
On Trees, Chains and Fast Transactions in the Blockchain

Aggelos Kiayias∗ Giorgos Panagiotakos∗

June 1, 2016

School of Informatics,
University of Edinburgh

akiayias@inf.ed.ac.uk, g.panagiotakos@di.uoa.gr

Department of Informatics and Telecommunications,
University of Athens

g.panagiotakos@di.uoa.gr

Abstract

A fundamental open problem in the area of blockchain protocols is whether the Bitcoin
blockchain protocol is the optimal solution (in terms of e�ciency, security) for building a secure
transaction ledger. A recently proposed and widely deployed alternative is the GHOST protocol
which, notably, is at the core of Ethereum as well as other recent proposals for improved Bitcoin-
like systems. The GHOST variant is touted as o�ering superior performance compared to Bitcoin
(block production in ethereum has been sped up by a factor of more than 40) without a security
loss. Motivated by this, in this work, we study from both a provable security and attack
susceptibility point of view the problem of transaction processing time for both GHOST and
Bitcoin.

We introduce a new formal framework for the analysis of blockchain protocols that relies on
trees (rather than chains) and we showcase the power of the framework by providing a uni�ed
description of the GHOST and Bitcoin protocols, the former of which we extract and formally
describe in our framework. We then prove that GHOST implements a �robust transaction ledger�
(i.e., possesses liveness and persistence) and hence it is a provably secure alternative to Bitcoin.

We then focus on the liveness property of both Bitcoin and GHOST, i.e., the worst-case
transaction con�rmation time that can be expected when playing against an adversary. We
present a general attack methodology against liveness and we instantiate it with two attacks for
Bitcoin and GHOST. We prove that our attack for Bitcoin is essentially optimal. Furthermore, we
perform simulation results and we demonstrate that for a wide range of con�rmation parameter
choices and hashing power bounds for the adversary, GHOST, when under our attack, performs
about the same or worse than Bitcoin in terms of transaction con�rmation time. Our results
highlight the importance of provable security analysis in the context of blockchain protocols.

∗Research supported by ERC project CODAMODA, project # 259152. Part of this work was based in a technical
report published in e-print (https://eprint.iacr.org/2015/1019).
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1 Introduction

The popularity of Bitcoin [17] has lead to a surge in the interest about its core protocol that main-
tains a distributed data structure called the �blockchain�. In [10], the core of the Bitcoin protocol
was abstracted under the moniker �Bitcoin Backbone� and it was demonstrated to be a powerful
tool for solving consensus, [21, 14], in a synchronous, anonymous and Byzantine setting where (un-
reliable) broadcast is the communication operation available to the participants, (a problem �rst
considered in [2, 18]). In [10], it was shown that the core protocol provably guarantees two proper-
ties: (i) persistence: if a transaction is reported as stable by one node, then it will be also reported
by any other honest node of the system in the same ledger position, (ii) liveness: all honestly gener-
ated transactions that are broadcasted are eventually reported as stable by some honest node. This
provides a formal framework for proving the security of systems like Bitcoin, since their security
can be reduced to the persistence and liveness of the underlying transaction ledger. Furthermore, it
provides a way to argue formally about transaction con�rmation time since the liveness property is
equipped with a delay parameter that speci�es the maximum transaction delay that can be caused
by an adversary.

Naturally, implementing a robust transaction ledger may be achieved in various other ways,
and it is a fundamental open question of the area whether the Bitcoin protocol itself is an optimal
implementation of a robust transaction ledger. Indeed, many researchers have challenged various
aspects of the Bitcoin system and they have proposed modi�cations in its core operation. Some
of the modi�ed systems maintain the protocol structure but modify the hard-coded parameters
(like the block generation rate) or the basic primitives, e.g., the way proof of work is performed
(a number of alternative proof of work implementations have been proposed using functions like
scrypt [22], lyra2 [24] and others). However, more radical modi�cations are possible that alter the
actual operation of the protocol.

One of the most notable such variants is the GHOST protocol, which was suggested by Som-
polinsky and Zohar in [25]. After the initial suggestion many cryptocurrencies using variants of
the GHOST rule were proposed and implemented. The most popular among them, Ethereum [7] has
received substantial research attention [13, 12, 4, 23, 11, 19] and also media attention.1 Ethereum
is essentially a Bitcoin-like system where transaction processing is Turing-complete and thus it can
be used to implement any public functionality in a distributed way. Bitcoin-NG [8] is another
popular Bitcoin-like system relying on GHOST that separates blocks in two categories, namely key
blocks and microblocks, re�ecting the fact that transaction serialization and leader election are two
di�erent parts of the system. Bitcoin-NG, due to its structured blockchain, can potentially o�er
higher throughput compared to Bitcoin.

Unfortunately, the security analysis of [25] is not as general as [10] (e.g., their attacker does not
take advantage of providing con�icting information to di�erent honest parties), while the analysis
of [10] does not carry to the setting of GHOST. This is because the GHOST rule is a natural, albeit
radical, reformulation of how each miner determines the main chain. In GHOST, miners adopt blocks
in the structure of a tree. Note that in both Bitcoin and GHOST one can consider parties collecting
all mined blocks in a tree data structure. However, while in Bitcoin the miners would choose the
most di�cult chain as the main chain, in GHOST, they will determine the chain by greedily following
the �heaviest observed subtree.� This means that for the same subtree, a Bitcoin miner and a GHOST
miner may choose a completely di�erent main chain. Furthermore, it means that the di�culty of

1E.g., see news stories in http://www.nytimes.com/2016/03/28/business/dealbook/ethereum-a-virtual-

currency-enables-transactions-that-rival-bitcoins.html, http://www.coindesk.com/ethereum-launches-

ether-coin-millions-already-sold/ and http://www.wired.com/2014/09/ethereum-backers-raise-15-

million/
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the main chain of honest parties does not necessarily increase monotonically (it may decrease at
times) and thus a fundamental argument (namely that blockchains monotonically increase) that
made the analysis of [10] possible, does not hold anymore.

Our Results. We propose a new analysis framework for blockchain protocols focusing on trees of
blocks as opposed to chains as in [10]. Our framework enables us to argue about random variables on
the trees of blocks that are formed by the participants. In our framework, we can express concepts
like a node being d-dominant, which means that the block corresponding to that node would be
preferred by a margin of d compared to other sibling nodes according to a speci�ed weight metric.
This actually enables us to unify the description of Bitcoin and GHOST.

Using our framework we then provide a �rst formal security proof of the GHOST rule for blockchain
protocols. Speci�cally, we prove that GHOST is a robust transaction ledger that satis�es liveness and
persistence. We achieve this result, by a new methodology, that reduces the properties of the robust
transaction ledger to a single lemma, that we call the fresh block lemma and is informally stated as
follows.

Fresh Block Lemma. (Informally) At any point of the execution and for any past sequence
of s consecutive rounds, there is an honest block mined in these rounds, that is contained
in the chain of any honest player from this point on.

As we demonstrate, the fresh block lemma is a powerful tool in the presence of an adversary:
we show easily that the properties of the robust transaction ledger reduce to it in a black-box
fashion. This provides an alternative proof methodology for establishing the properties of a robust
transaction ledger compared to [10], who reduced the properties of the robust transaction ledger to
two other properties called common pre�x and chain quality, and may be of independent interest
as it could be applicable to other blockchain variants.

Observing the fact that the delay parameter we prove for GHOST liveness is inferior to that shown
for Bitcoin we turn our focus on the liveness property, and more speci�cally the delay parameter that
speci�es the worst-case con�rmation time that can be caused by an adversary. We present a general
attack methodology for attacking transaction con�rmation time. Our attack method has three
stages: (i) the attack preparation stage, (ii) the transaction denial stage and (iii) the blockchain
retarder stage. In the attack preparation stage, our attacker prepares the attack and waits for the
transaction that she dislikes to appear in the network (e.g., the attacker may mine a private chain or
may interfere with block adoption of the honest nodes). When the disliked transaction appears, the
attacker moves to the transaction delay phase where she tries to prevent honest nodes from adopting
it. At any moment, the attacker may switch to the third phase where she gives up on preventing the
honest nodes from adopting the transaction and tries to slow down the blockchain growth so that
the con�rmation time might be extended. Using this template, we present two attacks for Bitcoin
and GHOST respectively.

