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Abstract
Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive that provides a secu-

rity guarantee against not only eavesdropping attacks as required by semantic security, but also stronger
coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and
powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and secu-
rity against selective opening attacks. Despite its conceptual usefulness, our understanding of how to
construct deniable primitives under standard assumptions is restricted.

In particular from standard lattice assumptions, i.e. Learning with Errors (LWE), we have only
flexibly and non-negligible advantage deniable public-key encryption schemes, whereas with the much
stronger assumption of indistinguishable obfuscation, we can obtain at least fully sender-deniable PKE
and computation. How to achieve deniability for other more advanced encryption schemes under stan-
dard assumptions remains an interesting open question.

In this work, we construct a flexibly bi-deniable Attribute-Based Encryption (ABE) scheme for all
polynomial-size Branching Programs from LWE. Our techniques involve new ways of manipulating
Gaussian noise that may be of independent interest, and lead to a significantly sharper analysis of noise
growth in Dual Regev type encryption schemes. We hope these ideas give insight into achieving denia-
bility and related properties for further, advanced cryptographic systems from lattice assumptions.

1 Introduction

Deniable encryption, introduced by Canetti et al. [CDNO97] at CRYPTO 1997, is an intriguing primitive
that allows Alice to privately communicate with Bob in a way that resists not only eavesdropping attacks as
required by semantic security, but also stronger coercion attacks performed after the fact. An eavesdropper
Eve stages a cocercion attack by additionally approaching Alice (or Bob, or both) after a ciphertext is
transmitted and demanding to see all secret information: the plaintext, the random coins used by Alice
for encryption, and any private keys held by Bob (or Alice) related to the ciphertext. In particular, Eve
can use this information to “fully unroll” the exact transcript of some deterministic decryption procedure
purportedly computed by Bob, as well as verify that the exact coins and decrypted plaintext in fact produce
the coerced ciphertext. A secure deniable encryption scheme should maintain privacy of the sensitive data
originally communicated between Alice and Bob under the coerced ciphertext (instead substituting a benign
yet convincing plaintext in the view of Eve), even in the face of such a revealing attack and even if Alice and
Bob may not interact during the coercion phase.

Historically, deniable encryption schemes have been challenging to construct. Under standard assump-
tions, Canetti et al. [CDNO97] constructed a sender-deniable1 PKE where the distinguishing advantage
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1We differentiate between sender-, receiver-, and bi-deniable schemes. A bi-deniable scheme is both sender- and receiver-

deniable.
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between real and fake openings is an inverse polynomial depending on the public key size. But it was not
until 2011 that O’Neill, Peikert, and Waters [OPW11] proposed the first constructions of bi-deniable PKE
with negligible deniability distinguishing advantage: from simulatable PKE generically, as well as from
Learning with Errors (LWE [Reg05]) directly.

Concurrently, Bendlin et al. [BNNO11] showed an inherent limitation: any non-interactive public-key
encryption scheme may be receiver-deniable (resp. bi-deniable) only with non-negligible Ω(1/size(pk))
distinguishing advantage in the deniability experiment. Indeed, O’Neill et al. [OPW11] bypass the impos-
sibility result of [BNNO11] by working in the so-called flexible2 model of deniability. In the flexible of
deniability, private keys sk are distributed by a central key authority. In the event that Bob is coerced to re-
veal a key sk that decrypts chosen ciphertext ct∗, the key authority distributes a faking key fk to Bob, which
Bob can use to generate a fake key sk∗ (designed to behave identically to sk except on ciphertext ct∗). If
this step is allowed, then O’Neill et al. demonstrate that for their constructions, Eve has at most negligible
advantage in distinguishing whether Bob revealed an honest sk or fake sk∗.

A major breakthrough in deniable encryption arrived with the work of Sahai and Waters [SW14], who
proposed the first sender-deniable PKE with negligible distinguishing advantage from indistinguishability
obfuscation (iO) for P/poly [GGH+13]. The concept of deniability has been demonstrated useful in the
contexts of leakage resilience [DLZ], adaptive security for protocols, and as well as deniable computation
(or algorithms) [CGP, DKR, GP]. In addition to coercion resistance, a bi-deniable encryption scheme is a
non-committing encryption scheme [CFGN96], as well as a scheme secure under selective opening (SOA)
attacks [BHY09], which are of independent theoretical interest.

Very recently, De Caro, Iovino, and O’Neill [CIO16] gave various constructions of deniable functional
encryption. First, they show a generic transformation of any IND-secure FE scheme for circuits into a flex-
ibly receiver-deniable FE for circuits. Second, they give a direct construction of receiver-deniable FE for
Boolean formulae from bilinear maps. Further, in the stronger multi-distributional model of deniable func-
tional encryption – where there are special “deniable” set-up and encryption algorithms in addition to the
plain ones, and where under coercion, it may non-interactively be made to seem as only the normal algo-
rithms were used – De Caro et al. [CIO16] construct receiver-deniable FE for circuits under the additional
(powerful) assumption of different-inputs obfuscation (diO).

De Caro et al. [CIO16] also show (loosely speaking) that any receiver-deniable FE implies SIM-secure
FE for the same functionality. Following [CIO16], we also emphasize that deniability for functional encryp-
tion is a strictly stronger property than SIM security, since fixed coerced ciphertexts must decrypt correctly
and benignly in the real world. Finally, we mention that in concurrent work, Apon, Fan, and Liu, in an
unpublished work [AFL15], construct flexibly bi-deniable inner product encryption from standard lattice
assumptions. This work generalizes and thus subsumes the prior results of [AFL15].

Despite the apparent theoretical utility in understanding the extent to which cryptographic constructions
are deniable, our current knowledge of constructing such schemes from standard lattice assumptions is still
limited. From LWE, we have only flexible and non-negligible advantage deniable encryption schemes (or
IPE from [AFL15]), whereas with the much more powerful assumption of indistinguishability obfuscation
(iO), we can obtain at least fully-secure sender-deniable PKE and computation [CGP, DKR, GP], or as
mentioned above even a multi-distributional receiver-deniable FE for all circuits from the even stronger
assumption of diO.

2We borrow the name “flexible” from Boneh, Lewi, and Wu [BLW15] as the original term “multi-distributional” of O’Neill et
al. [OPW11] is used to define a slightly different security property in the recent work by De Caro et al. [CIO16] than we achieve
here.
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1.1 Our Contributions

In this work, we further narrow this gap by investigating a richer primitive – attribute-based encryption
(ABE) [GPSW06, BGG+14, GV15] – without the use of obfuscation as a black box primitive. We hope that
the techniques developed in this work can further shed light on deniability for even richer schemes such as
functional encryption [BSW11, GGH+13, BGG+14, GVW15] under standard assumptions.

