
An Unconditionally Hiding Auditing Procedure
for Multi-Party Computations

Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

Technische Universität Darmstadt, Germany,
lschabhueser@cdc.informatik@tu-darmstadt.de,

ddemirel@cdc.informatik@tu-darmstadt.de,
buchmann@cdc.informatik@tu-darmstadt.de

Abstract. In this work an unconditionally hiding auditing procedure for
computations on documents stored in distributed fashion is introduced.
There is only one multi-party computation (MPC) scheme providing au-
ditability which computationally protects the inputs of the computa-
tions. Building on this, we propose a computationally hiding solution
that uses bilinear maps and therefore produces no additional overhead
in the online phase. In addition, we introduce a second variation that is
the first auditable MPC scheme providing unconditional (or information-
theoretic) hidingness. We achieve this by combining bilinear maps with
unconditionally hiding commitments leading to only a small overhead in
the online phase. We prove our solutions secure and give arguments for
practicability and efficiency. The auditing procedures presented here are
an important contribution since distributed storage solutions, e.g. cloud
of clouds, allow for information-theoretic confidentiality. Using our tech-
nique, they can be extended to perform auditable computations on the
data stored.

Keywords: unconditional hidingness, auditable multi-party computa-
tions, cloud computing, distributed storage



2 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

1 Introduction

In this work an unconditionally hiding auditing procedure for computations on
documents stored in distributed fashion is introduced. This combines two very
important and up to date research directions, distributed (cloud) storage and
auditable Multi Party Computations (MPC). The idea of distributed storage is
to distribute documents among a set of parties, i.e. shareholders, using a secret
sharing scheme. However, a shortcoming of all existing solutions is that they lack
methods that allow for auditable computations on the data stored. Note that
this is an important functionality for many use cases, e.g. to compute statis-
tics on medical records. Instead of reconstructing the documents what exposes
them to threats the computations should be performed in distributed fashion,
i.e. each shareholder should evaluate the computations directly on its shares.
Thus, applying existing MPC schemes is a promising approach to fill this gap.
An alternative could be to use a verifiable computing scheme, such as [BCTV14]
or [BBFR15], but the verifiable computing solutions existing in literature come
with a significant computational overhead and the approaches providing uncon-
ditional hidingness rely on non-standard assumptions.

While performing MPC on shares is standard, there is only one approach
that covers auditability [BDO14]. In our work we use this solution as a basis and
present modifications that improve it with respect to efficiency and confiden-
tiality to meet the requirements of distributed storage architectures. Like the
solution presented in [BDO14] our variations consist of an input independent
preprocessing phase and an online phase. While the original proposal produces
an overhead factor of 2 to provide auditability of the online phase, we propose a
computationally hiding solution that produces no additional overhead. Besides
this speed up we introduce a second variation that is the first auditable MPC
scheme providing unconditional (or information-theoretic) hidingness, i.e. that
ensures confidentiality of the documents processed even in the presence of com-
putationally unbounded adversaries. Note that we achieve this while producing
only a small overhead in the online phase. This is an important contribution
since unlike storage architectures using encryption, distributed storage solutions
allows for information-theoretic confidentiality and are therefore suitable for use
cases where the security of the documents stored must be ensured for several
decades or even indefinitely. Note that if the audit trail hides the input docu-
ments only computationally all an attacker has to do is to store this data and to
wait until it is able to break the underlying mathematical hardness assumption
for the parameters chosen. Since processing power increases continually following
Moore’s law this attack will be successful sooner or later. There are estimations
how long cryptographic primitives should be secure for certain parameter sets.
However, there is no guarantee that new attacks or current trends in technol-
ogy, like quantum computers, do not allow to break the security earlier than
expected. In this case the audit data can be “decrypted” and confidentiality of
the documents is irreversibly lost. Thus, for critical documents having a solu-
tion that ensures confidentiality information-theoretically is a clear advantage
compared to merely computational secure solutions.



Title Suppressed Due to Excessive Length 3

High Level Explanation of our Contribution. In the following we will
briefly explain our approach for additions to give an intuition to our proto-
col. The case for multiplications and especially unconditional hidingness is a
lot more complex and omitted here. Our scheme uses a distributed storage ar-
chitecture, e.g. [BCQ+11,BCQ+13,Clo15,LHS15], containing of n shareholders
sj each having a unique ID j ∈ {1, · · · , n}. To distribute a set of documents
m1, · · · ,mN Shamir Secret Sharing [Sha79] is used, where t shareholders, for
2t ≤ n, must participate in the reconstruction to reveal the document. More
precisely, for each document mi the document owner chooses a function fi(x) =
mi + ai,1 + ai,2x + · · · , ai,t−1xt−1, where the document is the free coefficient
and the other coefficients ai,1, · · · , ai,t−1 are chosen uniformly at random. Then
it sends to each shareholder sj share σj,i = fi(j). Note that this construction
allows to compute linear functions locally, e.g. shares to fN+1(x) = f1(x)+f2(x)
can be computed by σj,1 +σj,2 = f1(j)+f2(j) = fN+1(j), for j ∈ {1, · · · , n}. To
ensure that the documents were computed correctly by the storage system we
accompanied this process with an auditable MPC scheme. Thus, each data owner
publishes a commitment c(mi) to each document mi. Since also commitments are
linearly homomorphic operations performed on the documents, or rather shares,
can also be performed directly on the commitments, i.e. c(mN+1) = c(m1)·c(m2).
The hidingness (computational or unconditional) of the commitments generated
ensure that the auditors learn nothing about the input documents m1 and m2

while the bindingness ensures that commitment c(mN+1) can only be opened
if mN+1 has been computed correctly. Building on this idea we provide the
first protocol that allows for an audit trail for arbitrary computations that is
information-theoretic secure, i.e. not even a computationally unbounded attacker
having access to the audit data nor a subset with less than t shareholders is able
to reveal the input documents. To achieve this we used Pedersen commitments
[Ped91] and bilinear maps to prove the correctness of computations. Since bi-
linear maps also allow to improve the efficiency of computational hiding audits
in this work we provide both variations, a computational hiding and a seconds
unconditional hiding auditing procedure.

