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Abstract. As distributed networks are heavily used in modern applica-
tions, new security challenges emerge. In a multi-party computation (in
short, MPC) protocol over an incomplete network, such a challenge is to
hide, to the extent possible, the topology of the underlying communica-
tion network. Such a topology-hiding (aka network hiding) property is
in fact very relevant in applications where anonymity is needed.

To our knowledge, with the exception of two recent works by Chandran
et al. [ITCS 2015] and by Moran et al. [TCC 2015], existing MPC proto-
cols do not hide the topology of the underlying communication network.
Moreover, the above two solutions are either not applicable to arbitrary
networks (as is [ITCS 2015]) or, as in [TCC 2015], they make non-black-
box and recursive use of cryptographic primitives resulting in an unre-
alistic communication and computation complexity even for simple, i.e.,
low degree and diameter, networks.

Our work suggests the first topology-hiding communication protocol for
incomplete networks which makes black-box use of the underlying crypto-
graphic assumption—in particular, a public-key encryption scheme—and
tolerates any adversary who passively corrupts arbitrarily many network
nodes. Our solutions are based on a new, enhanced variant of thresh-
old homomorphic encryption, in short, TH-PKE, that requires no a-
priori setup and allows to circulate an encrypted message over any (un-
known) incomplete network and then decrypt it without revealing any
network information to intermediate nodes. We show how to realize this
enhanced TH-PKE from the DDH assumption. The black-box nature of
our scheme, along with some optimization tricks that we employ, makes
our communication protocol more efficient than existing solutions.

We then use our communication protocol to make any semi-honest se-
cure MPC protocol topology-hiding with a reasonable—i.e., for simple
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networks, polynomial with small constants—communication and compu-
tation overhead. We further show how to construct anonymous broadcast
without using expensive MPCs to setup the original pseudonyms.

1 Introduction

Secure communication is perhaps the central goal of cryptography. It allows a
sender, Alice, to securely transmit a message to a receiver, Bob so that even if
some eavesdropper, Eve, is intercepting their communication she can not figure
out anything about the transmitted message. When Alice and Bob share a phys-
ical (but potentially tappable) communication channel, this task can be easily
carried out by use of standard public-key cryptography techniques, e.g., Bob
sends Alice his public key who uses it to encrypt her message and send it over
the physical communication channel to Bob. But this idealized scenario occurs
rarely in modern networks, such as the Internet, where Alice and Bob would
most likely not share a physical channel and would, instead, have to commu-
nicate over some (potentially incomplete) network of routers. Without further
restrictions, the above modification marginally complicates the problem as it can
be directly solved by means of a private flooding scheme. In such a scheme, Al-
ice encrypts her message, as before, and sends it to all her immediate neighbors,
i.e., network routers with which she shares physical links, who then forward it to
their immediate neighbors, and so on, until it reaches Bob. Clearly, if Alice has
a path to Bob and the forwarding step is repeated as many times as the length
of this path, the message will reach Bob. And the fact that the intermediate
routers only see encryptions of the transmitted message means that they do not
learn anything about the message.

But modern distributed protocols often require much more than just privacy
of the transmitted message. For example, ensuring anonymity in communication
is a major goal of security as it, for example, protects against censorship or coer-
cion. Similarly, as privacy awareness in social networks increases, users might not
be willing to reveal information about the structure of their peer graph (i.e., their
Facebook friends graph) to outsiders. Other applications might require to hide a
communicating agent’s location, as is the case in espionage or when using mobile
agents to propagate information through some ad-hoc network, e.g., in vehicle-
to-vehicle communication. All these applications require a routing scheme, that
hides the topology of the underlying communication network. Evidently, using
the simple private flooding strategy does not hide the topology of the underly-
ing communication network as, for example, an eavesdropping router can easily
determine its distance (and direction) to the sender by observing in which round
(and from whom) it receives the first encryption.

1.1 Related Literature

The problem of routing through an incomplete network has received a lot of
attention in communication networks with a vast amount of works aiming at
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optimizing communication complexity in various network types. In the following,
however, we focus on the cryptographic literature which is more relevant to our
goals—namely network hiding communication—and treatment.

Perhaps the main venue of work in which keeping the network hidden is a con-
cern is the literature on anonymous communication, e.g., [Cha03, RR98, SGR97].
These works aim to hide the identity of the sender and receiver in a message
transmission, in a way that protects these identities even against traffic analysis.
In a different line of work initiated by Chaum [Cha81], so called mix servers
are used as proxies which shuffle messages sent between various peers to disable
an eavesdropper from following a message’s path. This technique has been ex-
tensively studied and is the basis of several practical anonymization tools. An
instance of the mix technique is the so called onion routing [SGR97, RR98], which
is perhaps the most wide-spread anonymization technique. Roughly, it consists
of the sender applying multiple encryptions in layers on his message, which are
then “peeled-off” as the cipher-text travels through a network of onion routers
towards its destination. An alternative anonymity technique by Chaum [Cha88]
and implemented in various instances (e.g.,[Bd90, GJ04, GGOR14]) is known as
Dining Cryptographers networks, in short DC-nets. Here the parties themselves
are responsible for ensuring anonymity. The question of hiding the communica-
tion network was also recently addressed in the context of secure multi-party
computation by Chandran et al. [CCG+15]. This work aims to allow n parties
to compute an arbitrary given function in the presence of an adaptive adversary,
where each party communicates with a small (sublinear in the total number of
parties) number of its neighbors. Towards this goal, [CCG+15] assumes that
parties are secretly given a set of neighbors that they can communicate with.
Because the adversary is adaptive, it is crucial in their protocol that the commu-
nication does not reveal much information about the network topology, as such
information would allow the adversary to potentially discover the neighbors of
some honest party, corrupt them, and isolate this party, thereby breaking its
security.3 Another work which considers such an adaptive corruption setting is
the work of King and Saia [KS10], which is tailored to the Byzantine agreement
problem. We note in passing that the result of [CCG+15, KS10] was preceded by
several works which considered the problem of MPC over incomplete networks.
However, these works do not aim to keep the network hidden as they either only
consider a static adversary,4 e.g., [BGT13], and/or they only achieve so called
almost everywhere computation [GO08, KSSV06a, KSSV06b, CGO15] where the
adversary is allowed to isolate a small number of honest parties.

3 In fact, by a factor
√
n increase on the number of neighbors of each party, [CCG+15]

can avoid the assumption of a trusted setup privately distributing the neighbor-
hoods and achieve the same level of security while having the parties generate these
neighborhoods themselves.

4 A static adversary chooses all the parties to corrupt at the beginning of the protocol
execution and therefore learning the network topology through the communication
cannot help him isolate any honest party.

3



Most related to the goals of our work is the recent work of Moran, Orlov,
and Richelson [MOR15], which considers the problem of topology-hiding secure
multi-party computation over an incomplete network in the computational set-
ting (i.e., assuming secure public-key encryption) tolerating a semi-honest (pas-
sive) and static adversary. At a very high level, [MOR15] uses public-key encryp-
tion and (semi-honest) multi-party computation to implement a proof-of-concept
network-hiding communication protocol, which emulates a complete network of
secure channels. This emulated network is then used to execute an arbitrary
multi-party protocol in which parties communicate over a complete communica-
tion network, e.g., [GMW87, Pas04]. In fact, as noted in [MOR15], relying on a
computational assumption seems inevitable, as in the information-theoretic set-
ting the work of Hinkelmann and Jakoby [HJ07] excludes fully topology-hiding
communication.5 Due to the similarity to our goal we include a detailed com-
parison of our results with [MOR15] in Section 1.3.

1.2 Our Contributions

In this work we present the first network-hiding communication protocol which
makes black-box use of public-key encryption and, for networks with moderate
degree and diameter, has a moderate communication and computation complex-
ity. Our protocol allows the parties to communicate over an incomplete net-
work of point-to-point channels in a way which computationally hides both the
transmitted message and the neighborhood of honest parties from an adver-
sary passively corrupting arbitrary many parties. We remark that as pointed out
in [CCG+15], when the communication graph is to be kept hidden, the adversary
cannot be eavesdropping on communication channels, and in particular cannot
be informed when a message is transmitted over some channel. We resolve this
issue by assuming, along the lines of [MOR15], a special network functionality
(cf. Section 2).

A bit more concretely, the high-level idea of our construction is to enhance
the näıve private flooding-protocol by using homomorphic public-key encryp-
tion (in short, PKE). The starting point of our approach is the observation—
underlying also the construction from [MOR15]—that the flooding protocol
would be topology-hiding if the parties could not read intermediate messages.
But instead of using, as in [MOR15], expensive nested MPCs for ensuring this
fact (see below for a high-level description of [MOR15]) we use a version of
threshold PKE with additional network hiding properties. We also show how
to implement our enhanced threshold PKE definition assuming hardness of the
Decisional Diffie-Hellmann (DDH) problem.

To demonstrate our ideas, imagine there was a world in which parties (corre-
sponding to all intermediate routers) could encrypt with a homomorphic public-
key encryption scheme where the private (decryption) key is known to nobody,

5 To our understanding the result of [HJ07] does not apply to the case where a strong
information-theoretic setup, e.g., sufficiently long correlated randomness, is available
to the parties. Extending this results to that setting is an interesting open problem.
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but instead parties have access to a decryption oracle. Provided that the as-
sociated PKE-scheme is semantically secure, parties can enhance the flooding
protocol as follows: Alice encrypts its message and starts the flooding; in each
step of the flooding protocol, the intermediate party—which, recall, is supposed
to forward the received ciphertext—first re-randomizes the ciphertext and then
forwards it. Once the message arrives to Bob, he invokes the decryption oracle
to open its final ciphertext. We observe that in this case the adversary does no
longer learn anything from intermediate messages, the protocol is thus topology-
hiding.

There are two major challenges with the above approach. First, if interme-
diate parties are silent until a message reaches them during the flooding, then
the adversary observing this fact can use it to deduce information about the
network. E.g., if a neighbor pi of a corrupted party has not sent anything by the
second round of the flooding protocol, then the adversary can deduce that pi is
not a neighbor of Alice. Secondly, we need a way to implement the decryption
oracle. Observe that using a off-the-shelf threshold decryption scheme and have
decryption shares exchanged by means of flooding would trivially destroy the
topology-hiding property; and the same is the case if we would use an MPC
protocol for this purpose, unless the MPC were itself topology-hiding. In the
following we discuss how we solve each of the protocols, separately.