• Our main contribution is the construction of a flexibly bi-deniable ABE for poly-sized branching
programs (which can compute NC1 via Barrington’s theorem [Bar89]) from the standard Learning
with Errors assumption [Reg05].

Theorem 1.1. Under the standard LWE assumption, there is a flexibly bi-deniable attribute-based encryp-
tion scheme for all poly-size branching programs.

Recall that in an attribute-based encryption (ABE) scheme for a family of functions F : X → Y , every
secret key skf is associated with a predicate f ∈ F , and every ciphertext ctx is associated with an attribute
x ∈ X . A ciphertext ctx can be decrypted by a given secret key skf to its payload message m only when
f(x) = 0 ∈ Y . Informally, the typical security notion for an ABE scheme is collusion resistance, which
means no collection of keys can provide information on a ciphertext’s message, if the individual keys are
not authorized to decrypt the ciphertext in the first place. Intuitively, a bi-deniable ABE must provide both
collusion and coercion resistance.

Other contributions of this work can be summarized as:

• A new form of the Extended Learning with Errors (eLWE) assumption [OPW11, AP12, BLP+13],
which is convenient in the context of Dual Regev type ABE/FE schemes that apply the Leftover Hash
Lemma [DRS04] in their security proofs.

• An explicit, tightened noise growth analysis for lattice-based ABE for branching programs. Prior work
used the loose l∞ norm to give a rough upper bound, which is technically insufficient to achieve deni-
ability using our proof techniques. (We require matching upper and lower bounds on post-evaluation
noise sizes.)

The eLWE assumption above is roughly the standard LWE assumption, but where the distinguisher
also receives “hints” on the LWE sample’s noise vector e in the form of inner products, i.e. distributions{
A, b = ATs + e, z, 〈z, e〉

}
where (intuitively) z is a decryption key in the real system (which are denoted

r elsewhere). Our contribution here is a new reduction from the standard LWE assumption to our correlated
variant of extended-LWE, eLWE+, where the adversary requests arbitrary correlations (expressed as a matrix
R) between the hints, in the case of a prime poly-size modulus with noise-less hints. We show this by
extending the LWE to eLWE reduction of Alperin-Sheriff and Peikert [AP12] to our setting.

1.2 Our Approach

At a high level, our work begins with the ABE for branching programs of Gorbunov and Vinayagamurthy [GV15].
We will augment the basic ABE-BP = (Setup, Keygen, Enc, Dec) with an additional suite of algorithms
(DenSetup, DenEnc, SendFake, RecFake) to form our flexibly bi-deniable ABE-BP. Doing so requires
careful attention to the setting of parameters, as we explain in the sequel.

We remark now that – due to reasons related to the delicateness of our parameter setting – the ABE
scheme of [GV15] is particularly suited to being made bi-deniable, as compared to similar schemes such as
the ABE for arithmetic circuits of Boneh et al. [BGG+14]. We will explain this in what follows as well.
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Intuition for Our New Deniability Mechanism. As in the work of O’Neill et al. [OPW11], our approach
to bi-deniability relies primarily on a curious property of Dual Regev type [GPV08] secret keys: by correct-
ness of any such scheme, each key r is guaranteed to behave as intended for some 1−negl(n) fraction of the
possible random coins used to encrypt, but system parameters may be set so that each key is also guaranteed
to be faulty (i.e. fail to decrypt) on some negl(n) fraction of the possible encryption randomness. More
concretely, each secret key vector r in lattice-based schemes is sampled from an m-dimensional Gaussian
distribution, as is the error term e (for LWE public key A ∈ Zn×mq ). For every fixed r, with overwhelm-
ing probability over the choice of e, the vectors r, e ∈ Zmq will point in highly uncorrelated directions in
m-space. However, if the vector r and e happen to point in similar directions, the error magnitude will be
(loosely) squared during decryption.

Our scheme is based around the idea that a receiver, coerced on honest key-ciphertext pair (r, ct∗), can
use the key authority’s faking key fk to learn the precise error vector e∗ used to construct ct∗. Given e∗, r,
and fk, the receiver re-samples a fresh secret key r∗ that is functionally-equivalent to the honest key r,
except that r∗ is strongly correlated with the vector e∗ in ct∗. When the coercer then attempts to decrypt
the challenge ciphertext ct∗ using r∗, the magnitude of decryption error will artificially grow and cause the
decryption to output the value we want to deny to. Yet, when the coercer attempts to decrypt any other
independently-sampled ciphertext ct, decryption will succeed with overwhelming probability under r∗ if it
would have under r.

We emphasize that to properly show coercion resistance (when extending this intuition to the case of
Dual Regev ABE instead of Dual Regev PKE), this behavior of r∗ should hold even when ct and ct∗

embed the same attribute x. (Indeed, the majority of our effort is devoted to ensuring this simple geometric
intuition allows a valid instantiation of the denying algorithms (DenSetup, DenEnc, SendFake, RecFake)
without “damaging” the basic operation of (Setup, Keygen, Enc, Dec) in the underlying ABE scheme.)

Then, given the ability to “artificially blow-up” the decryption procedure of a specific key on a ciphertext-
by-ciphertext basis, we can employ an idea originally due to Canetti et al. [CDNO97] of translucent sets,
but generalized to the setting of ABE instead of PKE, to construct our new, flexibly bi-deniable ABE-BP
scheme out of the framework provided by the “plain” SIM-secure ABE-BP scheme of [GV15].

Highlights of the Gorbunov-Vinayagamurthy Scheme. In the ABE for (width 5) branching programs
of [GV15], bits a are “LWE-encoded” by the vector

ψA,s,a = sT (A + a ·G) + e ∈ Zmq
where G is the gadget matrix [MP12].

The ciphertext ct encrypting message µ under BP-input x is given by

ct = (ψ0, ψ
c, {ψi}i∈[`], {ψ0,i}i∈[5], c),

and is composed of a Dual Regev ct-pair of vectors (ψ0, c) encrypting the ciphertext’s message µ, an en-
coding ψc representing the (freshly randomized) encoding of the constant 1, five encodings {ψ0,i}i∈[5] rep-
resenting a (freshly randomized) encoding of the initial state of a width-5, length-` branching program BP,
and ` encodings {ψi}i∈[`] – one for each step of the branching program’s evaluation, storing a constant-sized
permutation matrix associated with the i-th level of BP. Note that each “LWE encoding” ψ is performed
under a distinct public key matrix A,Ac, {Ai}, or {A0,i} respectively.