Structure The paper is structured as follows. In Section 2 we provide the
related work followed by the preliminaries in Section 3. In Section 4 we first
introduce the setup and security definitions used and then present our solution
in detail. In Section 5 we present the assumptions made and prove their security.
Furthermore, we discuss certain additional properties, i.e. practicability and ef-
ficiency. Finally, in Section 6 we provide a conclusion and present directions for
future work.

2 Related Work

In the context of electronic voting several auditable tallying procedures providing
unconditional confidentiality of the votes cast, such as [CRS05] or [DvdGdSA12],
have been proposed. However, they do not provide solutions for arbitrary arith-
metic circuits. In [AF07] a non-interactive zero-knowledge prove for circuit-SAT



4 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

has been proposed using bilinear maps to perform multiplications. However, they
do not provide auditing nor do they perform computations on shares. In [SV15]
it is shown how to construct zero-knowledge proofs for multi-party computations
based on threshold encryption (such as [CDN01]) in the Random Oracle Model.
Their solution allows for public auditing, but the overhead for the sharehold-
ers is not analysed. Furthermore, our solution is proven secure in the standard
model. In [BDO14] the authors introduce the first auditable multi-party compu-
tation scheme. Their approach allows for a quite efficient computation process
for a SPDZ type MPC (see [DPSZ12]). Their scheme however is not uncondi-
tionally hiding and is based on an (n, n) secret sharing scheme, which requires
all shareholders to be present during reconstruction. Thus, if one server has a
malfunction the documents cannot be accessed anymore. Our scheme provides
an unconditional hiding audit trail and requires only a subset of shareholders to
attend the computation and document reconstruction process. Verifiable comput-
ing schemes such as [PHGR13], [CFH+15], [BCG+13], [BCTV14] or [BBFR15]
allow the verification of arbitrary arithmetic circuits. However, they demand a
significant computational overhead from the shareholders and approaches provid-
ing unconditional hidingness come with non-falsifiable assumptions. Our setting
has a somewhat more expensive verification phase, but minimises the sharehold-
ers overhead and only relies on standard assumptions.

3 Preliminaries

3.1 Secret Sharing

Shamir secret sharing allows a data owner to distribute a message among a set
of shareholders, such that the message can only be reconstructed if a qualified
subset of these shareholders collaborates. At the same time no other subset can
learn any information about the message distributed. Let n be the total number
of shareholders, j ∈ {1, . . . , n} be the unique ID of shareholder sj , t ≤ n be the
threshold required for reconstruction, and Fq be a field with q > n elements.
Then Shamir secret sharing can be defined via the following two algorithms.

SShare Given a message m ∈ Fq as input the algorithm chooses a function
f(x) = m + a1 + a2x + · · · , at−1xt−1, where the message m is the free
coefficient and the other coefficients a1, · · · , at−1 are chosen uniformly at
random. Then it computes n shares σj , for j ∈ {1, . . . , n}, where σj := f(j)
is sent to shareholder sj .

SReconstruct It takes as input a subset B ⊂ {1, . . . , n} of shareholders and corre-
sponding shares σj , ∀j ∈ B. If |B| < t it outputs ⊥. Otherwise it reconstructs
the unique interpolation polynomial f∗(x) of degree t−1 in Fq[x] and returns
message f∗(0) = m∗.

Note that there exists a reconstruction vector ({wj}j∈B) such that
∑
j∈B wj ·

σj = m. Since for Shamir secret sharing the Lagrange Interpolation formula
is used to reconstruct message m the reconstruction vector is defined as wj =



Title Suppressed Due to Excessive Length 5∏
i∈B,i6=j

i
i−j , for j ∈ B. Furthermore, shares generated with polynomials of

degree t− 1 are called t-reconstructing shares.

3.2 Commitment Schemes

A commitment scheme allows a committer to commit to a message while keeping
it hidden to others (hidingness) and without allowing the committer to change
the message committed to at a later point in time (bindingness).

Definition 1 (Feldman Commitment [Fel87]). The Feldman commitment
scheme consists of the following algorithms.

Setup Given a security parameter λ choose a prime q, a group G of order q, and
a generator g of G.

FCommit Given a message m ∈ Fq it outputs a commitment c = gm.
FOpen Given a commitment c ∈ G and a message m ∈ Fq it returns ‘1’ if c = gm

holds and ‘0’ otherwise.

Feldman commitments are unconditionally binding. They are computation-
ally hiding, i.e. hidingness is provided as long as the discrete logarithm problem
in G is hard.

Definition 2 (Pedersen Commitment [Ped91]). The Pedersen commitment
scheme consists of the following algorithms.

Setup Given a security parameter λ choose a prime q, a group G of order q, and
distinct generators g, h of G.

PCommit Given a message m ∈ Fq and randomness r ∈ Fq it outputs commit-
ment c = gmhr.