We prove that our attack for Bitcoin is essentially optimal and it essentially matches the delay
parameter for the liveness of the Bitcoin backbone as proven in [10]. It follows that the liveness
property for Bitcoin is tight and our attack can be used as a yardstick to show whether a protocol
can improve blockchain liveness compared to Bitcoin. Our attack for GHOST, is more involved, and
exploits the way that honest nodes pick the main chain in a way that is intrinsic to the GHOST rule
providing a powerful blockchain retarder phase.

We proceed to perform experiments in order to compare the two attacks. Our main �nding is
the following.

The GHOST protocol, under our attack, is either outperformed by Bitcoin (when subjected
to the optimal attack), or performs about the same. This is true for a wide range of
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hashing power levels of the adversary and parameter settings that specify the number
of blocks that one should wait in order to con�rm a transaction.

The gap between the two protocols in favor of Bitcoin becomes particularly signi�cant when
the number of blocks required for con�rmation is very high (at the level that is required by various
exchanges2 see Figure 6). Given that the main claims for the GHOST protocol is its alleged superior
capability to allow faster transactions compared to Bitcoin, cf. [25], it is important to re�ect that
this appears to be untrue when the protocol is subjected to our attack. We note that, in order
to compare �apples to apples,� we compare the two protocols, GHOST and Bitcoin, using the same
equally accelerated block production rate. Comparing the two at an equal rate is justi�ed from our
provable security analysis for the persistence property which does not enable us to show a security
advantage of GHOST over Bitcoin for accelerated rates; put di�erently, Bitcoin does not appear to
lose security at a higher rate than GHOST when accelerated.3

We remark that the current implementation of Ethereum utilizes a variant of GHOST, termed
�uncles-only GHOST�. We show that our transaction con�rmation time attack against GHOST easily
extends against uncles-only GHOST (albeit with a slightly milder e�ect). There are other ways to
modify GHOST that can be considered (e.g., [15]) and these may be also cast and analyzed both from
a provable perspective in our framework as well as from an attack potential perspective using our
attack template. Our work highlights the bene�ts of provable security analysis in the domain of
designing blockchain protocols and provides ways to di�erentiate such protocols from the perspective
of the fundamental properties that a blockchain protocol should satisfy.

On the generality of the adversarial model. The adversarial model we adopt in this work
is the one proposed by Garay et al. [10]. This model is quite general in the sense that, it can
captures many attack models that were proposed in the literature. For example, it captures the
double spending attacker of [17], the block withholding attacker of [9] (which can be simulated
because the adversary can change the order that messages arrive for each honest player) and the
eclipse attacker of [6] where the communication of a portion of the honest nodes in the network is
completely controlled (eclipsed) by the adversary (this can be simulated by simply considering the
eclipsed nodes to be controlled by the adversary and having the adversary honestly execute their
program while dropping their incoming messages).

Limitations and directions for future research. Our analysis is in the standard Byzantine
model where parties fall into two categories, those that are honest (and follow the protocol) and
those that are dishonest that may deviate in an arbitrary (and coordinated) fashion as dictated by
the adversary. It is an interesting direction for future work to consider the rational setting where
all parties wish to optimize a certain utility function. Designing suitable incentive mechanisms, for
instance see [16] for a suggestion related to the GHOST protocol, or examining the requirements for
setup assumptions, cf. [1], are related important considerations. Our analysis is in the static setting,
i.e., we do not take into account the fact that parties change dynamically and that the protocol
calibrates the di�culty of the POW instances to account for that; we note that this may open
the possibility for additional attacks, say [3], and hence it is an important point for consideration
and future work. While we discover an optimal attack against the liveness property for bitcoin,
the provable security bound for the delay in the liveness property of GHOST is not matched by an

2Kraken and Poloniex are currently the biggest Ethereum exchanges. Kraken initially had used 6000 blocks for
con�rmation time, while Poloniex 375 blocks.

2Currently the Ethereum Frontier reports an average of about 14 seconds, cf. https://etherchain.org; the 12
seconds rate was discussed by Buterin in [5]. In contrast, Bitcoin block generation rate is 10 minutes.

3We note that even though the analysis of [25] suggests that there is an advantage, their analysis is performed in
a much more restricted attack model than ours.
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attacker. Even though, we demonstrate that our GHOST attacker causes higher delays than Bitcoin
for most choices of the parameters, it does not match the worst case provable bound, something that
means that the bound might be lowered (or alternatively the attack may be improved). Finally, it
is interesting to consider our results in more general models such as the semi-synchronous model of
[20].

Organization. In section 2 we overview the model that we use for expressing the protocols and the
theorems regarding the security properties. In section 3 we introduce our new tree-based framework.
Then, in section 4 we present our security analysis of an abstraction of the GHOST protocol that
demonstrates it is a robust transaction ledger in the static setting. In section 5 we present our
liveness attacks against Bitcoin and GHOST variants, we prove the optimality of the attack against
Bitcoin and we compare the two attacks by performing simulations for various parameter choices.

2 Preliminaries and the GHOST Backbone protocol

2.1 Model

For our model we adopt the abstraction proposed in [10]. Speci�cally, in their setting, called the
q-bounded setting, synchronous communication is assumed and each party is allowed q queries
to a random oracle. The network supports an anonymous message di�usion mechanism that is
guaranteed to deliver messages of all honest parties in each round. The adversary is rushing and
adaptive. Rushing here means that in any given round he gets to see all honest players' messages
before deciding his own strategy. However, after seeing the messages he is not allowed to query
the hashing oracle again in this round. In addition, he has complete control of the order that
messages arrive to each player. The model is ��at� in terms of computational power in the sense
that all honest parties are assumed to have the same computational power while the adversary has
computational power proportional to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control t of them (honest
parties don't know any of these parameters). Obtaining a new block is achieved by �nding a hash
value that is smaller than a di�culty parameter D. The success probability that a single hashing
query produces a solution is p = D

2κ where κ is the length of the hash. The total hashing power of
the honest players is α = pq(n − t), the hashing power of the adversary is β = pqt and the total
hashing power is f = α+ β. A number of de�nitions that will be used extensively are listed below.

De�nition 1. A round is called:

� successful if at least one honest player computes a solution in this round.

� uniquely successful if exactly one honest player computes a solution in this round.

De�nition 2. In an execution blocks are called:

� honest, if mined by an honest party.

� adversarial, if mined by the adversary.

De�nition 3. (chain extension) We will say that a chain C′ extends another chain C if a pre�x of
C′ is a su�x of C.

In [10], a lower bound to the probabilities of two events, that a round is successful or that
is uniquely successful (de�ned bellow), was established and denoted by γu = α − α2. While this
bound is su�cient for the setting of small f , here we will need to use a better lower bound to the
probability of those events, denoted by γ, and with value approximately αe−α (see Appendix B).
Observe that γ > γu.
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2.2 The GHOST Backbone Protocol

In order to study the properties of the core Bitcoin protocol, the term Backbone Protocol was
introduced in [10]. On this level of abstraction we are only interested on properties of the blockchain,
independently from the data stored inside the blocks. In the same work, the Bitcoin backbone
protocol is described in a quite abstract and detailed way. The main idea is that honest players, at
every round, receive new chains from the network and pick the longest valid one to mine. Then,
if they obtain a new block (by �nding a small hash), they broadcast their chain at the end of the
round. For more details we refer to [10, Subsection 3.1].

The same level of abstraction can also be used to express the GHOST protocol. The GHOST

backbone protocol, as presented in [25], is based on the principle that blocks that do not end up in
the main chain, should also matter in the chain selection process. In order to achieve this, players
store a tree of all mined blocks they have received, and then using the greedy heaviest observed
subtree (GHOST) rule, they pick which chain to mine.

Algorithm 1 The chain selection algorithm. The input is a block tree T . The | · | operator
corresponds to the number of nodes of a tree.

1: function GHOST(T )
2: B ← GenesisBlock
3: if childrenT (B) = ∅ then
4: return C = (GenesisBlock, ..., B)
5: else

6: B ← argmaxc∈childrenT (B)|subtreeT (c)|
7: return GHOST(subtreeT (B))
8: end if

9: end function

At every round, players update their tree by adding valid blocks sent by other players. The
same principle as Bitcoin applies; for a block to be added to the tree, it su�ces to be a valid child
of some other tree block. The adversary can add blocks anywhere he wants in the tree, as long as
they are valid. Again, as on Bitcoin, players try to extend the chains they choose by one or more
blocks. Finally, in the main function, a tree of blocks is stored and updated at every round. If a
player updates his tree, he broadcasts it to all other players.

