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Abstract

Functional encryption lies at the frontiers of current research in cryptography; some variants have
been shown sufficiently powerful to yield indistinguishability obfuscation (IO) while other variants have
been constructed from standard assumptions such as LWE. Indeed, most variants have been classified
as belonging to either the former or the latter category. However, one mystery that has remained is the
case of secret-key functional encryption with an unbounded number of keys and ciphertexts. On the one
hand, this primitive is not known to imply anything outside of minicrypt, the land of secret-key crypto,
but on the other hand, we do no know how to construct it without the heavy hammers in obfustopia.

In this work, we show that (subexponentially secure) secret-key functional encryption is powerful
enough to construct indistinguishability obfuscation if we additionally assume the existence of (subexpo-
nentially secure) plain public-key encryption. In other words, secret-key functional encryption provides
a bridge from cryptomania to obfustopia.

On the technical side, our result relies on two main components. As our first contribution, we
show how to use secret key functional encryption to get “exponentially-efficient indistinguishability
obfuscation” (XIO), a notion recently introduced by Lin et al. (PKC ’16) as a relaxation of IO. Lin et al.
show how to use XIO and the LWE assumption to build IO. As our second contribution, we improve on
this result by replacing its reliance on the LWE assumption with any plain public-key encryption scheme.

Lastly, we askwhether secret-key functional encryption can be used to construct public-key encryption
itself and therefore take us all the way from minicrypt to obfustopia. A result of Asharov and Segev
(FOCS ’15) shows that this is not the case under black-box constructions, even for exponentially secure
functional encryption. We show, through a non-black box construction, that subexponentially secure-
key functional encryption indeed leads to public-key encryption. The resulting public-key encryption
scheme, however, is at most quasi-polynomially secure, which is insufficient to take us to obfustopia.
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1 Introduction

The concept of functional encryption [BSW11, O’N10] extends that of traditional encryption by allowing the
distribution of functional decryption keys that reveal specified functions of encrypted messages, but nothing
beyond. This concept is one of the main frontiers in cryptography today. It offers tremendous flexibility in
controlling and computing on encrypted data, is strongly connected to the holy grail of program obfuscation
[AJ15, BV15, LPST16b], and for many problems, may give superior solutions to obfuscation-based ones
[GPS15, GPSZ16]. Accordingly, recent years have seen outstanding progress in the study of functional
encryption, both in constructing functional encryption schemes and in exploring different notions, their
power, and the relationship amongst them (see for instance, [SS10, GVW12, BO13, GKP+13, AGVW13,
DIJ+13, GGH+13, BGG+14, GGG+14, BS15, GJKS15, KSY15, BLR+15, GVW15, ABSV15, Wat15,
BGJS15, BKS16, AJS15, AS16, GGHZ16, Lin16] and many more).

One striking question that has yet to be solved is the gap between public-key and secret-key functional
encryption schemes. In particular, does any secret-key scheme imply a public-key one?

The answer to this question is nuanced and seems to depend on certain features of functional encryption
schemes, such as the number of functional decryption keys and number of ciphertexts that can be released.
For functional encryption schemes that only allow the release of an a-priori bounded number of functional
keys (often referred to as bounded collusion), we know that the above gap is essentially the same as the gap
between plain (rather than functional) secret-key encryption and public-key encryption, and should thus be
as hard to bridge. Specifically, in the secret-key setting, such schemes supporting an unbounded number
of ciphertexts can be constructed assuming low-depth pseudorandom generators (or just one-way functions
in the single-key case) [SS10, GVW12]. These secret-key constructions are then converted to public-key
ones, relying on (plain) public-key encryption (and this is done quite directly by replacing invocations of a
secret-key encryption scheme with invocations of a public-key one.) The same state of affairs holds when
reversing the roles and considering a bounded number of ciphertexts and an unbounded number of keys
[SS10, GVW12]. In other words, in the terminology of Impagliazzo [Imp95], if the number of keys or
ciphertexts is a-priori bounded, then symmetric-key functional encryption lies in minicrypt and public-key
functional encryption lies in cryptomania.

For functional encryption schemes supporting an unbounded (polynomial) number of keys and unbounded
number of ciphertexts, which will be the default notion throughout the rest of the paper, the question is
far less understood. In the public-key setting, such functional encryption schemes with subexponential
security are known to imply indistinguishability obfuscation [AJ15, BV15, AJS15]. In contrast, Bitansky
and Vaikuntanathan [BV15] show that their construction of indistinguishability obfuscation using functional
encryption may be insecure when instantiated with a secret-key functional encryption scheme. In fact, secret-
key functional encryption schemes (even exponentially secure ones) are not known to imply any cryptographic
primitive beyond those that follow from one-way functions. In the terminology of Impagliazzo [Imp95],
as far as we know the two notions of functional encryption may correspond to opposite extremes of the
complexity spectrum: on one side public-key schemes inherently correspond to obfustopia, the world where
indistinguishability obfuscation exists, and on the other side secret-key schemes may lie in minicrypt, where
one-way functions exist, but there is even no (plain) public-key encryption.

One piece of evidence that may support such a view of the world is given by Asharov and Segev [AS15]
who show that there do not exist fully black-box constructions of plain public-key encryption from secret-key
functional encryption, even if the latter is exponentially secure. Still, while we may hope that such secret-key
schemes could be constructed from significantly weaker assumptions than needed for public-key schemes,
so far no such construction has been exhibited — all known constructions live in obfustopia.
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1.1 Our Contributions

In this work, we shed new light on the question of secret-key vs public-key functional encryption (in the
multi-key, multi-ciphertext setting). Our main result bridges the two notions based on (plain) public-key
encryption.

Theorem1.1 (Informal). Assuming secret-key functional encryption and plain public-key encryption that are
both subexponentially secure, there exists indistinguishability obfuscation, and in particular, also public-key
functional encryption.

In the terminology of Impagliazzo’s complexity worlds: secret-key functional encryption would turn
cryptomania, the land of public-key encryption, into obfustopia. This puts in new perspective the question
of constructing such secret-key schemes from standard assumptions — any such construction would lead to
indistinguishability obfuscation from standard assumptions.

The above result still does not settle the question of whether secret-key functional encryption on its
own implies (plain) public-key encryption. Here we show that assuming subexponentially-secure secret-key
functional encryption and (almost) exponentially-secure one-way functions, there exists (polynomially-
secure) public-key encryption.

Theorem1.2 (Informal). Assuming subexponentially-secure secret-key functional encryption and2n/ log logn-
secure one-way functions, there exists (polynomially-secure) public-key encryption.

The resulting public-key encryption is not strong enough to take us to obfustopia. Concretely, the
constructed scheme is not subexponentially secure as required by our first theorem — it can be quasi-
polynomially broken. Nevertheless, the result does show that the black-box barrier shown by Asharov and
Segev [AS15], which applies even if the underlying secret-key functional encryption scheme and one-way
functions are exponentially secure, can be circumvented. Indeed, our construction uses the functional
encryption scheme in a non-black-box way (see further details in the technical overview section below).

1.2 A Technical Overview

We now provide an overview of the main steps and ideas leading to our results.
Key observation: from SKFE to (strong) exponentially-efficient IO. Our first observation is that secret-
key functional encryption (or SKFE in short) implies a weak form of indistinguishability obfuscators termed
by Lin, Pass, Seth, and Telang [LPST16a] exponentially-efficient indistinguishability obfuscation (XIO).
Like IO, this notion preserves the functionality of obfuscated circuits and guarantees that obfuscations of
circuits of the same size and functionality are indistinguishable. However, in terms of efficiency the XIO
notion only requires that an obfuscation C̃ of a circuit C : {0, 1}n → {0, 1}m is just mildly smaller than its
truth table, namely |C̃| ≤ 2γn · poly(|C|), for some compression factor γ < 1, and a fixed polynomial poly,
rather than the usual requirement that the time to obfuscate, and in particular the size of C̃, are polynomial in
|C|. We show that SKFE implies a slightly stronger notion thanXIOwhere the time to obfuscateC is bounded
by 2γn ·poly(|C|). We call this notion strong exponentially-efficient indistinguishability obfuscation (SXIO).
(We note that, for either XIO or SXIO, we shall typically be interested in circuits over some polynomial size
domain, which could be much larger than the circuit itself, e.g., {0, 1}n where n = 100 log |C|.)

Proposition 1.1 (Informal).

1. For any constant γ < 1, there exists a transformation from SKFE to SXIO with compression factor γ.
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2. For some subconstant γ = o(1), there exists a transformation from subexponentially-secure SKFE to
polynomially-secure SXIO with compression factor γ.

We add more technical details regarding the proof of the above SXIO proposition later on. Both of our
theorems stated above rely on the constructed SXIO as a main tool. We next explain, still at a high-level,
how the first theorem is obtained. We then dive into further technical details about the proof of this theorem
as well as the proof of the second theorem.
From SXIO to IO through public-key encryption. Subexponentially-secure SXIO (or even XIO) schemes
with a constant compression factor (as in Proposition 1.1) are already shown to be quite strong in [LPST16a]
— assuming subexponential hardness of Learning with Errors (LWE) [Reg05], they imply IO.

Corollary 1.1 (of Proposition 1.1 and [LPST16a]). Assuming SKFE and LWE, both subexponentially secure,
there exists IO.

We go beyond the above corollary, showing that LWE can be replaced with a generic assumption —
the existence of (plain) public-key encryption schemes. The transformation of [LPST16a] from LWE and
XIO to IO, essentially relies on LWE to obtain a specific type of public-key functional encryption (PKFE)
with certain succinctness properties. We show how to construct such PKFE from public-key encryption and
SXIO. More details follow.

Concretely, the notion considered is of PKFE schemes that support a single decryption key. Furthermore,
the time complexity of encryption is bounded by roughly sβ ·dO(1), where s and d are the size and depth of the
circuit computing the function, and β < 1 is some compression factor. We call such schemesweakly succinct
PKFE schemes. A weakly succinct PKFE for boolean functions (i.e., functions with a single output bit) is
constructed by Goldwasser et al. [GKP+13] from (subexponentially-hard) LWE; in fact, the Goldwasser et
al. construction has no dependence at all on the circuit size s (namely, β = 0).

Lin et al. [LPST16a] then show a transformation, relying on XIO, that extends the class of functions also
to functions with a long output, rather than just boolean ones. (Their transformation is stated for the case
that β = 0 assuming any constant XIO compression factor γ < 1, but can be extended to also work for any
sufficiently small constant compression factor β for the PKFE.) Such weakly-succinct PKFE schemes can
then be plugged in to the transformations of [AJ15, BV15, LPST16b] to obtain full-fledged IO. 1

We follow a similar blueprint. We first construct weakly-succinct PKFE for functions with a single
output bit based on SXIO and PKE, rather than LWE (much of the technical effort in this work lies in this
construction). We then bootstrap the construction to deal with multibit functions using (a slightly augmented
version of) the transformation from [LPST16a].

Proposition 1.2 (Informal). For any β = Ω(1), assuming PKE and SXIO with a small enough constant
compression factor γ, there exists a single-key weakly-succinct PKFE scheme with compression factor β (for
functions with long output).

A Closer Look into the Techniques

We now provide further details regarding the proofs of the above Propositions 1.1 and 1.2 as well as the
proof of Theorem 1.2.

1The above is a slightly oversimplified account of [LPST16a]. They also rely on LWE to deduce the existence of puncturable
PRFs in NC1 and show their transformation starting from weakly-succinct PKFE for functions in NC1. We avoid the reliance on
puncturable PRFs in NC1 by constructing weakly-succinct PKFE for functions with no depth restriction, at the expense of allowing
the complexity of encryption to scale polynomially in the depth. This is still sufficient for [BV15, Section 3.2].
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SKFE to SXIO: the basic idea. To convey the basic idea behind the transformation, we first describe a
construction of SXIO with compression γ = 1/2. We then explain how to extend it to obtain the more
general form of Proposition 1.1.

Recall that in an SKFE scheme, first a master secret keyMSK is generated, and can then be used to:

• encrypt (any number of) plaintext messages,

• derive (any number of) functional keys.

The constructed obfuscator sxiO is given a circuit C defined on domain {0, 1}n, where we shall assume for
simplicity that the input length is even (this is not essential), and works as follows:

• For every x ∈ {0, 1}n/2, computes a ciphertext CTx encrypting the circuit Cx(·) that given input
y ∈ {0, 1}n/2, returns C(x, y).

• For every y ∈ {0, 1}n/2, derives a functional decryption key SKy for the function Uy(·) that given as
input a circuit D of size at most maxx |Cx|, returns D(y).

• Outputs C̃ =
(
{CTx}x∈{0,1}n/2 , {SKy}y∈{0,1}n/2

)
as the obfuscation.

To evaluate C̃ on input (x, y) ∈ {0, 1}n, simply decrypt

Dec(SKy,CTx) = Uy(Cx) = Cx(y) = C(x, y) .

Indeed, the required compression factor γ = 1/2 is achieved. Generating each ciphertext is proportional to
the size of the message |Cx| = Õ(|C|) and some fixed polynomial in the security parameter λ. Similarly the
time to generate each functional key is proportional to the size of the circuit |Uy| = Õ(|C|) and some fixed
polynomial in the security parameterλ. Thus overall, the time to generate C̃ is bounded by 2n/2 ·poly(|C|, λ).

The indistinguishability guarantee follows easily from that of the underlying SKFE. Indeed, SKFE
guarantees that for any two sequences ~m = {mi} and ~m′ = {m′i} of messages to be encrypted and any
sequence of functions {fi} for which keys are derived, encryptions of the ~m are indistinguishable from
encryptions of the ~m′, provided that the messages are not “separated by the functions”, i.e. fj(mi) = fj(m

′
i)

for every (i, j). In particular, any two circuitsC andC ′ that have equal size and functionality will correspond
to such two sequences of messages {Cx}x∈{0,1}n/2 and {C ′x}x∈{0,1}n/2 , whereas {Uy}y∈{0,1}n are indeed
functions such that Uy(Cx) = C(x, y) = C ′(x, y) = Uy(C

′
x) for all (x, y). (The above argument works

even given a very weak selective security definition where all messages and functions are chosen by the
attacker ahead of time.)