The first issue—information leakage from silent parties—can be solved by
having every party send messages in every round. As simple as this idea might
seem, it has several difficulties. For starters, the messages that are injected by
intermediary parties should be indistinguishable from encryptions, as otherwise
adding this noise makes no difference. But now, there is a new issue that the
intermediate parties cannot tell which of the indistinguishable messages they
receive contains the initial message sent by Alice. The naive solution to this
would be to have parties re-randomize everything they receive and add their
own noise-message. But this would impose an exponential, in the graph diameter,
factor both in the message and communication complexity. Our solution, instead,
is to use the homomorphic properties of the encryption scheme and build an
efficient process which allows every party to compute an encryption of the OR
of the messages it receives from its neighbors. Thus, to transfer a bit b, Alice
encrypts b and starts flooding, whereas every party encrypts a zero-bit and
starts flooding simultaneously. In each following round of the flooding scheme,
every party homomorphically computes the OR of the messages it receives and
continues flooding with only this encryption. Bob keeps computing the OR of
the encryptions he receives, and once sufficiently many rounds have passed, the
decryption is invoked to have him obtain Alice’s bit. Note that we only treat
the case of semi-honest parties here, thus no party will input an encryption of a
one-bit into this smart flooding scheme which would destroy its correctness.

To solve the second issue—i.e., implement the decryption oracle in a topol-
ogy hiding manner—we introduce a new variant of threshold homomorphic
public-key encryption (TH-PKE) with enhanced functionality, which we call
multi-homomorphic threshold encryption with reversible randomization. Roughly
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speaking, our new TH-PKE assumes a strongly correlated setup, in which secret
(sub)keys are nested in a way which is consistent with the network topology and
which allows parties to decrypt messages in a topology hiding manner. We pro-
vide a security definition for the new primitive and describe a topology-hiding
protocol for establishing the necessary setup using no setup-assumption what-
soever. And we also describe how to instantiate our schemes under the DDH
assumptions. We believe that both the general definition of this augmented TH-
PKE and the concrete instantiation could be of independent interest and can be
used for anonymizing communication.

Applications Building on our topology hiding network and utilizing the function-
ality of our topology hiding homomorphic OR protocol we present the following
applications:

– Anonymous broadcast: We consider a variant of anonymous broadcast where
parties can broadcast messages under a pseudonym. The presented proto-
col allows to realize anonymous broadcast directly from the topology hid-
ing homomorphic OR protocol without using expensive MPC to setup the
pseudonyms.

– Topology hiding MPC: Having a topology-hiding network, we can execute
on top of it any MPC protocol from the literature that is designed for point-
to-point channels which will render it topology hiding.

1.3 Comparison with [MOR15]

The work by Moran et al. [MOR15] provides the first, to the best of our knowl-
edge, work that solves this problem for general graphs in the computational
setting. Our goals are closely related to theirs. In fact, our security definition of
topology-hiding communication and, more general, computation is a refinement
of their simulation-based definition of topology-hiding MPC. But our techniques
are very different. In light of this similarity in goals, in the following we include
a more detailed comparison to our work.

More concretely, the solution of [MOR15] also follows the approach of enhanc-
ing the näıve flooding protocol to make it topology hiding. The key idea is to use
nested MPCs, recursively, to protect sensitive information during the execution
of the flooding protocol. Roughly, in the basic topology-hiding communication
protocol of [MOR15], each party Pi is replaced by a virtual-party P̂i, which is em-
ulated by its immediate neighbors by invoking locally (i.e., in the neighborhood)
an off-the-shelf MPC protocol. The complete network of point-to-point channels
required by the MPC protocol is emulated by use of a PKE-scheme over the star
network centered around Pi, i.e., by näıve flooding where Pi is used as the routing
node. The above ensures that Pi cannot analyze the messages that are routed
through him, as they are actually handled by its corresponding virtual party
P̂i. However, there is now a new problem to be solved, namely, how do virtual
parties use the underlying (incomplete) communication network to flood mes-
sages in a topology hiding manner? This is solved as follows: To enable secure
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communication between adjacent virtual-parties a PKE-scheme is used (once
more). Here each virtual-party generates a key-pair and sends the encryption
key to the adjacent virtual-parties using real parties as intermediates. This basic
protocol is topology-hidingly secure as long as the adversary does not corrupt
an entire neighborhood. But this is of course not enough for arbitrarily many
corruptions to be tolerated. Thus, to ensure that the overall flooding protocol is
also topology hiding, each virtual party is replaced, again by means of MPC, by

a “doubly virtual” party
ˆ̂
P . This will ensure that only adversaries corrupting all

the parties that emulate
ˆ̂
P can break the topology hiding property. To extend

the set of tolerable adversaries, the doubly virtual parties are again emulated,
and this process is continued until we reach an emulated party that is emulated
by all parties in the network. This requires in the worst case a number of nested
MPCs in the order of the network diameter.

In the following we provide a comparison of the solution of [MOR15] with
ours demonstrating the advantages of our solution both in terms of simplicity
and efficiency. In all fairness, we should remark that the solution of [MOR15]
was explicitly proposed as a proof-of-concept solution. The major advantage of
our work over [MOR15] is that our communication protocol makes no use of
generic MPC, and makes black-box use of the underlying PKE. This not only
yields a substantial efficiency improvement, in terms of both communication and
computation, but it also yields a more intuitive solution to the problem, as it
uses the natural primitive to make communication private, namely encryption,
instead of MPC.

More concretely, the player-virtualization protocol from [MOR15] makes non-
black-box use of public-key encryption, i.e., the circuit which is computed via
MPC is a public-key encryption/decryption circuit. This is typically a huge cir-
cuit which imposes an unrealistic slowdown both on the computation complexity
and on the round and/or communication complexity.6 And this is just at the first
level of recursion; the computation of the second level, computes a circuit, which
computes the circuit, which computes PK encryptions/decryptions, and so on.
Due to the lack of concrete suggestions of instantiation of the PKE and MPC
used in [MOR15] we were unable to compute exact estimates on the running
time and communication complexity of the suggested protocols. Notwithstand-
ing it should be clear that even for the simple case in which the network has
constant degree and logarithmic diameter—for which their communication pro-
tocol in [MOR15] achieves a polynomial complexity—and even for the best MPC
instantiation the actual constants are huge.

Instead, our solutions make black-box use of the underlying PKE scheme and
are, therefore, not only more communication and computation efficient, but also
easier to analyze. In fact, in our results we include concrete upper bounds on
the communication complexity7 of all our protocols. Indicatively, for a network

6 Of course the latter can be traded off by choosing to use either a communication
heavy or a round heavy protocol.

7 We note that the computation complexity of our protocols is similar to their com-
munication complexity.
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with diameter D and maximum degree d our network-hiding broadcast protocol
communicates at most (d + 1)D · n · λ bits within just 5 · D rounds, where λ
is linear (with small constant, less than 5)8 in the security parameter κ of the
underlying PKE scheme. We note that many natural network graphs, such as
social networks or the internet have a small diameter.9

1.4 Preliminaries and Notation

We consider an MPC-like setting where n parties P = {P1, . . . , Pn} wish to
communicate in a synchronous manner over some incomplete network of secure
channels. When the communication is intended to be from Pi, the sender, to
Pj , the receiver, we will refer to the parties in P \ {Pi, Pj} as the intermediate
parties. We will assume a passive and non-adaptive (aka static) computationally
bounded adversary who corrupts an arbitrary subset H ⊆ P of parties. Parties
in H are called dishonest or corrupted while parties in H = P \ H are called
honest. We use simulation based security to prove our results. For simplicity our
proofs are in Canetti’s modular composition framework [Can98] but all our re-
sults translate immediately to the universal composition UC framework [Can00].
(Recall that we consider semi-honest static security.) In fact, to make this tran-
sition smoother, we describe our hybrids in the form of UC functionalities. For
compactness, for any functionalities F and G, we will denote by {F ,G} the
composite functionality that gives parallel access to F and G.

Throughout this work, we assume an, at times implicit, security param-
eter κ and write neg(κ) to refer to a negligible function of κ. (See [Gol01]
for a formal definition of negligible functions.) For an algorithm A we write
(y1, . . . , yk) ← A(x1, . . . , xk) to denote that (y1, . . . , yk) are outputs of A given
inputs (x1, . . . , xk). For a probabilistic algorithm B we write (y1, . . . , yk) ←
B(x1, . . . , xk; r) where r is the chosen randomness. If we write (y1, . . . , yk) �
B(x1, . . . , xk) instead, we assume that the randomness has been chosen uni-
formly.

1.5 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2 we give our def-
inition of topology-hiding security. In Section 3 we present a construction which
allows to realize topology-hiding communication. The construction is based on
multi-homomorphic threshold encryption with reversible randomization (RR-
MHT-PKE) which is introduced in Section 3.1. Next, in Section 3.2 we describe
a topology-hiding threshold encryption protocol based on RR-MHT-PKE. This
protocol is used in Section 3.3 to topology-hidingly realize the Boolean-OR func-
tionality. This allows to give a toplogy-hiding construction of broadcast and se-
cure channels in Section 3.4. Finally, in Section 4 we present topology-hiding

8 This can be contrasted with the complexity O(d)D · n · λ obtained by [MOR15].
9 Backstrom et al. [UKBM11] showed that a sub-graph of the Facebook social network

consisting of 99.6% of all users had a diameter of 6. In this particular case the
broadcast protocol would communicate at most n7 · λ bits within 30 rounds.
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MPC and topology-hiding anonymous broadcast as applications of the protocols
from the previous section.

2 Topology Hiding Security Definition

In this section we provide the formal simulation-based definition of topology-
hiding computation. Our definition is an adaptation of the original simulation-
based definition of Moran et al. [MOR15]. More concretely, the topology-hiding
property requires that parties learn no information on the underlying communi-
cation network other than the description of their local neighborhood, i.e., the
identities of their neighbors. To capture this property, we assume that the parties
(in the real world) have access to a network functionality N which has knowl-
edge of every party Pi’s neighborhood (i.e., the set of point-to-point channels
connected to Pi) and allows Pi to communicate (only) to its neighbors.