The (key-homomorphic) evaluation procedure takes as input a ciphertext ct = (ψ0, ψ
c, {ψi}, {ψ0,i}, c)

and the public key pk = (A,Ac, {Ai}, {A0,i}), as well as the cleartext branching program description BP
and the BP-input x. It produces the evaluated public key VBP and the evaluated encoding ψBP(x). Given
a short secret key vector r ∈ Z2m matching (some public coset u of) the lattice generated by [A|VBP] ∈
Zn×2m, the encoding vector ψBP(x) (whose Dual Regev encoding-components (ψ0, c) also match coset u)
can be decrypted to the message µ if and only if BP(x) = accept = 0.
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On the Necessity of Exact Noise Control. In order to push the intuition for our deniability mechanism
through for an ABE of the above form, we must overcome a number of technical hurdles.

The major challenge is an implicit technical requirement to very tightly control the precise noise magni-
tude of evaluated ciphertexts. In previous functional (and homomorphic) encryption schemes from lattices,
the emphasis is placed on upper bounding evaluated noise terms, to ensure that they do not grow too large
and cause decryption to fail. Moreover, security (typically) holds for any ciphertext noise level at or above
the starting ciphertexts’ noises. In short, noise growth during evaluation is nearly always undesirable.

As with previous schemes, we too must upper bound the noise growth of evaluated ciphertexts in order to
ensure basic correctness of our ABE. But unlike previous schemes, we must take the step of also (carefully)
lower bounding the noise growth during the branching program evaluation (which technically motivates
deviating from the l∞ norm of prior analyses). This is due to the fact, highlighted above, that producing
directional alignment between a key and error term can at most square the noise present during decryption.
Since coercion resistance requires that it must always be possible to deny any ciphertext originally intended
for any honest key, it must be that, with overwhelming probability, every honest key and every honest
ciphertext produce evaluated error that is no less than the square root of the maximum noise threshold
tolerated.

In a little more detail – as we will later demonstrate in Section 4 – in dimension m there is precisely an
expected poly(m) gap in magnitude between the inner products of (i) two relatively orthogonal key/error
vectors r, eBP(x), and (ii) two highly correlated key/error vectors r∗, eBP(x). The ability to deny is based
around our ability to design r∗ that are statistically indistinguishable from r in the attacker’s view, but
where r∗ “punctures out” decryptions of ciphertexts with error vectors pointing in the direction of eBP(x) in
m-space (error-vector directions are unique to each honest ct with overwhelming probability).

Crucially, this approach generically forces the use of a polynomial-sized modulus q in the scheme.3 In
particular, when error vectors e may (potentially) grow to be some superpolynomial magnitude in the dimen-
sion m of the public/secret keys, we totally lose any efficiently testable notion of “error vector orientation
in m-space” for the purposes of Dual Regev type decryption.

Further, in order to “correctly trace and distinguish” different orientations throughout the computation
of an arbitrary branching program BP, we are required to make careful use of multi-dimensional Gaussian
distributions. These are sampled using covariance matrices Q ∈ Zm×m that allow us to succinctly describe
the underlying, geometric randomized rotation action on error vector orientations in m-space with each
arithmetic operation of the BP evaluation in the overall ABE-BP scheme. (We use the geometrically-inspired
term “rotation matrix” to describe our low-norm matrices R for this reason.)

An additional subtlety in our new noise analysis is that we require the individual multiplications of the
ct evaluation procedure to have independently sampled error vectors in each operand-encoding – and thus
be “independently oriented” – in order for the overall analysis to go through correctly. (While there could
in principle be some way around this technical obstacle in the analysis, we were unable to find one.) This
appears to a priori exclude a straightforward denying procedure for all circuits [BGG+14], where a gate’s
input wires’ preceding sub-circuits may have cross-wires between them. But it naturally permits denying
branching program computations, where at the i-th time-step, an i-th independently generated ct-component
is merged into an accumulated BP state, as with [GV15].

Finally, we mention that an inherent limitation in the techniques of Apon et al. [AFL15], used to con-
struct (the weaker notion of) flexibly bi-deniable inner product encryption from LWE, is bypassed in the
current work at the cost of supporting only BP computations of an a-priori bounded length `. Namely, it was
the case in [AFL15] that the length ` of the attribute vector w had to be “traded off” against the dimension

3One consequence of a poly-size modulus requirement is that the fully key-homomorphic scheme of Boneh et al. [BGG+14],
taken verbatim, can only be denied for up to NC0 functions using our approach. Past this, attempts to produce fake keys in an
identical manner to this work may be detected by a statistical test under coercion.
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m of the public/secret keys. We suppress the details, other than to point out that this issue can be resolved
by artificially boosting the magnitude of the low-norm matrices used to generate error terms in fresh cipher-
texts from {−1, 1} up to {−Θ(m`),Θ(m`)}-valued matrices. This, of course, requires knowing the length
` of the branching program up front. (Intuitively, this technical change as compared to [AFL15] allows for
a sharp inductive lower bound on the minimum noise growth across all possible function-input pairs that
might be evaluated in a given instance of our bi-deniable ABE-BP scheme.)

1.3 Future Directions

The next, most natural question is whether bi-deniable functional encryption can be built out of similar tech-
niques (from only LWE), perhaps by leveraging our bi-deniable ABE for NC1 computations as a building
block. We briefly sketch one possible approach and the obstacles encountered. Recall that Goldwasser et
al. [GKP+13] show to transform the combination of (i) any ABE for a circuit family C, (ii) fully homomor-
phic encryption, and (iii) a randomized encoding scheme (such as Yao’s garbled circuits) into a 1-key (resp.
bounded collusion) SIM-secure functional encryption scheme for C.

If we instantiate the Goldwasser et al. transformation with our deniable ABE, we get a functional
encryption scheme for NC1. We can then boost functional encryption for shallow circuits to functional
encryption for all circuits using the “trojan method” of Ananth et al. [ABSV15]. As it turns out, it is easy
to directly prove flexible receiver-deniability of the final scheme, independently of but matching the generic
results of De Caro et al. [CIO16] for receiver-deniable FE.