As said, the above transformation achieves compression factor γ = 1/2. While such compression is sufficient
for example to obtain IO based on LWE, it will not suffice for our two Theorems 1.1, 1.2 (for the first we
will need γ to be a smaller constant, and for the second we will need it to even be slightly subconstant). To
prove Proposition 1.1 in its more general form, we rely on a result by Brakerski, Komargodski, and Segev
[BKS16] that shows how to convert any SKFE into a t-input SKFE. A t-input scheme allows to encrypt a
tuple of messages (m1, . . . ,mt) each independently, and derive keys for t-input functions f(m1, . . . ,mt).
In their transformation, starting from a multi-key SKFE results in a multi-key t-input SKFE.

The general transformation then follows naturally. Rather than arranging the input space in a 2-
dimensional cube {0, 1}n/2 × {0, 1}n/2 as we did before with a 1-input scheme, given a t-input scheme we
can arrange it in a (t + 1)-dimensional cube {0, 1}n/(t+1) × · · · × {0, 1}n/(t+1), and we will accordingly
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get compression γ = 1/(t + 1). The only caveat is that the BKS transformation incurs a security loss and
blowup in the size of the scheme that can grow doubly exponentially in t. As long as t is constant the security
loss and blowup are fixed polynomials. The transformation can also be invoked for slightly super-constant
t (double logarithmic) assuming subexponential security of the underlying 1-input SKFE (giving rise to the
second part of Proposition 1.1).

We remark that previously Goldwasser et al. [GGG+14] showed that t-input SKFE for polynomial t
directly gives full-fledged IO. We demonstrate that even when t is small (even constant), t-input SKFE
implies a meaningful obfuscation notion such as SXIO.
From SXIO and PKE to weakly succinct PKFE: main ideas. We now describe the main ideas behind
our construction of a single-key weakly succinct PKFE. We shall focus on the main step of obtaining such a
scheme for functions with a single output bit.2

Our starting point is the single-key PKFE scheme of Sahai and Seyalioglu [SS10] based on Yao’s garbled
circuit method [Yao82]. Their scheme basically works as follows (we assume basic familiarity with the
garbled circuit method):

• The master public keyMPK consists of L pairs of public keys
{
PK0

i ,PK
1
i

}
i∈L for a (plain) public-key

encryption scheme.

• A functional decryption key SKf for a function (circuit) f of size L consists of the secret decryption
keys {SKfii }i∈L corresponding to the above public keys, according to the bits of f ’s description.

• To encrypt a message m, the encryptor generates a garbled circuit Ûm for the universal circuit Um
that given f , returns f(m). It then encrypts the corresponding input labels {k0

i , k
1
i }i∈L under the

corresponding public keys.

• The decryptor in possession of SKf can then decrypt to obtain the labels {kfii }i∈L and decode the
garbled circuit to obtain Um(f) = f(m).

Selective security of this scheme (where the function f and all messages are chosen ahead of time) follows
from the semantic security of PKE and the garbled circuit guarantee which says that Ûm, {kfii }i∈L can be
simulated from f(m).

The scheme is indeed not succinct in any way. The complexity of encryption and even the size of the
ciphertext grows with the complexity of f . Nevertheless, it does seem that the encryption process has a much
more succinct representation. In particular, computing a garbled circuit is a decomposable process — each
garbled gate in Ûm depends on a single gate in the original circuit Um and a small amount of randomness
(for computing the labels corresponding to its wires). Furthermore, the universal circuit Um itself is also
decomposable— there exists a small (say, poly(|m| , logL)-sized) circuit that given i can output the i-th gate
in Um along with its neighbours. The derivation of randomness itself can also be made decomposable using
a pseudorandom function. All in all, there exists a small (poly(|m| , logL, λ)-size, for security parameter
λ), decomposition circuit Ude

m,K associated with a key K ∈ {0, 1}λ for a pseudorandom function that can
produce the ith garbled gate/input-label given input i.

2Extending this to functions with multibit output is then done, based on SXIO, using a transformation of [LPST16a]. Concretely,
given an m-bit output function f(x) we consider a new single bit function gf (x, i) that returns the ith bit of f(x). The function
key is then derived for the boolean function gf . The new encryption algorithm, for message x, produces an SXIO obfuscation of
a circuit that given i ∈ [m] uses the old encryption scheme to encrypt (m, i), deriving randomness using a puncturable PRF. The
security of the construction is proven as in [LPST16a] based on a probabilistic IO argument [CLTV15]. (Mild) efficiency of the
encryption then follows from the mild efficiency of the SXIO and PKFE with related (constant) compression factors.
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Yet, the second part of the encryption process, where the input labels {k0
i , k

1
i }i∈L are encrypted under

the corresponding public keys
{
PK0

i ,PK
1
i

}
i∈L, may not be decomposable at all. Indeed, in general, it is

not clear how to even compress the representation of these 2L public-keys. In this high-level exposition, let
us make the simplifying assumption that we have at our disposal a succinct identity-based-encryption (IBE)
scheme. Such a scheme has a single public-key PK that allows to encrypt a message to an identity id ∈ ID
taken from an identity space ID. Those in possession of a corresponding secret key SKid can decrypt and
others learn nothing. Succinctness means that the complexity of encryption may only grow mildly in the
size of the identity space. Concretely, by a factor of |ID|γ for some small constant γ < 1. In the body, we
show that such a scheme can be constructed from (plain) public-key encryption and SXIO (the construction
relies on standard “puncturing techniques” and is pretty natural, see Section 5.1 for more details).

Equipped with such an IBE scheme, we can now augment the Sahai-Seyalioglu scheme to make sure
that the entire encryption procedure is decomposable. Concretely, we will consider the identity space
ID = [L] × {0, 1}, augment the public key to only include the IBE’s public key PK, and provide the
decryptor with the identity keys {SK(i,fi)}i∈L. Encrypting the input labels {k0

i , k
1
i }i∈L will now be done

by simply encrypting to the corresponding identities {(i, 0), (i, 1)}i∈L. This part of the encryption can now
also be described by a small (say Lγ · poly(λ, logL)-size) decomposition circuit Ede

K,K′,PK that has the PRF
key K to derive input labels, the IBE public key PK, and another PRF key K ′ to derive randomness for
encryption. Given an identity (i, b), it generates the corresponding encrypted input label.

At this point, a natural direction is to have the encryptor send a compressed version of the Sahai-Seyalioglu
encryption, by first using SXIO to shield the two decomposition circuits Ede

K,K′,PK, U
de
m,K and then sending

the two obfuscations. Indeed, decryption can be done just as before by first reconstructing the expanded
garbled circuit and input labels and then proceeding as before. Also, in terms of encryption complexity,
provided that the IBE compression factor γ is a small enough constant, the entire encryption time will scale
only sublinearly in the function’s size |f | = L (i.e., with Lβ for some constant β < 1).

The only question is of course security. It is not too hard to see that if the decomposition circuits
Ede
K,K′,PK, U

de
m,K are given as black-boxes then security is guaranteed just as before. The challenge is to

prove security relying only on the indistinguishability guarantee of SXIO. A somewhat similar challenge is
encountered in the work of Bitansky et al. [BGL+15] when constructing succinct randomized encodings. In
their setting, they obfuscate (using standard IO rather than SXIO) a decomposition circuit Cde

x,K (analogous
to our Ude

m,K) that computes the garbled gates of some succinctly represented long computation.
As already demonstrated in [BGL+15], proving the security of such a construction is rather delicate.

As in the standard setting of garbled circuits, the goal is to gradually transition through a sequence of
hybrids, from a real garbled circuit (that depends on the actual computation) to a simulated garbled circuit
that depends just on the result of the computation. However, unlike the standard setting, here each of these
hybrids should be generated by a hybrid obfuscated decomposition circuit and the attacker should not be able
to tell them apart. As it turns out, “common IO gymnastics” are insufficient here, and we need to rely on
the specific hybrid strategy used to transition between the different garbling modes is the proof of security
for standard garbled circuits. One feature of the hybrid strategy which is dominant in this context is the
amount of information that hybrid decomposition circuits need to maintain about the actual computation.
Indeed, as the amount of this information grows so will the size of these decomposition circuits as will the
size of the decomposition circuits in the actual construction (that will have to be equally padded to preserve
indistinguishability).

Bitansky et al. show a hybrid strategy where the amount of information scales with the space of the
computation (or circuit width). Whereas in their context this is meaningful (as the aim is to save comparing
to the time of the computation), in our context this is clearly insufficient. Indeed, in our case the space of
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the computation given by the universal circuit Um and the function f can be as large as f ’s description.
Instead, we invoke a different hybrid strategy by Hemenway et al. [HJO+15] that scales only with the circuit
depth. Indeed, this is the cause for the polynomial dependence on depth in our single-key PKFE construction.
Below, we further elaborate on the Hemenway et al. hybrid strategy and how it is imported into our setting.
Decomposable Garbling and Pebbling. The work of Hemenway et al. [HJO+15] provided a useful
abstraction for proving the security of Yao’s garbled circuits via a sequence of hybrid games. The goal is
to transition from a “real” garbled circuit, where each garbled gate is in “RealGate” mode consisting of
four ciphertexts encrypting the two labels k0

c , k
1
c of the output wire c under the labels of the input wires,

to a “simulated” garbled circuit where each garbled gate is in SimGate mode consisting of four ciphertexts
that all encrypt the same dummy label k0

c . As an intermediate step, we can also create a garbled gate in
CompDepSimGate mode consisting of four ciphertexts encrypting the same label kv(c)

c where v(c) is the
value going over wire c during the computation C(x) and therefore depends on the actual computation.

The transition from a real garbled circuit to a simulated garbled circuit proceeds via a sequence of hybrids
where in each subsequent hybrid we can change one gate at a time from RealGate to CompDepSimGate (and
vice versa) if all of its predecessors are inCompDepSimGatemode or it is an input gate, or change a gate from
CompDepSimGatemode to SimGatemode (and vice versa) if all of its successors are in CompDepSimGate
or SimGate modes. The goal of Hemenway et al. was to give a strategy using the least number of gates in
CompDepSimGate mode as possible.3 They abstracted this problem as a pebbling game and show that for
circuits of depth d there exists a sequence of 2O(d) hybrids with at most O(d) gates in CompDepSimGate
mode in any single hybrid.

In our case, we can give a decomposable circuit for each such hybrid game consisting of gates in
RealGate,SimGate,CompDepSimGate modes. In particular, the decomposable circuit takes as input a gate
index and outputs the garbled gate in the correct mode. We only need to remember which gate is in which
mode, and for all gates in CompDepSimGate mode we need to remember the bit v(c) going over the wire
c during the computation C(x). It turns out that the configuration of which mode each gate is in can be
represented succinctly, and therefore the number of bits we need to remember is roughly proportional to the
number of gates in CompDepSimGate mode in any given hybrid. Therefore, for circuits of depth d, the
decomposable circuit is of size O(d) and the number of hybrid steps is 2O(d).

To ensure that the obfuscations of decomposable circuits corresponding to neighboring hybrids are
indistinguishable we also need to rely on standard puncturing techniques. In particular, the gates are garbled
using a punctured PRF and we show that in any transition between neighboring hybrids we can even give the
adversary the PRF key punctured only on the surrounding of the gate whose mode is changed.
From SKFE to PKE: the basic idea. We end our technical exposition by explaining the basic idea behind
the construction of public-key encryption (PKE) from SKFE. The construction is rather natural. Using
subexponentially-secure SKFE and the second part of Proposition 1.1, we can obtain a poly(λ)-secure SXIO
with a subconstant compression factor γ = o(1); concretely, it can be for example O(1/ log log λ). We can
now think about this obfuscator as a plain (efficient) indistinguishability obfuscator for circuits with input
length at most log λ · log log λ.

Then, we take a construction of public-key encryption from IO and one-way functions where the input-
size of obfuscated circuits can be scaled down at the expense of strengthening the one-way functions.
For instance, following the basic witness encryption paradigm in [GGSW13], the public key can be a
pseudorandom string PK = PRG(s) for a 2n/ log logn-secure length-doubling pseudorandom generator with

3Their aim was proving adaptive security, which is completely orthogonal to our aim. However, for entirely different reasons,
the above goal is useful in both their work and ours.
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Figure 1: An illustration of our result on IO. Dashed lines denote known results. White backgrounds denote
our ingredients or goal. Primitives in rounded rectangles are subexponentially-secure. t-SKFE denotes
t-input SKFE. γ-SXIO denotes SXIO with compression factor γ, which is an arbitrary constant less than 1.

seed length n = log λ · log log λ. Here the obfuscator is only invoked for a circuit with inputs in {0, 1}n.
An encryption ofm is simply an obfuscation of a circuit that has PK hardwired, and releasesm only given a
seed s such that PK = PRG(s). Security follows essentially as in [GGSW13]. Note that in this construction,
we cannot expect more than 2n security, which is quasi-polynomial in the security parameter λ.
How does the construction circumvent the Asharov-Segev barrier? As noted earlier, Asharov and Segev
[AS15] show that even exponentially secure SKFE cannot lead to public-key encryption through a fully
black-box construction (see their paper for details about the exact model). The reason that our construction
does not fall under their criteria lies in the transformation from SKFE to SXIOwith subconstant compression,
and concretely in the Brakerski-Komargodski-Segev [BKS16] transformation from SKFE to t-input SKFE
that makes non-black-box use in the algorithms of the underlying SKFE scheme.

Organization

In Section 2, we provide preliminaries and basic definitions used throughout the paper. In Section 4, we
review Yao’s garbled circuits and introduce a notion of decomposable garbling. In Section 3, we introduce
the definition of SXIO and present our construction based on SKFE schemes. In Section 5, we present our
construction of IO from PKE and SXIO. In Section 6, we present a polynomially-secure PKE scheme from
SKFE schemes.

2 Preliminaries

We review basic concepts and definitions used throughout the paper.

2.1 Standard Computational Concepts

We rely on the standard notions of Turing machines and Boolean circuits.

• We say that a (uniform) Turing machine is PPT if it is probabilistic and runs in polynomial time.

• A polynomial-size (or just polysize) circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that
each circuit Cλ is of polynomial size λO(1) and has λO(1) input and output bits.
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• We follow the standard habit of modeling any efficient adversary strategy as a family of polynomial-
size circuits. For an adversary A corresponding to a family of polysize circuits {Aλ}λ∈N, we often
omit the subscript λ, when it is clear from the context.

• We say that a function f : N→ R is negligible if for all constants c > 0, there existsN ∈ N such that
for all n > N , f(n) < n−c.