POpen Given a message m ∈ Fq, a randomness r ∈ Fq, and a commitment
c ∈ G it returns ‘1’ if c = gmhr holds and ‘0’ otherwise.

Unlike Feldman commitments a Pedersen commitment can be a commit-
ment to any message with the same probability. Thus, an adversary that is able
to break the discrete logarithm problem for the parameters chosen can open a
commitment to any value. It follows that these commitments are only computa-
tionally binding. However, for the same reason they are unconditionally hiding.
Since m+x ·r is distributed uniformly at random in Fq, where x is the unknown
discrete logarithm h = gx, not even a computationally unbounded attacker can
identify the message initially committed to.

3.3 Pairings

Definition 3 (Pairing [BF03]). A bilinear map is a tuple (q,G1,G2,GT , e)
such that:

1. G1,G2, and GT are cyclic groups of prime order q.
2. The Discrete Logarithm Problem is hard to be computed in G1,G2, and GT .



6 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

3. e : G1 × G2 → GT is bilinear, i.e. e(g1
a, g2

b) = e(g1, g2)ab holds for all
g1 ∈ G1, g2 ∈ G2, and a, b ∈ Z.

4. e is non-degenerate, i.e. e(g1, g2) 6= 1 for all (g1, g2) 6= (1, 1)
5. e is efficiently computable.

The function e is called bilinear map, or pairing.

In case of symmetric pairings where G1 ' G2 we write G for both G1 and G2

for the sake of convenience.

3.4 Computational Exponent Inversion Problem

Definition 4 (Computational Exponent Inversion Problem (CIE)). As-
sume g, h = gx ∈ G is given for some random x, then the computational expo-
nent inversion (CIE) problem is to compute g

1
x . More precisely, for all uniform

PPT adversaries A

Pr[y← A(G, g, h = gx) : y ∈ G ∧ y = g
1
x

|G← G(1λ), g, h← G] ≤ negl(λ).

The CIE assumption is known to reduce to the Computational Diffie Hellman
Assumption as has, for example, been shown in [SS01].

4 Auditing of Computations Performed in Distributed
Storage Systems

4.1 Setup and Security Definitions

In this work we provide an auditing mechanism for computations on data stored
in distributed fashion. More precisely, our distributed storage system contains of
the algorithms Setup,Distribute,Compute,Audit,Reconstruct, and Verify. Further-
more, three parties are involved. (1) Data owners distributing their documents,
called messages, to a set of shareholders by running Distribute. (2) A set of
shareholders holding shares to messages and performing computations on them
by running Compute, and (3) auditors verifying the computations performed on
the messages by running Audit and Verify. Messages stored in the storage system
can be reconstructed by authorized parties (e.g. document owners or third par-
ties when only computation results are requested) using algorithm Reconstruct.
In the following we describe the algorithms for the computationally hiding audit
with the modifications for the unconditionally hiding audit in brackets.

Setup Given a security parameter λ as input this algorithm chooses a prime
q and a threshold t, such that t ≤ n < q (2t ≤ n < q), where q, t, n
are the parameters for the secret sharing scheme. It chooses a pairing
e : G × G → GT of groups G,GT of order q and generators g ∈ G
(g, h ∈ G), which are the parameters of the commitment scheme.



Title Suppressed Due to Excessive Length 7

Distribute In this algorithm a data owner distributes a message m among
the n shareholders by calling SShare. Note that each message gets a
unique ID i ∈ I that is equal for all shareholders. This is necessary to
refer to the shares of messages stored when performing computations
on them. Additionally, the data owner computes a commitment c to m
by calling FCommit (PCommit). (Pedersen commitments are computed
using a random value r chosen by the data owner. Thus, to be able to
open c also r must be stored among the shareholders by calling SShare.)
The commitment c is made public.

Compute On input a circuit C and the IDs of the input messages each share-
holder evaluates C using its shares. In addition, each shareholder pub-
lishes some data for auditing.

Audit The auditor computes a commitment cout to the outcome of circuit C
using the data published by the data owner and the shareholders.

Reconstruct It takes as input a subset B ⊂ {1, . . . , n} of shareholders and
a corresponding subset of shares σ∗j , ∀j ∈ B. Then it calls SReconstruct
and returns the output.

Verify The auditor takes as input the outcome of algorithm Reconstruct
and the commitment c assigned to the message, either computed by the
data owner during Share or by the auditor during Audit. It computes the
corresponding Feldman (Pedersen) commitment c∗ to the reconstructed
message. If c∗ = c it outputs ‘1’otherwise it outputs ‘0’.

To allow for auditing the dealer and shareholders must publish certain audit
data during Distribute and Compute. In our construction we use for this a public
bulletin board which is common practice. Informally speaking a public bulletin
board allows to make data publicly available in a tamper proof way. For a more
rigorous definition we refer to [HL08].

In the following we formally define Auditable Correctness for operations per-
formed on data stored in distributed fashion (a similar definition can be found in
[BDO14]). In this work we only describe the MPC protocol secure against pas-
sive adversaries. However our scheme can easily be extended to address active
adversaries by using standard techniques, e.g. [DPSZ12].

Definition 5 (Auditable Correctness). Let C be a circuit, {mi}i∈I be the
inputs to C where i is their unique ID and I the set of IDs of the input messages,
m∗ be a potential output of C, and τ be a protocol transcript for the evaluation
of C containing of all published information. An auditing scheme containing of
the algorithms Audit and Verify is correct if it has the following two properties.