Unfortunately, we do not know how to prove (even, flexible) sender-deniability of this final scheme.
Roughly speaking, the problem is that each ciphertext’s attribute in such a scheme contains an FHE ci-
phertext ctFHE for its attribute, and this attribute leaks to the attacker (resp. cocercer) on decryptions that
succeed. In particular, there is nothing stopping the coercer from demanding that the sender also provide
randomness rS that opens the attribute’s FHE ciphertext.

We speculate that a possible way around this obstacle would be to use an adaptively-secure homomor-
phic encryption scheme for NC1 computations. Note that adaptively-secure FHE is known to be impossible
for circuits with ω(log(n)) depth due to a counting argument lower bound by Katz, Thiruvengadam, and
Zhou [KTZ13], but this leaves open the possibility of an NC1-homomorphic encryption scheme with the
necessary properties to re-obtain (flexible) sender deniability for lattice-based FE. We leave this as an in-
triguing open problem for future work.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial time. We use bold uppercase letters to denote matri-
ces, and bold lowercase letters to denote vectors, where vectors are by default column vectors throughout the
paper. We let λ be the security parameter, [n] denote the set {1, ..., n}, and |t| denote the number of bits in a
string or vector t. We denote the i-th bit value of a string s by s[i]. We use [·|·] to denote the concatenation
of vectors or matrices, and || · || to denote the norm of vectors or matrices respectively. We use the `2 norm
for all vectors unless explicitly stated otherwise.

We present necessary background knowledge of branching programs and lattices (such as the LWE
assumption and lattice sampling algorithms) as follows.

2.1 Branching Program

We recall the definition of branching program in [BV14, GV15]. A width-w branching program BP of
length L with input space {0, 1}` and s states (represented by [s]) is a sequence of L tuples of form
(var(t), σt,0, σt,1), where
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• σt,0 and σt,1 are injective functions from [s] to itself.

• var : [L]→ [`] is a function that associates the t-th tuple σt,0, σt,1 with the input bit xvar(t).

The branching program BP on input x = (x1, ..., x`) computes its outputs as follows. At step t, we denote
the state of the computation by ηt ∈ [s]. The initial state is set to be η0 = 1. In general, ηt can be computed
recursively as

ηt = σt,xvar(t)(ηt−1)

Finally, after L steps, the output of the computation BP(x) = 1 if ηL = 1 and 0 otherwise. As mentioned
in [BV14], we represent states with bits rather than numbers to bound the noise growth. In particular,
we represent the state ηt ∈ [s] by a unit vector vt ∈ {0, 1}s. The idea is that vt = 1 if and only if
σt,xvar(t)(ηt−1) = i. Note that we can also write the above expression as vt[i] = 1 if and only if either:

• vt−1[σ−1
t,0 (i)] = 1 and xvar(t) = 0.

• vt−1[σ−1
t,1 (i)] = 1 and xvar(t) = 1.

This later form will be useful since we can rewrite the above conditions in the following formula. For t ∈ [L]
and i ∈ [s],

vt[i] : = v[σ−1
t,0 (i)](1− xvar(t)) + vt−1[σ−1

t,1 (i)] · xvar(t)
= vt−1[γt,i,0](1− xvar(t)) + vt−1[γt,i,1] · xvar(t)

where we set γt,i,0 = σ−1
t,i (i) and γt,i,1 = σ−1

t,i (i), and γt,i,0, γt,i,1 can be publicly computed from the
description of the branching program. Hence, {var(t), {γt,i,0, γt,i,1}i∈[s]} is also a valid representation of a
branching program BP.

For clarity of representation, we will deal with width-5 permutation branching program, which is shown
to be equivalent to the circuit class NC1 [Bar86]. Hence, we have s = w = 5, and the functions σ0, σ1 are
permutations on [5].

2.2 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span is Rm.
The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly Λ. Every integer
lattice is generated as the Z-linear combination of linearly independent vectors B = {b1, ..., bm} ⊂ Zm.
For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|eTA = 0 mod q}, Λu
q = {e ∈ Zm|eTA = u mod q}

It is obvious that Λu
q is a coset of Λ⊥q .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R, let
ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter σ. Next,
we set ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ and DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We

abbreviate σ in the ρσ,c and Dσ,c when σ = 0.
More frequently, we will use the generalized multi-dimensional (or m-variate) Discrete Gaussian distri-

bution DZm1 ,Q, which denotes sampling a Z1-valued m-vector with covariance matrix Q ∈ Zm×m1 . In order
to sample from the distribution DZm1 ,Q, proceed as follows:

- Sample t′ = (t′1, ..., t
′
m) ∈ Rm independently as t′i ← D1 for i ∈ [m].
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- Find the Cholesky decomposition Q = LLT .

- Output the vector t := Lt′ as the sample t← DZm1 ,Q.

Recall that the Cholesky decomposition takes as input any positive-definite matrix Q ∈ Rm×m and
outputs a lower triangular matrix L so that Q = LLT . Further, we recall the fact that the sum of two
m-variate Gaussians with means µ1, µ2 and variances Q1,Q2 is an m-variate Gaussian with mean µ1 + µ2

and variance Q1 + Q2.
Next we show a useful lemma that we need for our construction.

Lemma 2.1. Let Im×m be the m-by-m identity matrix, R ∈ Rm×m, and Q
def
= a2Im×m − b2RTR for

positive numbers a, b such that a > b||RT ||. Then Q is positive definite.

Proof. To show that Q is positive definite, we need to show that for any column vector x of dimension m,
we have xT ·Q · x > 0. We prove this by unfolding the matrix Q:

xT ·Q · x = xT · (a2Im×m − b2RTR) · x
= a2xT Im×mx− b2xTRTRx

= a2||xT ||2 − b2||xTRT ||2

> b2||xT ||2 · ||RT ||2 − b2||xTRT ||2.

Since ||xT || · ||RT || ≥ ||xTRT ||, we can conclude xT ·Q · x > 0.

Definition 2.2 (Matrix norm). Let Sm denote the set of vectors in Rm+1 whose length is 1. Then the norm
of a matrix R ∈ Rm×m is defined to be supx∈Sm ||xTR||.

We note that throughout the paper, for vector-matrix multiplication, we always multiply the vector on the
left-hand side of the matrix. Then we have the following lemma, which bounds the norm for some specified
distributions.