The protocol is also parameterized by three external functions V (·), I(·), R(·) which are called:
the input validation predicate, the input contribution function, and the chain reading function,
respectively. V (·) dictates the structure of the information stored in each block, I(·) determines the
data that players put in the block they mine, R(·) speci�es how the data in the blocks should be
interpreted depending on the application.

2.3 Security properties

Two crucial security properties of the Bitcoin backbone protocol were considered in previous works:
the common pre�x and the chain quality property. The common pre�x property ensures that two
honest players have the same view of the blockchain, if they prune a small number of blocks from
the tail of their respective chains. On the other hand, the chain quality property ensures that
honest players chains' do not contain long sequences of adversarial blocks. These two properties
were shown to hold for the Bitcoin backbone protocol.
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Algorithm 2 The GHOST backbone protocol, parameterized by the input contribution function I(·)
and the reading function R(·). xC is the vector of inputs of all block in chain C.

1: T ← GenesisBlock ▷ T is a tree.
2: state← ε
3: round← 0
4: while True do

5: Tnew ← update(T , blocks found in Receive())
6: C̃ ← GHOST(Tnew)
7: ⟨state, x⟩ ← I(state, C̃, round, Input(),Receive())
8: Cnew ← pow(x, C̃)
9: if C̃ ̸= Cnew or T ̸= Tnew then

10: T ← update(Tnew, head(Cnew))
11: Broadcast(head(Cnew))
12: end if

13: round← round+ 1
14: if Input() contains Read then

15: write R(xC) to Output()
16: end if

17: end while

Also in the same work, the robust public transaction ledger primitive was presented. This prim-
itive captures the notion of a book, in which transactions are recorded, and it is used to implement
Byzantine Agreement in the honest majority setting. The primitive satis�es two properties: persis-
tence, and liveness. Persistence ensures that, if a transaction is seen in a block deep enough in the
chain, it will stay there. And liveness ensures that if a transaction is given as input to all honest
players, it will eventually be inserted in a block, deep enough in the chain, of an honest player. The
Bitcoin backbone was shown to be su�cient to construct this kind of ledger. More details about
the security properties and the primitive are given in Appendix A.

3 A uni�ed description of the Bitcoin and GHOST backbones

Next, we introduce our new analysis framework for backbone protocols that is focusing on trees of
blocks and we show how the description of the Bitcoin and GHOST can be uni�ed. In this model,
every player stores all blocks �he hears� on a tree, starting from a pre-shared block called the Genesis
(or vroot) block. This is the model where GHOST was initially described. Bitcoin, and other possible
backbone variants, can also be seen in this model and thus a uni�ed language can be built. We �rst
de�ne block trees (or just trees) that capture the knowledge of honest players (regarding the block
tree on di�erent moments at every round).

De�nition 4. We denote by TP
r (resp. T ∃

r ) the tree that is formed from the blocks that player P
(resp. at least one honest player) has received until the beginning of round r. Similarly, T+

r is the
tree that contains T ∃

r and also includes all blocks mined by honest players at round r. For any tree
T and block b ∈ T , we denote by T (b) the subtree of T rooted on b.

Notice that, due to the fact that broadcasts of honest players always succeed, blocks in T+
r are

always in TP
r+1. Thus for every honest player P it holds that:
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TP
r ⊆ T ∃

r ⊆ T+
r ⊆ TP

r+1

Intuitively, heavier trees represent more proof of work. But there is more than one way to de�ne
the weight of a tree. For example, in Bitcoin the heaviest tree is the longest one. But for GHOST
a heavy tree is one with many nodes. To capture this abstraction we condition our de�nitions on
a norm w that assigns weights on trees. This norm will be responsible for deciding which tree has
more proof of work, and thus which tree is favored by the chain selection rule. We choose to omit
w from the notation since it will always be clear from the context which norm we use.

De�nition 5. Let w be a norm de�ned on trees. For any tree T let siblings(v) denote the set
of nodes in T that share the same parent with v. Then node v is d-dominant in T (denoted by
domT (v, d)) i�

w(T (v)) ≥ d ∧ ∀v′ ∈ siblings(v) : w(T (v)) ≥ w(T (v′)) + d

The chain selection rule in the Bitcoin protocol can be described using the notion of the d-
dominant node. Let w(T ) be the height of some tree T . Each player P , starting from the root of
his TP

r tree, greedily decides on which block to add on the chain by choosing one of its 0-dominant
children and continuing recursively4 (ties are broken based on time-stamp, or based on which block
was received �rst). Interestingly, the GHOST selection rule can also be described in exactly the same
way by setting w to be the number of nodes of the tree. Thus we have a uni�ed way for describing
the chain selection rule in both protocols. Building upon this formalism we can describe the paths
that fully informed honest players may choose to mine at round r (denoted by HonestPaths(r)) in
a quite robust way, thus showcasing the power of our notation.

HonestPaths(r) = {p = vrootv1 . . . vk|p is a root-leaf path in T ∃
r ∧ ∀i ∈ {1, .., k} domT∃

r
(vi, 0)}

We conclude this section by presenting two crucial properties that both the Bitcoin and GHOST

backbones satisfy. The �rst property states that by broadcasting k blocks the adversary can decrease
the dominance of some block at most by k. Intuitively, it tells us if the adversary's ability to mine
new blocks is limited, then his in�uence over the block tree is also limited. On the other hand, the
second property states that uniquely successful rounds increase the dominance only of nodes in the
path from the root to the new block.

Proposition 6. For the Bitcoin and GHOST backbones protocols it holds that:

� If the adversary publishes k ≤ d blocks at round r − 1 then for every block v ∈ T+
r−1 it holds

that domT+
r−1

(v, d) implies domT∃
r
(v, d− k).

� If r is a uniquely successful round and the newly mined block extends a path inHonestPaths(r),
then for any block v in T ∃

r it holds that: domT∃
r
(v, d) implies

domT+
r
(v, d+ 1) if and only if v is in the path from vroot to the new block.

4 Security Analysis and Applications of the GHOST Backbone

In this section, we prove that the GHOST backbone protocol is su�cient to construct a robust trans-
action ledger. From now on we assume that w(T ) is the total number of nodes of tree T .

4This is exactly algorithm 1 with a minor modi�cation. At line 6 the subtree T that is chosen maximizes w(T ).
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4.1 The Fresh Block Lemma

In [10], it was shown that the Bitcoin backbone satis�es two main properties: common pre�x and
chain quality. However, a fundamental property needed for their proof, is that the chain of honest
players grows at least at the rate of successful rounds. This does not hold for GHOST. The reason is
that, if a chain received by an honest player is heavier than the one he currently has, he will select
it, even if it is shorter. To re�ect these facts, we develop an argument that is a lot more involved
and leads to a power lemma that can be shown for a backbone protocol, that we call the �fresh
block lemma.� First, we introduce a new notion, that of a path that all of its nodes are dominant
up to a certain value. The more dominant a path is, the harder it gets for the adversary to stop
honest players from choosing it.

De�nition 7. (pdom(r, d)) For d > 0, pdom(r, d) is the longest path p = vrootv1 . . . vk in T+
r s.t.

p ̸= vroot ∧ ∀i ∈ {1, . . . , k} : domT+
r
(vi, d)

If no such path exists pdom(r, d) = ⊥.

Note that the dominant path pdom(r, d), if it is not ⊥, will be unique (this stems from the
requirement that d > 0).

In the next lemma, we show that the e�ort that uniquely successful rounds impose on the
adversary is cumulative. For any sequence of m (not necessarily consecutive) uniquely successful
rounds starting at some round r′, no matter the strategy of the adversary, at round r there will be at
least one honest block in pdom(r,m− k) where k is the number of adversarial blocks that have been
released during rounds [r′ − 1, r − 1] (and as a result, in such case, it will be pdom(r,m− k) ̸= ⊥).
This establishes the robustness of pdom in the sense that only adversarial blocks can change it and
they do so in a linear dependency to the degree of its dominance at worst.

Lemma 8. Let r1, .., rm be uniquely successful rounds from round r′ until round r. If the adversary
broadcasts k < m blocks from round r′ − 1 until round r − 1, then there exists an honest block b,
mined in one of the rounds r1, .., rm such that b is in pdom(r,m− k).

