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Abstract. Boneh et al. showed at Crypto 99 that moduli of the form N = p"q can be factored
in polynomial time when r > logp. Their algorithm is based on Coppersmith’s technique for
finding small roots of polynomial equations. Recently, Coron et al. showed that N = p"¢°® can
also be factored in polynomial time, but under the stronger condition r > log® p. In this paper,
we show that N = p"¢® can actually be factored in polynomial time when r > logp, the same
condition as for N = pq.

1 Introduction

Factoring N = p"q. At Eurocrypt 96, Coppersmith showed how to recover small roots of
polynomial equations using lattice reduction [Cop96a,Cop96b]. Coppersmith’s technique has
found numerous applications in cryptography, in particular the factorization of N = pq when
half of the bits of p are known [Cop97].

Coppersmith’s technique was later extended to moduli N = p"q by Boneh, Durfee and
Howgrave-Graham (BDH) at Crypto 99 [BDHG99|. They showed that knowing a fraction
1/(r 4+ 1) of the bits of p is enough for polynomial-time factorization of N = p”"q. Therefore
when r ~ logp only a constant number of bits of p must be known, hence those bits can be
recovered by exhaustive search, and factoring N = p”q becomes polynomial-time [BDHG99].
Such moduli had been suggested by Takagi [Tak98] to significantly speed up RSA decryption;
the BDH result shows that Takagi’s cryptosystem should not be used with a large r.

Factoring N = p"q®. In light of the BDH attack, Lim et al. in [LKYLO0O0] extended Takagi’s
cryptosystem to moduli of the form N = p"¢®; namely the generalization to factoring moduli
N = p"q® was left as an open problem in [BDHG99]. The authors of [LKYLO0O] obtained
an even faster decryption than in Takagi’s cryptosystem; in particular, for a 8192-bit RSA
modulus N = p2¢>, decryption becomes 15 times faster than for a standard RSA modulus of
the same size.

However, Coron et al. have recently described in [CFRZ16] an algorithm to factor N = p”¢*
in deterministic polynomial time when r and/or s is greater than log® max(p, q). Their method
consists in finding a good decomposition of the exponents r and s:

r=u-a-+a
s=u-pf+Db

with large enough integer u, and small enough integers «, 3, a, b, so that N = p"¢® can be
rewritten as N = P%Q where P = p®¢® and Q = p®¢®, and subsequently apply BDH on



N = P"Q to recover P and @, and eventually p and ¢. In BDH the condition for polynomial-
time factorization of N = P“Q is u = £2(log Q). Using lattice reduction and working through
tedious arithmetic, the authors show that for any exponent pair (r,s) one can always find
integers u, «, B, a and b satisfying u ~ r2/3 and «, B8, a,b ~ r'/3, which allows them to derive
their final condition 7 = £2(log® max(p, ¢)) for polynomial-time factorization of N = p"¢®.

Our Result. In this paper, we describe an algorithm for factoring moduli of the form N =
p"q® in polynomial time, under the weaker condition r = §2(logq), the same condition as
BDH for N = p"q. Apart from being more efficient than [CFRZ16], our method is also much
simpler. Our technique works as follows: since we can assume that ged(r, s) = 1, from Bézout
identity we can find two positive integers o and [ such that:

a-s—pF-r=1

This enables to decompose N (instead of N previously) as:
NO = (pT'qS)Oé — pozrqas — parq,@rJrl — (po‘qﬁ)r 7

and apply BDH directly on N® = P"q where P := p®¢®, and recover p and ¢. Since for BDH
the condition for polynomial-time factorization is r = {2(logq), we obtain exactly the same
condition for factoring N = p"q¢®. This shows that moduli of the form N = p"¢® are just as
vulnerable as moduli N = p"q when the exponent r (or s) is large.

2 Background

2.1 Coppersmith’s Method

Coppersmith showed in [Cop96b,Cop97] how to find efficiently all small roots of univariate
modular polynomial equations. Given a polynomial f(x) of degree 6 modulo an integer N of
unknown factorization, Coppersmith’s method allows to recover in polynomial time in log N
all integers xo such that f(zo) = 0 mod N with |zo| < N/9,

A variant of Coppersmith’s theorem for univariate modular polynomial equations was
obtained by Blomer and May [BMO05], using Coppersmith’s technique for finding small roots
of bivariate integer equations:

Theorem 1 ([BMO05, Corollary 14]). Let N be a composite integer of unknown factor-
ization with divisor b > NP. Let f(z) = 3, fix* € Z[z] be a polynomial of degree § with
ged(f1,..., fs;,N) = 1. Then we can find all points xo € 7 satisfying f(xg) = b in time
polynomial in log N and & provided that |zo| < NP*/9.