• If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables indexed by λ ∈ N, we

say that X (0) and X (1) are computationally indistinguishable if for all polysize distinguishersD, there
exists a negligible function ν such that for all λ,

∆ =
∣∣∣Pr[D(X

(0)
λ ) = 1]− Pr[D(X

(1)
λ ) = 1]

∣∣∣ ≤ ν(λ).

• We write X (0) ≈δ X (1) to denote that the advantage ∆ is bounded by δ.

2.2 Functional Encryption

In this section, we define the different notions of functional encryption (FE) considered in this work.

Definition 2.1 (Multi-input secret-key functional encryption). Let t(λ) be a function,M = {Mλ =M(1)
λ ×

· · · ×M(t(λ))
λ }λ∈N be a product message domain, Y = {Yλ}λ∈N a range, and F = {Fλ}λ∈N a class of

t-input functions f :Mλ → Yλ. A t-input secret-key functional encryption (t-SKFE) scheme forM,Y,F
is a tuple of algorithms SKFEt = (Setup,KeyGen,Enc,Dec) where:

• Setup(1λ) takes as input the security parameter and outputs a master secret keyMSK.

• KeyGen(MSK, f) takes as input the master secretMSK and a function f ∈ F . It outputs a secret key
SKf for f .

• Enc(MSK,m, i) takes as input the master secret key MSK, a message m ∈ M(i)
λ , and an index

i ∈ [t(λ)], and outputs a ciphertext CTi.

• Dec(SKf ,CT1, . . . ,CTt) takes as input the secret key SKf for a function f ∈ F and ciphertexts
CT1, . . . ,CTt, and outputs some y ∈ Y , or ⊥.

We also require the following property:
Correctness: For all tuples ~m = (m1, . . . ,mt) ∈Mλ and any function f ∈ Fλ, we have that

Pr

Dec(SKf ,CT1, . . . ,CTt) = f(~m) :
MSK← Setup(1λ),
SKf ← KeyGen(MSK, f),
∀i CTi ← Enc(MSK,m, i)

 = 1

Definition 2.2 (Selectively-secure multi-key t-SKFE). We say that a tuple of algorithms SKFEt = (Setup,
KeyGen,Enc,Dec) is a selectively-secure t-input secret-key functional encryption scheme forM,Y,F , if it
satisfies the following requirement, formalized by the experiment ExptSKFEtA (1λ, b) between an adversary A
and a challenger:

1. The adversary submits challenge message tuples
{

(m0
i,1,m

1
i,1, i)

}
i∈[t]

, . . . ,
{

(m0
i,q,m

1
i,q, i)

}
i∈[t]

for

all i ∈ [t] to the challenger where q is an arbitrary polynomial in λ.
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2. The challenger runsMSK← Setup(1λ)

3. The challenger generates ciphertexts CTi,j ← Enc(MSK,mb
i,j , i) for all i ∈ [t] and j ∈ [q], and gives

{CTi,j}i∈[t],j∈[q] to A.

4. A is allowed to make q function queries, where it sends a function fj ∈ F to the challenger for j ∈ [q]
and q is an arbitrary polynomial in λ. The challenger responds with SKfj ← KeyGen(MSK, fj).

5. A outputs a guess b′ for b.

6. The output of the experiment is b′ if the adversary’s queries are valid:

fj(m
0
1,j1 , . . . ,m

0
t,jt) = fj(m

1
1,j1 , . . . ,m

1
t,jt) for all j1, . . . , jt, j ∈ [q] .

Otherwise, the output of the experiment is set to be ⊥.

We say that the functional encryption scheme is selectively-secure if, for all polysize adversaries A, there
exists a negligible function µ(λ), such that

AdvSKFEtA =
∣∣∣Pr
[
ExptSKFEtA (1λ, 0) = 1

]
− Pr

[
ExptSKFEtA (1λ, 1) = 1

]∣∣∣ ≤ µ(λ).

We further say that SKFEt is δ-selectively-secure, for some concrete negligible function δ(·), if the above
indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

We recall the following theorem by Brakerski, Komargodski, and Segev, which states that one can build
selectively-secure t-SKFE from any selectively-secure 1-SKFE. The transformation induces a significant
blowup and security loss in the number of inputs t. This loss is polynomial as long as t is constant, but in
general grows doubly-exponentially in t.

Theorem 2.1 ([BKS16]).

1. For t = O(1), if there exists δ-selectively-secure single-input secret-key functional encryption, then
there exists δ-selectively-secure t-input secret-key functional encryption.

2. There exists a constant ε < 1, such that for t(λ) = ε · log log(λ), λ̃ = 2(log λ)ε , δ(λ̃) = 2−λ̃
ε ,

if there exists δ-selectively-secure single-input secret-key functional encryption, then there exists
polynomially-secure selectively-secure t-input secret-key functional encryption for functions of size at
most 2O((log λ)ε). (Here λ̃ is the 1-SKFE security parameter and λ is the t-SKFE security parameter.)

Remark 2.1 (Dependence on circuit size in [BKS16]). The [BKS16] transformation incurs a (s · λ̃)2O(t)

blowup in parameters, where s is the size of maximal circuit size of supported functions, and λ̃ is the
security parameter used in the underlying single-input SKFE. In the main setting of parameters considered
there, t = O(1), the security parameter λ of the t-SKFE scheme can be identified with λ̃ and s can be any
polynomial in this security parameter. (Accordingly, the dependence on s is implicit there, and the blowup
they address is λ2O(t) .)

For the second part of the theorem, to avoid superpolynomial blowup in λ, the security parameter λ̃ for
the underlying SKFE and the maximal circuit size s should be set to 2O((log λ)ε).

Definition 2.3 (Public-key functional encryption). LetM = {Mλ}λ∈N be amessage domain,Y = {Yλ}λ∈N
a range, and F = {Fλ}λ∈N a class of functions f :M→ Y . A public-key functional encryption (PKFE)
scheme forM,Y,F is a tuple of algorithms PKFE = (Setup,KeyGen,Enc,Dec) where:
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• Setup(1λ) takes as input the security parameter and outputs a master secret key MSK and master
public keyMPK.

• KeyGen(MSK, f) takes as input the master secretMSK and a function f ∈ F . It outputs a secret key
SKf for f .

• Enc(MPK,m) takes as input the master public key MPK and a message m ∈ M, and outputs a
ciphertext c.

• Dec(SKf , c) takes as input the secret key SKf for a function f ∈ F and a ciphertext c, and outputs
some y ∈ Y , or ⊥.

We also require the following property:
Correctness: For any messagem ∈M and function f ∈ F , we have that

Pr

Dec(SKf , c) = f(m) :
(MSK,MPK)← Setup(1λ),
SKf ← KeyGen(MSK, f),
c← Enc(MPK,m)

 = 1

Definition 2.4 (Selectively-secure single-key PKFE). We say that a tuple of algorithm PKFE = (Setup,
KeyGen,Enc,Dec) is a selectively-secure single-key public-key functional encryption scheme forM,Y,F ,
if it satisfies the following requirement, formalized by the experiment ExptPKFEA (1λ, b) between an adversary
A and a challenger:

1. The adversary submits the challenge message pairm∗0,m∗1 ∈M and a function f to the challenger.

2. The challenger runs (MSK,MPK)← Setup(1λ), generates ciphertext CT∗ ← Enc(MPK,m∗b) and a
secret key SKf ← KeyGen(MSK, f). The challenger gives (MPK,CT∗, skf ) to A.

3. A outputs a guess b′ for b.

4. The output of the experiment is b′ if f(m∗0) = f(m∗1). Otherwise the output is ⊥.

We say that the public-key functional encryption scheme is selectively-secure if, for all PPT adversaries A,
there exists a negligible function µ(λ), such that

AdvPKFEA =
∣∣∣Pr
[
ExptPKFEA (1λ, 0) = 1

]
− Pr

[
ExptPKFEA (1λ, 1) = 1

]∣∣∣ ≤ µ(λ).

We further say that PKFE is δ-selectively secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

We now further define two notions of succinctness for functional encryption schemes as above.

Definition 2.5 (Succinct functional encryption). For a class of functions F = {Fλ} over message domain
M = {Mλ}, we let:

• n(λ) be the input length of the functions in F ,

• s(λ) = maxf∈Fλ |f | be a bound on the circuit size of functions in Fλ,

• d(λ) = maxf∈Fλ depth(f) a bound on the depth, and
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A functional encryption scheme is

• weakly succinct [BV15] if the size of the encryption circuit is bounded by sγ · poly(n, λ, d), where
poly is a fixed polynomial, and γ < 1 is a constant. We call γ the compression factor.

The following result from [BV15, Section 3.2] states that one can construct an indistinguishability
obfuscator from any single-key weakly succinct public-key functional encryption scheme.

Theorem 2.2 ([BV15]). If there exists a subexponentially secure single-key weakly succinct public-key
functional encryption scheme, then there exists an indistinguishability obfuscator.

2.3 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (IO) [BGI+01, BGI+12].

Definition 2.6 (Indistinguishability obfuscator (IO)). APPTmachine iO is an indistinguishability obfuscator
for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

• Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1 .

• Indistinguishability: for any polysize distinguisherD, there exists a negligible function µ(·) such that
the following holds: for all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of the
same size and such that C0(x) = C1(x) for all inputs x, then

∣∣Pr
[
D(iO(C0)) = 1

]
− Pr

[
D(iO(C1)) = 1

]∣∣ ≤ µ(λ) .

We further say that iO is δ-secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.4 Puncturable Pseudorandom Functions

Puncturable PRFs, defined by Sahai and Waters [SW14], are PRFs with a key-puncturing procedure that
produces keys that allow evaluation of the PRF on all inputs, except for a designated polynomial-size set.

Definition 2.7 (Puncturable pseudorandom function). For sets D,R, a puncturable pseudorandom function
(PPRF) consists of a tuple of algorithmsPPRF = (PRF.Gen,PRF.Ev,PRF.Punc) that satisfy the following
two conditions.

Functionality preserving under puncturing: For all polynomial size set S ⊆ D and for all x ∈ D \ S, it
holds that

Pr[PRF.EvK(x) = PRF.EvK{S}(x) : K ← PRF.Gen(1λ),K{S} ← PRF.Punc(K,S)] = 1.
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Pseudorandom at punctured points: For all polynomial size set S ⊆ D with S = {x1, . . . , xk(λ)} and
any polysize distinguisher A, there exists a negligible function µ, such that:

|Pr[A(PRF.EvK{S}, {PRF.EvK(xi)}i∈[k]) = 1] − Pr[A(PRF.EvK{S}, U
k) = 1]| ≤ µ(λ)

where K ← PRF.Gen(1λ), K{S} ← PRF.Punc(K,S) and U denotes the uniform distribution over
R. We further say thatPPRF is δ-secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs where the size of the punctured key grows polynomially with the size of the set S being
punctured, as recently observed by [BW13, BGI14, KPTZ13]. Thus, we have:
Theorem 2.3 ([GGM84, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently
computable functions n(λ) and m(λ), there exists a puncturable pseudorandom function that maps n(λ)
bits tom(λ) bits (i.e., D = {0, 1}n(λ) andR = {0, 1}m(λ)).

2.5 Public-Key Encryption

We recall the notion of plain public-key encryption (PKE).
Definition 2.8 (Plain public-key encryption). Let M be some message space. A public-key encryption
(PKE) scheme forM is a tuple of algorithms (KeyGen,Enc,Dec) where:

• KeyGen(1λ) takes as input the security parameter and outputs a public key PK and a secret key SK.

• Enc(PK,m) takes as input the public key PK and a messagem ∈M and outputs a ciphertext CT.

• Dec(SK,CT) takes as input the secret key SK and a ciphertext CT, and outputs somem ∈M, or ⊥.
We also require the following property:
Correctness: For any messagem ∈M, we have that

Pr

[
Dec(SK, c) = m :

(SK,PK)← KeyGen(1λ),
CT← Enc(PK,m)

]
= 1

We also recall the standard notion of security.
Definition 2.9 (Secure public-key encryption). A tuple of algorithms PKE = (KeyGen,Enc,Dec) is a secure
PKE forM if it satisfies the following requirement, formalized by the experiment ExptPKEA (1λ, b) between
an adversary A and a challenger:

1. The challenger runs (SK,PK)← KeyGen(1λ), and gives PK to A.

2. At some point, A sends two messagesm∗0,m∗1 as the challenge messages to the challenger.

3. The challenger generates ciphertext CT∗ ← Enc(PK,m∗b) and sends CT
∗ to A.

4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.
We say the PKE scheme is secure if, for all PPT adversaries A, there exists a negligible function µ(λ), it
holds:

AdvPKEA =
∣∣∣Pr[ExptPKEA (1λ, 0) = 1]− Pr[ExptPKEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ).

We further say that PKE is δ-secure, for some concrete negligible function δ(·), if for all polysize distinguishers
the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).
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2.6 Succinct Identity-Based Encryption

We define identity-based encryption (IBE) [Sha84] with certain succinctness properties.

Definition 2.10 (Succinct IBE with γ-compression). LetM be some message space and ID be an identity
space. A succint identity-based encryption scheme with γ-compression forM, ID is a tuple of algorithms
(Setup,KeyGen,Enc,Dec) where:

• Setup(1λ) is takes as input the security parameter and outputs a master secret keyMSK and a master
public keyMPK.

• KeyGen(MSK, id) takes as input the master secret MSK and an identity id ∈ ID. It outputs a secret
key SKid for id.

• Enc(MPK, id,m) takes as input the public-parameter MPK, an identity id ∈ ID, and a message
m ∈M, and outputs a ciphertext c.

• Dec(SKid, c) takes as input the secret key SKid for an identity id ∈ ID and a ciphertext c, and outputs
somem ∈M, or ⊥.

We require the following properties:
Correctness: For any messagem ∈M and identity id ∈ ID, we have that

Pr

Dec(SKid, c) = m :
(MSK,MPK)← Setup(1λ),
SKid ← KeyGen(MSK, id),
c← Enc(MPK, id,m)

 = 1

Succinctness: For any security parameter λ ∈ N, identity space ID, the size of the encryption circuit Enc,
for messages of size `, is at most |ID|γ · poly(λ, `).

In this work, we shall consider the following selective-security.

Definition 2.11 (Selectively-secure IBE). A tuple of algorithms IBE = (Setup,KeyGen,Enc,Dec) is a
selectively-secure IBE scheme forM, ID if it satisfies the following requirement, formalized by the experi-
ment ExptIBEA (1λ, b) between an adversary A and a challenger:

1. The adversary submits the challenge identity id∗ ∈ ID and the challenge messages (m∗0,m
∗
1) to the

challenger.