Proof sketch. The proof is based on two observations. Firstly, if the adversary does not broadcast
a block in the round before a uniquely successful round s, then the newly mined honest block will
be in pdom(s, 1). Secondly, if the adversary broadcasts k < d blocks in the round before a uniquely
successful round s, all blocks in pdom(s − 1, d) at round s − 1 will also be in pdom(s, d + 1 − k).
It follows that for each uniquely successful round, unless the adversary publishes a block, there
will be an honest block introduced in the dominant path and such block will be maintained in the
dominant path unless the adversary broadcasts as many blocks as the number of uniquely successful
rounds that follow. As a result, in the period from round r′ until round r, our assumption that
the adversary broadcasts k blocks that are strictly less than m, the number of uniquely successful
rounds, implies that at least one block will be maintained in pdom(r,m− k).

The fresh block lemma is stated next. Informally, it states that at any point in time, in any
past sequence of s consecutive rounds, at least one honest block was mined on these rounds that
is permanently inserted in the chain that every honest player chooses to adopt, with overwhelming
probability on s.

Lemma 9. (Fresh Block Lemma) Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Then, for all
s ∈ N and r ≥ s it holds that there exists a block mined by an honest player on and after5 round

5Throughout this work, we only consider executions that run for a polynomial number of rounds in the security
parameter κ.
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r − s, that is contained in the chain which any honest player adopts on and after round r with

probability 1− e−Ω(δ2s).

Proof sketch. The main idea here is that after s rounds, due to lemma 8, a block mined by an honest
player in a uniquely successful round will be in the chain which any honest player adopts on the
following rounds. This is because the adversary does not have the required resources to compensate
for all uniquely successful rounds that are going to occur in this round interval. However, as the time
passes the adversary may use blocks mined in the past to compensate for the uniquely successful
rounds in a given interval. We prove that in order to use blocks mined from some point in the past,
he must compensate all uniquely successful rounds from that point on, which again is impossible if
this point is more than s rounds old.

4.2 A robust public transaction ledger based on GHOST

In [10] it is shown how to instantiate the functions V,R, I so that the resulting protocol, denoted by
ΠPL, built on top of the Bitcoin backbone, implements a robust transaction ledger (see Appendix A,
De�nition 18). In this section we show how we can achieve the same goal, using exactly the same
instantiation of V,R, I, but on top of the GHOST backbone. We call the resulting protocol, ΠGHOST

PL .
Having established that every s rounds a fresh and honest block is inserted in the chain of all

players, we are in a position to prove the main properties of a robust transaction ledger Liveness
stems from the fact that after s2 rounds, s fresh honest blocks mined on this interval will be in the
chain of any honest player. On the other hand, Persistence is implied by the fact that all honest
players share a freshly mined block. This block will stay in their chains for the subsequent rounds,
therefore the history until this block has become persistent. But this block cannot be very deep in
the main chain, because the number of blocks until the head of the chain is bounded by the number
of blocks generated from the time the fresh block was mined.

Lemma 10 (Liveness). Assume γ ≥ (1 + δ)β, for some δ ∈ (0, 1). Further, assume oracle Txgen
is unambiguous. Then for all k ∈ N protocol ΠGHOST

PL satis�es Liveness with wait time u = k(k + 1)

rounds and depth parameter k with probability at least 1− e−Ω(δ2k).

Proof. We prove that assuming all honest players receive as input the transaction tx for at least u
rounds, there exists an honest party at round r with chain C such that tx is included in C⌈k. From
Lemma 9 it follows that for all round intervals of the form [r− (i+1)k, r− ik] and for i ∈ {0, ..., k},
there exists at least one block in chain C that was computed on this interval by an honest player
with probability at least 1 − e−Ω(δ2k). By the union bound it follows that a total of k + 1 blocks
where one of them contains tx are included in C with probability at least 1− e−Ω(δ2k). Thus there
exists an honest party at round r with chain C such that tx is included in C⌈k.

Lemma 11 (Persistence). Suppose γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Then for all k ∈ N
protocol ΠGHOST

PL satis�es Persistence with probability 1 − e−Ω(δ2k), where k/((1 + δ)f) is the depth

parameter.

Proof. Let C be the chain that an honest player adopts at round r. It is su�cient to show that the
head of C⌈k has been computed before round r − k/((1 + δ)f), because then from Lemma 9 there
exists an honest block computed at least at this round that is on the chain that players adopt from
round r and afterwards.

Suppose, for the sake of contradiction, that the head of C⌈k is computed after round r− k/((1+
δ)f). The length of C cannot be greater than the number of solutions Y obtained from the oracle
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in this amount of rounds. By the Cherno� bound,

Pr[Y ≥ (1 + δ)f(k/((1 + δ)f))] ≤ e−δ2fs/3.

It follows that, with probability 1 − e−δ2fs/3, Y < k which is a contradiction and thus the lemma
follows.

Corollary 12. The protocol ΠGHOST
PL is a robust transaction ledger.

5 Liveness Attacks

In this section we explore through simulation6 a novel attack on the transaction con�rmation time of
GHOST, against the optimal attack on Bitcoin, providing some interesting insights on the optimality
of the two protocols. The attacks we are going to consider follow a simple template depicted in
Figure 1. First, at the attack preparation phase, the attacker tries to build the maximum possible
advantage against honest players, until the time the target transaction tx is broadcast. Next, in the
transaction denial phase, he tries to delay a new honest block containing tx to enter honest players'
chains. When a given condition is met, he proceeds to the blockchain retarder phase, where he tries
to decrease the rate at which the block containing tx gets deeper in the chain. Remember, that
the veri�er waits until tx is buried k-blocks deep in order to verify. Therefore, by slowing down the
chain growth speed, con�rmation time is extended furtherer more.

Figure 1: The template of our attacks on con�rmation time.

5.1 On Bitcoin Liveness

An attack based on this template against the con�rmation time of Bitcoin is quite straightforward.
In the attack preparation phase, honest players want to ensure that at the point the target trans-
action is released they would have the maximum advantage. Advantage here is interpreted as the
number of blocks the adversary's secret chain is ahead compared to the honest players' chains. The
sel�sh mining attack, where the attacker (1) tries to mine a secret chain ahead of the honest players,
so when they surpass him, he adopts their chain and (2) only broadcasts blocks from his chain when
the honest parties have mined a block in the same height, has exactly this property. Observe that
the adversary is rushing and thus always wins ties. Also, the chains of honest parties grow at least
at the rate of successful rounds. Thus, the rest of our attack should focus on extending as much as
possible the transaction denial phase, while not helping honest parties extend their chains faster.
Hence, the worst the adversary can do, is to prevent tx from getting in honest players' chains after
it has been broadcast in the network. In order to achieve this, he continues to mine the secret chain
from the previous phase. The only di�erence from before, is that he does not leave his chain when

6All simulations are carried under the assumptions of our model.
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honest players get ahead, but instead he persists on mining his own chain with the hope that he
will surpass the honest miners. This way the chains of honest players grow as slow as possible, and
the height at which the �rst honest block is added on the main chain is maximized.

Proposition 13. The attack presented above against Liveness is optimal with respect to con�rma-
tion time.

Proof sketch. The optimality of this attack stems from two facts: (1) the advantage of honest players
when tx is released is maximum and (2) during the transaction denial phase, honest players chains'
grow at least as slow as against any other attack. For the sake of contradiction suppose that the
�rst fact does not hold. Then there exists some attacker A′ such that at the time tx is released, has
a secret chain that gives him greater advantage. But in order for any attacker to have advantage
d, there must be a round prior to the release of tx, where the number of blocks that the adversary
has mined since that round is greater or equal to the number of successful rounds plus d. This is a
contradiction, since our attacker would also have at least the same advantage.

Suppose now that there exists a better attacker A′′ against con�rmation time than the one
described above. From the second fact, it follows that he must have added the target transaction at
an increased height in the chains of honest players compared to our attack. Otherwise, at the time
where the transaction is con�rmed for our attacker, a chain with su�cient length would have been
broadcast such that the target transaction would have been con�rmed by A′′ too. But in order to
increase the height at which the transaction enters the chain, the adversary must have mined more
blocks than the number of successful rounds. This is a contradiction, since our attacker would have
taken advantage of this fact and would have also added the transaction at least at the height that
A′′ had. Hence, our proposition follows.

5.2 On GHOST Liveness

GHOST was designed to prevent sel�sh-mining type of attacks. Hence, the attack we described for
Bitcoin is going to be much less e�cient here. Instead, a weak point of GHOST is that chain length
is not strictly increasing as time goes by. The key idea of our scheme is that the attacker tries
to reduce the speed that the chains of honest players grow (from now on chain growth speed) and
thus is named the GHOST-retarder attack. By succeeding, he can e�ectively decrease the transaction
con�rmation time for any observer waiting for a transaction to be k blocks deep in his chain.