Lemma 2.3 ([ABB10]). Regarding the norm defined above, we have the following bounds:

• Let R ∈ {−1, 1}m×m be sampled uniformly at random, then we have Pr[||R|| > 12
√

2m] < e−2m.

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.

Randomness extraction. We will use the following lemma to argue the indistinghishability of two differ-
ent distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].

Lemma 2.4 ([ABB10]). Suppose that m > (n + 1) log q + w(log n). Let R ∈ {−1, 1}m×k be chosen
uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly from Zn×mq ,Zn×kq

respectively. Then, for all vectors w ∈ Zm, the two following distributions are statistically close:

(A,AR,wTR) ≈ (A,B,wTR)

Learning With Errors. The LWE problem was introduced by Regev [Reg05], who showed that solving
it on the average is as hard as (quantumly) solving several standard lattice problems in the worst case.

Definition 2.5 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is to distinguish between the following pairs of distributions:

{A, b = ATs + e} and {A,u}

where A
$← Zn×mq , s $← Znq , u $← Zmq , and e

$← χm.
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Trapdoors and sampling algorithms. We will use the following algorithms to sample short vectors from
specified lattices.

Lemma 2.6 ([GPV08]). Let q, n,m be positive integers with q ≥ 2 and sufficiently large m = Ω(n log q).
There exists a PPT algorithm TrapGen(q, n,m) that with overwhelming probability outputs a pair (A ∈
Zn×mq ,TA ∈ Zm×m) such that A is statistically close to uniform in Zn×mq and TA is a basis for Λ⊥q (A)
satisfying ||TA|| ≤ O(n log q).

Lemma 2.7 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n and s > ||TA|| · w(
√

logm+m1). There
are two algorithms as follows:

• There is an efficient algorithm SampleLeft(A,B,TAu, s): It takes in A ∈ Zn×mq , a short basis TA

for lattice Λ⊥q (A), a matrix B ∈ Zn×m1
q , a vector u ∈ Znq and a Gaussian parameter s, then outputs

a vector r ∈ Zm+m1
q such that r ∈ Λu

q (F), where F := (A|B), and is statistical close to DΛu
q (F),s.

• There is an efficient algorithm SampleRight(A,B,R,TB,u, s): It takes in A ∈ Zn×mq ,R ∈ Zm×nq ,
a matrix B ∈ Zn×nq , a short basis TB for lattice Λ⊥q (B), a vector u ∈ Znq and a Gaussian parameter
s, then outputs a vector r ∈ Zm+n

q such that r ∈ Λu
q (F), where F := (A|AR+B), and is statistical

close to DΛu
q (F),s.

• There is a deterministic polynomial-time algorithm ExtBasis(A,TA,A
′) that takes in an arbitrary

A ∈ Zn×mq , whose columns generate the entire group Znq , an arbitrary basis TA ∈ Zm×m of Λ⊥(A),
then outputs a basis T′ of Λ⊥(A|A′), such that ||T|| = ||TA||. Moreover, the same holds even for
any given permutation of columns of A′.

• There is a deterministic polynomial time algorithm Invert(A,TA, b) that, given any A ∈ Zn×mq with
its trapdoor TA ∈ Zm×mq such that ||T|| · w(

√
log n) ≤ 1/β for some β > 0, and b = sTA + x for

arbitrary s ∈ Znq and random x← Dm
β , outputs x with overwhelming probability.

• There is a PPT algorithm SampleD(T, c, s) that, given arbitrary c ∈ Rm and r ≥ ||T̃ || · w(log n),
generates a sample from DΛ+c,r (up to negl(n) statistical distance).

3 New Definitions and Tools

In this section, we first describe our new notion of flexibly bi-deniable ABE, which is a natural generalization
of the flexibly bi-deniable PKE of [OPW11]. Then we define the notion of a flexibly attribute-based bi-
translucent set (AB-BTS), which generalizes the idea of bi-translucent set (BTS) in the work [OPW11].
Using a similar argument as in the work [OPW11], we can show that an AB-BTS suffices to construct bi-
deniable ABE. In the last part of this section, we define a new assumption called Extended LWE Plus, and
show its hardness by giving a reduction from the standard LWE problem.

3.1 Flexibly Bi-Deniable ABE: Syntax and Deniability Definition

A flexibly bi-deniable key-policy attribute based encryption for a class of Boolean circuits C : {0, 1}` →
{0, 1} consists a tuple of PPT algorithms Π = (Setup,Keygen,Enc,Dec,DenSetup,DenEnc,SendFake,RecFake).
We describe them in detail as follows:

Setup(1λ): On input the security parameter λ, the setup algorithm outputs public parameters pp and master
secret key msk.

9



Keygen(msk, f): On input the master secret key msk and a function f ∈ C, it outputs a secret key skf .

Enc(pp,x, µ; rS): On input the public parameter pp, an attribute/message pair (x, µ) and randomness rS ,
it outputs a ciphertext cx.

Dec(skf , cx): On input the secret key skf and a ciphertext cx, it outputs the corresponding plaintext µ if
f(x) = 0; otherwise, it outputs ⊥.

DenSetup(1λ): On input the security parameter λ, the deniable setup algorithm outputs pubic parameters
pp, master secret key msk and faking key fk.

DenEnc(pp,x, µ; rS): On input the public parameter pp, an attribute/message pair (x, µ) and randomness
rS , it outputs a ciphertext cx.

SendFake(pp, rS , µ, µ
′): On input public parameters pp, original random coins rS , message µ of DenEnc

and desired message µ′, it outputs a faked random coin r′S .

RecFake(pp, fk, cx, f, µ
′): On input public parameters pp, faking key fk, a ciphertext cx, a function f ∈ C,

and desired message µ′, the receiver faking algorithm outputs a faked secret key sk′f .

Correctness. We say the flexibly bi-deniable ABE scheme described above is correct, if for any (msk, pp)←
S(1λ), where S ∈ {Setup,DenSetup}, any message µ, function f ∈ C, and any attribute vector x where
f(x) = 0, we have Dec(skf , cx) = µ, where skf ← Keygen(msk, f) and cx ← E(pp,x, µ; rS) where
E ∈ (Enc,DenEnc).