Soundness The algorithm Verify on input m∗ outputs ‘1’ with probability 1 if
C on inputs {mi}i∈I produces the output m∗ and τ is a valid transcript.

Unforgeability The algorithm Verify will return ‘0’ (except with negligible prob-
ability) if C({mi}i∈I) 6= m∗ or τ is not a valid transcript.



8 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

4.2 Protocols

In this section we will show how auditable computations on data stored in dis-
tributed fashion can be performed. We will start by introducing our framework
for arbitrary computations. We will first describe the preprocessing process and
the circuit evaluation, i.e. containing of addition and multiplication gates. Af-
terwards, we show in detail how additions of messages can be performed by the
shareholders without reconstructing the messages and how an auditor is able to
compute the corresponding audit data using the commitments to these messages
as input. Following, we present a corresponding protocol for multiplication gates.
We show that also for this operation audit data can be computed on the basis of
the commitments to the input messages and additional commitments generated
and published by the shareholders. The security proof and details regarding the
assumptions made and attackers addressed follow in Section 5. In the follow-
ing we describe the algorithms for the computationally hiding audit with the
modifications for the unconditionally hiding audit in brackets.

Preprocessing Stage In the preprocessing stage triples are generated. Note
that this has been a standard tool since its introduction in [Bea91], because it
allows to avoid a quadratic communication complexity during multiplication.

Preprocessing Each shareholder sj generates M triples l ∈ {1, · · · ,M} of
t-reconstructing shares σj(αl), σj(βl), σj(γl) to (αl, βl, γl) ⊂ Fq such
that for each the equation αl · βl = γl holds (see, e.g. [DN07]). (It
also chooses t-reconstructing shares ρj(ζl), ρj(ηl), ρj(θl) ∈ Fq. Since
they do not have to fulfill any restrictions they can be chosen uni-
formly at random.) Each shareholder runs FCommit (PCommit) to
compute commitments cj(αl), cj(βl), cj(γl) (to compute commitments
cj(αl, ζl), cj(βl, ηl), cj(γl, θl), µj,l) that are published on the bulletin
board.

PreAudit The auditor checks whether each shareholder published com-
mitments to M triples on the bulletin board. If not it returns ⊥.
Else it checks the well-formedness by taking the reconstruction vector
(w1, . . . wn) and performing the following steps.
1. For each l ∈ {1 · · · ,M} it computes

c(αl) =
∏
j∈B

cj(αl)
wj ; c(βl) =

∏
j∈B

cj(βl)
wj ; c(γl) =

∏
j∈B

cj(γl)
wj

(In the unconditionally hiding case it additionally computes

µl =
∏
j∈B

(µj,l)
wj .)



Title Suppressed Due to Excessive Length 9

2. For each l ∈ {1, · · ·M} it checks whether e(c(αl), c(βl)) = e(c(γl), g)
(checks whether e(c(αl), c(βl)) = e(c(γl), g)·e(µl, h)) holds. If it does
it outputs ‘1’. Else it outputs ‘0’.

Performing Arbitrary Functions/Evaluating Arbitrary Circuits In the
following we introduce the algorithms needed to perform arbitrary, auditable
computations on messages stored in distributed fashion. The inputs are a cir-
cuit and the unique IDs of the input messages. The circuit consists of a list
of addition and multiplication operations each to be performed on two inputs
ida and idb. During the circuit evaluation each shareholder computes a share to
the output message using the shares it holds from the input messages. During
the individual addition and multiplication operations each input can either be
the share of a message received from the data owner or an intermediate value
that has been computed by the shareholder while evaluating the circuit. Since
each message that got distributed among the shareholders is accompanied with
a publicly available commitment an auditor is able to compute a commitment to
the expected output message using these commitments together with additional
audit data published by the shareholders. This commitment is published on the
bulletin board to allow the outcome of the computation to be input to other
circuits.

ComputationSetup This algorithm receives a circuit C as input (and a ran-
dom linear function L : FMq → Fq, where M is the number of multipli-
cation gates in C) and forwards it to each shareholder and the bulletin
board. (It additionally receives m̂, r̂ jointly generated by the data own-
ers and runs Distribute returning commitment ĉ.) A qualifying subset B
of size t (of size 2t) is chosen. If there is no such subset return ⊥. Oth-
erwise the shareholders compute the reconstruction vector (w1, . . . wn)
and run Compute.

Compute Each shareholder goes gate by gate through the circuit C and calls
either Add or Multiply and finally calls Result.

Audit It takes the circuit C from the bulletin board, follows it gate by gate
calling either AddAudit or MulAudit, and finally calls Verify.

Add On input IDs ida, idb each shareholder j ∈ B uses its shares to compute
shares to the sum of the input messages. The result receives the ID idc.

AddAudit On input IDs ida, idb, idc the auditor checks whether it has com-
mitments to the input messages. If not it takes them from the bulletin
board. If they do not exist on the bulletin board it outputs ⊥. Otherwise
it computes a commitment to the expected result.



10 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

Multiply On input IDs ida, idb each shareholder j ∈ B uses its shares to
compute shares to the product of the input messages. The result receives
the ID idc.

MultAudit On input IDs ida, idb, idc the auditor checks whether it has com-
mitments to the input messages. If not it takes them from the bulletin
board. If they do not exist on the bulletin board it outputs ⊥. Otherwise
it computes a commitment to the expected result.