The GHOST-retarder attack exploits the fact that in GHOST thin and long trees may have the same
or less weight than short and wide trees. So in the blockchain retarder phase of our attack, the
goal of the adversary is to mine, in secret, a subtree of height two that is heavier than the naturally
longer subtree that the honest players are mining by themselves. If the adversary's subtree gets
heavier, he can publish it and following the GHOST rule force the honest players to switch to a shorter
chain. By doing this repeatedly, every time starting from a recently mined block, and by restarting
if honest miners get too far ahead, a concrete reduction of the chain growth speed is achieved as
shown in Figure 3, that increases as the adversaries power increases. Thus, contrary to the attack on
Bitcoin, we shift our focus to the blockchain retarder phase of the attack template presented earlier.
A more detailed description of the blockchain retarder phase of our attack is given in Appendix C.

In the attack preparation phase of our attack, the attacker behaves just like in Bitcoin; he
tries to mine a secret chain that weights more than the tree the honest parties build. Notice, that
this process is less e�cient compared to the same attack on Bitcoin, because the adversary has
to compensate for all blocks the honest parties mine, and not only for the number of successful
rounds. Next, the adversary using the advantage obtained from the previous phase, tries to stop
the transaction from being adopted by honest players (as in the Bitcoin attack). The only di�erence
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is that when the honest parties mine a heavier subtree, he immediately proceeds to the blockchain
retarder phase that was described earlier.

Figure 2: The expected con�rmation time of GHOST against the retarder attack for adversaries of
increasing power. The power of the honest players is f = 0.3.

5.3 Analysis of the chain growth speed reduction

To supplement our earlier claims, in this subsection we argue that the speed at which the chains of
honest players grows for the GHOST backbones is slower than that of Bitcoin.

Let the random variable NB(r, 1 − p) denote the number of successes in a sequence of i.i.d.
Bernoulli trials, with probability of success 1 − p, until r failures occur. The random variable will
follow the well known negative binomial distribution. It holds that:

Pr[NB(r, 1− p) ≤ k] = 1− I1−p(k + 1, r)

where I1−p(k + 1, r) is the regularized incomplete beta function.
Suppose that we launch the GHOST-retarder phase with parameter r (see Appendix C); the

adversary tries to mine a short and wide tree with r nodes before the honest players manage to
mine a tree with the same number of nodes. Let E1 be the event where the number of rounds that
the adversary needs to have r successes is less than s and E2 be the event where the number of
rounds that the honest parties needs to have r successes is more than s. Then the probability that
the adversary will win the race after at least s rounds is greater than the intersection of E1 and E2.

Pr[E1 ∧ E2] ≥Pr[NB(r, 1− p) ≤ βs

p
∧NB(r, 1− p) >

αs

p
] =

(1− I1−p(
βs

p
+ 1, r))I1−p(

αs

p
+ 1, r)

The last equality follows from the fact that the two events are independent. For f = 0.3, α =
0.17, β = 0.13, p = 10−4, s = 37 and r = 6 we get that Pr[E1 ∧ E2] ≥ 0.14. Thus the average
number of rounds at which a new block is added to the chain of an honest player in the GHOST

backbone is at least:
E[rounds] ≥ (1− 0.14)/γ′ + 0.14 · 37/2 ≥ 8.1
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where γ′ is the probability of a successful round. But γ′ = 1− (1− p)q(n−t) ≈ 1− e−α = 0.156, for
su�ciently small p. On the other hand, the expected number of rounds it takes for a new block to
be added to the chain of an honest player for the Bitcoin backbone is 1/γ′ ≈ 6.4 rounds. Hence, as
our experimental results also showed, there exists a clear di�erence at the rate at which the chains
of honest players grow between the two protocols.

(a) (b)

Figure 3: Chain speed from experimental analysis for f = 1. Note that as the hashing power of the
adversary increases both Bitcoin and GHOST speed decrease. However, Bitcoin is clearly favorable
to GHOST (a) and in fact the ratio of Bitcoin to GHOST chain speed increases (b).

5.4 Comparison

The analysis of the previous section shows that the chain growth speed of GHOST is signi�cantly
smaller than that of Bitcoin. Hence, as k grows bigger we also expect the con�rmation time of
Bitcoin to be smaller than that of GHOST (see Figure 5 and 6), since new blocks will take more
time to be added. Our simulation also shows (see Figure 4) that our attack performs worse for β
approaching γ compared to Bitcoin. So the optimal scenario for our attack, is an adversary who
does not have enough power to break security, but using the attack can slow down con�rmation
times signi�cantly for the entire network. Since it is not clear whether the GHOST-retarder attack is
optimal, it remains an open question whether a more e�cient attack on con�rmation time can be
devised β approachesγ.

5.5 Uncle-only GHOST

A prominent GHOST variant is uncle-only GHOST. It was introduced along with Ethereum as a variant
between GHOST and Bitcoin. The way uncle-only GHOST works is that each block can refer to a
number of uncles (siblings of his ancestor blocks), and for each uncle referred, the chain gains
one more unit of weight. Obviously in the same chain, the same uncle can be referred only once.
Moreover, in order to reduce the computational overhead of counting uncles deep in the tree, only
uncles that are at most 7 levels above the referring block are counted.

Interestingly, our GHOST-retarder attack still applies to this variant with a small modi�cation.
The adversary again tries to mine a short and wide tree. When he decides to attack he has to mine
a block under the short tree, in order to capitalize on the blocks mined previously (see Figure 7
for an example). The analysis we did on subsection 5.3 still applies with a small added factor; the
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(a) (b)

Figure 4: The expected con�rmation time of GHOST and Bitcoin for (a) f = 0.3 , (b) f = 1 against
the two attacks described in section 5, as well as the expected con�rmation of Bitcoin when the
attacker stays silent. Notice that when the hashing power of the adversary approaches γ, Bitcoin's
con�rmation becomes worse than that of GHOST.

uncle-base GHOST would need on expectation at least :

E[rounds] ≥ (1− 0.14)/γ′ + 0.14 · 37/3 ≥ 7.24 rounds

while Bitcoin would need 6.1 rounds and plain GHOST would need 8.1 rounds, in order for the chains
of honest players to grow by a block.
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A Security Properties

A.1 Security Properties of the Backbone protocols

In [10, De�nitions 2&3] two crucial security properties of the Bitcoin backbone protocol were con-
sidered, the common pre�x and the chain quality property. The common pre�x property ensures
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Figure 7: The GHOST-retarder attack against (a) the original and (b) uncle-only GHOST. Honest (resp.
adversarial) blocks are shown with blue (resp. red). Referred uncles are shown with the dotted lines.
The score of a chain in uncle-only GHOST, is the score of the last block, and the chain ending in the
heaviest block is chosen.

that two honest players have the same view of the blockchain if they prune a small number of blocks
from the tail. On the other hand the chain quality property ensures that honest players chains' do
not contain long sequences of adversarial blocks. These properties are de�ned as predicates over the

random variable formed by the concatenation of all parties views' denoted by view
H(·)
Π,A,Z(κ, q, z).

De�nition 14 (Common Pre�x Property). The common pre�x property Qcp with parameter k ∈ N
states that for any pair of honest players P1, P2 maintaining the chains C1, C2 in viewH(·)

Π,A,Z(κ, q, z),
it holds that

C⌈k1 ⪯ C2 and C
⌈k
2 ⪯ C1.

De�nition 15 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ℓ ∈ N states that for any honest party P with chain C in view

H(·)
Π,A,Z(κ, q, z), it holds that for

any ℓ consecutive blocks of C the ratio of adversarial blocks is at most µ.

These two properties were shown to hold for the Bitcoin backbone protocol. Formally, in [10,
Theorems 9&10] the following were proved:

Theorem 16. Assume f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that

λ2−fλ−1 ≥ 0. Let S be the set of the chains of the honest parties at a given round of the backbone

protocol. Then the probability that S does not satisfy the common-pre�x property with parameter k
is at most e−Ω(δ3k).

Theorem 17. Assume f < 1 and γu ≥ (1 + δ)λβ for some δ ∈ (0, 1). Suppose C belongs to an

honest party and consider any ℓ consecutive blocks of C. The probability that the adversary has

contributed more than (1− δ
3)

1
λℓ of these blocks is less than e−Ω(δ2ℓ).