Clearly, a protocol execution over such a network N allows an adversary
using it knowledge of the neighborhood of corrupted parties; thus the simulator
needs to also be able to provide this information to its environment. To give this
power to the simulator, [MOR15] augments the ideal functionality with an extra
component which allows the simulator access to this information. In this work
we use N itself in the ideal world to provide this information to the simulator.
Note that this does not affect the security statements, as the trivial N -dummy
protocol φN securely realizes N . 10

A conceptual point in which our model of topology-hiding computation de-
viates from the formulation of Moran et al. has to do with respect to how the
communication graph is chosen. At first thought, one might think that parame-
terizing the network functionality with the communication graph does the trick.
This is, however, not the case because the parameters of hybrid-functionalities
are known to the protocol which invokes them and are therefore also known to
the adversary. The only information which is not known to the adversary are
inputs of corrupted parties and internal randomness of the functionality; thus,
as a second attempt, one might try to have the network functionality sample
the communication graph from a given distribution.11 Unfortunately this also
fails to capture the topology-hiding property in full, as we would like to make
sure that the adversary (or simulator) gets no information on any given (hidden)
graph.

Motivated by the above, [MOR15] defines topology-hiding computation using
the following trick: they assume an extra incorruptible party, whose only role
is to provide the network graph as input to the network functionality. Because
this network-choosing party is (by assumption) honest, the simulator cannot see
its input and needs to work having only the knowledge that N allows him to
obtain, i.e., the neighborhood of corrupted parties.

10 In any case, our protocol will not output anything other than the output of the
functionality, hence the simulator will only use N to learn the corrupted parties
neighborhood.

11 Intuitively, this would correspond to the hidden graph model of [CCG+15].
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In this work we take a slightly different, but equivalent in its effect, approach
to avoid the above hack of including a special purpose honest party. We assume
that each party provides its desired neighborhood to N as (a special part of)
its input. Since the inputs are explicitly chosen by the environment, we are
effectively achieving the same topology-hiding property as [MOR15] but without
the extra special-purpose honest party.

In the remainder of this section we provide a formal specification of our net-
work functionality (also referred to as network resource) and our formal security
definition of topology-hiding computation.

The Network The network topology is captured by means of an undirected graph
G = (V,E) with vertex-set V = P and edge-set E ⊆ P×P. An edge (Pv, Pu) ∈ E
indicates that Pu is in the neighborhood of Pv, which, intuitively, means that Pu
and Pv can communicate over a bilateral secure channel. For a party Pv denote
by NG(v) its neighborhood in G. We will refer to NG[v] = {Pv} ∪ NG(v) as
Pv’s closed neighborhood. Furthermore let NG[v]k be all nodes in G which have
distance k or less to Pv. (Clearly Pv ∈ NG[v]k.)

The network functionality allows two types of access: (1) any party Pv ∈ P
can submit its neighbors NG[v], and (2) every party can submit a vector ~m of
messages, one for each of its neighbors, which are then delivered in a batch form
to their intended recipients. In order to be able to make statements for restricted
classes of graphs, e.g., expanders, we parameterize the network functionality by
a family G of setups and require that NG only allows (the environment on behalf
of) the honest parties to chose their neighborhood from this class. Note, that
the adversary is not bound to choose a neighborhood from a graph in G, i.e.,
any valid neighborhood is accepted for corrupted parties. This is not an issue in
the semi-honest setting considered in this work as a semi-honest adversary will
submit whatever input the environment hands it. Thus, for the semi-honest case
it suffices that the functionality becomes unavailable (halts) upon receiving an
invalid neighborhood from the adversary (or from some honest party). 12 In the
full version of this paperwe also describe a network functionality that adequately
captures the guarantees needed to prevent a malicious adversary from using the
check of whether or not the neighborhood he submits results in an invalid-graph
message from NG to obtain information on the neighborhood of honest parties.

In the description of NG we use the following notation: For a graph G with
vertex set V , and for any V ′ ⊆ V , we denote by G|V ′ the restriction of G to
the vertices in V ′, i.e., the graph that results by removing from G all vertices in
V \ V ′ and their associated edges.

The network initializes a topology graph G = (V,E) := (P, ∅).

Functionality NG

12 Note that the environment knows/chooses all the inputs and therefore knows whether
or not the submitted neighborhoods are allowed by the graph class.
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Info Step:

1. Every party Pi ∈ P (and the adversary on behalf of corrupted parties)
sends (input) (MyNeigborhood,NG[i]) to N ; if NG[i] is a valid
neighborhood for Pi, i.e., NG[i] ⊆ {(Pi, Pj) | Pj ∈ P}, then NG updates
E := E ∪NG[i].

2. If there exist no G′ ∈ G such that G′ = G then NG sets E := ∅ and halts.
(Every future input is answered by outputting a special symbol
(BadNetwork) to the sender of this input.)

Communication Step:

1. For each Pi ∈ P let NG(i) = {Pi1 , . . . , Piνi }.
2. Every Pi ∈ P sends NG input (send, ~mi), where ~mi = (mi,i1 , . . . ,mi,iνi

); if
Pi does not submit a vector ~mi of the right size or format, then NG adopts
~mi = (⊥, . . . ,⊥).

3. Every Pi receives (output) ~mi = (mi1,i, . . . ,miνi ,i
) from NG .

An important feature of the above functionality is that the communication
pattern (i.e., which parties send or receive messages) does not reveal to the ad-
versary any information other than the neighborhood of corrupted parties. Thus,
the simulator cannot use this functionality in the ideal world to extract infor-
mation about the network. However, when using this network-functionality (in
the real-world protocol) to emulate, e.g., a complete communication network,
the adversary might use the messages exchanged in the protocol to extract in-
formation that the simulator cannot. In fact, the challenge of a topology-hiding
protocol is exactly to ensure that the exchanged messages cannot be used by the
adversary in such a way.

Definition 1. Let G be a family of graphs with vertex set P. Let also F be a
functionality and NG denote the network functionality (as specified above) and
π be a NG-hybrid protocol. We say that πNG securely realizes the functionality
F in a topology-hiding manner with respect to network class G if and only if π
securely realizes the composite functionality {F,NG}.

3 Topology-Hiding Communication

In this section we present a construction which allows to securely and topology-
hidingly realize different types of communication channels using black-box PKE.
The section consists of the following four steps, each treated in a separate sub-
section.

RR-MHT-PKE: In Section 3.1 we introduce multi-homomorphic threshold en-
cryption with reversible randomization (RR-MHT-PKE), a special type of thresh-
old public-key encryption. In addition to the (common) homomorphic property
of ciphertexts RR-MHT-PKE features homomorphic public-keys and decryption-
shares. This allows for a decentralized generation of shared keys which enables
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parties to generate securely and topology-hidingly a public-key setup where the
private-key is shared among all parties. Its reversible randomization property
allows parties to transmit public-keys and/or ciphertexts through the network
such that the adversary can not track them. We also give a practical implemen-
tation of RR-MHT-PKE based on the DDH assumption (see Appendix B).

Topology-Hiding Encryption: In Section 3.2, we present a topology-hiding thresh-
old encryption protocol based on black-box RR-MHT-PKE. More precisely, we
provide (1) a distributed setup protocol, (2) an information-transmission proto-
col, and (3) a distributed decryption protocol.

Topology-hiding Boolean-OR: In Section 3.3 we present a protocol which, for net-
works with moderate degree and diameter, securely and topology-hidingly real-
izes the multiparty Boolean-OR functionality using the topology-hiding thresh-
old encryption protocol from the previous section.

Topology-hiding Broadcast and Secure Channels: Finally, in Section 3.4 we use
the Boolean-OR functionality to securely and topology-hidingly realize secure
channels and broadcast. The main result of this section is the following theorem.

Theorem 1. Given a network NG with diameter D and maximum degree d
where dD = poly(κ) there exists a protocol which securely and topology-hidingly
realizes broadcast using black-box RR-MHT-PKE. The protocol communicates at
most (d+1)D ·n·λ bits within 5·D rounds, where λ is linear (with small constant,
less than 5) in κ.

3.1 Multi-Homomorphic Threshold Encryption with Reversible
Randomization

In this section we introduce multi-homomorphic threshold encryption with re-
versible randomization, a special type of threshold public-key encryption, which
will allow us to securely and topology-hidingly realize a distributed encryption
scheme. We first start by recalling some standard definitions. A public-key en-
cryption (PKE) scheme consists of three algorithms, KeyGen for key genera-
tion, Enc for encryption and Dec for decryption. Since in this work we consider
semi-honest adversaries, we will only need encryption satisfying the standard
IND-CPA security definition. For completeness this definition is provided in
Appendix A. Threshold public-key encryption (T-PKE) is PKE in which the
private key SK is distributed among l parties p1, . . . , pl, such that each party
pi holds a share (aka sub-key) ski of SK with the property that any l − 1
sub-keys have no information on SK. Importantly, such a scheme allows for
distributed decryption of any given ciphertext: any party pi can locally com-
pute, using its own sub-key ski of the private key SK, a decryption share xi,
so that if someone gets a hold of decryption shares (for the same c) from all
parties (i.e., with each of the shares of the private key) he can combine them
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and recover the plaintext. For the classical definition of T-PKE we refer to Ap-
pendix A. Homomorphic (threshold) PKE allows to add up encrypted messages.
Here, the message space 〈M,+〉 and the ciphertext space 〈C, ·〉 are groups such
that m1 + m2 = Dec(SK, Enc(PK,m1; r1) · Enc(PK,m2; r2)). for any key pair
(PK,SK)← KeyGen and any messages m1,m2 ∈M.

Multi-Homomorphic Threshold Encryption We first present multi-homo-
morphic threshold encryption which is in essence HT-PKE with two additional
properties. The first property is a decentralized key-generation. The idea is that
parties locally generate public/private-key pairs. By combining those local pub-
lic keys they can then generate a public key with shared private-key where
the local private keys act as key shares. More formally, its required that the
public-key space 〈PK, ·〉 and the private-key space 〈SK,+〉 are groups. More-
over its is required (1) that there exists a key-generation algorithm KeyGen,
which outputs a public/private-key pair (pki, ski) ∈ PK × SK, and (2) that
for any key pairs (pk1, sk1), (pk2, sk2) ∈ PK × SK it holds that pk1 · pk2 is
the public key corresponding to private key sk1 + sk2. In other words a multi-
homomorphic threshold encryption scheme is homomorphic with respect to pub-
lic/private keys. We point out this is not a standard property of threshold PKE
schemes. For instance, the scheme of [Pai99], does not satisfy this property.
Secondly, a versatile homomorphic threshold encryption scheme is required to
be homomorphic with respect to decryption shares and private keys. That is,
for any key pairs (pk1, sk1), (pk2, sk2) and any ciphertext c it must hold that
ShareDecrypt(sk1, c) · ShareDecrypt(sk2, c) = ShareDecrypt(sk1 + sk2, c).

