · y?
into a n-sharing of x? · y?.

The property clearly holds for n = 1. Assuming that it holds for n/2, since the RefreshMasks
does not change the xor of the input n/2-vectors X(u) and Y (v), each sub-matrix block M (u,v) is
still an n2/4-sharing of (⊕X(u)) ·(⊕X(v)), and therefore the output matrix M is still an n2-sharing
of x? · y?, as required. This proves the lemma. ut

Remark 2. The description of our countermeasure requires that n is a power of two, but it is easy
to modify the countermeasure to handle any value of n. Namely in Algorithm 4, for odd n it suffices
to split the inputs xi and yj in two parts of size (n − 1)/2 and (n + 1)/2 respectively, instead of
n/2.

8.2 Security Analysis.

Proven security in the ISW probing model. We prove that our RefSecMult algorithm achieves
at least the same level of security of Rivain-Prouff, namely it is secure in the ISW probing model
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Fig. 5: The recursive MatMult algorithm, where R represents the RefreshMasks Algorithm, and ⊗
represents a recursive call to the MatMult algorithm.

against t probes for n ≥ t + 1 shares. For this we use the refined security model against probing
attacks recently introduced in [BBD+15], called t-SNI security. This stronger definition of t-SNI se-
curity enables to prove that a gadget can be used in a full construction with n ≥ t+1 shares, instead
of n ≥ 2t+ 1 for the weaker definition of t-NI security (corresponding to the original ISW security
proof). The authors of [BBD+15] show that the ISW (and Rivain-Prouff) multiplication gadget
does satisfy this stronger t-SNI security definition. They also show that with some additional mask
refreshing satisfying the t-SNI property (such as RefreshMasks), the Rivain-Prouff countermeasure
for the full AES can be made secure with n ≥ t+ 1 shares.

The following lemma shows that our RefSecMult countermeasure achieves the t-SNI property;
we provide the proof in Appendix B. The proof is essentially the same as in [BBD+15] for the
Rivain-Prouff countermeasure; namely the compression step is the same, and for the matrix step,
in the simulation we can assume that all the randoms in RefreshMasks are given to the adversary.
The t-SNI security implies that our RefSecMult algorithm is also composable, with n ≥ t+1 shares.

Lemma 2 (t-SNI of RefSecMult). Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of the SecMult
operation, and let (ci)1≤i<n be the output shares. For any set of t1 intermediate variables and any
subset |O| ≤ t2 of output shares such that t1 + t2 < n, there exists two subsets I and J of indices
with |I| ≤ t1 and |J | ≤ t1, such that those t1 intermediate variables as well as the output shares c|O
can be perfectly simulated from x|I and y|J .

Heuristic security against horizontal-DPA attacks. We stress that the previous lemma only
proves the security of our countermeasure against t probes for n ≥ t+ 1, so it does not prove that
our countermeasure is secure against the horizontal-DPA attacks described in the previous sections,
since such attacks use information about n2 intermediate variables instead of only n− 1.

As illustrated in Fig. 5, the main difference between the new RefSecMult algorithm and the
original SecMult algorithm (Alg. 1) is that we keep refreshing the xi shares and the yj shares
blockwise between the processing of the finite field multiplications xi · yj . Therefore, as opposed to
what happens in SecMult, we never have the same xi being multiplied by all yj ’s for 1 ≤ j ≤ n.
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Therefore an attacker cannot accumulate information about a specific share xi, which heuristically
prevents the attacks described in this paper.

Acknowledgments. We are very grateful to the anonymous CHES reviewers for pointing a flaw
in a previous version of our countermeasure in Section 8.
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Simpler and more efficient rank estimation for side-channel security assessment. In Gregor Leander,
editor, Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-
11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer Science, pages 117–129.
Springer, 2015.

[GHR15] Sylvain Guilley, Annelie Heuser, and Olivier Rioul. A key to success - success exponents for side-channel
distinguishers. In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptology - INDOCRYPT 2015 -
16th International Conference on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings,
volume 9462 of Lecture Notes in Computer Science, pages 270–290. Springer, 2015.
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A Mutual Information Approximation

In this section, we develop the mutual information between the Hamming weight of uniform random
variable X defined over F2k and a noisy observation L of this Hamming weight, the noise being
modeled by a Gaussian random variable with 0 mean and standard deviation σ. By definition, we
have L = HW(X) +B, with B ∼ N (0, σ2). By definition of the entropy, we have:

H(X|L) = H(X,L)−H(L) . (20)

Given X, the distribution of L is Gaussian with standard deviation σ. The differential entropy
corresponding to a Gaussian distribution with standard deviation σ is ln(σ

√
2πe), whereas the

entropy of a uniform random variable over F2k is k. We therefore get:

H(X,L) = H(X) + H(B) = k + ln(σ
√

2πe) (21)

The distribution of L is the sum of two distributions. We can model the distribution of HW(X) as
Gaussian with standard deviation σk =

√
k/2; this is true for large k. The sum of two independent

and normally distributed random variables has a normal distribution. Moreover, its mean and
variance are simply obtained by summing those of the added variables. In our context, this gives:

H(L) ' ln

(√
(σ2k + σ2)2πe

)
' ln

(√
(k/4 + σ2)2πe

)
(22)

Combining (20)-(22) leads to:

H(X | L) ' k + ln(σ
√

2πe)− ln
(√

(k/4 + σ2)2πe
)
' k +

1

2
ln

(
σ2

k/4 + σ2

)
' k +

1

2
ln

(
1

1 + k/(4σ2)

)
' k − k

8σ2
,

after approximating ln(1 − U) by −U , and k/(k + 4σ2) by k/4σ2 (which is true when σ2 � k).
Eventually, the amount of information I(X;L)

.
= H(X) − H(X | L) given by the noisy Hamming

weight leakage can be approximated for σ2 � k by:

I(X;L) ' k

8σ2

B Proof of Lemma 2

Our proof is essentially the same as in [BBD+15]. We construct two sets I and J corresponding
to the input shares of x? and y? respectively. We denote by Mij the result of the subroutine
MatMult((x1, . . . , xn), (y1, . . . , yn)). From the definition of MatMult and RefreshMasks, it is easy to
see that each Mij can be perfectly simulated from xi and yj ; more generally any internal variable
within MatMult can be perfectly simulated from xi and/or yj for some i and j; for this it suffices
to simulate the randoms in RefreshMasks exactly as they are generated in RefreshMasks.

We divide the internal probes in 4 groups. The four groups are processed separately and se-
quentially, that is we start with all probes in Group 1, and finish with all probes in Group 4.

• Group 1: If Mii is probed, add i to I and J .
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• Group 2: If ri,j or ci,j is probed (for any i 6= j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we denote by U the common
value of I and J after the processing of Group 1 and 2 probes.

• Group 3: If Mij ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .

• Group 4: If Mij is probed (for any i 6= j), then add i to I and j to J . If some probe in MatMult
requires the knowledge of xi and/or yj , add i to I and/or j to J .

We have |I| ≤ t1 and |J | ≤ t1, since for every probe we add at most one index in I and J .
The simulation of probed variables in groups 1 and 4 is straightforward. Note that for i < j, the
variable rij is used in all partial sums cik for k ≥ j; moreover rij is used in rij ⊕Mij , which is used
in rji, which is used in all partial sums cjk for k ≥ i. Therefore if i /∈ U , then rij is not probed and
does not enter in the computation of any probed cik; symmetrically if j /∈ U , then rji is not probed
and does not enter in the computation of any probed cjk.

For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij , Mij , Mij ⊕ rij , Mji

and rji. In particular, we let rij ← F2k , as in the real circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real circuit. If Mij⊕ri,j is
probed (Group 3), we can also simulate it since i ∈ U and j ∈ J by definition of the processing
of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable cik, since
otherwise i ∈ U . Therefore rij is not used in the computation of any probed variable (except
rji, and possibly Mij ⊕ ri,j). Therefore we can simulate rji ← F2k ; moreover if Mij ⊕ rij is
probed, we can perfectly simulate it using Mij ⊕ rij = Mji ⊕ rji, since j ∈ U and i ∈ J by
definition of the processing of Group 3 variables.

• Case 4: i /∈ U and j /∈ U . If Mij ⊕ ri,j is probed, since rij is not probed and does not enter
into the computation of any other probed variable, we can perfectly simulate such probe with
a random value.

From cases 1, 2 and 3, we obtain that for any i 6= j, we can perfectly simulate any variable rij
such that i ∈ U . This implies that we can also perfectly simulate all partial sums cik when i ∈ U ,
including the output variables ci. Finally, all probed variables are perfectly simulated.

We now consider the simulation of the output variables ci. We must show how to simulate ci for
all i ∈ O, where O is an arbitrary subset of [1, n] such that t1 + |O| < n. For i ∈ U , such variables
are already perfectly simulated, as explained above. We now consider the output variables ci with
i /∈ U . We construct a subset of indices V as follows: for any probed Group 3 variable Mij ⊕ rij
such that i /∈ U and j /∈ U (this corresponds to Case 4), we put j in V if i ∈ O, otherwise we put
i in V . Since we have only considered Group 3 probes, we must have |U |+ |V | ≤ t1, which implies
|U |+ |V |+ |O| < n. Therefore there exists an index j? ∈ [1, n] such that j? /∈ U ∪ V ∪ O. For any
i ∈ O, we can write:

ci = Mii ⊕
⊕
j 6=i

rij = ri,j? ⊕

Mii ⊕
⊕
j 6=i,j?

rij
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We claim that neither ri,j? nor rj?,i do enter into the computation of any probed variable or
other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j? nor any partial sum cik was probed; similarly
j? /∈ U so neither rj?,i nor any partial sum cj?,k was probed, and the output cj? does not have to
be simulated since by definition j? /∈ O. Finally if i < j? then Mi,j? ⊕ ri,j? was not probed since
otherwise j? ∈ V (since i ∈ O); similarly if j? < i then Mj?,i⊕ rj?,i was not probed since otherwise
we would have j? ∈ V since j? /∈ O. Therefore, since neither ri,j? nor rj?,i are used elsewhere, we
can perfectly simulate ci by generating a random value. This proves the Lemma.

22