A.2 Robust public transaction ledgers

In [10] the robust public transaction ledger primitive was presented. It tries to capture the notion
of a book where transactions are recorded, and it is used to implement Byzantine Agreement in the
honest majority setting.

A public transaction ledger is de�ned with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an e�cient membership test. A ledger x ∈ L is a vector of
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sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts,
denoted a1, a2, . . . Ledgers correspond to chains in the backbone protocols. An oracle Txgen is
allowed in the protocol execution that generates valid transactions (this represents transactions
that are issued by honest parties). For more details we refer to [10].

De�nition 18. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it satis�es the following two properties:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger, then tx will always be reported in the same position in the ledger by any
honest player from this round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

These two properties were shown to hold for the ledger protocol ΠPL build on top of the Bitcoin
backbone protocol. Formally, in [10, Lemma 15&16] the following were proved:

Lemma 19 (Persistence). Suppose f < 1 and γu ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ− 1 ≥ 0. Protocol ΠPL satis�es Persistence with probability 1− e−Ω(δ3k), where k
is the depth parameter.

Lemma 20 (Liveness). Assume f < 1 and γu ≥ (1 + δ)λβ, for some δ ∈ (0, 1), λ ∈ [1,∞) and let

k ∈ N. Further, assume oracle Txgen is unambiguous. Then protocol ΠPL satis�es Liveness with

wait time u = 2k/(1− δ)γu and depth parameter k with probability at least 1− e−Ω(δ2k).

B Probability of uniquely successful rounds

In this section we demonstrate a new lower bound on the probability of uniquely successful rounds.
This bound allows us to argue about the security of GHOST even when f is larger than 1.

Lemma 21. For p < 0.1 and a ∈ (p, 2k) : e−a−kp ≤ (1− p)
a
p
−k ≤ e−a+kp

Proof. The second inequality is well studied and holds for p > 0. For the �rst inequality by solving
for a we get a ≤ k ln(1−p)

1+
ln(1−p)

p

which holds for p < 0.1 and a ∈ (p, 2k).

Let γ be a lower bound on the probability of a uniquely successful round (a round where only
one block is found). From the event where (n− t) players throw q coins each and exactly one coin
toss comes head, the probability of a uniquely successful rounds is at least:

(n− t)qp(1− p)q(n−t)−1 ≥ αe−α−kp

We set γ = ae−a−kp, for the minimum k that satis�es the relation α ∈ (p, 2k). This is a
substantially better bound that γu and is also a lower bound for the event that at a round is
successful. The relation of the two bounds is depicted in Figure 8.
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Figure 8: Comparison of the lower bounds of uniquely successful rounds γ and γu, used respectively
in this work and [10]. Notice that the new lower bound allows as to argue about security when f is
greater than 1.

C GHOST-retarder phase

Algorithm 3 The algorithm of the adversary on the chain growth attack with parameter r (r
must be greater or equal to 3).

1: ⟨tH , tA⟩ ← ⟨0, 0⟩ ▷ The weight of the competing trees.
2: Update the block tree
3: C ← argminC∈HonestPaths|C|
4: Mine head(C)
5: if |blocks mined| = 0 then
6: go to 1
7: else

8: b← newly mined block
9: Mine b
10: end if

11: while tH < r do
12: Update the block tree
13: ⟨tH , tA⟩ ← ⟨tH + new honest blocks, tA + new adversarial blocks⟩
14: if (tA > tH) and (length of honest subtree ≥ r) then
15: Broadcast subtree(b)
16: ⟨tH , tA⟩ ← ⟨0, 0⟩
17: go to 1
18: end if

19: Mine b
20: end while

D GHOST Backbone protocol

In this section we present for completeness the remaining procedures of the GHOST backbone protocol.
The function pow is the same as the one de�ned in [10]. The function update gets a block tree and
a set of blocks and returns the updated tree containing all new blocks.
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Algorithm 4 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C).

1: function pow(x, C)
2: if C = ε then ▷ Determine proof of work instance
3: s← 0
4: else

5: ⟨s′, x′, ctr′⟩ ← head(C)
6: s← H(ctr′, G(s′, x′))
7: end if

8: ctr ← 1
9: B ← ε
10: h← G(s, x)
11: while (ctr ≤ q) do
12: if (H(ctr, h) < D) then
13: B ← ⟨s, x, ctr⟩
14: break

15: end if

16: ctr ← ctr + 1
17: end while

18: C ← CB ▷ Extend chain
19: return C
20: end function

Algorithm 5 The tree update function, parameterized by q, D and hash functions H(·), G(·). The
inputs are a block tree T and an array of blocks.

1: function update(T ,B)
2: foreach ⟨s, x, ctr⟩ in T
3: foreach ⟨s′, x′, ctr′⟩ in B
4: if ((s′ = H(ctr,G(s, x))) ∧ (H(ctr′, G(x′, ctr′)) < D)) then
5: childrenT (⟨s, x, ctr⟩) = childrenT (⟨s, x, ctr⟩) ∪ ⟨s′, x′, ctr′⟩ ▷ Add to the tree.
6: end if

7: return T
8: end function
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E Proofs

E.1 Proposition 6

Proof. The lemma stems from the fact that adding only one block in the tree reduces or increases
the dominance of some block by at most 1. For the �rst bullet, adding k blocks one by one, implies
that the dominance of any node will reduce or increase its dominance by at most k. For the second
bullet, notice that dominance increases only for blocks that get heavier. The only blocks that get
heavier in this case are the ones in the path from the root to the newly mined block. Since these
blocks are in HonestPaths(r), they are at least 0-dominant and so their dominance will further
increase. Furthermore, the newly mined block is 1-dominant since he does not have any siblings.

Figure 9: An example of Proposition 6.

E.2 Lemma 8

Proof. We are �rst going to prove two preliminary claims that show the e�ect of a uniquely successful
round to pdom. The �rst claim shows that if a uniquely successful round s is not compensated
accordingly by the adversary, a newly mined block will be forced into pdom(s, 1).

Claim 1. Let round s be a uniquely successful round and b be the honest block mined at round s. If
the adversary does not broadcast any block at round s− 1 then b ∈ pdom(s, 1).

Proof of Claim. First, notice that since the adversary does not broadcast any block it holds that
for any honest player P , T ∃

s = TP
r . Therefore, all nodes in the path from vroot to b are at least
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0-dominant in T ∃
s . Since only this block is added in T+

s it holds that all nodes up to the newly
mined block are 1-dominant. Thus it follows that b ∈ pdom(s, 1). ⊣

The second claim shows the e�ect of a uniquely successful round s to an existing pdom(s− 1, d)
path. Notice that if the adversary broadcasts less than d blocks the same nodes continue to be at
least 1-dominant in the following round.

Claim 2. Let round s be a uniquely successful round, b be the honest block mined at round s and

pdom(s− 1, d) ̸= ⊥. If the adversary broadcasts (i) k < d blocks at round s− 1 then pdom(s− 1, d) ⊆
pdom(s, d + 1 − k), (ii) k = d blocks at round s − 1 then either b ∈ pdom(s, 1) or pdom(s − 1, d) ⊆
pdom(s, 1) and b is a descendant of the last node in pdom(s− 1, d).

Proof of Claim. There are two cases. In the �rst case suppose the adversary broadcasts k < d blocks.
Then with these blocks the adversary can lower the dominance in T ∃

s of nodes in pdom(s−1, d) by k.
Thus pdom(s− 1, d) will be a pre�x of all the chains in HonestPaths(s). But because s is a uniquely
successful round, the dominance in T+

s of all nodes in pdom(s− 1, d) will increase by one. Therefore
pdom(s− 1, d) ⊆ pdom(s, d+ 1− k) and b will be a descendant of the last node in pdom(s− 1, d).

In the second case suppose the adversary broadcasts k = d blocks. If he does not broadcast all
of these blocks to reduce the dominance in T ∃

s of the nodes in pdom(s − 1, d), then pdom(s − 1, d)
will be a pre�x of all the chains in HonestPaths(s) and as in the previous case, pdom(s − 1, d) ⊆
pdom(s, d+ 1− k) and b will be a descendant of the last node in pdom(s− 1, d).