Coppersmith’s technique has found many applications in cryptography (see [May10] for a
survey), in particular the factorization of N = pg when half of the bits of p are known [Cop97].
2.2 Factoring N = p"q

Coppersmith’s technique was later extended to moduli N = p"q by Boneh, Durfee and
Howgrave-Graham (BDH) at Crypto 99 [BDHG99]. They showed that knowing a fraction



1/(r 4+ 1) of the bits of p is enough for polynomial-time factorization of N = p”"q. Therefore
when r ~ log p only a constant number of bits of p must be known, hence those bits can be
recovered by exhaustive search, and factoring N = p”q becomes polynomial-time [BDHG99].
We recall their main theorem.

Theorem 2 (BDH). Let N = p"q where q < p¢ for some c. The factor p can be recovered
from N, r, and ¢ by an algorithm with a running time of:

c+1
exp <r—|—c : 10%'10) : (9(7)7

where 7y is the time it takes to run LLL on a lattice of dimension O(r?) with entries of size
O(rlog N). The algorithm is deterministic, and runs in polynomial space.

When p and g have similar bitsize we can take ¢ = 1; in that case we have (c+1)/(r+c) =
O(1/r) and therefore the algorithm is polynomial time when r = 2(logp). More generally
one can take ¢ = log ¢/ log p, which gives:

log q

1
r T

c+1
r+c

1 1
logp < 1084+ logp
T

Therefore a sufficient condition for polynomial-time factorization is r = £2(log ¢ + log p).

As observed in [CFRZ16], one can actually obtain the simpler condition r = {2(logq),
either by slightly modifying the proof of Theorem 2 in [BDHG99], or directly from the Blomer
and May variant recalled previously (Theorem 1). We obtain the following theorem. For
completeness we provide a proof based on Theorem 1. Note that in the theorem the integer ¢
is prime but p can be any integer.

Theorem 3 (BDH). Let p and q be two integers with p > 2 and q¢ > 2, and q a prime. Let
N =p"q. The factors p and q can be recovered in polynomial time in log N if r = 2(log q).

Proof. Given r > 1 the decomposition N = p"¢ is unique for a prime g. One considers the
polynomial f(z) = (P+x)" where P is an integer such that p = P+x and the high-order bits
of P are the same as the high-order bits of p. Let b := p" be a divisor of N. The polynomial
f satisfies f(zg) = (P 4 z¢)" = p" = b. According to Theorem 1, one can recover z in time
polynomial in log N and r provided that |zg| < N52/7", where £ is such that b > N?. One can
take b = p” = N#, which gives:

B/r
NP = (W)= ) =0
Therefore, one gets the condition to recover xg:

ol < p” (1)

Moreover from p" = N8 = (p"q)? we get:

rlogp _ 1 S 1 log q
rlogp +loggq 1+ rl'fogngp - rlogp



Therefore we have:

lo, log —1/’/‘
Pzl = (per) T = pgt (2)
By combining inequalities (1) and (2), one gets the following sufficient condition:

o] < prg "

Therefore it suffices to perform exhaustive search on ¢'/" possible values for the high-order
bits of p. When r = £2(log q) we have ¢'/" = O(1), and therefore one can recover p and ¢ in
time polynomial in log V. O

3 Improved Factorization of N = p"q¢°®

We show that moduli of the form N = p"¢® can be factored in polynomial time under the
condition r = £2(logq); this improves [CFRZ16] which required r = £2(log® max(p, q)); our
technique is also much simpler. We can assume that r > s, since otherwise we can swap p
and ¢. We can also assume that ged(r,s) = 1, since otherwise one should consider N’ =
N1/gcd(r:5)  Furthermore, we assume that the exponents r and s are known; otherwise they
can be recovered by exhaustive search in time O(log? N).

Theorem 4. Let N = p"q¢® be an integer of unknown factorization with ged(r,s) = 1. Given
N as input, one can recover the prime factors p and q in polynomial time in log N under the
condition r = 2(logq).

Proof. Since ged(r, s) = 1, from Bézout’s identity there exist two positive integers o and /3
such that:
a-s—pF-r=1,

where we can take 0 < a < r since a = s~ (mod r). Therefore we can write:
T
N — (prqs)a _ parqas — parqﬂr-l—l — (pocqﬂ) q

Therefore letting P := p®¢®, we obtain N® = P"q. One can thus apply Theorem 3 on N,
which enables to recover the integers P and ¢ from N = P"q in polynomial time in log(N¢),
under the condition r = 2(log q). Since o < r < log N, this enables to recover the factorization
of N in time polynomial in log N under that condition. O
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