Bi-deniability definition. Let µ, µ′ be two arbitrary messages, not necessarily different. We propose the
bi-deniability definition by describing real experiment ExptRealA,µ,µ′(1

λ) and faking experiment ExptFakeA,µ,µ′(1
λ)

regarding adversary A = (A1,A2,A3) below:
1. (x∗, state1)← A1(λ)
2. (pp,msk)← Setup(1λ)
3. c′x∗ ← Enc(pp,x∗, µ; rS)

4. (f∗, state2)← AKG(msk,x∗,·)
2 (pp, state1, cx∗)

5. skf∗ ← Keygen(msk, f∗)

6. b← AKG(msk,x∗,·)
3 (skf∗ , c, state2, rS)

7. Output b ∈ {0, 1}
(a) ExptRealA (1λ)

1. (x∗, state1)← A1(λ)
2. (pp,msk, fk)← DenSetup(1λ)
3. c′x∗ ← DenEnc(pp,x∗, µ′; rS)

4. (f∗, state2)← AKG(msk,x∗,·)
2 (pp, state1, c

′
x∗)

5. r′S ← SendFake(pp, µ, µ′, rS)
6. skf∗ ← RecFake(pp, fk, c′x,v

∗, µ′)

7. b← AKG(msk,x∗,·)
3 (skf∗ , c, state2, r

′
S)

8. Output b ∈ {0, 1}
(b) ExptFakeA (1λ)

Figure 1: Security experiments for bi-deniable ABE

where KG(msk,w∗, ·) returns a secret key skv ← Keygen(msk,v) if 〈v,w∗〉 6= 0 and ⊥ otherwise.

Definition 3.1 (Flexibly Bi-Deniable ABE). An ABE scheme Π is bi-deniable if for any two messages µ, µ′,
any probabilistic polynomial-time adversaries A where A = (A1,A2,A3), there is a negligible function
negl(λ) such that

AdvΠ
A,µ,µ′(1

λ) = |Pr[ExptRealA,µ,µ′(1
λ) = 1]−Pr[ExptFakeA,µ,µ′(1

λ) = 1]| ≤ negl(λ)
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3.2 Attribute Based Bitranslucent Set Scheme

In this section, we define the notion of a Attribute Based Bitranslucent Set (AB-BTS), which is an extension
of bitranslucent sets (BTS) as defined by O’Neill et al. in [OPW11]. Our new notion permits a more fine-
grained degree of access control, where pseudorandom samples and secret keys are associated with attributes
x, and the testing algorithm can successfully distinguish a pseudorandom sample from a truly random one if
and only if the attribute of the sample is accepted under a given secret key’s policy f – i.e. when f(x) = 0.
This concept is reminiscent of attribute-based encryption (ABE), and in fact, we will show in the sequel
how to construct a flexibly bi-deniable ABE from an AB-BTS. This is analogous to the construction of a
flexibly bi-deniable PKE from O’Neill et al.’s BTS. We present the formal definition below.

LetF be some family of functions. An attribute based bitranslucent set (AB-BTS) scheme forF consists
of the following algorithms:

Setup(1λ): On input the security parameter, the normal setup algorithm outputs a public parameter pp and
master secret key msk.

DenSetup(1λ): On input the security parameter, the deniable setup algorithm outputs a public parameter
pp, master secret key msk and faking key fk.

Keygen(msk, f): On input the master secret key msk and a function f ∈ F , the key generation algorithm
outputs a secret key skf .

P - and U -samplers SampleP(pp,x; rS) and SampleU(pp,x; rS) output some c.

TestP(skf , cx): On input a secret key skf and a ciphertext cx, the P -tester algorithm outputs 1 (accepts)
or 0 (rejects).

FakeSCoins(pp, rS): On input a public parameters pp and randomness rS , the sender-faker algorithm
outputs randomness r∗S .

FakeRCoins(pp, fk, cx, f): On input a public parameters pp, the faking key fk, a ciphertext cx and a
function f ∈ F , the receiver-faker algorithm outputs a faked secret key sk′f .

Definition 3.2 (AB-BTS). We say a scheme Π = (Setup,DenSetup,Keygen, SampleP,
SampleU,TestP,FakeSCoins,FakeRCoins) is an AB-BTS scheme for a function family F if it satisfies:

1. (Correctness.) The following experiments accept or respectively reject with overwhelming probability
over the randomness.

• Let (pp,msk)← Setup(1λ), f ∈ F , skf ← Keygen(msk, f). If f(x) = 0 and cx ← SampleP(pp,x; rS),
then TestP(skf , cx) = 1; otherwise, TestP(skf , cx) = 0.

• Let (pp,msk) ← Setup(1λ), f ∈ F , skf ← Keygen(msk, f), c ← SampleU(pp; rS). Then
TestP(skf , c) = 0.

2. (Indistinguishable public parameters.) The public parameters pp generated by the two setup algorithms
(pp,msk)← Setup(1λ) and (pp,msk, fk)← DenSetup(1λ) should be indistinguishable.

3. (Selective bi-deniability.) Let F be a family of functions. We define the following two experiments: the
real experiment ExptRealA,F (1λ) and the faking experiment ExptFakeA,F (1λ) regarding an adversary A =
(A1,A2,A3) below:
where KG(msk,x∗, ·) returns a secret key skf ← Keygen(msk, f) if f ∈ F and f(x∗) 6= 0; it returns
⊥ otherwise. We also require that f∗ ∈ F .
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(a) (f∗,x∗, state1)← A1(λ)
(b) (pp,msk, fk)← DenSetup(1λ)
(c) c← SampleU(pp; rS)

(d) state2 ← AKG(msk,x∗,·)
2 (pp, state1, c)

(e) skf∗ ← Keygen(msk, f∗)

(f) b← AKG(msk,x∗,·)
3 (skf∗ , c, state2, rS)

(g) Output b ∈ {0, 1}
(a) ExptRealA (1λ)

(a) (f∗,x∗, state1)← A1(λ)
(b) (pp,msk, fk)← DenSetup(1λ)
(c) c← SampleP(pp,x∗; rS)

(d) state2 ← AKG(msk,x∗,·)
2 (pp, state1, c)

(e) r′S ← FakeSCoins(pp, rS)
(f) skf∗ ← FakeRCoins(pp, fk, c, f∗)

(g) b← AKG(msk,x∗,·)
3 (skf∗ , c, state2, r

′
S)

(h) Output b ∈ {0, 1}
(b) ExptFakeA (1λ)

Figure 2: Security experiments for AB-BTS

We say the scheme is selectively bi-deniable for F , if for any probabilistic polynomial-time adversaries
A = (A1,A2,A3), there is a negligible function negl(λ) such that

AdvΠ
A(1λ) = |Pr[ExptRealA,F (1λ) = 1]−Pr[ExptFakeA,F (1λ) = 1]| ≤ negl(λ)

Remark 3.3. Correctness for the faking algorithms is implied by the bi-deniability property. In particu-
lar, with overwhelming probability over the overall randomness, the following holds: let (pp,msk, fk) ←
DenSetup(1λ), f ∈ F , skf ← Keygen(msk, f), x be a string and cx ← SampleP(pp, x; rS), then

• SampleU(pp;FakeSCoins(pp, rS)) = cx,

• TestP(FakeRCoins(pp, fk, cx, f), cx) = 0

• For any other x′, let c′ ← SampleP(pp, x′; r′S), then (with overwhelming probability) we have

TestP
(
FakeRCoins(pp, fk, cx, f), c′

)
= TestP(skf , c

′).