Definition 2. A multi-homomorphic threshold encryption (MHT-PKE) scheme
with security parameter κ consists of four spaces M, C, SK, and PK and four
algorithms KeyGen,Enc,ShareDecrypt, and Combine which are parametrized by
κ where:

1. The message space 〈M; +〉, the ciphertext space 〈C; ·〉, the public-key space
〈PK; ·〉, the private-key space 〈SK; +〉, and the decryption-share space 〈DS; ·〉
are cyclic groups of prime order.

2. The (probabilistic) key-generation algorithm KeyGen outputs a public key
pk ∈ PK and a private key sk ∈ SK where for any key pairs (pk1, sk1),
(pk2, sk2) ∈ PK×SK it holds that pk1 · pk2 is the public key corresponding
to private key sk1 + sk2.

3. The (probabilistic) encryption algorithm Enc takes a public key pk ∈ PK
and a message m ∈M and outputs a ciphertext c← Enc(PK,m; r).

4. The decryption share algorithm ShareDecrypt takes a private key ski ∈
SK and a ciphertext c ∈ C as inputs and outputs a decryption share xi ←
ShareDecrypt(ski, c). For any ciphertext c ∈ C and private keys sk1, sk2 ∈
SK where x1 ← ShareDecrypt(sk1, c) and x2 ← ShareDecrypt(sk2, c) it
holds that x1 · x2 = ShareDecrypt(sk1 + sk2, c).

5. The combining algorithm Combine takes a decryption share x ∈ DS and a
ciphertext c ∈ C and outputs a message m← Combine(x, c).
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A MHT-PKE scheme satisfies the following correctness property: For any key
pairs (pk1, sk1), . . . , (pkl, skl) ← KeyGen and any message m ∈ M it holds that
m = Combine(x1 · . . . · xl, c) where xi = ShareDecrypt(ski, c), c = Enc(pk,m; r)
and pk = pk1 · . . . · pkl. Moreover, given a message m and a ciphertext c
one can efficiently invert Combine, i.e., compute a decryption share x with m =
Combine(x, c).

We define the security of MHT-PKE with respect to a threshold variant of
the IND-CPA security definition.

Definition 3. A MHT-PKE scheme is IND-TCPA secure if the adversary’s
advantage in winning the following game is negligible in κ.

1. The game generates key pairs (pk1, sk1), . . . (pkl, skl) � KeyGen and chooses
a random bit b. Then the adversary gets pk = pk1 · . . . ·pkl, pk1, . . . , pkl and
sk2, . . . , skl. This allows him to generate encryptions of arbitrary messages
and to generate decryption shares for all key pairs except (pk1, sk1).

2. The adversary specifies two messages m0 and m1 and the game returns
c = Enc(PK,mb).

3. The adversary specifies a bit b′. If b = b′ the adversary has won the game.

Furthermore for any chosen public-key pk ∈ PK, it should be hard to distin-
guish between (pk, pk·pk1) and (pk, pk2) where pk1, pk2 are distributed according
to KeyGen. More formally, we require that the scheme has the indistinguishability
under chosen public-key attack (IND-CKA) property.

Definition 4. A MHT-PKE scheme is IND-CKA secure if the adversary’s ad-
vantage in winning the following game is negligible in κ.

1. The adversary specifies a public key pk ∈ PK.

2. The game generates a key pair (pk1, sk1) � KeyGen and chooses a uniform
random bit b. Then the adversary gets public key pk2 where

pk2 =

{
pk1 if b = 0

pk1 · pk if b = 1

3. The adversary specifies a bit b′. If b = b′ the adversary has won the game.

Reversible Randomization We can now introduce multi-homomorphic thresh-
old encryption with reversible randomization which is MHT-PKE with additional
randomization properties.

Randomization of Public Keys The first property required is the randomization
of public keys. More concretely, a MHT-PKE with reversible randomization al-
lows a party Pi with public key pki to “randomize” pki, i.e., compute a new

masked public-key p̃ki so that anyone seeing p̃ki is unable to tell whether it
is a freshly generated public-key or a randomized version of pki. Importantly,
we require the randomization algorithm to be reversible in the following sense.
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The randomization algorithm must provide Pi with information rki, the de-

randomizer, which allows it to map any encryption with p̃ki back to an en-
cryption with its original key pki. Looking ahead, the randomization of public-
keys property will ensure that the adversary can not trace public keys while
they travel the network. This allows us to build a topology-hiding information-
transmission protocol.

Randomization of Ciphertexts The second property required is the randomiza-
tion of ciphertexts. More concretely, a MHT-PKE with reversible randomization
allows a party Pi with ciphertext ci to “randomize” ci, i.e., compute a new
masked ciphertext ĉi so that anyone seeing ĉi is unable to tell whether it is a
freshly generated ciphertext (using an arbitrary public-key) or an randomized
version of ci. Importantly, we require the randomization algorithm to be re-
versible. This means it must provide Pi with information rki, the de-randomizer,
which allows it to map any decryption share of ĉi and decryption key sk back
to a decryption share of the original ciphertext ci and sk. Looking ahead, the
randomization of ciphertexts will ensure that the adversary can not trace cipher-
texts and decryption-shares while they travel the network. This will allow us to
build a topology-hiding decryption protocol. We remark that this property dif-
fers from the usual ciphertext re-randomization in homomorphic PKE schemes
where one randomizes a ciphertext by adding up an encryption of 0.

MHT-PKE with Reversible Randomization We can now give the formal defini-
tion of a MHT-PKE with reversible-randomization scheme.

Definition 5. A MHT-PKE with reversible-randomization (RR-MHT-PKE)
scheme is a MHT-PKE scheme with extra algorithms RandKey, DerandCipher,
RandCipher, DerandShare where:

1. The (probabilistic) (key) randomization algorithm RandKey takes a public

key pk ∈ PK and outputs a new public key p̃k ∈ PK and a de-randomizer
rk ∈ RKP .

2. The (ciphertext) de-randomization algorithm DerandCipher takes a de-
randomizer rk ∈ RKP and a ciphertext c̃ ∈ C and outputs a new ci-
phertext c ∈ C such that the following property holds. For any key pair

(pk, sk), (p̃k, rk) ← RandKey(pk; r′), any message m ∈ M, and any ci-

phertext c̃ ← Enc(p̃k,m; r̃) there exists an r such that Enc(pk,m; r) =
DerandCipher(rk, c̃). Moreover, given a ciphertext c and a de-randomizer
rk one can efficiently invert DerandCipher, i.e., compute a ciphertext c̃
such that c = DerandCipher(rk, c̃).

3. The (probabilistic) (ciphertext) randomization algorithm RandCipher takes
a ciphertext c ∈ C and outputs a new ciphertext ĉ ∈ C and a de-randomizer
rk ∈ RKC .

4. The (share) de-randomization algorithm DerandShare takes a de-randomizer
rk ∈ RKC and a decryption share x̂ ∈ DS and outputs a share x ∈ DS such
that the following property holds. For any key pair (pk, sk), any ciphertext
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c ∈ C, (rk, ĉ) ← RandCipher(c; r), and x̂ ← ShareDecrypt(ski, ĉ) we have
DerandShare(rk, x̂) = ShareDecrypt(ski, c). More over given a decryption
share x and a de-randomizer rk one can efficiently invert DerandShare,
i.e., compute a decryption shares x̂ such that x = DerandShare(rk, x̂).

For any public key pk it should be hard (for the adversary) to distinguish
between (pk, RandKey(pk)) and (pk, pk′) where pk′ is freshly generated using
KeyGen. Similar, for any ciphertext c it should be hard to distinguish between
(c, RandCipher(c)) and (c, c′) where c′ is a randomly chosen ciphertext. More
formally, the scheme should have the indistinguishability under chosen public-
key and chosen ciphertext attack (IND-CKCA) property.

Definition 6. A RR-MHT-PKE scheme is IND-CKCA secure if the adver-
sary’s advantage in winning the following game is negligible in κ.

1. The adversary specifies a public key pk ∈ PK and a ciphertext c ∈ C.

2. The game generates key pairs (pk1, sk1), (pk2, sk2) � KeyGen and a uniform
random message m ∈ M. The game then chooses uniform random bits b1
and b2. The adversary gets public key p̃k and ciphertext ĉ where

p̃k =

{
RandKey(pk) if b1 = 0

pk1 if b1 = 1

and

ĉ =

{
RandCipher(c) if b2 = 0

Enc(pk2,m) if b2 = 1
.

3. The adversary specifies bits b′1 and b′2. If b1 = b′1 or b2 = b′2 the adversary
has won the game.

The security of a RR-MHT-PKE scheme is defined with respect to the above
security properties.

Definition 7. A RR-MHT-PKE scheme is secure if it is IND-TCPA, IND-
CKA, and IND-CKCA secure.

DDH based RR-MHT-PKE One can practically implement secure RR-
MHT-PKE using an extended variant of the ElGamal cryptosystem [ElG84]
over a group G of prime order q(κ) where the DDH assumption holds. We refer
to Appendix B for more details.

Lemma 1. Given a DDH group one can securely implement RR-MHT-PKE.

3.2 Topology-Hiding Threshold Encryption

In this section we build a topology-hiding threshold encryption protocol using
a secure RR-MHT-PKE scheme. More precisely, we provide (1) a distributed
setup protocol, (2) an information-transmission protocol, and (3) a distributed
decryption protocol. Looking ahead, those protocols will allow us to topology-
hidingly realize the Boolean-OR functionality.
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The RR-MHT-PKE Scheme: We assume that the parties have access to a se-
cure RR-MHT-PKE scheme with security parameter κ, where n = poly(κ). In
particular, each party has local (black-box) access to the algorithms of the RR-
MHT-PKE scheme.