2. The challenger runs (MSK,MPK) ← Setup(1λ), generates ciphertext CT∗ ← Enc(MPK,m∗b) and
gives (MPK,CT∗) to A.

3. The adversary is allowed to query (polynomially many) identities id ∈ ID such that id 6= id∗. The
challenger gives SKid ← KeyGen(1λ,MSK, id) to the adversary.

4. A outputs a guess b′ for b. The experiment outputs 1 if b′ = b, 0 otherwise.

We say the IBE scheme is selectively-secure if, for all PPT adversaries A, there exists a negligible function
µ(λ), it holds

AdvIBEA =
∣∣∣Pr[ExptIBEA (1λ, 0) = 1]− Pr[ExptIBEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ).

We further say that IBE is δ-selectively secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).
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3 Strong Exponentially-Efficient Indistinguishability Obfuscation

Lin, Pass, Seth, and Telang [LPST16a] propose a variant of IO that has a weak (yet non-trivial) efficiency,
which they call exponentially-efficient IO (XIO). All that this notion requires in terms of efficiency is that
the size of an obfuscated circuit is sublinear in the size of the corresponding truth table. They also refer to
a stronger notion that requires that also the time to obfuscate a given circuit is sublinear in the size of the
truth table. This notion, which we call strong exponentially-efficient IO (SXIO), serves as one of the main
abstractions in our work.

Definition 3.1 (Strong exponentially-efficient indistinguishability obfuscation (SXIO) [LPST16a]). For a
constant γ < 1, a machine sxiO is a γ-compressing strong exponentially-efficient indistinguishability
obfuscator (SXIO) for a circuit class {Cλ}λ∈N if it satisfies the functionality and indistinguishability in
Definition 2.6 and the following efficiency requirements:
Non-trivial time efficiency: for any security parameter λ ∈ N and circuit C ∈ {Cλ}λ∈N with input length
n, the running time of sxiO on input (1λ, C) is at most 2nγ · poly(λ, |C|).

3.1 SXIO from Single-Input SKFE

In this section, we show that we can construct SXIO from any selectively-secure t-input secret-key functional
encryption scheme. We recall that such a t-SKFE scheme can be constructed from any selectively-secure
1-SKFE scheme, as stated in Theorem 2.1.

Theorem 3.1. For any function t(λ), if there exists δ-selectively-secure t-SKFE, then there exists 1
t+1 -

compressing δ-secure SXIO.

The idea of the construction of SXIO from SKFE is explained in the introduction.
We immediately obtain the following corollary from Theorem 2.1 and 3.1.

Corollary 3.1.

1. If there exists δ-selectively-secure single-input secret-key functional encryption, then there exists γ-
compressing δ-secure SXIO where γ < 1 is an arbitrary constant.

2. Let ε < 1 be a constant and λ̃ = 2(log λ)ε . If there exists 2−λ̃
Ω(1)-selectively-secure single-input

secret-key functional encryption, then there exists polynomially-secure SXIO with compression factor
γ(λ) = O(1/ log log λ) for circuits of size at most 2O((log λ)ε). (Here λ̃ is the 1-SKFE security
parameter and λ is the SXIO security parameter.)

3.2 The Construction and Proof of SXIO

We start by describing the SXIO construction and next argue its security. In what follows, given a circuit
C, we identify its input space with [N ] = {1, . . . , N} (so in particular, N = 2n if C takes n-bit strings
as input). Let SKFEt = (Setup,KeyGen,Enc,Dec) be a selectively-secure t-input secret-key functional
encryption scheme.
Construction. We construct an SXIO scheme sxiO as follows.

sxiO(1λ, C): For every j ∈ [N1/(t+1)]:
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• let Uj be the t-input universal circuit that given j1, . . . , jt−1 ∈ [N1/(t+1)] and a t-input circuit
D, returns D(j1, . . . , jt−1, j).

• let Cj be the t-input circuit that given j1, . . . , jt ∈ [N1/(t+1)] returns C(j1, . . . , jt, j).

1. Generate MSK← Setup(1λ).
2. Generate CTt,j ← Enc(MSK, Cj , t) for j ∈ [N1/(t+1)].
3. Generate CTi,j ← Enc(MSK, j, i) for i ∈ [t− 1] and j ∈ [N1/(t+1)].
4. Generate SKUj ← KeyGen(MSK, Uj) for j ∈ [N1/(t+1)]

5. sxiO(C) = ({CTi,j}i∈[t],j∈[N1/(t+1)], {SKUj}j∈[N1/(t+1)])

Eval(sxiO, x): To evaluate the obfuscated circuit, convert x ∈ [N ] into (j1, . . . , jt, jt+1) ∈ [N1/(t+1)](t+1)

and output Dec(SKUjt+1
,CT1,j1 , . . . ,CTt,jt) .

Proof of Theorem 3.1. We first note that sxiO indeed satisfies the non-trivial time efficiency requirement.
The obfuscated circuit consists of t·N1/(t+1) ciphertexts, each computable in timepoly(|C|, λ), andN1/(t+1)

secret-keys of SKFEt, each computable in time poly(|C|, λ). Thus, for t ≤ λ, the overall running-time of
the obfuscator is bounded by N1/(t+1) · poly(|C|, λ), as required.
Security. We show that if there exists a distinguisher D against sxiO, then there exists an adversary A that
breaks the security of the underlying scheme SKFEt (it even beaks a weaker security notion than the one
from Definition 2.2, where function queries are also fixed in advance).

The reduction is straightforward. If D distinguishes sxiO obfuscations of circuits C,C ′ (of same size
and functionality), then A can invoke D to distinguish{

(j1, . . . , jt−1, Cjt) : ji ∈ [N1/(t+1)]
}

and
{

(j1, . . . , jt−1, C
′
jt) : ji ∈ [N1/(t+1)]

}
,

given secret keys for all functions
{
Ujt+1 : jt+1 ∈ [N1/(t+1)]

}
. Since the two circuits are functionally equiva-

lent, all these queries are valid queries, since Ujt+1(j1, . . . , jt−1, Cjt) = C(j1, . . . , jt, jt+1) = C(j1, . . . , jt,
jt+1) = Ujt+1(j1, . . . , jt−1, C

′
jt

).
This completes the proof of Theorem 3.1.

Remark 3.1 (SXIO from succinct single-key SKFE). To get t-input SKFE as required above from 1-input
SKFE, via the [BKS16] transformation, the original SKFE indeed has to support an unbounded polynomial
number of functional keys. We note that a similar SXIO construction is possible from a 1-input SKFE that
supports a functional key for a single function f , but is succinct in the sense that the encryption circuit does
not grow with the complexity of f .

In more detail, assume a (1-input) single-key SKFE with succinctness as above, where the time to derive
a key for a function f is bounded by |f |c · poly(λ) for some constant c ≥ 1. The SXIO will consist of a
single key for the function f that given as input Cj , as defined above, returns Cj(1), . . . , Cj(N

1
c+1 ), and

encryptions of C1, . . . , CNc/c+1 . Accordingly we still get SXIO with compression factor γ = 1− 1
c+1 . This

does not lead to arbitrary constant compression (in contrast with the theorem above), since 1
2 ≤ γ < 1. Yet,

it already suffices to obtain IO, when combined with LWE (as in Corollary 1.1).
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4 Yao’s Garbled Circuits are Decomposable

In this section, we define the notion of decomposable garbled circuits and prove that the classical Yao’s
garbled circuit construction satisfies our definition of decomposability (in some parameter regime). We use
a decomposable garbling scheme as a building block to construct a PKFE scheme in Section 5.2.

4.1 Decomposable Garbling

Circuit garbling schemes [Yao82, BHR12] typically consist of algorithms (Gar.CirEn,Gar.InpEn,Gar.De).
Gar.CirEn(C,K) is a circuit garbling algorithm that given a circuit C and secret keyK, produces a garbled
circuit Ĉ. Gar.InpEn(x,K) is an input garbling algorithm that takes an input x and the same secret key K,
and produces a garbled input x̂. Gar.De(Ĉ, x̂) is a decoder that given the garbled circuit and input decodes
the result y.

In this work, we shall particularly be interested in garbling decomposable circuits. A decomposable
circuitC can be represented by a smaller circuitCde that can generate each of the gates in the circuitC (along
with pointers to their neighbours). When garbling such circuits, we shall require that the garbling process
will also be decomposable and will admit certain decomposable security properties. We next formally define
the notion of decomposable circuits and decomposable garbling schemes.

Definition 4.1 (Decomposable Circuit). Let C : {0, 1}n → {0, 1} be a boolean circuit with L binary gates
andW wires. Each gate g ∈ [L] has an associated tuple (f, wa, wb, wc) where f : {0, 1}2 → {0, 1} is the
binary function computed by the gate, wa, wb ∈ [W ] are the incoming wires, and wc ∈ [W ] is the outgoing
wire. A wire wc can be the outgoing wire of at most a single gate, but can be used as an incoming wire to
several different gates and therefore this models a circuit with fan-in 2 and unbounded fan-out. We define
the predecessor gates of g to be the gates whose outgoing wires are wa, wb (at most 2 of them). We define the
successor gates of g to be the gates that have wc as an incoming wire. The gates are topologically ordered
and labeled by 1, . . . , L so that if j is a successor of i then i < j. A wire w is an input wire if it is not the
outgoing wire of any gate. We assume that the wires 1, . . . , n are the input wires. There is a unique output
wire w which is not an incoming wire to any gate.

We say that C is decomposable if there exists a smaller circuit Cde, called the decomposition circuit,
that given a gate label g ∈ [L] as input, outputs the associated tuple Cde(g) = (f, wa, wb, wc).

Definition 4.2 (Decomposable Garbling). A decomposable garbling scheme consists of three deterministic
polynomial-time algorithms (Gar.CirEn,Gar.InpEn,Gar.De) that work as follows:

• b̂i ← Gar.InpEn(i, b;K): takes as an input label i ∈ [n], a bit b ∈ {0, 1}, and secret keyK ∈ {0, 1}λ,
and outputs a garbled input bit b̂i.

• Ĝg ← Gar.CirEn(Cde, g;K): takes as input a decomposition circuit Cde : {0, 1}L → {0, 1}∗, a gate
label g ∈ [L], and secret keyK ∈ {0, 1}λ, and outputs a garbled gate Ĝg.

• y ← Gar.De(Ĉ, b̂): takes as input garbled gates Ĉ =
{
Ĝg

}
g∈[L]

, and garbled input bits b̂ ={
b̂i

}
i∈[n]

, and outputs y ∈ {0, 1}m.

The scheme should satisfy the following requirements:

1. Correctness: for every decomposable circuit C with decomposition circuit Cde and any input
b1, . . . , bn ∈ {0, 1}n, the decoding procedure Gar.De produces the correct output y = C(b1, . . . , bn).
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2. (σ, τ, δ)-Decomposable Indistinguishability: There are functions σ(Φ, s, λ), τ(Φ) ∈ N, δ(λ) ≤ 1
such that for any security parameter λ, any input x ∈ {0, 1}n, and any two circuits (C,C ′) that:

• have the same topology Φ, and in particular the same size L and input-output lengths (n,m),
• have decomposition circuits (Cde, C

′
de) of the same size s

• and agree on x: C(x) = C ′(x),

there exist hybrid circuits
{
Gar.HInpEn(t),Gar.HCirEn(t)

∣∣∣ t ∈ [τ ]
}
, each being of size at most σ, as

well as (possibly inefficient) hybrid functions
{
Gar.HPunc(t)

∣∣∣ t ∈ [τ ]
}
with the following syntax:

• (K
(t)
pun, g

(t)
pun, i

(t)
pun)← Gar.HPunc(t)(K), given a key K ∈ {0, 1}λ and an index t ∈ [τ ], outputs

a punctured keyK(t)
pun, a gate label g(t)

pun ∈ [L], and an input label i(t)pun ∈ [n].

• Ĝg ← Gar.HCirEn(t)(g;K), given a gate label g ∈ [L], and a (possibly punctured) key K,
outputs a fake garbled gate Ĝg.

• b̂i ← Gar.HInpEn(t)(i, b;K), given an input label i ∈ [n], and a (possibly punctured) key K,
outputs a fake garbled input bit b̂i.

We require that the following properties hold:

(a) The hybrids transition from C to C ′: For anyK ∈ {0, 1}λ, g ∈ [L], i ∈ [n], b ∈ {0, 1},

Gar.CirEn(Cde, g;K) = Gar.HCirEn(1)(g;K) ,Gar.InpEn(i, b;K) = Gar.HInpEn(1)(i, b;K),

Gar.CirEn(C ′de, g;K) = Gar.HCirEn(τ)(g;K) ,Gar.InpEn(i, b;K) = Gar.HInpEn(τ)(i, b;K).

(b) Punctured keys preserve functionality: For any K ∈ {0, 1}λ, and t ∈ [τ − 1], and letting
(K

(t)
pun, g

(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K), it holds that:

• For any g 6= g
(t)
pun, we have

Gar.HCirEn(t)(g;K) = Gar.HCirEn(t)(g;K
(t)
pun) = Gar.HCirEn(t+1)(g,K).

• For any i 6= i
(t)
pun and b ∈ {0, 1}, we have

Gar.HInpEn(t)(i, b;K) = Gar.HInpEn(t)(i, b;K
(t)
pun) = Gar.HInpEn(t+1)(i, b,K).

(c) Indistinguishability on punctured inputs: For any polysize distinguisherD, security parameter
λ ∈ N, and circuits (C,C ′) as above,∣∣∣Pr

[
D
(
ĝ

(t)
pun, î

(t)
pun,Gar.HPunc

(t)(K)
)

= 1
]
−

Pr
[
D
(
ĝ

(t+1)
pun , î

(t+1)
pun ,Gar.HPunc(t)(K)

)
= 1
] ∣∣∣ ≤ δ(λ) ,

where, for t ≥ 0 we denote by ĝ(t)
pun the value Gar.HCirEn(t)(g

(t)
pun;K) and by î(t)pun the value

Gar.HInpEn(t)(i
(t)
pun, xi(t)pun

;K), with x being the input on which the two circuits C and C ′ agree

on. The probability is overK ← {0, 1}λ, and (K
(t)
pun, g

(t)
pun, i

(t)
pun) = Gar.HPunc(t)(K).
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We show that Yao’s garbled circuit scheme, in fact, gives rise to a decomposable garbling scheme where the
security loss and size of the hybrid circuits scales with the depth of the garbled circuits.