Result It takes the output σj(m
∗) (and ρj(r

∗)) of the final gate and sends it
(them) to the bulletin board. (Each shareholder sj computes σj(m̃) =

L(σj(γ1), . . . , σj(γM ))+σj(m̂) and ρj(r̃) = L(ρj(θ1), . . . , ρj(θM ))+ρj(r̂)
and sends them to the bulletin board, where L, m̂, r̂ was input to the
ComputationSetup.)

Verify It takes c∗ as the output of the final call of either AddAudit or Mul-
taudit as well as σj(m

∗) (and ρj(r
∗), σj(m̃), ρj(r̃), ĉ) from the bulletin

board. If it does not exist it outputs ‘0’ else it runs Reconstruct to com-
putem∗ (and r∗, m̃, r̃). Then it checks whether c∗ = gm

∗
(checks whether

c∗ = gm
∗
hr

∗
). (It additionally checks whether ĉ ·

∏M
l=1 c(mγl)

λl = gm̃hr̃

where λl is the l-th coefficient of L.) If the conditions do not hold it
outputs ‘0’, else it outputs ‘1’.

Add Each shareholder j ∈ B takes the input shares σj(mida) and σj(midb)
to message mida and midb respectively and outputs a new share σ∗j =
σj(mida) + σj(midb). (Each shareholder j ∈ B additionally takes the
input shares ρj(rida) and ρj(ridb) to message rida and ridb respectively
and outputs a new share ρ∗j = σj(mida) + σj(midb).)

AddAudit The auditor takes as inputs the commitments c(mida) and c(midb)
and returns c∗ = c(mida) · c(midb)

For the multiplication we assume that B is the subset of shareholders par-
ticipating in this process, with |B| ≥ t (with |B| ≥ 2t), where t is the threshold
required during reconstruction.

Multiply The shareholders choose a triple (α, β, γ) from the preprocessing
stage. Each shareholder sj , j ∈ B, takes the input shares σj(mida) and
σj(midb) as well as the shares σj(α), σj(β), σj(γ) to the triple. Then the
following steps are performed.
1. Each shareholder sj computes σj(δ) = σj(mida) − σj(α), σj(ε) =
σj(midb)− σj(β).



Title Suppressed Due to Excessive Length 11

2. The shareholders jointly run SReconstruct on σj(δ), σj(ε) to publicly
reconstruct δ, ε using the bulletin board.

3. Each shareholder sj computes σ∗j = σj(γ)+ε·σj(mida)+δ ·σj(midb)−
δε and outputs σ∗j .

(In addition the following steps are performed.
4. Each shareholder sj computes ρj(δ̃) = ρj(ζ) − ρj(rida), ρj(ε̃) =
ρj(η)− ρj(ridb).

5. The shareholders jointly run SReconstruct on ρj(δ̃), ρj(ε̃) to publicly

reconstruct δ̃, ε̃ using the bulletin board.
6. Each shareholder sj computes ρ∗j = ρj(θ)+ε ·ρj(rida)+δ ·ρj(ridb)−δε

and outputs ρ∗j .)
MultAudit The auditor takes as inputs the commitments c(m1) and c(m2) to

both input messages mida and midb . It takes δ, ε and c(α), c(β), c(γ) (and
additionally δ̃, ε̃) from the bulletin board. If they do not exist it outputs
⊥. Else it checks whether c(α)−1 · c(mida) = gδ , c(β)−1 · c(midb) = gε

(checks whether c(α)−1 · c(mida) = gδhδ̃ , c(β)−1 · c(midb) = gεhε̃). If
the equations do not hold it outputs ⊥ else it computes a commitment
c∗ = c(mγ) · c(mida)

ε · c(midb)
δ · g−δε and outputs c∗.

5 Properties

5.1 Auditable Correctness

For the correctness of our solution we make the following assumptions: (Ass.1)
The parameters for the bilinear map are chosen, such that the CIE problem in
G (see Section 3.4) holds. Note that from this it follows that we also assume the
discrete logarithm problem to hold. (Ass.2) Audit data can be published in a
tamper proof way, e.g. using a secure bulletin board. (Ass.3) The commitments
published by the data owners can be opened using the messages and random
values distributed. (Ass.4) The linear function L is chosen at random and not
known to the shareholders before the preprocessing phase. (Ass.5) We assume
that the commitments published by the data owners have been computed cor-
rectly1.

Theorem 1. Under Assumption Ass.1, Ass.2, Ass.3, Ass.4, and Ass.5 the com-
putational and unconditional hiding audit protocols presented in Section 4.2 pro-
vide auditable correctness as defined in Definition 5.

Proof. To provide auditable correctness the protocols must provide Soundness
and Unforgeability.

1 Note that for applications where this is not a reasonable assumption additional mea-
sures can be used to ensure consistency between the shares and the commitments.
See, for instance, corresponding techniques developed for eVoting schemes [MN10].