The Network Graph: A prerequisite for our protocols to work is that the network
graph G of NG is connected. Otherwise (global) information transmission is not
possible. The parties also need to know upper bounds on the maximum degree
and the diameter of the network graph. We therefore assume that the parties
have access to an initialized network N d,D

G where the graphs in the family G
are connected, have a maximum degree of d ≤ n, and a diameter of at most
D ≤ n where d and D are publicly known. For simplicity we restrict ourselves
to present protocols for d-regular network graphs. We point out that one can
extend the presented protocols to the general case where parties may have less
than d neighbors. The idea is that a party which lacks d neighbors pretends to
have d neighbors by emulating (messages from) virtual neighbors (cf. [MOR15]).

Setup Protocol In this section we present a protocol which allows to topology-
hidingly generate a threshold-setup where each party Pi holds a public key PKi
such that the corresponding private-key is shared among all parties. The high-
level idea of our protocol is as follows. We first observe that the D-neighborhood
of Pi consists of all parties. The setup thus provides party Pi with a public
key where the corresponding private-key is shared among the parties in the
D-neighborhood NG[i]D of Pi. This implies that one can generate the setup

recursively. In order to generate a k-neighborhood public-key PK
(k)
i , Pi asks

each of its neighbors to generate a public key where the private key is shared in

the neighbors (k − 1)-neighborhood. It can then compute PK
(k)
i by combining

the received public-keys.

Definition 8. A setup for topology-hiding threshold encryption over a network
N d,D
G consists of the following parts.

Private-Key Shares: Each party Pi holds a vector (SK
(0)

i , . . . ,SK
(D)

i ) of D+1
private keys which we call its private-key shares. For any 0 ≤ k ≤ D we de-

note by PK
(k)

i the public key corresponding to SK
(r)

i .

Public-Keys: Each party Pi holds a vector (PK
(0)
i , . . . ,PK

(D)
i ) of D + 1 public

keys where PK
(0)
i = PK

(0)

i and PK
(k)
i = PK

(k)

i ·
∏
Pj∈NG(i) PK

(k−1)
j . We call

PK
(k)
i the level-k public-key of Pi and denote by SK

(r)
i the corresponding

(shared) private key. The public-key of Pi is PKi := PK
(D)
i and the shared

private-key is SKi := SK
(D)
i .

Local Pseudonyms: Each party Pi privately holds a injective random function
νi(·) : NG(i)→ {1, . . . , d} which assigns each neighbor Pj ∈ NG(i) a unique
local identity νi(j) ∈ {1, . . . , d}. W.l.o.g. we will assume that νi(i) = 0.
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We remark that the condition on the public-keys ensures that any 0 ≤ k ≤ D
(and for reasonably large PK) the private key SK

(k)
i is properly shared among the

k neighborhood of Pi, i.e., each party in the k-neighborhood holds a non-trivial
share.

Definition 9. A protocol is a secure (topology-hiding) setup protocol over a

network N d,D
G if it has the following properties.

Correctness: The protocol generates with overwhelming probability a setup for
topology-hiding threshold encryption over the network N d,D

G .

Topology-Hiding Simulation: The adversarial view in an actual protocol-
execution can be simulated with overwhelming probability given the neigh-
borhood of dishonest parties in N d,D

G and the output of dishonest parties,
i.e., given the values

{
NG(i), νi(·),SK

(0)

i , . . . ,SK
(D)

i ,PK
(0)
i , . . . ,PK

(D)
i

}
Pi∈H

The simulation property ensures in particular that (a) the adversary does
not learn more about the network topology and that (b) the adversary does not
learn the private key corresponding to the public key PKi of party Pi unless it
corrupts the entire k-neighborhood of Pi.

Require: Parties have access to an initialized N d,D
G .

1: Each Pi generates the local identities νi(·) and sub-key pair

(PK
(0)
i , SK

(0)
i ) � KeyGen. Then it sets PK

(0)
i = PK

(0)
i .

2: for k = 1, . . . , D do
3: Each Pi sends PK

(k−1)
i to each Pj ∈ NG(i) using N .

4: Each Pi generates sub-key pair (PK
(k)
i , SK

(k)
i ) � KeyGen.

5: Each Pi computes PK
(k)
i = PK

(k)
i ·

∏
Pj∈NG(i) PK

(k−1)
j .

6: end for
Output: Pi outputs νi(·), (SK

(0)
i , . . . , SK

(D)
i ), and (PK

(0)
i , . . . ,PK

(D)
i ).

Protocol GenerateSetup

Lemma 2. Given a secure RR-MHT-PKE scheme the protocol GenerateSetup
is a secure setup protocol. The protocol communicates D ·d·n·log|PK| bits within
D rounds.

Proof. (sketch) Correctness: It follows directly from protocol inspection that

the setup generated by GenerateSetup is valid for N d,D
G . Topology-Hiding

Simulation: The view of the adversary during an actual protocol execution is

{
NG(i), νi(·),

{
PK

(k)
i ,PK

(k)

i ,SK
(k)

i

}
0≤r≤D

,
{
PK

(k)
j

}
Pj∈NG(i),0≤r≤D−1

}
Pi∈H

.
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Now consider the view where the public keys
{
PK

(k)
j

}
Pj∈NG(i)∩H,0≤r≤D−1

are

replaced by freshly generated public keys using KeyGen, i.e.,

{
NG(i), νi(·),

{
PK

(k)
i ,PK

(k)

i ,SK
(k)

i

}
0≤r≤D

,

{
P̃K

(k)

j

}
Pj∈NG(i)∩H,0≤r≤D−1

}
Pi∈H

.

Note that the second view can be easily computed by a simulator given the
outputs of dishonest parties. It remains to show that those views are computa-
tionally indistinguishable. Note that for any Pj ∈ NG(H) ∩ H the public-key

PK
(k)
j has the form pk1 · pk where pk1 = PK

(k)

j and pk =
∏
Pi∈NG(j) PK

(k−1)
i .

The indistinguishability therefore follows from the IND-CKA security of the RR-
MHT-PKE scheme. Communication Complexity: The protocol runs for D
rounds and in each round n · d public-keys are sent.

Information-Transmission Protocol In this section we present a topology-
hiding information-transmission protocol. Here, each party has a message mi

and a public-key pki
13 as input. The output of party Pi is a ciphertext ci under

the public key pki. If all parties input the 0-message, ci is an encryption of 0.
Otherwise, ci is an encryption of a random, non-zero message. The information-
transmission protocol has a recursive structure and is thus parametrized by a
level k. The protocol requires that parties have generated local pseudonyms.
We therefore assume that the parties have access to a setup for topology-hiding
threshold encryption over N d,D

G .

Definition 10. A protocol is a level-k (topology-hiding) secure information-

transmission protocol over a network N d,D
G if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for topology-
hiding threshold encryption over N d,D

G (cf. Definition 8). Each party holds
as input a message mi ∈M and a public key pki ∈ PK (not necessarily part
of its setup).The output of each party Pi is a ciphertext ci ∈ C.

Correctness: With overwhelming probability the output ci is the encryption of
message si under pki and randomness ρi (i.e. ci = Enc(pki, si; ρi)) with

si =

{
0 if mj = 0 for all Pj ∈ NG[i]k

xi if mj 6= 0 for at least one Pj ∈ NG[i]k

where xi ∈M \ {0} uniform at random.
Topology-Hiding Simulation: The adversarial view in a real protocol-execution

can be simulated with overwhelming probability given the following values{
NG(i),mi, pki, ci, νi(·)

}
Pi∈H

∪
{
si, ρi

}
NG[i]k⊆H .

13 For notational simplicity we use uppercase letters for public-/private-keys which are
part of the setup for N d,D

G and lowercase letters for arbitrary public-/private-keys.
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In other words the simulator gets the neighborhood of dishonest parties (in

N d,D
G ), their protocol in- and outputs, and their local pseudonyms from the

setup. For any party Pi where the whole k-neighborhood is dishonest the sim-
ulator is additionally given the content si and the randomness ρi of output ci.

The simulation property ensures in particular that (a) the adversary does
not learn more about the network topology and that (b) the adversary does
not learn the content of ciphertext ci of party Pi unless it corrupts the entire
k-neighborhood of Pi.

Require: Parties have access to an initialized N d,D
G and have generated local

pseudonyms.
Input: Each Pi inputs a message mi and a public key pki.
1: if k = 0 then
2: Each Pi computes ci = Enc(pki, 0) if mi = 0 or ci = Enc(pki, xi) if

mi 6= 0 where xi ∈M \ {0} uniform at random.
3: else
4: Each Pi computes (p̃ki, rki) � RandKey(pki) and sends p̃ki to each Pj ∈

NG[i] which denotes the received key by pkj,νj(i).

5: for l = 0, . . . , d do
6: The parties compute ciphertexts (c̃1,l, . . . , c̃n,l) by invoking

InfoTransmisson
(
k − 1, (m1, pk1,l), . . . , (mn, pkn,l)

)
.

7: end for
8: Each Pi sends c̃i,νi(j) to Pj ∈ NG[i].
9: Each Pi computes ci =

(∏
Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))

)ri for a

uniform random ri ∈ {1, . . . , |M| − 1}.
10: end if
Output: Each Pi outputs ci.

Protocol InfoTransmisson
(
k, (m1, pk1), . . . , (mn, pkn)

)

Lemma 3. Given a secure RR-MHT-PKE scheme and for any parameter 0 ≤
k ≤ D with dk = poly(κ), InfoTransmisson

(
k, (m1, pk1), . . . , (mn, pkn)

)
is a

secure level-k information-transmission protocol. The protocol communicates at
most (d+ 1)k · n · (log|PK|+ log|C|) bits within 2k rounds.

Proof. (sketch) Correctness: For k = 0 each party locally computes ci as speci-
fied by the correctness property. The protocol thus achieves correctness perfectly.
For k > 0 assume that the protocol achieves correctness for (k − 1). More pre-
cisely, the output of a party Pj for parameter (k − 1) is computed perfectly
correct if all (k− 1)-neighbors have input 0. Otherwise, the output of Pj for pa-
rameter (k − 1) is computed correctly except with error probability εk−1. First,
we consider the case where all parties in the k-neighborhood of Pi have input
0. The assumption for (k − 1) implies that all c̃i,νi(j) contain 0. The properties
of the RR-MHT-PKE scheme imply that si = ri · 0 = 0. In the second case at
least one party in the k-neighborhood of Pi has a non-zero input. This implies
that at least one c̃i,νi(j) contains a uniform random, non-zero message (with

20



error probability of at most εk−1). The properties of the RR-MHT-PKE thus
ensure that ci contains a uniform random, non-zero message (except with error
probability εk := εk−1 + 1

|M| ). This implies an overall success probability of at

least 1 − ( k·n|M| ). Topology-Hiding Simulation: To simulate the view of the

adversary the simulator is given{
NG(i),mi, pki, ci, νi(·)

}
Pi∈H

∪
{
si, ρi

}
NG[i]k⊆H .