Theorem 4.1. Let C = {Cλ}λ∈N be a class of boolean circuits where each C ∈ Cλ has circuit size at most
L(λ), input size at most n(λ), depth at most d(λ), fan-out at most ϕ(λ), and decomposition circuit of size
at most ∆(λ). Then assuming the existence of δ-secure one-way functions, C has a decomposable garbling
scheme with (σ, τ, δ)-decomposable indistinguishability where the bound on the size of hybrid circuits is
σ = poly(λ, d, logL,ϕ,∆), the number of hybrids is τ = L ·2O(d), and the indistinguishability gap is δΩ(1).

The proof of the above theorem spans the rest of this section. We rely heavily on the ideas of Hemenway
et al. [HJO+15] which considered an orthogonal question of adaptively secure garbling schemes but (for
entirely different reasons) developed ideas that are useful for decomposable garbling.

4.2 Yao’s Garbled Circuits: Construction

Let (SEnc,SDec) be a CPA-secure symmetric key encryption scheme with key space {0, 1}λ. Furthermore
assume it satisfies special correctness so that for all messagesm we have:

Pr[SDeck(SEnck′(m)) 6= ⊥ : k, k′ ← {0, 1}λ] = negl(λ).

Such encryption schemes can be based on one-way functions.
Let PPRF = (PRF.Gen,PRF.Ev,PRF.Punc) be a PPRF with:

• domain D = ([W ]× {0, 1}) ∪ [L], where [W ] is the set of wires and [L] is the set of gates

• rangeR = {0, 1}λ

and furthermore assume that the keys output by PRF.Gen are just random valuesK ∈ {0, 1}λ. Such PPRFs
can be constructed based on one-way functions.
Yao’s Garbled Circuit Construction. The key K of the garbling scheme is just a key for the PPRF. We
define the two functions Gar.InpEn,Gar.CirEn as follows.

• b̂i ← Gar.InpEn(i, b;K): Output b̂i = PRF.EvK((i, b)).

• Ĝg ← Gar.CirEn(Cde, g;K): Let Cde(g) = (f, wa, wb, wc). Compute the 6 wire labels kβα =
PRF.EvK(wα, β) for α ∈ {a, b, c} and β ∈ {0, 1}, unless wc is an output wire in which case set
k0
c = 0, k1

c = 1. Compute 4 ciphertexts:

c0,0 ← SEnck0
a
(SEnck0

b
(k
f(0,0)
c ))

c0,1 ← SEnck0
a
(SEnck1

b
(k
f(0,1)
c ))

c1,0 ← SEnck1
a
(SEnck0

b
(k
f(1,0)
c ))

c1,1 ← SEnck1
a
(SEnck0

b
(k
f(1,1)
c ))

where the encryption randomness is derived using PRF.EvK(g). Set Ĝg = [c1, c2, c3, c4] to be a
lexicographic ordering of the above ciphertexts.

• y ← Gar.De(Ĉ, b̂): On input garbled gates Ĉ =
{
Ĝg

}
g∈[L]

and garbled input bits b̂ =
{
b̂i

}
i∈[n]

,
iteratively compute a wire-label for every wire in the circuit.

19



For the input wires, the labels these are given by b̂. For any gate g with incoming wires wa, wb and
outgoing wire wc such that the labels ka, kb of wa, wb have already been computed, derive the label
kc of wc as follows. Parse Ĝg = [c1, c2, c3, c4] and set kc = SDeckb(SDecka(ci)) for the first one of
i = 1, 2, 3, 4 for which the outcome is not ⊥.
Finally, output the value y which is the wire label of the output wire.

The correctness of this construction follows by inspection and from the special correctness of the symmetric
key encryption scheme.

4.3 Hybrid Circuits and Pebbling

We now show that Yao’s construction is decomposable by defining the hybrid functions as in definition 4.2.
Half-Sequence. We now define the sequence of hybrid functions{

Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)
∣∣∣ t ∈ [τ ]

}
.

We will actually only define a half-sequence which ensures that:

• Gar.CirEn(Cde, g;K) = Gar.HCirEn(1)(g;K) ,
Gar.InpEn(i, b;K) = Gar.HInpEn(1)(i, b;K) = Gar.HInpEn(τ)(i, b;K),

• Gar.HCirEn(τ)(g;K) does not depend on Cde but only on its topology Φ and the output bit C(x) =
C ′(x).

By adding a symmetric sequence of additional hybrid functions{
Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)

∣∣∣ t ∈ {τ + 1, . . . , 2τ − 1}
}

where we define the functions with t = τ + i the same way as those with t = τ − i but with C ′de instead of
Cde we then get the full hybrid sequence satisfying the definition.
Pebbling. We define the following pebbling game over a circuit with some topology Φ. Each gate of the
circuit can either have no pebble, a black pebble, or a gray pebble. The rules of the game are as follows:

I. We can place or remove a black pebble on a gate as long as both predecessors of that gate have black
pebbles on them (or the gate is an input gate).

II. We can replace a black pebble with a gray pebble on any non-output gate as long as all successors of
that gate have black or gray pebbles on them.

Apebbling of the topologyΦ is a sequence of stepswherewe start with no pebbles on any gate and sequentially
apply rules I and II so as to end up with a gray pebble on every non-output gate and a black pebble on the
output. Let us assume that the topology Φ admits a pebbling consisting of steps pstep1, . . . , pstepτ ′ .
Pebbling and Circuit Configurations. We will define the hybrids, each of which being parametrized by
a circuit configuration conf. For every gate g, the configuration conf specifies if the gate is in one of four
possible modes

{RealGate,SimGate,CompDepSimGate,
1

2
CompDepSimGate}.
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Furthermore, for everywirewwhich is an incoming or outgoingwire of somegate inmodeCompDepSimGate
or 1

2CompDepSimGate, the configuration specifies a bit v(w).
Assume we are given an input x and a circuit C having topology Φ that admits a pebbling consisting

of steps pstep1, . . . , pstepτ ′ . We first define a sequence of configurations conf ′1, . . . , conf ′τ ′ where every
configuration conf ′i corresponds to the pebble placement after step i of the pebbling: every gate that has
no pebble is in RealGate mode, every gate that has a black pebble is in CompDepSimGate mode, every
gate that has a gray pebble is in SimGate mode. Furthermore, for every wire w which is an incoming or
outgoing wire of some gate in mode CompDepSimGate we set v(w) to be the bit going over the wire w
during the computation C(x). Next we add several intermediate configurations as follows: if the transition
from conf ′i, conf

′
i+1 corresponds to an application of rule I in the pebbling, meaning that we either add or

remove a black pebble on some gate g, then we add an intermediate configuration in between these, which is
identical to conf ′i, conf ′i+1 except that the gate g is in 1

2CompDepSimGate mode. This results in a sequence
conf1, . . . , confτ where τ ≤ 2τ ′.
Configurations and Hybrids. We now define the hybrid functions{

Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)
∣∣∣ t ∈ [τ ]

}
.

First, for a configuration conf we define the functions Gar.HInpEn(conf) and Gar.HCirEn(conf) parameterized
by conf. For every t ∈ [τ ] we then define Gar.HInpEn(t) = Gar.HInpEn(conft) and Gar.HCirEn(t) =
Gar.HCirEn(conft) where conf1, . . . , confτ is the sequence of configuration given by the pebbling game as
above.

• Ĝg ← Gar.HCirEn(conf)(g;K): Let Cde(g) = (f, wa, wb, wc).

If the key K is a standard PPRF key then proceed as follows. Compute the 6 wire labels kβα =
PRF.EvK(wα, β) for α ∈ {a, b, c} and β ∈ {0, 1}, unless wc is an output wire in which case set
k0
c = 0, k1

c = 1. Compute 4 ciphertexts c0,0, c0,1, c1,0, c1,1 as in Figure 2 depending on the mode of
g, where the encryption randomness is derived from PRF.EvK(g). Let Ĝg = [c1, c2, c3, c4] to be a
lexicographic ordering of the above ciphertexts.
If the key K is not a standard PPRF key then parse K = (K{S}, H). If there is a tuple of the form
(g, Ĝg) in H then output Ĝg. Else attempt to compute Ĝg as above using the punctured PPRF key
K{S} and output ⊥ if this is not possible.

• Gar.HInpEn(conf)(i, b;K): If the key K is a standard PPRF key then output b̂i = PRF.EvK((i, b)).
Else parseK = (K{S}, H) and output b̂i = PRF.EvK{S}((i, b)) or ⊥ if this computation fails.

We define Gar.HPunc(t)(K) as follows. Assume that the transition from conft to conft+1 changes the
mode of a gate g(t)

pun such that g(t)
pun has incoming wires wa, wb and outgoing wire wc.

• If the transition changes g(t)
pun from RealGate to 1

2CompDepSimGate (or vice versa):
Gar.HPunct(K) := (Kt

pun = ((K{S}, H), g
(t)
pun, ia) where S = {(wa, 1 − v(wa)), g

(t)
pun}, K{S} =

PRF.Punc(K,S), ia = ⊥ if wa is not an input wire, else ia is the index of input wire wa. For every
gate g 6= g

(t)
pun that has wa as an input wire compute Ĝg ← Gar.HCirEn(conft)(g;K) and add Ĝg toH .

• If the transition changes g(t)
pun from 1

2CompDepSimGate to CompDepSimGate (or vice versa):
Gar.HPunct(K) := (Kt

pun = ((K{S}, H), g
(t)
pun, ib) where S = {(wb, 1 − v(wb)), g

(t)
pun}, K{S} =
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RealGate SimGate CompDepSimGate

c0,0 ← SEnck0
a
(SEnck0

b
(k
f(0,0)
c )) c0,0 ← SEnck0

a
(SEnck0

b
(k0
c )) c0,0 ← SEnck0

a
(SEnck0

b
(k
v(wc)
c ))

c0,1 ← SEnck0
a
(SEnck1

b
(k
f(0,1)
c )) c0,1 ← SEnck0

a
(SEnck1

b
(k0
c )) c0,1 ← SEnck0

a
(SEnck1

b
(k
v(wc)
c ))

c1,0 ← SEnck1
a
(SEnck0

b
(k
f(1,0)
c )) c1,0 ← SEnck1

a
(SEnck0

b
(k0
c )) c1,0 ← SEnck1

a
(SEnck0

b
(k
v(wc)
c ))

c1,1 ← SEnck1
a
(SEnck1

b
(k
f(1,1)
c )) c1,1 ← SEnck1

a
(SEnck1

b
(k0
c )) c1,1 ← SEnck1

a
(SEnck1

b
(k
v(wc)
c ))

1
2CompDepSimGate

c1−v(wa),0 ← SEnc
k

1−v(wa)
a

(SEnck0
b
(k
v(wc)
c )

c1−v(wa),1 ← SEnc
k

1−v(wa)
a

(SEnck1
b
(k
v(wc)
c ))

cv(wa),0 ← SEnc
k
v(wa)
a

(SEnck0
b
(k
f(v(wa),0)
c ))

cv(wa),1 ← SEnc
k
v(wa)
a

(SEnck1
b
(k
f(v(wa),1)
c ))

Figure 2: Garbling Gate modes: RealGate, SimGate, CompDepSimGate, 1
2CompDepSimGate .

PRF.Punc(K,S), ib = ⊥ if wb is not an input wire, else ib is the index of input wire wb. For every
gate g 6= g

(t)
pun that has wb as an input wire compute Ĝg ← Gar.HCirEn(conft)(g;K) and add Ĝg toH .

• If the transition changes g(t)
pun from CompDepSimGate to SimGate (or vice versa):

Gar.HPunct(K) := (Kt
pun = ((K{S}, H), g

(t)
pun,⊥) with S being the set {(wc, 0), (wc, 1), g

(t)
pun},

K{S} = PRF.Punc(K,S). For every gate g 6= g
(t)
pun that has wc as an input wire compute Ĝg ←

Gar.HCirEn(conft)(g;K) and add Ĝg to H .

4.4 Proof of Security

We now show that the above hybrid functions satisfy properties (a), (b), (c) of Definition 4.2.

Property (a). Firstly,
{
Gar.HInpEn(t),Gar.HCirEn(t),Gar.HPunc(t)

∣∣∣ t ∈ [τ ]
}

represents a valid half-
sequence, meaning that:

• Gar.CirEn(Cde, g;K) = Gar.HCirEn(1)(g;K) ,
Gar.InpEn(i, b;K) = Gar.HInpEn(1)(i, b;K) = Gar.HInpEn(τ)(i, b;K),

• Gar.HCirEn(τ)(g;K) does not depend on Cde but only on its topology Φ and the output bit Cde(x).

In particular, Gar.HCirEn(τ)(g;K) = Gar.HCirEn(confτ )(g;K) corresponds to a configuration where all
non-output gates are in SimGate mode and the output gate is in CompDepSimGate mode, meaning that
Gar.HCirEn(confτ )(g;K) does not depend on the boolean function f implemented by any of the gates.
Furthermore, the configuration confτ only specifies the output value v(wout) = C(x). Therefore, these
functions are a valid half-sequence. As we discussed, by adding a symmetric half-sequence in the reverse
direction for the circuit C ′de we get a sequence that satisfies property (a).
Property (b). This property follows by inspection. In particular,
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• For any g 6= g
(t)
pun, we have

Gar.HCirEn(t)(g;K) = Gar.HCirEn(t)(g;K
(t)
pun) = Gar.HCirEn(t+1)(g,K) .

Since Gar.HCirEn(t)(g;K) and Gar.HCirEn(t+1)(g,K) only differ on the mode of the gate g(t)
pun and

the punctured key K(t)
pun hardwires the value of all other gates affected by PRF puncturing to match

those of Gar.HCirEn(t)(g;K)

• For any i 6= i
(t)
pun and b ∈ {0, 1}, we have Gar.HInpEn(t)(i, b;K) = Gar.HInpEn(t)(i, b;K

(t)
pun) =

Gar.HInpEn(t+1)(i, b,K). Actually, we have Gar.HInpEn(t)(i, b;K) = Gar.InpEn(i, b;K) as well as
Gar.HInpEn(t)(i, b;K

(t)
pun) = Gar.InpEn(i, b;K), for all i 6= i

(t)
pun.