12 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

Soundness First, we show that if the algorithms Preprocessing, Compute,
Reconstruction, and Audit were performed correctly, then the algorithm Verify
will accept the result with probability ‘1’, i.e. Soundness is provided. In other
words, the audit for each gate must, with overwhelming probability, output
a commitment for which the output of the gate is a valid opening. In the
following we will only show soundness of the unconditional hiding audit pro-
tocol. A corresponding proof for the merely computational hiding protocol
can be obtained by setting all random values ri to be 0, i.e. hri = 1. Assume
we have messages mida , midb with randomness rida , ridb and their correspond-
ing commitments cida = gmida · hrida and cidb = gmidb · hridb . Furthermore,
the shareholders hold shares σj(mida), σj(midb) of the messages and shares
ρj(rida), ρj(ridb) of the random values. In the following we will first look at
the addition case and then discuss the multiplication case by first show-
ing the correctness of the preprocessing stage followed by the multiplication
performed online.
Additions: If all shareholders followed the protocol correctly and computed
σj(midc) = σj(mida) + σj(midb) and ρj(ridc) = ρj(rida) + ρj(ridb) these shares
would reconstruct to mida +midb and rida + ridb respectively. Therefore,

gmidchridc = gmida+midbhrida+ridb = gmidahrida · gmidbhridb = cida · cidb = cidc

holds and the result will be accepted by Verify.
Preprocessing: Assume M sets of triples (α, β, γ), (ζ, η, θ), such that α ·
β = γ were generated during preprocessing. Furthermore, assume we have
commitments cα = gαhζ ,cβ = gβhη and cγ = gα·βhθ . It follows that

e(cα , cβ) = e(gαhζ , gβhη) = e(gα+x·ζ , gβ+x·η) = g
α·β+x(αη+βζ)+x2·ζ·η
T

= g
α·β+x(αη+βζ−θ+θ)+x2·ζ·η
T = gα·β+x·θT · gx(αη+βζ−θ+x·ζ·η)T

= e(gα·β+x·θ , g) · e(gαη+βζ−θ+x·ζ·η , h) = e(gα·βhθ , g) · e(gαη+βζ−θhζ·η , h)

= e(cγ , g) · e(µ, h)

holds and any honestly generated set will be accepted. Note that we can
recover µ since a qualified subset of 2t shareholders participate in the proto-
col. Furthermore, note that if we use Feldman commitments we have µ = 1
which is why the equation e(gα , gβ) = gα·βT = e(gα·β , g) holds.
Online Multiplication: If all shareholders followed Multiply correctly each
shareholder will hold a share σj(midc) such that σj(midc) = σj(γ) + ε ·
σj(mida) + δ · σj(midb) + δε. Assume the preprocessing stage was performed
correctly, then these shares would reconstruct to

γidc + εidcmida + δmidb − εidcδidc
= γidc + (midb − βidc)mida + (mida − αidc)midb − (midb − βidc)(mida − αidc)

= midamidb + γidc − αidcβidc = midamidb .

During MultAudit the auditor computes

cj(midc) = cj(γidc) · cj(mida)
βidc · cj(midb)

δ · g−δ·ε



Title Suppressed Due to Excessive Length 13

which can be opened to midamidb using the computed random value.
Unforgeability Now we will show that if the algorithm Compute was not per-

formed correctly, then the algorithm Verify will reject the result, i.e. Un-
forgeability is provided, even if all j ∈ B are malicious. For the proof we
will assume that all shareholders are cooperating, as they could obviously
simulate any honest party. Note that if the shareholders do not provide the
commitments necessary for Audit it will output ⊥ and guarantee that Verify
returns ‘0’. Since the auditor follows the online phase by using the homomor-
phic properties of Feldman or Pedersen commitments respectively, a success-
ful forgery would necessarily imply a forgery during the preprocessing stage.
In the following we will first discuss unforgeability for the computationally
hiding audit and afterwards for the unconditionally hiding audit.
Computationally Hiding Audit: According to the bilinearity of e, proto-
col MutlAudit only returns a commitment c∗ if e(c∗, g) = e(c(mida), c(midb))
= e(gmida , gmidb ) = e(gmida ·midb , g) holds. As |G| = |GT | and e is non degen-
erate, the map e(·, g) : G → GT is an isomorphism which is why a result is
only accepted when c∗ = gmida ·midb is ensured.
Unconditionally Hiding Audit: Given a random linear function L :
FMq → Fq the shareholders are asked to publish the function evaluated on
ρj(θ1), . . . , ρj(θM ) and σj(γ1), . . . , σj(γM ), where γ is supposed to be the
product α · β. This implies a joint computation of L(γ1, . . . γM ) + m̂ and
L(θ1, . . . θM ) + r̂. If these are valid opening values of ĉ · L̃(c(γ1), . . . c(γM ))
this proves that they jointly know the opening values of L̃(c(γ1), . . . c(γM )).
Let Ω ⊂ {1, . . . ,M} indicate the set {c(γω)}ω∈Ω of all commitments the
shareholders cannot open. Then L̃ would induces a random linear function
on {c(γω)}ω∈Ω , whose result the shareholders are able to open. However,
this can only happen with negligible probability. Thus, we can assume the
shareholders jointly know openings of all c(γ). Since all δ, ε are published
and the auditors checked whether they are valid openings, the sharehold-
ers have to know openings to c(α) · c(mida)

−1 for some input mida (see the
check performed in MulAudit). For symmetric reasons the same holds for
c(β). If the shareholders cannot open c(α), c(β) they can provide valid δ, ε
only with negligible probability due to the bindingness of the commitment
scheme used. From this it follows that the shareholders produced a tuple
c(α), c(β), c(γ), µ from which they know the openings (α, ζ), (β, η), (γ, θ)
such that e(c(α), c(β)) = e(c(γ), µ) holds.
In the following we show by contraction that if the shareholders produced
an incorrect triple, i.e. α · β 6= γ, then they are able to break Assumption
Ass.1. Having (α, ζ), (β, η), (γ, θ) it is possible to compute

g
1

α·β−γ (θ−α·η−β·ζ)h−ζ·ηµ
1

α·β−γ . We see that

e(g
1

α·β−γ (θ−α·η−β·ζ)h−ζ·ηµ
1

α·β−γ , h) = (e(gθ−α·η−β·ζh−ζ·η , h) · e(µ, h))
1

α·β−γ

= g
x((θ−α·η−β·ζ)−x·ζ·η) 1

α·β−γ
T · e(µ, h)

1
α·β−γ = g

(α·β−γ)· 1
α·β−γ

T = gT = e(g, g)

Therefore g
1

α·β−γ (θ−α·η−β·ζ)h−ζ·ηµ
1

α·β−γ = g
1
x and the shareholders would

have solved the CIE problem.