It is not hard to see that if one of these does not hold, then one can easily distinguish the real experiment
from the faking experiment.

Remark 3.4. Canetti et al. [CDNO97] gave a simple encoding technique to construct a sender-deniable
encryption scheme from a translucent set. O’Neill, Peikert, and Waters [OPW11] used a similar method to
construct a flexibly bi-deniable encryption from a bi-translucent set scheme. Here we further observe that
the same method as well allows us to construct a flexibly bi-deniable ABE scheme from bi-deniable AB-BTS.
We present the construction in Section 4.4.

3.3 Extended LWE and Our New Variant

O’Neill et al. [OPW11] introduced the Extended LWE problem, which allows a “hint” on the error vector x
to leak in form of a noisy inner product. They observe a trivial “blurring” argument shows that LWE reduces
to eLWE when the hint-noise βq is superpolynomially larger than the magnitude of samples from χ, and
also allows for unboundedly many independent hint vectors 〈z,xi〉 while retaining LWE-hardness.

Definition 3.5 (Extended LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over
Zq, the extended learning with errors problem eLWEn,m,q,χ,β is to distinguish between the following pairs
of distributions:

{A, b = ATs + e, z, 〈z, b− e〉+ e′} and {A,u, z, 〈z,u− x〉+ e′}

where A
$← Zn×mq , s $← Znq , u $← Zmq , e, z $← χm and e′ $← Dβq.
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Further, Alperin-Sheriff and Peikert [AP12] show that LWE reduces to eLWE with a polynomial modulus
and no hint-noise (i.e. β = 0), even in the case of a bounded number of independent hints.

We introduce the following new form of extended-LWE, called eLWE+, which considers leaking a pair
of correlated hints on the same noise vector. Our security proof of the AB-BTS construction relies on this
new assumption.

Definition 3.6 (Extended LWE Plus). For integer q = q(n) ≥ 2,m = m(n), an error distribution χ =
χ(n) over Zq, and a matrix R ∈ Zm×mq , the extended learning with errors problem eLWE+

n,m,q,χ,β,R is to
distinguish between the following pairs of distributions:

{A, b = ATs + e, z0, z1, 〈z0, b− e〉+ e, 〈Rz1, b− e〉+ e′} and

{A,u, z0, z1, 〈z0,u− e〉+ e, 〈Rz1,u− e〉+ e′}

where A
$← Zn×mq , s $← Znq , u $← Zmq , e, z0, z1

$← χm and e, e′ $← Dβq.

Hardness of extended-LWE+. A simple observation, following prior work, is that when χ is poly(n)-
bounded and the hint noise βq (and thus, modulus q) is superpolynomial in n, then LWEn,m,q,χ trivially
reduces to eLWE+

n,m,q,χ,β,R for every R ∈ Zm×mq so that Rz1 has poly(n)-bounded norm. This is because,
for any r = ω(

√
log n), c ∈ Z, the statistical distance between DZ,r and c+DZ,r is at most O(|c|/r).

However, our cryptosystem will require a polynomial-size modulus q. So, we next consider the case
of prime modulus q of poly(n) size and no noise on the hints (i.e. β = 0). Following [AP12]4, it will be
convenient to swap to the “knapsack” form of LWE, which is: given H← Z(m−n)×m

q and c ∈ Zm−nq , where
either c = He for e← χm or c uniformly random and independent of H, determine which is the case (with
non-negligible advantage). The “extended-plus” form of the knapsack problem also reveals a pair of hints
(z0, z1, 〈z0, e〉, 〈Rz1, e〉). Note the equivalence between LWE and knapsack-LWE is proven in [MM11]
for m ≥ n+ ω(log n).

Theorem 3.7. For m ≥ n + ω(log n), for every prime q = poly(n), for every R ∈ Zm×mq , and for every

β ≥ 0, Adv
LWEn,m,q,χ
BA (1λ) ≥ (1/q2)Adv

eLWE+
n,m,q,χ,β,R

A (1λ).

Proof. We construct an LWE to eLWE+ reduction B as follows. B receives a knapsack-LWE instance H ∈
Z(m−n)×m
q , c ∈ Zm−nq . It samples e′, z0, z1 ← χm and uniform v0,v1 ← Zm−nq . It chooses any R ∈

Zm×mq , then sets

H′ := H− v0z
T
0 − v1 (Rz1)T ∈ Z(m−n)×m

q ,

c′ := c− v0 · 〈z0, e
′〉 − v1 · 〈Rz1, e

′〉 ∈ Zm−nq .

It sends (H′, c′, z0, z1, 〈z0, e
′〉, 〈Rz1, e

′〉) to the knapsack-eLWE+ adversary A, and outputs what A out-
puts.

Notice that when H, c are independent and uniform, so are H′, c′, in which case B’s simulation is
perfect.

Now, consider the case when H, c are drawn from the knapsack-LWE distribution, with c = Hx for
e← χm. In this case, H′ is uniformly random over the choice of H, and we have

c′ = Hx− v0 · 〈z0, e
′〉 − v1 · 〈Rz1, e

′〉

=
(
H′ + v0z

T
0 + v1 (Rz1)T

)
e− v0 · 〈z0, e

′〉 − v1 · 〈Rz1, e
′〉

= H′e + v0 · 〈z0, e− e′〉+ v1 · 〈Rz1, e− e′〉.
4We note that a higher quality reduction from LWE to eLWE is given in [BLP+13] in the case of binary secret keys. However

for our cryptosystem, it will be more convenient to have secret key coordinates in Zq , so we extend the reduction of [AP12] to
eLWE+ instead.
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Define the event E = [E0 ∧ E1] as

E0
def
=
[
〈z0, e〉 = 〈z0, e

′〉
]
,

E1
def
=
[
〈Rz1, e〉 = 〈Rz1, e

′〉
]
.