For k = 0 those values correspond exactly to the view of the adversary during
an actual protocol execution. Simulation is thus easy. For the case k > 0 assume
that the view of the adversary can be simulated for k′ < k. The view of the adver-
sary can now be simulated as follows. At the beginning, the simulator generates
all public keys and de-randomizers seen by the adversary. For each dishonest Pi
the simulator computes rki, p̃ki using RandKey. For each honest Pj in the neigh-

borhood of H the simulator sets p̃kj to a random public-key using KeyGen. Due
to the IND-CKCA property of the RR-MHT-PKE scheme these public keys are
indistinguishable from the corresponding public-keys seen by the adversary in an
actual protocol-execution. The above values also determine all keys pki,νi(j) for

Pi ∈ H and Pj ∈ NG(i). Now, we consider the ciphertexts seen by the adversary
in the second part of the protocol. In essence the simulator must generate all
c̃j,νj(i) where Pi and/or Pj are dishonest. If the whole (k − 1)-neighborhood of
Pj is dishonest the simulator must also provide the content and the random-
ness of c̃j,νj(i) which are required for the sub-simulation of the recursive proto-
col invocations. We recall that DerandCipher is efficiently invertible if the de-
randomizer is known. First, simulator generates a random ri ∈ {1, . . . , |M| − 1}
for each dishonest Pi. If the whole k-neighborhood of Pi is dishonest (i.e.,
NG[i]k ⊆ H) the simulator is additionally given si and ρi. This allows the
simulator to compute for each neighbor Pj ∈ NG[i] a valid sj,νj(i), random-

ness ρj,νj(i), and an encryption c̃j,νj(i) = Enc(p̃ki, sj,νj(i); ρj,νj(i)) such that ci =(∏
Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))

)ri
. If there exists a honest party in the

k-neighborhood of Pi, the simulator is not given si and ρi. However, in this case
there is at least one Pj in NG[i] such that NG[j]k−1 6⊆ H. This allows the sim-

ulator to first generates all sj,νj(i), ρj,νj(i) and c̃j,νj(i) = Enc(p̃ki, sj,νj(i); ρj,νj(i))

where NG[j]k−1 ⊆ H. Then it chooses the remaining c̃j,νj(i) randomly under the

constraint that ci =
(∏

Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))
)ri

. In a final step

the adversary generates for any honest Pj ∈ NG[i] the values si,νi(j), ρi,νi(j)

and c̃i,νi(j) = Enc(p̃kj , si,νi(j); ρi,νi(j)). The IND − TCPA property of the RR-
MHT-PKE scheme and the correctness property of the protocol ensure that the
generated ciphertexts are indistinguishable from the ones seen by the adversary
in an actual protocol execution. Now all values required for the simulation of
the d + 1 invocations of InfoTransmisson with parameter (k − 1) are given.
The simulator can thus use the sub-simulator to generate the view of the ad-
versary in the middle part of the protocol. Communication Complexity: Let
f(k) be the communication complexity of InfoTransmisson

(
k, . . .

)
. Then we
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have f(0) = 0 and f(k) = d · n · (log|PK| + log|C|) + (d + 1) · f(k − 1). This
results in a communication complexity of at most (d+ 1)k ·n · (log|PK|+ log|C|)
bits. The round complexity follows from the observation that one can invoke the
subprotocols InfoTransmisson(k − 1, . . . ) in parallel.

Decryption Protocol In this section we describe a distributed decryption
protocol which allows each party Pi to decrypt a ciphertext ci under its shared
private-key SKi which has been generated by the setup protocol. The decryp-
tion protocol consists of two parts. First the parties jointly compute for each
ciphertext ci a decryption-share xi under the shared private-key of Pi. In a sec-
ond phase each party Pi can locally decrypt ci using the decryption share xi.
First, we present a subprotocol which allows to compute the required decryption
shares. The key-idea is to use the homomorphic property of decryption-shares
which allows a recursive computation. The subprotocol is therefore parametrized
by k.

Definition 11. A protocol is a secure level-k (topology-hiding) decryption-share

protocol over a network N d,D
G if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for topology-
hiding threshold encryption over N d,D

G (cf. Definition 8). Each party Pi in-
puts a ciphertext ci ∈ C. The output of party Pi is a decryption share xi ∈ DS.

Correctness: With overwhelming probability xi = ShareDecrypt(SK
(k)
i , ci) where

SK
(k)
i is the level-k shared private-key of Pi from the setup.

Topology-Hiding Simulation: The adversarial view in a real protocol-execution
can be simulated with overwhelming probability given the following values{

NG(i), ci, xi, νi(·),SK
(0)

i , . . . ,SK
(k)

i

}
Pi∈H

In other words the simulator gets the neighborhood of dishonest parties (in

N d,D
G ), their protocol in- and outputs, their local pseudonyms, and their

private-key shares (up to level-k) of the assumed setup.

The simulation property ensures in particular that the adversary does not
learn more about the network topology.

Require: Parties have access to an initialized N d,D
G and have generated a

setup for topology-hiding threshold encryption over N d,D
G .

Input: Each Pi inputs a ciphertext ci.
1: if k = 0 then
2: Each Pi computes xi = ShareDecrypt(SK

(0)
i , ci).

3: else
4: Each Pi computes (rki, ĉi) = RandCipher(ci) and sends ĉi to each Pj ∈

NG(i) which denotes the received value by cj,νj(i).
5: for l = 1, . . . , d do

Protocol DecShares(k, c1, . . . , cn)
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6: Parties compute (x1,l, . . . , xn,l) = DecShares(k − 1, c1,l, . . . , cn,l).
7: end for
8: Each Pi sends xi,νi(j) to each Pj ∈ NG(i).
9: Each Pi computes first x̂i =

∏
Pj∈NG(i) xj,νj(i) and then xi =

DerandShare(rki, x̂i) · ShareDecrypt(SK
(k)
i , ci).

10: end if
Output: Each Pi outputs xi.

Lemma 4. Given a secure RR-MHT-PKE scheme and for any parameter 0 ≤
k ≤ D with dk = poly(κ) the above protocol DecShares(k, c1, . . . , cn) is a secure
level-k decryption-share protocol. The protocol communicates dk · n · (log|DS|+
log|C|) bits within 2k rounds.

Proof. (sketch) Correctness: The correctness essentially follows from the struc-
ture of the assumed setup and from the properties of the RVHT-PKE scheme. In

the case k = 0 we have SK
(0)
i = SK

0

i which implies xi = ShareDecrypt(SK
(0)
i , ci).

For k > 0 we have SK
(k)
i = SK

(k)

i +
∑
Pj∈NG(i) SK

(k−1)
j . The properties of the

RVHT-PKE scheme thus imply that xi = ShareDecrypt(SK
(k)
i , ci) (c.f. protocol

line 9). Simulation: In the case k = 0 the view of the adversary is directly deter-
mined by values given to the simulator. Simulation is therefore easy to achieve.
In the case k > 0 the simulation of the adversarial view works similar as for
the information-transmission protocol (we recall that DerandShare is efficiently
invertible if the de-randomizer is known). The simulator essentially emulates the
protocol run. The IND-CKCA property of the RVHT-PKE scheme allows the
simulator to choose random ciphertexts for ci,νi(j) of honest Pj . Moreover, the de-
cryption shares xj,νj(i) for honest Pj can also be chosen randomly (where the dis-
tribution is conditioned on the outputs of dishonest parties). The view during the
executions of DecShares with parameter k−1 can be generated using the (k−1)-
subsimulator guaranteed by the induction hypothesis. Communication Com-
plexity: Denote by f(k) be the communication complexity of DecShares(k, . . . ).
Then we have f(0) = 0 and f(k) = n·d·(log|DS|+log|C|)+d·f(k−1). This results
in a communication complexity of f(k) = dk · n · (log|DS|+ log|C|). The round
complexity follows from the observation that one can invoke the subprotocols
DecShares(k − 1, . . . ) in parallel.

Definition 12. A protocol is a secure (topology-hiding) threshold decryption

protocol for network N d,D
G if it has the following properties.

Setup, Inputs and Outputs: The parties initially hold a setup for topology-
hiding threshold encryption over N d,D

G (cf. Definition 8). Each party Pi in-
puts a ciphertext ci ∈ C. The output of party Pi is a message mi.

Correctness: With overwhelming probability it holds for each party Pi that
mi = Combine(ShareDecrypt(SKi, ci)) where SKi is the shared private-key
of Pi.

23



Topology-Hiding Simulation: The adversarial view in a real-protocol exe-
cution can be simulated with overwhelming probability given the following
values {

NG(i), ci,mi, νi(·),SK
(0)

i , . . . ,SK
(D)

i

}
Pi∈H

In other words the simulator gets the neighborhood of dishonest parties (in

N d,D
G ), their protocol in- and outputs, their local pseudonyms, and their

private-key shares of the assumed setup.

Require: Parties have access to an initialized N d,D
G and have generated a

setup for topology-hiding threshold encryption over N d,D
G .

Input: Each Pi inputs a ciphertext ci.
1: The parties compute (x1, . . . , xn) = DecShares(D, c1, . . . , cn).
Output: Each Pi outputs Combine(xi, ci).

Protocol Decryption(c1, . . . , cn)

Lemma 5. Given a secure RR-MHT-PKE scheme, Decryption(k, c1, . . . , cn)
is a secure threshold decryption protocol. The protocol communicates dD · n ·
(log|DS|+ log|C|) bits within 2D rounds.

Proof. (sketch) The correctness follows directly from Lemma 4 and the proper-
ties of the RVHT-PKE scheme. The adversarial view in a real protocol execution
can be simulated as follows (recall that Combine is efficiently invertible). First
the simulator computes for each pair (ci,mi) a decryption share xi such that
mi = Combine(xi, ci). The rest of the view can then be generated using the
sub-simulator for DecShares(D, . . . ). The communication complexity and the
number of rounds follows directly from the invocation of DecShares with pa-
rameter D.