14 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

5.2 Hidingness

For hidingness we assume that (Ass.6) if Feldman commitment are used the
commitments are computationally hiding for the parameters chosen.

From the definition of Shamir secret sharing (see Section 3) it follows that any
unqualified subset of t′ ≤ t shareholders cannot reveal any information about the
messages distributed. So all is left to show is that the data published for auditing
does not reveal any additional information allowing to violate confidentiality.

Proposition 1. Under Assumption Ass.6 the Feldman based audit scheme pre-
sented in Section 4 ensures computational hidingness of the input messages pro-
cessed.

Proof. Only Feldman commitments and unconditionally hiding sums, e.g. α −
mida , are published on the bulletin board. For a proof regarding the hidingness
of Feldman commitments we refer to [Fel87]. Regarding the sums they are un-
conditionally hiding since α is random and not known to the auditor.

Proposition 2. The Pedersen based audit scheme presented in Section 4 en-
sures unconditional confidentiality of the input messages processed.

Proof. Only unconditionally hiding Pedersen commitments and unconditionally
hiding sums, e.g. α−mida , are published on the bulletin board. For a proof on the
hidingness of Pedersen commitments we refer to [Ped91]. To complete the proof
we will show that the commitments generated during our protocol do not reveal
additional information about the messages processed that can be exploited to
break the unconditional hidingness.

Additions: In AddAudit the public information processed and revealed con-
sists of the tuple (c(mida), c(midb), c

∗)=(gmidahrida , gmidbhridb , gmida+midbhrida+ridb ).
Since this tuple has the same distribution as (C1, C2, C ·D) for random C1, C2 ∈
G it is unconditionally hiding.

Online Multiplications: In MultAudit the only public information pro-
cessed and revealed consists of the tuple

(c(mida), c(midb), δ, δ̃, ε, ε̃, c(α), c(β), c(γ), c∗ = c(γ)c(mida)
εc(midb)

δgδε)

which has the same distribution as

(C1, C2,M1, R1,M1, R2, g
M1hR1C−11 , gM2hR2C−12 , C3, C3C

M1
1 CM1

2 gM1·M2)

for random C1, C2, C3 ∈ G,M1, R1,M2, R2 ∈ Fq.
Preprocessing: In PreAudit we reconstruct c(α), c(β), c(γ), µ satisfying
e(c(α), c(β)) = e(c(γ), g) ·e(µ, h) Note that any random triple C1, C2, C3 ∈ G

uniquely define a µ such that e(C1, C2) = e(C3, g) ·e(µ, h) , namely the preimage
of e(C1, C2) · e(C3, g)−1 under the isomorphism e(·, h) : G → GT . Therefore
(c(α), c(β), c(γ), µ) has the same distribution as (C1, C2, C3, µ).

Result: In Result only m̃ = m̂ + L(γ1, . . . , γM ) and r̃ = r̂ + L(θ1, . . . , θM )
can be reconstructed. As m̂, r̂ were chosen uniformly at random this is uncondi-
tionally hiding for the γl.



Title Suppressed Due to Excessive Length 15

5.3 Practicability and Efficiency

In this section we discuss several questions raising when implementing and run-
ning our scheme. We will concentrate here on the biliear maps and the random
linear function L, because all other components, e.g. the commitment schemes
and the bulletin board, are fairly standard.

Bilinear Maps: Our scheme makes use of symmetric, i.e. type I pairings
which can be implemented using supersingular elliptic curves over some prime
field Fq. This scheme naturally transforms to asymmetric, i. e. type II pairings
by mapping g1, h1 ∈ G1 to G2 via the efficiently computable isomorphism Ψ :
G1 → G2. To use type III pairings we have to generate generators g1, h1 = gx1
of G1 and g2, h1 = gx2 of G2. In this case providing commitments (with the
same randomness) they have to be computed in both G1 and G2. For a detailed
description of type I, II, and III pairings and their respective differences we
refer to [GPS08]. It remains to be evaluated, whether the use of fast asymmetric
pairings, for example on Barreto - Naehrig curves [BN05], offset the additional
cost of computing further commitments during the preprocessing.

Linear Function L: The random linear function L given by the client can
be provided in the form of a random seed K of a pseudorandom number gener-
ator G{0, 1}k → FMq , such as the ones standardized in [BK12]. The client then
only has to check that commitments c(αl), c(αl), c(αl), µl have been sent to the
bulletin board and the auditor has to check whether G(K) = L.

Efficiency: This works seeks to minimize the shareholders computational
overhead during the online phase. Our computationally hiding audit scheme
demands no extra computations during the online phase and is therefore opti-
mal. Our unconditionally hiding audit scheme is computationally dominated by
evaluating the gates on both the actual messages and the randomness and has
therefore an overhead of factor 2.