Property (c). For property (c), we must show that(
Gar.HCirEn(t)(g

(t)
pun;K),Gar.HInpEn(t)(i

(t)
pun, xi(t)pun

;K),K
(t)
pun

)
≈
(
Gar.HCirEn(t+1)(g

(t)
pun;K),Gar.HInpEn(t+1)(i

(t)
pun, xi(t)pun

;K),K
(t)
pun

)
are computationally indistinguishable, where the probability is overK ← {0, 1}λ, and (K

(t)
pun, g

(t)
pun, i

(t)
pun) =

Gar.HPunc(t)(K).
Since in our case Gar.HInpEn(t)(i, b;K) = Gar.HInpEn(t+1)(i, b;K) = Gar.InpEn(i, b;K) for all i, b

we can simplify the above to:(
Gar.HCirEn(t)(g

(t)
pun;K),Gar.InpEn(i

(t)
pun, xi(t)pun

;K),K
(t)
pun

)
≈
(
Gar.HCirEn(t+1)(g

(t)
pun;K),Gar.InpEn(i

(t)
pun, xi(t)pun

;K),K
(t)
pun

)
We consider several cases. Assume that the transition from conft to conft+1 changes the mode of a gate g(t)

pun

such that g(t)
pun has incoming wires wa, wb and outgoing wire wc.

Case 1: If the transition changes g(t)
pun from RealGate to 1

2CompDepSimGate (or vice versa):
The difference between Gar.HCirEn(t)(g

(t)
pun;K),Gar.HCirEn(t+1)(g

(t)
pun;K) is only in the value en-

crypted by the ciphertexts:

c1−v(wa),0 ← SEnc
k

1−v(wa)
a

(· · · )

c1−v(wa),1 ← SEnc
k

1−v(wa)
a

(· · · )

The key k1−v(wa)
a = PRF.EvK(wa, 1 − v(wa)) is computed using a PPRF and the encryption ran-

domness is derived using r = PRF.EvK(g
(t)
pun). Furthermore K(t)

pun = (K{S}, H) where K{S}
is punctured at S = {(wa, 1 − v(wa)), g

(t)
pun}. The set H only contains other ciphertexts created

under the key k1−v(wa)
a but otherwise does not contain any other information related to k1−v(wa)

a

or r. Therefore, we can first rely on punctured PRF security to switch k1−v(wa)
a and r to random,

then on CPA security to switch the value encrypted by the ciphertexts c1−v(wa),0, c1−v(wa),1 from
that of Gar.HCirEn(t)(g

(t)
pun;K) to that of Gar.HCirEn(t+1)(g

(t)
pun;K) and then on punctured PRF se-

curity again to switch k1−v(wa)
a and the encryption randomness back to PRF outputs. This proves

indistinguishability.
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Case 2: If the transition changes g(t)
pun from 1

2CompDepSimGate to the mode CompDepSimGate (or vice
versa):
This case is identical to the previous one with wb instead of wa.

Case 3: If the transition changes g(t)
pun from CompDepSimGate to SimGate (or vice versa):

The difference between Gar.HCirEn(t)(g
(t)
pun;K),Gar.HCirEn(t+1)(g

(t)
pun;K) is only a switch from

k
v(wc)
c to k0

c in the garbled gate g
(t)
pun.

The keys k0
c = PRF.EvK(wc, 0), k1

c = PRF.EvK(wc, 1) are computed using the PPRF. Furthermore
K

(t)
pun = (K{S}, H) where K{S} is punctured at S = {(wc, 0), (wc, 1)}. The keys k0

c , k
1
c are used

to compute some values in H but they are used in a completely symmetric manner (this is because
all successors of g(t)

pun are in SimGate,CompDepSimGate modes and therefore the 0 and 1 keys are
used identically). Therefore, we first rely on PPRF security to switch k0

c , k
1
c to random values, then by

symmetry we can exchange kv(wc)
c for k0

c in the garbled gate g(t)
pun, and then we rely on PPRF security

again to switch them back to PRF outputs.

This completes the proof of property (c).

4.5 Pebble Complexity and Parameters

We now analyze the parameters σ(Φ, s, λ), τ(Φ) ∈ N, δ(λ) as defined in Definition 4.2 that our construction
achieves. Assume that the topology Φ has maximum fan-out ϕ(Φ) and can be pebbled in τ ′(Φ) steps using
at most p(Φ) black pebbles. Furthermore assume that the pebbling is succinct meaning that in any step t of
the pebbling there is an index g(t)

gray ∈ [L] such that a gate g has a gray pebble on it if and only if g is not the
output gate and g ≥ g(t)

gray. Lastly assume that the size of the compact circuits Cde, C
′
de is at most ∆ and that

the symmetric-key encryption scheme and the PPRF have security δENC(λ) and δPPRF (λ) respectively,
meaning that the advantage of any polynomial-time attacker against these schemes is bounded by δENC(λ)
and δPPRF (λ) respectively.

Lemma 4.1. The construction given achieves τ(Φ) ≤ 4τ ′(Φ), σ(Φ, s, λ) ≤ poly(λ, ϕ(Φ), p(Φ), logL)+∆,
and δ(λ) ≤ O(δENC(λ) + δPPRF (λ)).

Lemma 4.1. It’s easy to see that τ(Φ) ≤ 4τ ′(Φ) since we added at most one intermediate configuration in
between any pebbling steps to define the half-sequence of hybrid functions of length at most 2τ ′(Φ), and
therefore the length of the full sequence is of length at most 4τ ′(Φ).

We now compute σ(Φ, s, λ) which is a bound on the circuit size of{
Gar.HInpEn(t),Gar.HCirEn(t)

∣∣∣ t ∈ [τ ]
}
.

First, we note that the size of the punctured key Kt
pun is |Kt

pun| ≤ ϕ(Φ)poly(λ) since it hardwires at most
ϕ(Φ) garbled gates. Secondly we note that the size of any configuration conft can be described by at most
O(p(Φ) logL) bits since it only needs to specify the p(Φ) gates that are in CompDepSimGate mode and in
1
2CompDepSimGatemode, the bits v(wc) for each outgoing wire wc of such gates, and the index g

(t)
gray to be

able to decide if a gate is in SimGate or RealGatemode. Lastly, the function Gar.HCirEn(t) needs to run the
circuit Cde or C ′de once and then apply some processing on the output. Therefore, by observation, the circuit
size is bounded by poly(λ, ϕ(Φ), p(Φ), logL) + ∆.

Finally, the bound on δ(λ) follows directly from the security proof.
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In [HJO+15] (Section 6, Strategy 2), it is shown that any circuit topology of depth d and circuit size L
can be pebbled using p(Φ) ≤ 2d black pebbles and in τ ′(Φ) ≤ L4d steps. Furthermore, it is easy to see
that this pebbling is succinct.4 Therefore, by plugging these parameters into Lemma 4.1 we get the proof of
Theorem 4.1.

5 Single-Key Succinct PKFE from SXIO and PKE

This section consists of four subsections. The main part is constructing a weakly succinct PKFE scheme
for boolean functions in Section 5.2. First, in Section 5.1, we construct a succinct IBE scheme with γ-
compression, whichwe shall use as a building block in Section 5.2. In Section 5.3, we present a transformation
from weakly succinct PKFE schemes for boolean functions into ones for non-boolean functions. Lastly, we
explain how the pieces come together to give IO from SKFE in Section 5.4.

5.1 A Succinct IBE Scheme

In this section, we construct a succinct IBE scheme from SXIO and PKE. Here by succinct, we mean that the
size of the encryption circuit (and then also of the master public key) is sublinear in the size of the identity
space (roughly, |ID|γ , with γ < 1, see Section 2.6 for the complete definition). In the following subsections,
we will use the constructed IBE as a building block in our construction of succinct PKFE.

Theorem 5.1. For any β < γ < 1, assuming there exists a β-compressing SXIO scheme, a puncturable PRF,
and a plain PKE scheme, there exists a succinct IBE scheme with γ-compression. Moreover, assuming the
underlying primitives are δ-secure so is the resulting IBE scheme.

Westart by describing the IBEconstruction and then argue its security. LetPPRF = (PRF.Gen,PRF.Ev,
PRF.Punc) be a puncturable PRF, PKE = (PKE.Gen,PKE.Enc,PKE.Dec) a PKE scheme, and sxiO a β-
compressing SXIO scheme. Let [s] denote the identity space.
Construction. The scheme IBE = (Setup,KeyGen,Enc,Dec) for an identity space ID = [s] is given by
the following algorithms.

Setup(1λ):

• Choose puncturable PRF key S ← PRF.Gen(1λ).
• Construct a circuit KGibe[S] as described in Figure 3 that computes ri = PRF.EvS(i) for an
input i ∈ [s] and generates a pair of keys (PKE.PKi,PKE.SKi)← PKE.Gen(1λ; ri).

• OutputMPK = sxiO(KGibe[S]) andMSK = {PKE.SKi}i∈[s].

KeyGen(MSK, id):

• ParseMSK = {PKE.SKi}i∈[s].
• Output SKid = PKE.SKid.

4Indeed, if the gates 1, . . . , L are topologically sorted so that L is the output gate, then the pebbling can be made to place gray
pebbles in according to this ordering, meaning that the first gray pebble is placed on gate L− 1 then L− 2 and finally continuing
down to 1. One minor difference between our version and the one in [HJO+15] is that the latter allows replacing a black pebble
with a gray pebble at the output gate whereas our does not. This only requires us to slightly modify the pebbling strategy to keep
the pebble at the output gate black.
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Enc(MPK, id, x):

• Compute PKE.PKid by running MPK(id) = sxiO(KGibe[S])(id).
• Output CT← PKE.Enc(PKE.PKid, x).

Dec(SKid,CT):

• Output PKE.Dec(SKid,CT).

Key Generation Circuit KGibe[S]

Hardwired: a puncturable PRF key S ∈ {0, 1}λ.
Input: an index i ∈ [s].
Padding: the circuit is padded to size pad = pad(s, λ), which is determined in the analysis.

1. Compute ri ← PRF.EvS(i).
2. Generate a key pair (PKE.PKi,PKE.SKi)← PKE.Gen(1λ; ri).
3. Output the public key PKE.PKi.

Figure 3: Circuit KGibe[S]

Proof of Theorem 5.1. We now prove Theorem 5.1, starting by analyzing succinctness, and then moving on
to the security proof.

Padding Parameter

The proof of security relies on indistinguishability of obfuscations of circuits KGibe and KG∗ibe defined in
Figures 3 and 4. Accordingly, we set pad = max(|KGibe| , |KG∗ibe|). The circuits KGibe and KG∗ibe compute
a puncturable PRF over domain [s], a PKE key pair, and may have punctured PRF keys and public keys
hardwired. Thus,

pad ≤ poly(λ, log(s)) .

Succinctness

The input space for KGibe is [s]. Therefore, by the SXIO guarantee, the size of the encryption circuit
(dominated by running the obfuscated KGibe) is

sβ · poly(λ, `, log s) ≤ sγ · poly(λ, `) ,

where ` is a bound on the length of encrypted messages.

26



Security Proof

Let us assume that the underlying primitives are δ-secure. We define a sequence of hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0, ExptIBEA (1λ, 0). In this game,
the adversary first selects the challenge identity id∗ andmessages (m∗0,m

∗
1) and then gets an encryption

of m∗0 for identity id∗ and the master public key. It can also query polynomially many secret keys for
identities different from id∗ (See Definition 2.11 for more details).

Hyb1: We change KGibe into KG∗ibe described in Figure 4. In this hybrid game, we set r∗ = PRF.EvS(id∗)
and (PKE.PK∗,PKE.SK∗)← PKE.Gen(1λ; r∗). Thus, The behaviors of KGibe and KG∗ibe are totally
the same, and so are their size since we pad circuit KGibe to have the same size as KG∗ibe. Then, we
can use the indistinguishability guarantee of sxiO and it holds Hyb0 ≈δ Hyb1.

Key generation circuit KG∗ibe[S{id∗}]

Hardwired: a punctured PRF key S{id∗}, a key PKE.PK∗.
Input: an index i ∈ [s].

1. If i = id∗, then output PKE.PK∗.

2. Else if compute ri ← PRF.EvS{id∗}(i).

3. Generate a key pair (PKE.PKi,PKE.SKi)← PKE.Gen(1λ; ri).

4. Output PKE public key PKE.PKi.

Figure 4: Circuit KG∗ibe[S{id∗}]

Hyb2: Wechange r∗ = PRF.EvS(id∗) into uniformly random r∗. Due to the pseudorandomness at punctured
points, it holds Hyb1 ≈δ Hyb2.

Hyb3: We change CT∗ from PKE.Enc(id∗,m∗0) to PKE.Enc(id∗,m∗1). In Hyb2 and Hyb3, we do not
need randomness used to generate PKE.PK∗. We just use the hardwired PKE.PK∗. Therefore,
Hyb2 ≈δ Hyb3 follows directly from the semantic security of the PKE scheme.

Hyb4: This is ExptIBEA (1λ, 1). We can show the indistinguishability between Hyb3 and Hyb4 in a reverse
manner.

This completes the proof of Theorem 5.1.

5.2 Weakly Succinct PKFE for Boolean Functions

We now construct a single-key weakly succinct PKFE scheme for the class of boolean functions. The
construction is based on succinct IBE, decomposable garbling, and SXIO.

Theorem 5.2. Let C = {Cλ}λ∈N be a family of circuits with a single output bit and let n(λ), s(λ), d(λ) be
bounds on their input length, size, and depth (respectively). For any constants β, γ such that 3β < γ < 1,
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assuming a δ-secure, β-compressing SXIO, there exists a constant α, such that given any δ-secure, α-
compressing IBE, and δ-secure one-way functions, there exists a 2dsδ-secure succinct PKFE for C with
compression factor γ.

Depth preserving universal circuits. To prove the above theorem, we recall the existence of depth preserving
universal circuits [CH85]. Concretely, any family of circuits C as considered in Theorem 5.2 has a uniform
family of universal circuits {Uλ}λ∈N with fan-out 2,5 depth d · polylog(s), and size s3 · polylog(s), for
some fixed polynomial poly. Each such circuit takes as input a description (f1, . . . , fs) of a function in C
and an input (x1, . . . , xn) and outputs f(x). Furthermore, uniformity here means that each circuit has a
decomposition circuit of size polylog(s).
Ingredients and notation used in the construction.