3.3 Multi-Party Boolean OR

In this section we present a protocol which securely and topology-hidingly re-
alizes the multi-party Boolean-OR functionality FOR using the topology-hiding
threshold encryption protocol from the previous section. The functionality FOR

takes from each party Pi an input bit bi and computes the OR of those bit, i.e.,
b = b1 ∨ · · · ∨ bn.

1. Every party Pi (and the adversary on behalf of corrupted parties) sends
(input) bit bi; if Pi does not submit a valid input, then FOR adopts bi = 0.

2. Every party Pi receives (output) b = b1 ∨ · · · ∨ bn.

Functionality FOR
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Assumptions We assume in the following that the parties have access to a secure
RR-MHT-PKE scheme with security parameter κ, where n = poly(κ). Moreover,

parties are given the network N d,D
G where the graphs in the family G are con-

nected, have a maximum degree of d ≤ n, and a diameter of at most D ≤ n
where d and D are publicly known.

Initialization:

1: Each party Pi inputs its neighborhood NG[i] into N d,D
G .

2: The parties generate a setup for topology-hiding threshold encryption over
N d,D
G using GenerateSetup.

Computation:

Input: Each party Pi inputs a bit bi.
1: Each party Pi sets mi = 0 if bi = 0. Otherwise, its sets mi to an arbitrary

message in M\ {0}.
2: The parties compute

(c1, . . . , cn) = InfoTransmisson
(
D, (m1,PK1), . . . , (mn,PKn)

)
.

3: The parties compute (m′1, . . . ,m
′
n) = Decryption(c1, . . . , cn).

Output: If m′i = 0 Pi outputs 0. Otherwise it outputs 1.

Protocol Boolean-OR(b1, . . . , bn)

Lemma 6. Given a secure RR-MHT-PKE scheme and for d,D with dD =
poly(κ) the protocol Boolean-OR(b1, . . . , bn) securely and topology-hidingly re-

alizes FOR (in the N d,D
G -hybrid model). In the initialization phase the protocol

Boolean-OR(b1, . . . , bn) communicates D · d ·n · log|PK| bits within D rounds. In
the computation phase the protocol communicates at most (d+1)D ·n ·(log|DS|+
log|PK|+ 2 log|C|) bits within 4 ·D rounds.

Proof. Correctness: We assume the condition dD = poly(κ). The correctness
thus follows directly from the properties of Lemmas 2,3, and 5 as the information-
transmission protocol essentially allows to compute Boolean-ORs.
Topology-Hiding Simulation: Given the values

{
NG(i), bi, b

}
Pi∈H

. the view
of the adversary can be simulated as follows. First the simulator generates a
setup for N d,D

G . Next, for each dishonest Pi the simulator computes the mes-
sages mi and m′i. It generates the corresponding ciphertext ci (including the
randomness). With those values the simulator now runs the the sub-simulators
for GenerateSetup, InfoTransmisson(D, . . . ), and Decryption(. . . ). The prop-
erties of Lemmas 2,3, and 5 ensure that the generated view is indistinguishable
(for the adversary) from a real protocol execution.
Communication Complexity: The claimed communication complexity fol-
lows directly from the used subprotocols.

Remark 1. If the RR-MHT-PKE is instantiated using the DDH based construc-
tion, the computation complexity of the Boolean-OR protocol is similar to its
communication complexity.
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3.4 Topology-hiding Broadcast and Secure Channels

In this section we describe a protocol which securely realizes the (bit) broadcast
functionality FsBC, while making-black box use of the FOR functionality from the
previous section. The functionality FsBC allows sender Ps to input a bit bs which
is output to all parties. This result directly implies that one can securely and
topology-hidingly realize secure channels and broadcast using black-box RR-
MHT-PKE.

Require: The sender Ps inputs a bit bs.
1: The parties compute (b, . . . , b) = FOR(0, . . . , bs, . . . , 0).
Output: Each party Pi outputs b.

Protocol Broadcast(Ps, bs)

Lemma 7. The protocol Broadcast(Ps, bs) securely realizes the FsBC functional-
ity in the FOR-hybrid model.

Proof. We have that b = 0 ∨ · · · ∨ bs ∨ · · · ∨ 0 = bs which implies correctness.
The view of the adversary in an actual protocol execution consists of inputs and
outputs of dishonest parties and is therefore easy to simulate.

Corollary 1. For d,D with dD = poly(κ) one can securely and topology-hidingly

realize FsBC (in the N d,D
G -hybrid model) using black-box RR-MHT-PKE while

communicating at most (d+1)D ·n·(log|DS|+log|PK|+2 log|C|)+D·d·n·log|PK|
bits within 5 ·D rounds per invocation.

Moreover, parties can simply realize secure channels given broadcast. First
the receiver generates a key pair and broadcasts the public-key. The sender then
broadcasts his message encrypted under this public-key.

Corollary 2. For d,D with dD = poly(κ) one can securely and topology-hidingly

realize secure channels (in the N d,D
G -hybrid model) using black-box RR-MHT-

PKE. The communication complexity is twice the one of the broadcast protocol.

4 Applications

In this section we provide two applications of our network-hiding communication
protocols. Namely, one can securely and topology-hidingly realize MPC and
anonymous brodcast.

4.1 Topology-hiding Secure Multi-Party Computation

The protocols from the previous section allow parties to topology-hidingly realize
a complete network of secure channels (including broadcast channels). They can
then use this network to execute a multi-party protocol of their choice, e.g.,
[GMW87, Pas04]. This easily proves the following result.
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Theorem 2. For d,D with dD = poly(κ) one can securely and topology-hidingly

realize any given multiparty functionality (in the N d,D
G -hybrid model) using black-

box RR-MHT-PKE.

4.2 Anonymous Broadcast

Theorem 2 implies that one can topology-hidingly realize anonymous channels
given black-box access to a RR-MHT-PKE scheme. But using generic MPC to
achieve an anonymous channel is expensive in terms of communication com-
plexity. We therefore provide a protocol in the FOR-hybrid model which directly
realizes anonymous broadcast FABC.

The functionality FABC generates for each party a unique but random pseudonym.
In the subsequent communication rounds each party can publish messages under
its pseudonym. Message are linkable which means that parties can relate mes-
sages to pseudonyms. Parties can prevent this by generating fresh pseudonyms
(e.g., after each communication round).

Initialization:

1: The functionality generates a random permutation σ of n elements.
2: Each party Pi gets output σ(i).

Communication Step:

Require: Each party Pi inputs a bit bi.
Output: The parties get the vector (o1, . . . , on) as output where oσ(i) = bi.

Functionality FABC

Anonymous Broadcast Protocol The high-level idea of our construction is as
follows. In a scheduling phase each party gets a random (but unique) communi-
cation slot σ(i) assigned. In a communication round for each slot σ(i) the FOR

functionality is invoked which allows Pi to broadcast its bit.
The major challenge is to compute the slot assignment. We solve this issue

with a scheduling loop14. At the beginning each party selects a random slot.
Then over several scheduling rounds the parties resolve colliding selections by
computing a reservation matrix. The size of this matrix (parametrized by m)
determines the collision detection probability. A largermmeans a faster expected
run time at the cost of increased communication costs per round.

1: Each party Pi chooses a random slot si ∈ {1, . . . , n}.
2: repeat

Protocol AssignSlots(m)

14 A similar idea was used recently in [KNS15].
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3: Each party Pi chooses a random token ri ∈ {1, . . . ,m} and computes

the n×m-matrix A(i) = (a
(i)
x,y) where a

(i)
si,ri = 1 and a

(i)
x,y = 0 otherwise.

4: The parties compute the matrix A = (ax,y) where ax,y = a
(1)
x,y ∨· · ·∨a(n)x,y

by invoking FOR.

5: If there exists an r < ri such that asi,r = 1 party Pi chooses a new
random slot si ∈ {1, . . . , n} such that si-th row of A contains only zeros.

6: until Each row of A contains exactly one 1.
Output: Each party Pi outputs si.

Lemma 8. The protocol AssignSlots(m) for the FOR-hybrid model securely
computes a random permutation σ of n elements where each party Pi learns
σ(i). The expected number of rounds the protocol requires to compute the permu-
tation is bounded by m

m−1 · n where FOR is invoked n ·m times per round.

Proof. The protocol terminates if each row of A contains exactly one non-zero
entry. Thus each slot in {1, . . . , n} has been chosen at least by one party. As
there are n parties this also means that no slot was chosen twice. The output
is therefore a valid permutation. Inspection of the protocol also reveals that the
permutation is chosen uniform at random (we consider semi-honest security).
Next, we show that the protocol eventually terminates. Each slot is in one of three
states. Either its empty, or its selected by multiple parties, or it is assigned to a
single party. We observe that the state transition function for slots is monotone.
A selected slot cannot become empty and an assigned slot stays assigned to the
same party. In each round where a collision is detected at least one empty slot
becomes assigned. After at most n such rounds there are no empty slots left.
But this also means that each slot is selected by at least one party and the
protocol terminates. This also leads to a crude upper bound on the number of
expected rounds. We observe that a collision between two parties is detected with
a probability of at least p = (1 − 1

m ). The expected number of rounds required
to detect a collision is therefore at most 1

p = m
m−1 (geometric distribution). The

number of expected rounds is thus bounded by m
m−1 ·n. It remains to consider the

simulation of the adversarial view. We observe that the (current) slot selection of
dishonest parties is enough to simulate the view of the adversary in a scheduling
round. The simulator can therefore essentially emulate the protocol (conditioned
on the final slots of dishonest parties).

Initialization:

1: The parties compute (σ(1), . . . , σ(n)) = AssignSlots(m).

Communication Step:

Require: Each party Pi inputs a bit bi.

Protocol AnonymousBroadcast(m)
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1: for s = 1, . . . , n do
2: The parties compute (os, . . . , os) = Boolean-OR(0, . . . , bσ−1(s), . . . , 0).
3: end for
Output: Each party Pi outputs vector (o1, . . . , on).

Lemma 9. The protocol AnonymousBroadcast(m) securely realizes the func-
tionality FABC in the FOR-hybrid model.