Otherwise the adversary will reduce the dominance in T ∃
s of at least one node in pdom(s− 1, d)

to zero. If b is a descendant of the last node in pdom(s−1, d), then all nodes in pdom(s−1, d) will be
1-dominant in T+

s and pdom(s− 1, d) ⊆ pdom(s, 1) = pdom(s, d+ 1− d). If b is not a descendant of
the last node in pdom(s− 1, d), then for the player P that mined this block it holds that TP

s = T ∃
s ,

because he would have not mined a chain that does not contain pdom(s−1, d) at round s otherwise.
Therefore, P at round s was mining a chain that belonged to HonestPaths(s, vroot) and thus all
nodes in the chain are at least 0-dominant in T ∃

s . But because s is a uniquely successful round the
dominance of all nodes in the chain that b belongs to will increase by one and thus b ∈ pdom(s, 1). ⊣

Let bi denote the honest block mined at round ri. Let us assume that r = rm. We are going to
prove the lemma using induction on the number of uniquely successful rounds m.

For the base case suppose m = 1. The adversary does not broadcast any block until round
r1 − 1 and from the �rst claim b1 ∈ pdom(r1, 1). Thus the base case is proved. Suppose the lemma
holds for m − 1 uniquely successful rounds and let k1 be the number of blocks that the adversary
broadcasts in the round interval [r′ − 1, rm−1 − 1]. We have two cases.

(First case) k1 = m− 1 and the adversary broadcasts no blocks in the rest of the rounds. From
the �rst claim it follows that bm ∈ pdom(rm, 1).

(Second case) k1 < m − 1 and from the induction hypothesis there exist blocks b′1, ..., b
′
m−1−k1

mined by honest players at the uniquely successful rounds r1, .., rm−1 where b
′
i ∈ pdom(rm−1, i). Let

k2 be the number of blocks that the adversary broadcasts until round rm − 2 and k3 the number
of blocks he broadcasts at round rm − 1. If k2 = m − 1 then again from the �rst claim it follows
that bm ∈ pdom(rm, 1). If k2 < m − 1 then if k3 + k2 = m − 1 then from the second claim either
bm ∈ pdom(rm, 1) or b′m−1−k1

∈ pdom(rm, 1). If k3+ k2 < m− 1 then again from the second claim at
round rm, b

′
i ∈ pdom(rm−1, i) for i in {k2+k3+1, ..,m−1−k1} and either b′k2+k3

is in pdom(rm, 1)
or bm is in pdom(rm, 1). This completes the induction proof.

We proved that if k4 < m is the number of blocks the adversary broadcasts until round rm − 1,
then there exists honest blocks b′1, .., b

′
m−k4

s.t. b′i is in pdom(rm, i). Now in the case r > rm, let
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k5 < m−k4 be the number of blocks the adversary broadcasts in the remaining rounds. The lemma
follows easily from the second claim.

Remark 1. Let r1, .., rm be uniquely successful rounds up to round r and the honest block mined at
round r1 is in pdom(r1, 1). If the adversary broadcasts k < m blocks from round r1 until round r−1,
then there exists an honest block b mined in one of the rounds r1, .., rm such that b in pdom(r,m−k).
(to see why the remark holds notice that that blocks that the adversary broadcasts before round r1
a�ect only the dominant path at round r1, and not at the following rounds)

E.3 Lemma 9

Proof. Let random variable Zs1,s2 (resp. Z
pub
s1,s2) denote the number of blocks the adversary computes

(resp. broadcasts) from round s1 until round s2, and random variable Xs1,s2 denote the number of
rounds that are uniquely successful in the same interval.

We are �rst going to prove two preliminary claims. We show that as long as from some round
r and afterwards the adversary broadcasts less blocks than the total number of uniquely successful
rounds, the chain that any honest player adopts after round r extends pdom(r,X1,r − Z1,r). More
generally we can prove the following claim.

Claim 3. Consider any execution such that for all s2 ≥ s1 it holds that Z1,s2 < X1,s2. Then, the

chain that any honest player adopts after round s1 extends pdom(s1, X1,s1 − Z1,s1).

Proof of Claim. Since X1,s1 > Z1,s1 from Lemma 8 if follows that p = pdom(s1, X1,s1−Z1,s1−1) ̸= ⊥.
As long as the number of blocks that the adversary broadcasts at round s2 are less than the
dominance of the nodes in p in T+

s2−1, all honest players at round s2 will adopt chains containing
p. Thus uniquely successful rounds will increase the dominance of these nodes. But since from the
assumptions made, Z1,s2 < X1,s2 , in all rounds after round s1, the nodes in p are at least 1-dominant
in every TP

s2 where P is an honest player; the claim follows. ⊣

Next we will show that if successive u.s. rounds occur such that the blocks mined are on di�erent
branches, then the adversary must broadcast an adequate number of blocks, as speci�ed below.

Claim 4. Consider any execution where s1 < s2 < ... < sm are u.s. rounds and sk is the �rst u.s.

round such that the honest block mined in this round is not a descendant of the honest block mined

in round sk−1, for k ∈ {2, ..,m}. Then either Zpub
s1−1,sm−1 > Xs1,sm−1 or Z

pub
s1−1,sm−1 = Xs1,sm−1 and

the honest block mined at round sm will be in pdom(sm, 1).

Proof of Claim. Let b1, .., bm denote the honest blocks mined at rounds s1, .., sm respectively. We
are going to prove the claim for m = 2. Suppose, for the sake of contradiction, that Zpub

s1−1,s2−1 <
Xs1,s2−1. By the de�nition of s2, the honest blocks mined on all u.s. rounds until round s2 − 1 are
descendants of b1. From Lemma 8 at least one honest block b computed in one of the u.s. rounds in
[s1, s2 − 1] will be in pdom(s2 − 1, Xs1,s2−1 − Zpub

s1−1,s2−2). Since from our hypothesis the adversary

will broadcast less than Zpub
s2−1,s2−1 < Xs1,s2−1−Zpub

s1−1,s2−2 blocks at round s2−1, it is impossible for

b2 not to be a descendant of b and thus of b1 which is a contradiction. Hence, Zpub
s1−1,s2−1 ≥ Xs1,s2−1.

If Zpub
s1−1,s2−1 > Xs1,s2−1 the base case follows. Otherwise, Zpub

s1−1,s2−1 = Xs1,s2−1 and we have two

cases. In the �rst case, Xs1,s2−1 = Zpub
s1−1,s2−2 and at round round s2 − 1 the adversary does not

broadcast any block. From Claim 1 of Lemma 8, b2 will be in pdom(s2, 1). In the second case, it

holds that the adversary broadcasts exactly Xs1,s2−1 − Zpub
s1−1,s2−2 blocks at round s2 − 1. From
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Claim 2 of Lemma 8, since b2 cannot be a descendant of the last node of pdom(s2 − 1, 1), b2 will be
in pdom(s2, 1). Hence, the base case follows.

Suppose the lemma holds until round sm. By the inductive hypothesis we have two cases. In the
�rst case Zpub

s1−1,sm−1 > Xs1,sm−1 which implies Zpub
s1−1,sm−1 ≥ Xs1,sm . If no u.s. round happens during

rounds sm+1, . . . , sm+1−1 then from Claim 1 in the proof of Lemma 8 the claim follows. Otherwise,
a u.s. round s′ happens during these rounds, where the honest block mined is a descendant of bm.
Then we can make the same argument as for the base case starting from round s′ and get that
either Zpub

s′−1,sm+1−1 > Xs′,sm+1−1 or Z
pub
s′−1,sm+1−1 = Xs′,sm+1−1 and the honest block mined at round

sm+1 will be in pdom(sm+1, 1). Since Z
pub
s′−1,sm+1−1 < Zpub

sm−1,sm+1−1 and Xs′,sm+1−1 = Xsm+1,sm+1−1,
by the inequality of the inductive hypothesis the claim follows.

In the second case Zpub
s1−1,sm−1 = Xs1,sm−1 and the honest block bm mined at round sm will

be in pdom(sm, 1). From Remark 1 of the proof of claim Lemma 8, for an application of this
Lemma from rounds sm until sm+1 − 1 we can count the adversarial blocks starting from round
sm. Thus from the same argument as for the base case starting from round sm we get that either
Zpub
sm,sm+1−1 > Xsm,sm+1−1 or Zpub

sm,sm+1−1 = Xsm,sm+1−1 and the honest block mined at round sm
will be in pdom(sm, 1). By the equality of the inductive hypothesis the claim follows. ⊣

Next, we observe that Lemma 8 as well as Claim 3 and 4 can be applied on a subtree of the
block tree, if all honest blocks mined after the round the root of the subtree was mined are on this
subtree.