• We denote by U (x) : {0, 1}s → {0, 1} the universal circuit, with x ∈ {0, 1}n being a hardwired
bitstring, such that on input (f1, . . . , fs), the circuitU (x) outputs f(x). This circuit has a decomposition
circuit of size poly(n, log(s)), which we denote by U (x)

de . We also denote by L the number of gates in
the circuit U (x).

• Let sxiO be a δ-secure, β-compressing SXIO scheme.

• Let IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) be δ-secure, succinct, IBE scheme with
α-compression for the identity space being ID = [s]× {0, 1}.

• Let (Gar.CirEn,Gar.InpEn,Gar.De) be a decomposable garbling scheme with (σ, τ, δ)-decomposable
indistinguishability where σ = poly(λ, n, d, log(s)) and τ = s2O(d). Such schemes are implied by
δ-secure one-way functions (Theorem 4.1).

• Let PPRF = (PRF.Gen,PRF.Ev,PRF.Punc) be a δ-secure puncturable PRF. These are implied by
δ-secure one-way functions (Section 2.4).

Construction. The scheme consists of the following algorithms.

PKFE.Setup(1λ):

• Run (MSKibe,MPKibe)← IBE.Setup(1λ).
• SetMSK = MSKibe,MPK = MPKibe.

PKFE.Key(MSK, f):

• Compute SKi,fi ← IBE.KeyGen(MSKibe, (i, fi)) for i ∈ [s], where f = (f1, . . . , fs).
• Return SKf = {SKi,fi}i∈[s].

PKFE.Enc(MPK, x):

• Compute U (x)
de and pick a garbling keyK ← {0, 1}λ and a punctured key S ← PRF.Gen(1λ);

• Generate an obfuscation ĨGC = sxiO(1λ, IGC[K,S,MPK]) of the input garbling circuit defined
in Figure 5;

5The restriction regarding fan-out is not stated explicitly in [CH85], but can always be achieved by blowing up the size and depth
by a factor of at most polylog(s).
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• Generate an obfuscation G̃GC = sxiO(1λ,GGC[K,U
(x)
de ]) of the gate garbling circuit defined in

Figure 6;
• Return CTx = (ĨGC, G̃GC).

PKFE.Dec(SKf ,CTx):

• For i ∈ [s], run ĨGC(i, fi) to obtain an IBE ciphertext, and decrypt the output using SKi,fi to
obtain f̂i.

• For all g ∈ [L], run G̃GC(g), in order to obtain the garbled gate Ĝg.

• Return y ← Gar.De(Ĉ, f̂), with Ĉ =
{
Ĝg

}
g∈[L]

and f̂ =
{
f̂i

}
i∈[s]

.

Input Garbling Circuit IGC[K,S,MPK]

Hardwired: a garbling keyK, a puncturable PRF key S, and MPK = MPKibe.
Input: identity (i, b), consisting of an input label i ∈ [s] and a bit b ∈ {0, 1}.
Padding: the circuit is padded to size padIGC = padIGC(s, d, n, λ), determined in the analysis.

1. Compute a corresponding garbled input bit b̂i = Gar.InpEn(i, b;K).

2. Output an IBE encryption IBE.Enc(MPKibe, (i, b), b̂i;PRF.EvS(i, b)).

Figure 5: Circuit IGC[K,S,MPK]

Gate Garbling Circuit GGC[K,U
(x)
de ]

Hardwired: a garbling keyK and the decomposition circuit U (x)
de of U (x).

Input: a gate label g ∈ [L].
Padding: the circuit is padded to size padGGC = padGGC(s, d, n, λ), determined in the analysis.

Output Ĝg = Gar.CirEn(U
(x)
de , g;K).

Figure 6: Circuit GGC[K,U
(x)
de ]

Proof of Theorem 5.2. We now prove Theorem 5.2, starting by correctness, continuing to succinctness, and
ending with the proof of security. In what follows, let s, d, and n be bounds on the size, the depth, and the
input length of functions in C.

Correctness

Correctness immediately follows from the correctness of the underlying identity-based encryption and
decomposable garbling schemes.
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Padding Parameter

The proof of security relies on the indistinguishability guarantee of SXIOwith respect to two hybrid sequences
of circuits, one corresponding to input garbling, and the other one corresponding to gate garbling. Thus, we
pad every circuit of each sequence to the maximal size of any circuit in the sequence. That is, we consider

SIGC = {IGC,HIGCt,HIGC(j)
t |1 ≤ t ≤ τ, 1 ≤ j ≤ 5}

SGGC = {GGC,HGGCt,HGGC(j)
t |1 ≤ t ≤ τ, 1 ≤ j ≤ 5} ,

and let padIGC = maxC∈SIGC |C| and padGGC = maxC∈SGGC |C|.
We bound padIGC and padGGC as follows:

• Any circuit in SIGC consists of the following:

– A punctured PRF computation (deriving randomness for IBE encryption) over a domain of size
O(s), using keys that may be punctured at at most constant number of points. The contribution
to the circuit size is bounded by poly(λ, log(s)).

– Input garbling (possibly via one of the hybrid input garbling circuits). The contribution to the
circuit size is bounded by σ = poly(λ, d, log(s), n).

– IBE encryption of garbled inputs, using a hardwired public key and up to a constant number
of hardwired ciphertexts. The contribution to the circuit size is bounded by sα · poly(λ, σ) =
sα · poly(λ, d, log(s), n).

Overall,
padIGC ≤ sα · poly(λ, n, d, log(s)) .

• Any circuit in SGGC performs a gate garbling operation (possibly via one of the hybrid gate garbling
circuits). The overall contribution to the circuit size is bounded by

padGGC ≤ σ ≤ poly(λ, n, d, log(s)) .

Succinctness

We show that for any β < γ < 1 and an appropriate choice of α < 1, the size of the encryption circuit is
bounded by sγ · poly(λ, n, d).

Let sxiO be β-compressing. Let e be the size of the obfuscated circuits ĨGC and G̃GC created during
encryption. Since the input spaces of IGC and GGC are respectively [2s] and [L], SXIO guarantees:

e ≤ (2s)β · poly(λ, |IGC|) + Lβ · poly(λ, |GGC|)
≤ sβ · poly(λ, padIGC) + Lβ · poly(λ, padGGC) ,

where poly is a fixed polynomial. Then, using the above bounds on padIGC and padGGC, and denoting by
c = O(1) the polynomial blowup in the circuit-size incurred in sxiO, we obtain:

e ≤ sβ+cα · poly(λ, n, d, log(s)) + Lβ · poly(λ, n, d, log(s)) .

Recalling that L is bounded by s3 · polylog(s), and that 3β < γ, we deduce that

e ≤ sγ · poly(λ, n, d) ,

provided that we choose α such that β + αc < γ (which is possible since β < γ and c is a constant).
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Security Proof

Let x0, x1 ∈ {0, 1}n denote the challenge messages and f denote the function query provided by the
adversary, and assume f(x0) = f(x1). Let U (x0) and U (x1) be the universal circuits defined similarly to
U (x) above, and U (x0)

de and U (x1)
de their respective decomposition circuits. Note that U (x0) and U (x1) have the

same topology (they are the same universal circuit with a different hardwired input of the same size n), and
in particular, their decomposition circuits are of the same size. Furthermore, these two circuits also satisfy

U (x0)(f) = f(x0) = f(x1) = U (x1)(f) .

U (x0) and U (x1) satisfy the properties required by the (σ, τ, δ)-decomposable indistinguishability security of
the decomposable garbling scheme, and thus there exist circuits

{
Gar.HInpEn(t),Gar.HCirEn(t)

∣∣∣ t ∈ [τ ]
}
,

whose size is at most σ, as well as (possibly inefficient) hybrid functions
{
Gar.HPunc(t)

∣∣∣ t ∈ [τ ]
}
as given

by Definition 4.1.

We accordingly consider a sequence of τ + 2 hybrid games:

Hyb0: The first game isExptFEA (1λ, 0), where the adversary hands x0, x1, f and gets back from the challenger
an encryption of x0.

Hybt (1 ≤ t ≤ τ ): The t-th game is defined similarly to ExptFEA (1λ, 0) except that the challenge ciphertext
CT∗ consists of obfuscations of corresponding hybrid circuits:

CT∗ = (sxiO(1λ,HIGCt[K,S,MPK]), sxiO(1λ,HGGCt[K])) ,

where circuits HIGCt[K,MPK] and HGGCt[K] are defined in Figure 7 and Figure 8 respectively, and
K is the key used in the decomposable garbling scheme for computing the challenge ciphertext.

Hybτ+1: The last game is ExptFEA (1λ, 1), where x1 is encrypted (rather than x0).

Hybrid Input Garbling Circuit HIGCt[K,S,MPK]

Hardwired: a garbling keyK, a puncturable PRF key S, and MPK = MPKibe.
Input: an input label i ∈ [s] and a bit b ∈ {0, 1}, so an identity (i, b).
Padding: the circuit is padded to size padIGC.

1. Compute the garbled input bit b̂i = Gar.HInpEn(t)(i, b;K).

2. Output an IBE encryption IBE.Enc(MPKibe, (i, b), b̂i;PRF.EvS(i, b)).

Figure 7: Circuit HIGCt[K,S,MPK]

We first note that Hyb0 ≈δ Hyb1 and Hybτ ≈δ Hybτ+1. Indeed, by the guarantee of the decomposable
garbling scheme (Definition 4.2), the obfuscated circuits in the respective hybrids compute the exact same
function (and are padded to the the same size). δ-indistinguishability follows by the SXIO guarantee.
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Hybrid Gate Garbling Circuit HGGCt[K]

Hardwired: a garbling keyK.
Input: a gate label g ∈ [L].
Padding: the circuit is padded to size padGGC.

Output the garbled gate Ĝg = Gar.HCirEn(t)(g;K).

Figure 8: Circuit HGGCt[K]

We now argue that hybrids Hybt and Hybt+1, for 1 ≤ t ≤ τ − 1 are computationally indistinguishable.
Indistinguishability ofHybt andHybt+1 (1 ≤ t ≤ τ −1): The indistinguishability of each such two hybrid
games is proven by a sequence of five intermediate hybrid games Hyb(1)

t , . . . ,Hyb
(5)
t as follows. The five

hybrid games only differ from Hybt in the way the challenge ciphertext CT∗ is computed. For 1 ≤ j ≤ 5,
the challenge ciphertext is computed in Hyb(j)

t as the obfuscations of the two circuits HIGC(j)
t and HGGC(j)

t ,
described in Figures 9–10, where the role of the hardwired values K(j), S(j),CT

(j)
i∗,fi∗

,CT
(j)
i∗,1−fi∗ and Ĝ

(j)
g∗

is described below. We also let (K∗, g∗, i∗) ← Gar.HPunc(t)(K). Then, fi∗ denotes the i∗-th bit of the
function queried by the adversary.

Hybrid Input Garbling Circuit HIGC(j)
t [K(j), S(j),MPK,CT

(j)
i∗,fi∗

,CT
(j)
i∗,1−fi∗ ]

Hardwired: MPK, a garbling keyK(j), a punctured key S(j), and two outputs CT(j)
i∗,fi∗

,CT
(j)
i∗,1−fi∗ .

Input: an input label i ∈ [s] and a bit b ∈ {0, 1}, so an identity (i, b).
Padding: the circuit is padded to size padIGC.

1. If (i, b) = (i∗, fi∗), then output CT
(j)
i∗,fi∗

.

2. If (i, b) = (i∗, 1− fi∗), then output CT(j)
i∗,1−fi∗ .

3. Else compute and output IBE.Enc(MPK, (i, b),Gar.HInpEn(t)(i, b;K(j));PRF.EvS(j)(i, b)).

Figure 9: Circuit HIGC(j)
t [K(j), S(j),MPK,CT

(j)
i∗,fi∗

,CT
(j)
i∗,1−fi∗ ], 1 ≤ j ≤ 5

We now prove indistinguishability of Hybt and Hybt+1 as follows:

• Hybt to Hyb
(1)
t : in Hyb

(1)
t , we fix S(1) ← PRF.Punc(S, {(i∗, 1− fi∗)}) and K(1) ← K∗. We hard-

wire the value CT(1)
i∗,fi∗

← IBE.Enc(MPK, (i∗, fi∗),Gar.HInpEn
(t)(i∗, fi∗ ;K);PRF.EvS(1)(i∗, fi∗)),

as well as CT(1)
i∗,1−fi∗ ← IBE.Enc(MPK, (i∗, 1−fi∗),Gar.HInpEn(t)(i∗, 1−fi∗ ;K);PRF.EvS(i∗, 1−

fi∗)) in the first circuit, and Ĝ(1)
g∗ ← Gar.HCirEn(t)(g∗;K) in the second circuit. Therefore, it is im-

mediate that, by definitions, both circuits are functionally equivalent in both games since hardwired
values are correctly computed, so the two hybrid games are computationally indistinguishable under
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Hybrid Gate Garbling Circuit HGGC(j)
t [K(j), Ĝ

(j)
g∗ ]

Hardwired: a garbling keyK(j), an output Ĝ(j)
g∗ .

Input: a gate label g ∈ [L].
Padding: the circuit is padded to size padGGC.

1. If g = g∗, then output Ĝ(j)
g∗ .

2. Else compute and output Gar.HCirEn(t)(g;K(j)).

Figure 10: Circuit HGGC(j)
t [K(j), Ĝ

(j)
g∗ ], 1 ≤ j ≤ 5

the security of sxiO. Hence, we have Hybt ≈δ Hyb
(1)
t .

• Hyb
(1)
t to Hyb

(2)
t : The difference between Hyb

(1)
t and Hyb

(2)
t is that we now define CT

(2)
i∗,fi∗

←
IBE.Enc(MPK, (i∗, fi∗),Gar.HInpEn

(t+1)(i∗, fi∗ ;K);PRF.EvS(2)(i∗, fi∗)) in the first circuit, and
Ĝ

(2)
g∗ ← Gar.HCirEn(t+1)(g∗;K). Other values remain the same as before. Thus, these two hy-

brid games are computationally indistinguishable assuming decomposable indistinguishability of the
decomposition garbling scheme, and we have Hyb(1)

t ≈δ Hyb
(2)
t .