Proof. The statement follows directly from Lemmas 8 and 7.

Corollary 3. For d,D with dD = poly(κ) one can securely and topology-hidingly

realize FABC (in the N d,D
G -hybrid model) using black-box RR-MHT-PKE.
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A Definitions of Public-Key Encryption

This section includes complimentary material to Section 3.1.

Definition 13. A public-key encryption (PKE) scheme with message space M
and ciphertext space C consists of three algorithms (KeyGen, Enc, Dec) where:

1. The (probabilistic) key generation algorithm KeyGen outputs a public pk ∈
PK and a secret key sk ∈ SK.

2. The (probabilistic) encryption algorithm Enc takes a public key pk ∈ PK
and a message m ∈M and outputs a ciphertext c← Enc(pk,m; r).

3. The decryption algorithm Dec takes a secret key sk ∈ SK and a ciphertext
c ∈ C and outputs message m← Dec(sk, c).

We require the correctness property: for any key pair (pk, sk)← KeyGen and any
message m ∈M it holds that m = Dec(sk, Enc(pk,m; r)).

Definition 14. A PKE scheme is IND-CPA secure if the adversary has a neg-
ligible advantage in winning the following game.

1. The game generates a key pair (pk, sk) ← KeyGen and chooses a random
bit b. Then the adversary gets pk (this allows him to generate encryptions
of arbitrary messages).

2. The adversary specifies two messages m0 and m1 and the game returns
c = Enc(pk,mb).

3. The adversary specifies a bit b′. If b = b′ the adversary has won the game.

Definition 15. A threshold public-key encryption (T-PKE) scheme with mes-
sage space M and ciphertext space C consists of four algorithms TKeyGen, Enc,
CombineShares, Combine all parameterized by a parameter l (the threshold)
where:

1. The (probabilistic) key-generation algorithm TKeyGen outputs a public pk ∈
PK and a secret key sk which consists of a vector of sub-keys ski ∈ SK,
i.e., sk = (sk1, . . . , skl).

2. The (probabilistic) encryption algorithm Enc takes a public key pk ∈ PK
and a message m ∈M and outputs a ciphertext c← Enc(pk,m; r).

3. The decryption-share algorithm ShareDecrypt takes a sub-key ski ∈ SK
and a ciphertext c ∈ C as inputs and outputs a decryption share xi ←
ShareDecrypt(ski, c).

4. The combining algorithm Combine takes decryption shares x1, . . . , xl ∈ DS
and a ciphertext c ∈ C and outputs a message m← Combine(x1, . . . , xl, c).

We require the correctness property: For any key pair pk, sk = (sk1, . . . , skl) ←
KeyGen and any message m ∈M it holds that m = Combine(x1, . . . , xl, c) where
xi = ShareDecrypt(ski, c) and c = Enc(pk,m; r).
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B Multi-Homomorphic Threshold Encryption with
Reversible Randomization based on DDH

In this section we present a secure RR-MHT-PKE scheme based on the DDH
assumption. Our construction can be seen as an extended variant of the ElGamal
cryptosystem [ElG84].

B.1 MHT-PKE-Algorithms

Let 〈G, ·〉 be a cyclic group of prime order q(κ) for security parameter κ. Denote
by eG the neutral element of G and let g be a generator of G. For our scheme
we assume that (G, q, g) is publicly known. To ensure the various homomorphic
properties we use G as message space, public key space, decryption share space,
i.e., M = PK = DS = G. Ciphertexts consist of two group elements, i.e.,
C = G × G. Moreover, the private-key space is SK = 〈{0, . . . , p− 1} ,+〉. The
core part of our construction are the following four MHT-PKE algorithms.

Key Generation: The key-generation algorithm KeyGen chooses a private-key
sk uniformly at random from SK and sets the public-key pk = gsk, i.e.,

(gsk, sk) � KeyGen().

Encryption: The encryption algorithm Enc encrypts message m under public-
key pk as c := (gr, pkr ·m) where r ∈ {1, . . . , p− 1} is chosen uniformly at
random.

Enc(pk,m; r) = (gr, pkr ·m)

Decryption Shares: The decryption share algorithm ShareDecrypt takes a
ciphertex c = (a, b) and a private-key sk and computes decryption share
x = a−sk, i.e.,

ShareDecrypt(sk, c = (a, b)) = a−sk.

Combine: The combining algorithm Combine takes a ciphertext c = (a, b) and
a decryption shares x and computes message m = x · b, i.e.,

Combine(x, c = (a, b)) = x · b.

Note also that x = m · b−1, i.e., Combine is efficiently invertible.

It is easy to show that those four algorithms satisfy the correctness property re-
quired by Definition 2. In the following we assume that decisional Diffie-Hellman
(DDH) assumption holds for G. This means it is computationally hard to distin-
guish for given group elements (α, β, γ) whether they are independent uniform
random in G or whether α = ga and β = gb are independent uniform random
and γ = gab. A simple choice for G is a Schnorr Group, which is a q-order
subgroup of Z×p where p, q are primes with p = qr + 1 for some r. A more effi-
cient and therefore preferred alternative is to use an appropriate elliptic curve
group[Bon98].
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Lemma 10. If DDH holds for G, the MHT-PKE scheme is IND-TCPA secure.

Proof. We give a reduction of DDH to IND-TCPA. Consider a winner W̃ for the
IND-TCPA game (c.f. Definition 3). Then the following reduction gives a winner
W for DDH.

1. On input of (α, β, γ) from the outside set pk := α, choose a random bit b,
generate key pairs (pk2, sk2), . . . , (pkl, skl) � KeyGen, and set
pk1 := pk · g−sk2 · . . . · g−skl . Then send pk, pk1, . . . , pkl and sk2, . . . , skl to

the winner W̃ .
2. Given the messages m0 and m1 from W̃ return (β, γ ·mb) to W̃ .

3. If W̃ guesses b correctly output 1, else output 0.

Reduction DDH to IND-TCPA

If the input (α, β, γ) is of the form (ga, gb, gab) the reduction returns in the

second step (gb, gab ·mb) = (gb, pkb ·mb) to W̃ which is a valid encryption of mb

under pk := α. The winner W̃ should therefore be able to distinguish between
(β, γ ·m0) and (β, γ ·m1) with non-negligible advantage. If γ is uniform at random

the tuple (β, γ ·mb) is independent of bit b. The winner W̃ should therefore have
a negligible advantage in guessing the bit correctly.

Lemma 11. The MHT-PKE scheme is IND-CKA secure

Proof. For any public key pair (pk2, pk) there exists a public-key pk1 such that
pk2 = pk1 · pk. The key pair (pk2, pk) is thus distributed independently of b. The
adversary thus has a negligible advantage in guessing the b correctly.

B.2 Reversible-Randomization Algorithms

The final part of our construction are the four (de)randomization algorithms
which complete the RR-MHT-PKE scheme. The used de-randomizer spaces are
RKP = RKC = {0, . . . , p− 1}.

Public-Key Randomization: To randomize a public-key pk the key random-
ization algorithm RandKey generates a fresh key pair (grk, rk) � KeyGen and
multiplies pk with grk. The private rk acts as the de-randomizer.

(p̃k, rk) = (grk · pk, rk) � RandKey(pk)

Ciphertext De-Randomization: To de-randomize a given ciphertext c̃ the
de-randomization algorithm DerandCipher essentially computes a decryp-
tion share for rk and strips it from c̃.

DerandCipher
(
rk, c̃ = (a, b)

)
= (a, a−rk · b)

We observe that DerandCipher is efficiently invertible.
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Ciphertext Randomization: To randomize a ciphertext c = (a, b) the algo-
rithm RandCipher chooses a random r, r′ ∈ G, and a random d ∈ {1, . . . , p− 1}
and computes15 e ∈ {1, . . . , p− 1} with e ·d ≡p 1. If a 6= eG it exponentiates
a with e, otherwise it replaces a by r.

(ĉ, rk) =

{(
(ae, r′), d

)
if a 6= eG(

(r , r′), 0
)

if a = eG
� RandCipher

(
c = (a, b)

)
Decryption-Share De-Randomization: To de-randomize a given decryption

share x̂ the algorithm computes x̂rk.

DerandShare(rk, x̂) = x̂rk

We observe that DerandShare is efficiently invertible.

We can now show that the above algorithms satisfy the correctness properties of

Definition 5. For a public key PK let (p̃k, rk) � RandKey(pk). For any message

m consider the encryption c̃ = Enc(p̃k,m; r) of m under public-key p̃k with
randomness r. Then we have

DerandCipher(rk, c̃) = (gr, (gr)−rk · grk·r · pkr ·m)

= (gr, pkr ·m) = Enc(pk,m; r).

Next, for a ciphertext c = (a, b) let
(
ĉ = (â, b̂

)
, rk) � RandCipher(c). For any

private-key sk consider the decryption-share x̂ = ShareDecrypt
(
sk, (ĉ)

)
. Then

we have

DerandShare(rk, x̂) = x̂rk = â−sk·rk

=

{
a−sk·e·d = a−sk = ShareDecrypt(sk, c) if a 6= eG
r−sk·0 = eG = e−skG = ShareDecrypt(sk, c) if a = eG.

The correctness properties are thus fulfilled. It remains to show that our con-
struction satisfies the IND-CKCA security property.

Lemma 12. The RR-MHT-PKE scheme is IND-CKCA secure

Proof. For any public key pair (p̃k, pk) there exists a rk ∈ RKP such that p̃k =

grk · pk. The key pair (p̃k, pk) is thus distributed interdependently from b1. The
adversary thus has a negligible advantage in guessing the b1 correctly. Consider
ciphertext pair

(
ĉ = (â, b̂), c = (a, b)

)
. As long as a = eG or â 6= eG there

exist r, r′, d such that (ĉ, rk) = RandCipher(c = (a, b); r, r′, d). In this case the
adversary thus has a negligible advantage in guessing the b2 correctly. If a = eG
and â = eG the ciphertext ĉ cannot be the randomization of c and guessing b2
is easy. However, the probability that a = eG and â = eG is negligible for q(κ)
large enough.

Theorem 3. The above scheme is a secure RR-MHT-PKE scheme

Proof. Follows directly from Definition 7 and Lemmas 10,11, and 12.

15 This can be done efficiently using the Extended Euclidean algorithm.
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