6 Conclusion

In this work we introduced a computationally hiding and an unconditionally
hiding auditing procedure for computations on documents stored in distributed
fashion. While the first one improves the state of the art with respect to efficiency
the latter one is the first to provide unconditional hidingness for the documents
processed. In addition, we proved that our solution is secure under well studied
standard assumptions and gave arguments for practicability and efficiency. For
future work we aim at a more thorough audit that not only detects an incorrect
solution, but also identifies which shareholders deviate from the protocol.

Acknowledgments

This work has been co-funded by the DFG as part of project “Long-Term Secure
Archiving” within the CRC 1119 CROSSING. In addition, it has received fund-
ing from the European Union’s Horizon 2020 research and innovation program
under Grant Agreement No 644962.



16 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

References

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness.
In Theory of Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Pro-
ceedings, pages 118–136, 2007.

[BBFR15] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reis-
chuk. ADSNARK: nearly practical and privacy-preserving proofs on
authenticated data. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 271–286, 2015.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. Snarks for C: verifying program executions succinctly
and in zero knowledge. In Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part II, pages 90–108, 2013.

[BCQ+11] Alysson Neves Bessani, Miguel Correia, Bruno Quaresma, Fernando
André, and Paulo Sousa. DepSky: Dependable and Secure Storage in
a Cloud-of-Clouds. In Christoph M. Kirsch and Gernot Heiser, editors,
European Conference on Computer Systems - EuroSys 2011, pages 31–
46. ACM, 2011.

[BCQ+13] Alysson Neves Bessani, Miguel Correia, Bruno Quaresma, Fernando
André, and Paulo Sousa. DepSky: Dependable and Secure Storage in a
Cloud-of-Clouds. ACM Transactions on Storage - TOS, 9(4):12, 2013.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von neumann architecture.
In Proceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014., pages 781–796, 2014.

[BDO14] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable
secure multi-party computation. In Security and Cryptography for Net-
works - 9th International Conference, SCN 2014, Amalfi, Italy, Septem-
ber 3-5, 2014. Proceedings, pages 175–196, 2014.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Advances in Cryptology - CRYPTO ’91, 11th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August
11-15, 1991, Proceedings, pages 420–432, 1991.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

[BK12] Elaine B. Barker and John M. Kelsey. Sp 800-90a. recommendation for
random number generation using deterministic random bit generators.
Technical report, Gaithersburg, MD, United States, 2012.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. In Selected Areas in Cryptography, 12th Inter-
national Workshop, SAC 2005, Kingston, ON, Canada, August 11-12,
2005, Revised Selected Papers, pages 319–331, 2005.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. In Advances in
Cryptology - EUROCRYPT 2001, International Conference on the The-
ory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, pages 280–299, 2001.



Title Suppressed Due to Excessive Length 17

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Ben-
jamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Gep-
petto: Versatile verifiable computation. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015,
pages 253–270, 2015.

[Clo15] Cloud-of-clouds. DepSky by cloud-of-clouds. http://cloud-of-clouds.
github.io/depsky/, 2015. Accessed: 2015-11-06.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical
voter-verifiable election scheme. In Computer Security - ESORICS 2005,
10th European Symposium on Research in Computer Security, Milan,
Italy, September 12-14, 2005, Proceedings, pages 118–139, 2005.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In Advances in Cryptology - CRYPTO
2007, 27th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2007, Proceedings, pages 572–590, 2007.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Ad-
vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages
643–662, 2012.

[DvdGdSA12] Denise Demirel, Jeroen van de Graaf, and Roberto Samarone dos San-
tos Araújo. Improving helios with everlasting privacy towards the public.
In 2012 Electronic Voting Technology Workshop / Workshop on Trust-
worthy Elections, EVT/WOTE ’12, Bellevue, WA, USA, August 6-7,
2012, 2012.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th Annual Symposium on Foundations of Computer Sci-
ence, Los Angeles, California, USA, 27-29 October 1987, pages 427–437,
1987.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings
for cryptographers. Discrete Applied Mathematics, 156(16):3113–3121,
2008.

[HL08] James Heather and David Lundin. The append-only web bulletin board.
In Formal Aspects in Security and Trust, 5th International Workshop,
FAST 2008, Malaga, Spain, October 9-10, 2008, Revised Selected Papers,
pages 242–256, 2008.

[LHS15] Thomas Lorünser, Andreas Happe, and Daniel Slamanig. ARCHISTAR:
towards secure and robust cloud based data sharing. In 7th IEEE In-
ternational Conference on Cloud Computing Technology and Science,
CloudCom 2015, Vancouver, BC, Canada, November 30 - Dec. 3, 2015,
pages 371–378, 2015.

[MN10] Tal Moran and Moni Naor. Split-ballot voting: Everlasting privacy with
distributed trust. ACM Trans. Inf. Syst. Secur., 13(2), 2010.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings, pages 129–140, 1991.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Sympo-
sium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 238–252, 2013.



18 Lucas Schabhüser, Denise Demirel, and Johannes Buchmann

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[SS01] Ahmad-Reza Sadeghi and Michael Steiner. Assumptions related to dis-
crete logarithms: Why subtleties make a real difference. In Advances in
Cryptology - EUROCRYPT 2001, International Conference on the The-
ory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, pages 244–261, 2001.

[SV15] Berry Schoenmakers and Meilof Veeningen. Universally verifiable mul-
tiparty computation from threshold homomorphic cryptosystems. In
Applied Cryptography and Network Security - 13th International Con-
ference, ACNS 2015, New York, NY, USA, June 2-5, 2015, Revised
Selected Papers, pages 3–22, 2015.