• Hyb
(2)
t toHyb(3)

t : In the third hybrid game, we only modify the previous game by lettingCT(3)
i∗,1−fi∗ ←

IBE.Enc(MPK, (i∗, 1 − fi∗),Gar.HInpEn(t)(i∗, 1 − fi∗ ;K); r), with r being a fresh uniformly ran-
dom value. Other values remain the same as before. Assuming PRF.Ev is a δ-secure puncturable
pseudorandom function, these two hybrid games are computationally indistinguishable, and we have
Hyb

(2)
t ≈δ Hyb

(3)
t .

• Hyb
(3)
t to Hyb

(4)
t : In the fourth hybrid game, we define CT

(4)
i∗,1−fi∗ ← IBE.Enc(MPK, (i∗, 1 −

fi∗),Gar.HInpEn
(t+1)(i∗, 1− fi∗ ;K); r), with r being a fresh uniformly random value. Other values

remain the same as before. Assuming the security of the identity-based encryption scheme, these two
hybrid games are computationally indistinguishable, and we have Hyb(3)

t ≈δ Hyb
(4)
t . The reduction is

immediate but crucially relies on the fact that CT(4)
i∗,1−fi∗ is computed as an encryption for the identity

(i∗, 1− fi∗) and not for the identity (i∗, fi∗), since the secret key for identity (i∗, fi∗) is revealed to the
adversary when giving the functional secret key for f , but not the secret key for identity (i∗, 1− fi∗).

• Hyb
(4)
t toHyb(5)

t : In this fifth hybrid game, we once again use randomness computed with the PPRF by
letting CT(5)

i∗,1−fi∗ ← IBE.Enc(MPK, (i∗, 1−fi∗),Gar.HInpEn(t+1)(i∗, 1−fi∗ ;K);PRF.EvS(i∗, 1−
fi∗)). Other values remain the same as before. Once again, assuming PRF.Ev is a secure puncturable
pseudorandom function, we have Hyb(4)

t ≈δ Hyb
(5)
t .

• Hyb
(5)
t to Hybt+1: By definition, it is clear that the two circuits used in Hyb

(5)
t are functionally equiv-

alent to the two circuits used in Hyb
(5)
t , since Gar.HInpEn(t)(i, b;K(5)) = Gar.HInpEn(t+1)(i, b;K)
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for any (i, b) with that i 6= i∗. Therefore, under the security of sxiO, these two hybrid games are
computationally indistinguishable, and we have Hyb(5)

t ≈δ Hybt+1.

This concludes the proof of Theorem 5.2.

5.3 Weakly Succinct PKFE for Non-Boolean Functions

In this section, we give a transformation from weakly succinct PKFE schemes for boolean functions into
ones for non-boolean functions.

Theorem 5.3. Let C = {Cλ}λ∈N be a family of circuits (with multiple output bits) and let n(λ), s(λ), d(λ)
be bounds on their input length, size, and depth (respectively). For any constants β < γ < 1, assuming a
β-compressing SXIO, there exists a constant α, such that given any α-compressing weakly succinct PKFE
for boolean functions of size s · polylog(s) and depth d · polylog(s), and one-way functions, there exists a
succinct PKFE for C with compression factor γ. If all primitives are δ-secure so is the resulting scheme.

The transformation is essentially the same transformation presented in [LPST16a, Section 4], with the
following differences:

• They use XIO rather than SXIO, which results in a PKFE scheme where only the size of ciphertexts is
compressed, whereas the time to encrypt may be large. They then make an extra step, based on LWE,
to make encryption efficient. Using SXIO directly as we do, allows avoiding this step.

• They start fromweakly succinct PKFE for boolean functions where the size of ciphertexts is completely
independent of the size s of the function class considered. Due to this, they can start from XIO with
any compression factor β < 1. In our notion of weakly succinct, there is dependence on sα, for some
α < 1, and we need to make sure that β and α are appropriately chosen to account for this.

• As stated, their notion of weak succinctness for PKFE does not explicitly scale with the depth of
the function class considered. Eventually, they apply their transformation to function classes in
NC1, assuming puncturable PRFs in NC1 (which exist under LWE). Our succinctness notion allows
polynomial dependence on the depth, which should be roughly preserved through the transformation.

For the sake of completeness we describe the transformation in full and then analyze the efficiency
aspects. The proof of security is identical to the one in [LPST16a] and is omitted.
Construction. Let BFE = (BFE.Setup,BFE.Key,BFE.Enc,BFE.Dec) be a weakly succinct single-key
public-key FE scheme for boolean functions. Our weakly succinct single-key public-key FE scheme for
multi-bit functions is given by the following algorithms.

Setup(1λ):

• Compute (BFE.MPK,BFE.MSK)← BFE.Setup(1λ).
• Output (MPK,MSK) = (BFE.MPK,BFE.MSK).

KeyGen(MSK, f):

• Run BFE.SKCf ← BFE.Key(BFE.MSK, Cf ) where Cf : {0, 1}n × {0, 1}log ` is a function that
takes (x, i) as inputs and outputs the i-th bit (out of `) of f(x) (this is a boolean function).
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Enc(MPK, x ∈ {0, 1}n):

• Sample a puncturable PRF key S ← PRF.Gen(1λ),
• Generate sxiO(SE[x, S,BFE.MPK])where the circuit SE[x, S,BFE.MPK] is described in Figure
11.

• Output CT = sxiO(SE[x, S,BFE.MPK]).

Dec(SKf ,CTx):

• Compute BFE.CTi ← CT(i), and yi ← BFE.Dec(BFE.SKCf ,BFE.CTi) for all i ∈ [`].
• Output y = (y1, . . . , y`).

Encryption circuit SE[x, S,BFE.MPK]

Hardwired: a message x, a puncturable PRF key S, and a key BFE.MPK.
Input: i ∈ [`].
Padding: the circuit is padded to size pad, determined in the analysis.

1. Compute ri ← PRF.EvS(i).

2. Output BFE.CTi ← BFE.Enc(BFE.MPK, (x, i); ri).

Figure 11: Circuit SE[x, S,BFE.MPK]

Proof of Theorem 5.3. We now prove Theorem 5.3. We focus on succinctness. The proof of security is based
on a standard probabilistic IO argument [CLTV15], is identical to the one given by Lin et al. [LPST16a,
Theorem 6], and thus omitted. In what follows, let s, d, n, and ` be bounds on the size, the depth, input and
output lengths of functions in C.

Padding Parameter

In the proof of security [LPST16a], the indistinguishability guarantee of SXIO is invoked for the circuit SE
and several hybrid versions of this circuit. All of these circuits compute a puncturable pseudorandom function
on an input i ∈ [`] and an encryption usingBFE.Enc. Therefore, their size is bounded by poly(λ, log(`))+e′

where e′ is the size of the encryption circuit for the class of boolean circuits C′ = {Cf | f ∈ C}.
To bound e′, we note that the size and depth of circuits in C′ is preserved up to polylogarithmic factors

(induced by selecting one of ` ≤ s output bits):

s′ := |Cf | ≤ s · polylog(s) and d′ := depth(Cf ) ≤ d · polylog(s) .

Thus, by the succinctness guarantee of the PKFE for boolean functions, we know that

e′ ≤ s′α · poly(d′, λ, n+ log `) ≤ sα · poly(d, log(s), λ, n) ,

where α is the compression factor of the PKFE. Hence, we obtain:

pad ≤ sα · poly(d, log(s), λ, n) .
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Succinctness

We show that for any β < γ < 1 and an appropriate choice of α < 1, the size of the encryption circuit is
bounded by sγ · poly(λ, n, d).

Let sxiO be β-compressing. Then, by the SXIO guarantee, the size e of the obfuscated encryption circuit
is bounded by

e ≤ `β · poly(λ, |SE|) ≤ sβ · poly(λ, pad) ,

where SE is the obfuscated encryption circuit, and poly is a fixed polynomial. Then, letting c = O(1)
represent the polynomial blowup in circuit-size incurred by sxiO, we can bound

e ≤ sβ · sc·α · poly(d, n, λ, log(s)) ≤ sγ · poly(d, n, λ) ,

where the last inequality holds provided that we choose the constant α such that cα + β < γ. (Such a
constant indeed exist since β < γ and c is a constant.)

5.4 Putting It All Together: From SKFE and PKE to IO

We now show how the results proved in this section come together to give our main result. The main
implications are also illustrated in Figure 12.

Theorem 5.4. Let C = {Cλ}λ∈N be a family of circuits (with multiple output bits) and let n(λ), s(λ), d(λ)
be bounds on their input length, size, and depth (respectively). Then, for any constant γ < 1, there exists a
constant β, such that given any δ-secure, β-compressing SXIO, and δ-secure PKE, there exists 2dsδ-secure,
γ-compressing, weakly succinct PKFE for C.

Proof. Fix some constant γ. The theorem follows from the previous theorems in this section as follows:

• By Theorem 5.3, there exist constants β′, α′, such that 2dsδ-secure, γ-compressing, weakly succinct
PKFE for C, follows from 2dsδ-secure, β′-compressing SXIO and 2dsδ-secure, α′-compressing,
weakly succinct PKFE for boolean functions of size s · polylog(s) and depth d · polylog(s), and
2dsδ-secure one-way functions.

• By Theorem 5.2, there exist constants β′′, α′′ such that PKFE as required in the previous item follows
from δ-secure, β′′-compressing SXIO and δ-secure, α′′-compressing IBE, and δ-secure one-way
functions.

• By Theorem 5.1, there exists a constant β′′′ (in fact any β′′′ < α′′), such that IBE as required in the
previous item follows from δ-secure, β′′′-compressing SXIO and δ-secure PKE.

• In all of the above δ-secure one-way functions follow from δ-secure PKE.

Setting β := min(β′, β′′, β′′′), we derive the theorem.

Combining the above theorem with the result from Section 3, we obtain the following corollary.

Corollary 5.1. If there exist (1-input) SKFE for P/poly and PKE, both subexponentially-secure, then there
exists IO for P/poly.

Proof. Fix any constants ε, γ < 1. For δ(λ) = 2−λ
ε .
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• By Theorem 2.2 [BV15], for any constant γ < 1, IO is implied by δ-secure, γ-compressing, weakly
succinct PKFE.

• By the above Theorem 5.4, there exists β, such that, PKFE as required in the previous item follows
from β-compressing, δ-secure SXIO and δ-secure PKE, when setting the security parameter for the
SXIO and PKE to λ̃ = λ · (d log(s))2/ε — this accounts for the poly(2ds) security loss, and only
incurs poly(λ, d, log(s)) overhead, which satisfies the succinctness requirements of the PKFE.

• By Theorem 3.1, letting t = 1
β − 1, SXIO as required in the previous item, follows from δ-secure

t-input SKFE.

• By Theorem 2.1 [BKS16], the required t-input SKFE follows from any 1-input, δ-secure SKFE.

The corollary follows.

multi-key
1-SKFE

multi-key
t-SKFE

γ-SXIO

OWF

PKE

Decomposable-
Garbling

succinct IBE

1-key weakly
succinct PKFE
for boolean
functions

1-key weakly
succinct PKFE

IO

+

+ +

Thm 4.1

Thm 5.1

Thm 5.2 Thm 5.3
([LPST16a])

[BV15]

[BKS16]

Thm 3.1

Trivial

Figure 12: An illustration of the path from PKE and 1-SKFE to IO. Dashed lines denote known results. White
backgrounds denote our ingredients or goal. Primitives in rounded rectangles are subexponentially-secure.
γ-SXIO denotes SXIO with compression factor γ, which is an arbitrary constant less than 1. We ignore
puncturable PRF in this figure since it is implied by OWF.
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6 Polynomially-Secure PKE from Secret-Key FE

In this section, we construct public-key encryption (PKE) from secret-key functional encryption (SKFE).
Our starting point is Corollary 3.1 that directly follows from Theorems 2.1,3.1. We now show how to
construct a PKE scheme from such SXIO.
The construction. Let

{
PRG : {0, 1}n → {0, 1}2n

}
n∈N be a length-doubling pseudorandom generator that

is 2−n/ log logn-secure. Let sxiO be a SXIO with compression factor γ(λ) = O(1/ log log λ) (and poly(λ)
security).

The scheme PKE = (KeyGen,Enc,Dec) is defined as follows:

KeyGen(1λ):

• Sample a PRG seed s← {0, 1}log λ/γ(λ).
• Output PK = PRG(s) and SK = s.

Enc(PK, b):

• Construct the (witness encryption) circuit WE[b,PK] described in Figure 13 that takes s′ ∈
{0, 1}log λ/γ(λ) as input and outputs x if and only if PK = PRG(s′) holds.

• Output CT = sxiO(WE[x,PK])

Dec(SK,CT):

• Compute b′ = CT(SK).

Encryption circuit WE[b,PK]

Hardwired: a message bit b and a public key PK.
Input: a seed s′ ∈ {0, 1}log λ/γ(λ).

1. If PK = PRG(s′), then output b.

2. Otherwise, output ⊥.

Figure 13: CircuitWE[b,PK]

Proposition 6.1. PKE is a (polynomially-secure) public-key encryption scheme.

Proof sketch. The scheme is clearly correct. We now note that the scheme is efficient; namely, all algorithms
run in time poly(λ) in the security parameter λ. This is clearly the case for KeyGen and Dec. As for
Enc, by the SXIO compression guarantee, the time required to compute the obfuscation is 2γ(λ)·log λ/γ(λ) ·
poly(λ, |WE[b,PK]|) = poly(λ). Note that we can apply sxiO to WE[b,PK] since |WE[b,PK]| is bounded
by poly(log λ) and it is less than 2O((log λ)ε) (This bound comes from Corollary 3.1).

We turn to prove that the scheme is semantically secure. For this purpose, we first consider an alternative
encryption scheme where the public-key is generated as a truly random string PK ← {0, 1}2 log λ/γ(λ). By

38



the security of the PRG, any polysize distinguisher cannot tell apart a real public key from such a fake public
key except with advantage

2−Ω(n(λ)/ log logn(λ)) = 2
−Ω

(
log λ/γ(λ)

log log(log λ/γ(λ))

)
≤ 2

−Ω
(
− log λ·log log λ

log log log λ

)
= 2−ω(log λ) .

We next note that, by a union bound over all possible seeds, a random PK does not have any preimage
under PRG, except with probability

2log λ/γ(λ) · 2−2 log λ/γ(λ) = 2− log λ/γ(λ) ≤ 2−ω(log λ) .

In this caseWE[b,PK] is functionally equivalent to a circuitWE[⊥,PK] that is independent of b and always
outputs ⊥. Security thus follows from the usual IO guarantee.
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