Observation 5. Let b be an honest block computed at round s1 that is in the chains adopted by
all honest players after round s2. Also, all the blocks mined at u.s. rounds after round s1 are
descendants of b. Then the following hold:

1. Regarding applications of Lemma 8 and Claim 4 on the subtree of the block tree rooted on b
after round s1, we can ignore all blocks that the adversary has mined up to round s1.

2. Regarding applications of Claim 3 after round s2, we can ignore all blocks that the adversary
has mined up to round s1.

To see why the observation holds consider the following. Since the adversary receives block b
for the �rst time at round s1 + 1, all blocks that the adversary mines before round s1 + 1 cannot
be descendants of b. Regarding the �rst point, blocks that are not descendants of b do not a�ect
the validity of Lemma 8 and Claim 4 on the subtree of the block tree rooted on b; this is because
blocks that are not descendants of b, do not a�ect the dominance of the nodes of the subtree rooted
at b. Regarding the second point, consider the dominant path at round s3 > s2 in the subtree that
is rooted on b. Then, this path can be extended up to the root node, since, by our assumption, b is
in the chains adopted by all honest players after round s2.

We are now ready prove the lemma. First, we are going to de�ne a set of bad events which we
will show that hold with probability exponentially small in s. Let BAD(s1, s2) be the event that
Xs1,s2 ≤ Zs1,s2 . In [10, Lemma 5], by an application of the Cherno� bounds it was proved that

assuming that γ ≥ (1 + δ)β for some δ ∈ (0, 1), then with probability at least (1 − e−
β
75

δ2s′)(1 −
e−

γ
32

δ2s′) ≥ 1− e−(min( β
75

, γ
32

)δ2s′−ln(2)) for any r′ > 0, s′ ≥ s:

Xr′,r′+s′−1 > (1 +
δ

2
)Zr′,r′+s′−1 (1)

Thus, there exists an appropriate constant ϵ = δ2min( β
75 ,

γ
32), independent of r, such that it

holds that for any r′ > 0, s′ ≥ s, BAD(r′, r′ + s′ − 1) occurs with probability at most e−ϵδ2s′+ln 2.
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Let BAD(s1) denote the event
∨

r′≥sBAD(s1+1, s1+r′). From an application of the union bound,

we get that for the function g(s) = ϵδ2s− ln 2+ln(1−e−ϵδ2), the probability that BAD(s1) happens
is:

Pr[
∨
r′≥s

BAD(s1 + 1, s1 + r′)] ≤
∑
r′≥s

e−ϵδ2r′+ln 2

≤ eln 2
∑
r′≥s

e−ϵδ2r′ ≤ eln 2 e−ϵδ2s

1− e−ϵδ2
≤ e−g(s)

We will use the convention that block bi is mined at round ri. Let b1 be the most recent honest
block that is in the chains that all honest players have adopted on and after round r, such that the
blocks mined at all u.s. rounds after round r1 are descendants of b1. This block is well de�ned,
since in the worst case it is the genesis block. If r1 is greater or equal to r − s, then the lemma
follows for block b1 with probability 1.

Suppose round r1 is before round r − s and that BAD(r1) does not happen. The negation of
BAD(r1) implies that Xr1+1,r−1+c > Zr1+1,r−1+c, for c ≥ 0. By Lemma 8 and Claim 3 there exists
at least one honest block b2, mined in a u.s. round and contained in the chains of all honest players
on and after round r. W.l.o.g. let b2 be the most recently mined such block. By the de�nition of
b1, b2 is a descendant of b1. If r2 is greater or equal to r − s then the lemma follows, since b2 is an
honest block mined on and after round r − s that satis�es the conditions of the lemma.

Suppose round r2 is before round r − s. Let r3 be the earliest u.s. round, such that b3 and the
blocks mined at all u.s. rounds afterwards are descendants of b2. Since b2 will be in the chains of all
honest players after round r, round r3 is well de�ned. Also let s1 < . . . < sm < . . . be the sequence
of u.s. rounds after round r1 that satisfy the conditions of Claim 4. That is, sk is the �rst u.s. round
such that the honest block mined in this round is not a descendant of the honest block mined in
round sk−1, for k ∈ {2, ..,m}. The �rst u.s. round after round r1 corresponds to s1.

We will argue that r3 is equal to some si > s1 in the aforementioned sequence. Suppose, for
the sake of contradiction that it does not. This implies that the honest block mined at round r3
(denoted by b3) is a descendant of the honest block mined at some round si of the sequence. W.l.o.g.
suppose that si is the largest such round that is before round r3. There are three cases. In the
�rst case, r2 < si < r3. By the de�nition of si and r3, the block mined at round si is an ancestor
of b3 and also a descendant of b2. Hence, si satis�es the de�nition of r3 which is a contradiction
(there is an earlier round than r3 with the same property). In the second case, si = r4, where b4 is
a descendant of b1 and either b2 = b4 or b4 is an ancestor of b2. Then b4 is a block that satis�es the
de�nition of b1, and is more recent, which is a contradiction. In the third case, r1 < si < r2 and the
block mined at round si is not an ancestor of b2. By the de�nition of si, the honest block mined at
round si is an ancestor of b3, that has been mined before round r2. But this is contradictory, since
no honest block can be an ancestor of b3, mined before round r2, but not be an ancestor of b2.

Since we proved that r3 is equal to some si we can apply Claim 4 from round r1 +1 until round
r3. Again, from Observation 5, regarding applications of Claim 4 after round r1 we can ignore
blocks that were mined before round r1 + 1. Then either Zr1+1,r3−1 ≥ Zpub

r1+1,r3−1 > Xr1+1,r3−1 or

Zr1+1,r3−1 ≥ Zpub
r1+1,r3−1 = Xr1+1,r3−1 and the honest block mined at round r3 will be in pdom(r3, 1).

Suppose, for the sake of contradiction, that round r3 is after round r2 + s. Then (r3 − 1) −
(r1 + 1) ≥ s and Zr1+1,r3−1 ≥ Xr1+1,r3−1. This is a contradiction, since in this case ¬BAD(r1)
implies Zr1+1,r3−1 < Xr1+1,r3−1. Therefore, r3 ≤ r2 + s < r. In addition, notice that ¬BAD(r1)
also implies

Xr1+1,r2+s > Zr1+1,r2+s (2)
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We are going to apply Lemma 8 and Observation 5 from round r3 until round r2 + s in the subtree
rooted at b2. According to the analysis we made previously there are two cases. In the �rst
case, Zpub

r1+1,r3−1 > Xr1+1,r3−1 or equivalently Zpub
r1+1,r3−1 ≥ Xr1+1,r3 . Suppose, for the sake of

contradiction, that r3 = r2 + s. Then Zr1+1,r2+s−1 ≥ Xr1+1,r2+s. But this is a contradiction, since
¬BAD(r1) implies Inequality 2. Therefore, r3 < r2 + s. From Inequality 2:

Xr3+1,r2+s ≥ Xr1+1,r2+s −Xr1+1,r3

> Zr1+1,rk+s − Zpub
r1+1,r3−1 ≥ Zpub

r3,r2+s

The last inequality, stems from two facts: that we can ignore blocks that were mined before round
r1 + 1 regarding applications of Lemma 8 and also that the blocks that the adversary broadcasts
at distinct rounds are di�erent (adversaries that broadcast the same block multiple times can be
ignored without loss of generality).

In the second case, Zpub
r1+1,r3−1 = Xr1+1,r3−1 and the honest block mined at round r3 will be in

pdom(r3, 1). Again from Inequality 2:

Xr3,r2+s = Xr1+1,r2+s −Xr1+1,r3−1

> Zr1+1,rk+s − Zpub
r1+1,r3−1 ≥ Zpub

r3,r2+s

The same analysis holds for all rounds after r2 + s. By an application of Claim 3, an honest
block b, computed in one of the u.s. rounds after round r2 and before round r, will be in the chains
that honest players adopt on and after round r. Since b2 is the most recently mined block, before
round r− s, included in the chain of all honest players, b must have been mined on and after round
r − s (since r3 > r2). Let A be the event that there exists a block mined by an honest player on
and after round r− s, that is contained in the chain which any honest player adopts after round r.
We have proved that (¬BAD(r1)) implies A. Then:

Pr[A] =Pr[A ∧BAD(r1)] + Pr[A ∧ ¬BAD(r1)]

≥Pr[A ∧ ¬BAD(r1)]

=Pr[A|¬BAD(r1)]Pr[¬BAD(r1)]

=Pr[¬BAD(r1)]

≥1− e−g(s)

Hence, the lemma holds with probability at least 1− e−g(s).
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