If event E occurs, then the reduction B perfectly simulates a pseudorandom instance of knapsack-
eLWE+ toA, as then v0 · 〈z0, e−e′〉+v1 · 〈Rz1, e−e′〉 vanishes, leaving c′ = H′e for H′ ← Z(m−n)×m

q

and e← χm as required. Otherwise since q is prime, the reduction B (incorrectly) simulates an independent
and uniform instance of knapsack-eLWE+ to A, as then either one of v0 · 〈z0, e− e′〉 or v1 · 〈Rz1, e− e′〉
does not vanish, implying that c′ is uniform in Zm−nq over the choice of v0 (resp. v1) alone, independent of
the choices of H′ and x.

It remains to analyze the probability that event E occurs. Because e and e′ are i.i.d., we may define
the random variable Z0 that takes values 〈z0, e

∗〉 ∈ Zq and the random variable Z1 that takes values
〈Rz1, e

∗〉 ∈ Zq jointly over choice of e∗ ← χm, and analyze their collision probabilities independently.
Since the collision probability of any random variable Z is at least 1/|Supp(Z)|, we have that Pr[E] ≥
minCP [Z0] ·minCP [Z1] = 1/q2 = 1/poly(n), and the theorem follows.

4 Flexibly Bi-Deniable Attribute-Based Encryption (ABE) for Branching
Programs

In this section, we present our flexibly bi-deniable ABE for bounded-length Branching Program. We orga-
nize our approach into the following three steps: (1) first, we recall the encoding scheme proposed in the
SIM-secure ABE-BP of [GV15]; (2) Then, we present our flexibly bi-deniable attribute bi-translucent set
(AB-BTS) scheme, as was defined in Definition 3.2. Our AB-BTS construction uses the ideas of Gorbunov
and Vinayagamurthy [GV15], with essential modifications that allow us to tightly upper and lower bound
evaluated noise terms. As discussed in the Introduction, this tighter analysis plays a key role in proving
bi-deniability. (3) Finally, we show how to obtain the desired bi-deniable ABE scheme from our AB-BTS.
As pointed out by Canetti et al. [CDNO97] and O’Neill et al. [OPW11], a bitranslucent set scheme implies
flexibly bi-deniable PKE. We observe that the same idea generalizes to the case of an AB-BTS scheme and
flexibly bi-deniable ABE in a straightforward manner.

4.1 Encoding Schemes for Branching Programs

Basic Homomorphic Encoding. Before proceeding to the public key evaluation algorithm, we first de-
scribed basic homomorphic addition and multiplication over public keys and encoded ciphertexts based on
the techniques in [GSW13, AP14, BGG+14].

Definition 4.1 (LWE Encoding). For any matrix A← Zn×mq , we define an LWE encoding of a bit a ∈ {0, 1}
with respect to a public key A and randomness s← Znq as

ψA,s,a = sT (A + a ·G) + e ∈ Zmq

for error vector e← χm and the gadget matrix G ∈ Zn×mq .

In our construction, all LWE encodings will be encoded using the same LWE secret s, thus for simplicity,
we will simply refer to such an encoding as ψA,a.

For homomorphic addition, the addition algorithm takes as input two encodings ψA,a, ψA′,a, and outputs
the sum of them. Let A+ = A + A′ and a+ = a+ a′

Add(ψA,a, ψA′,a′) = ψA,a + ψA′,a′ = ψA+,a+
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For homomorphic multiplication, the multiplication algorithm takes as input two encodings ψA,a, ψA′,a,
and outputs an encoding ψA×,a× , where A× = −AG−1(A′) and a× = aa′.

Mult(ψA,a, ψA′,a′) = −ψ ·G−1(A′) + a · ψ′ = ψA×,a×

Public Key Evaluation Algorithm. Following the notation in [GV15], we define a public evaluation
algorithm Evalpk. The algorithm takes as input a description of the branching program BP, a collection of
public keys {Ai}i∈[`] (one for each attribute bit xi), a collection of public keys V0,i for initial state vector
and an auxiliary matrix Ac, and outputs an evaluated public key corresponding to the branching program
BP.

VBP ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)

where the auxiliary matrix Ac are used to encoded constant 1 for each input wire. We also define matrix
A′i = Ac −Ai as a public key used to encode 1− xi. By the definition of branching programs, the output
VBP ∈ Zn×mq is the homomorphically generated public key VL,1 at position 1 of the state vector for the
L-th step of the branching program evaluation.

Recall that in the definition of branching programs, BP is represented by the tuple {var(t), {γt,i,0, γt,i,1}i∈[5]}
for t ∈ [L], and the initial state vector is set to be v0 = (1, 0, 0, 0, 0). Further, for t ∈ [L], the computation
is performed as vt[i] = vt−1[γt,i,0](1− xvar(t)) + vt−1[γt,i,1] · xvar(t). It is important for the security proof
(among other reasons) that the evaluated state vector in each step is independent of the attribute vector.

Encoding Evaluation Algorithm. We define an encoding evaluation algorithm Evalct that takes as in-
put the description of a branching program BP, an attribute vector x, a set of encodings for the attribute
{Ai, ψi := ψAi,xi}i∈[`], encodings of the initial state vector {V0,i, ψ0,i := ψV0,iv0[i]}i∈[5] and an encoding
of a constant 1, i.e. ψc := ψAc,1. The algorithm Evalct outputs an encoding of the result y := BP(x) with
respect to the homomorphically derived public key VBP := VL,1

ψBP ← Evalct(BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5], {Ac, ψc})

As mentioned above, in branching program computation, for t ∈ [L], we have for all i ∈ [5]

vt[i] = vt−1[γt,i,0](1− xvar(t)) + vt−1[γt,i,1] · xvar(t)

The evaluation algorithm proceeds inductively to update the encoding of the state vector for each step of
the branching program. Next, we need to instantiate this inductive computation using the homomorphic
operations described above, i.e. Add,Mult. Following the notation used in [GV15], we define ψ′i :=
ψA′i,(1−xi) = sT (A′i+(1−xi)G)+e′i, where A′i = Ac−Ai, to denote the encoding of 1−xi. This encoding
can be computed using Add(ψAc

i ,1
,−ψAi,xi). Then assuming at time t− 1 ∈ [L] we hold encodings of the

state vector {ψVt−1,i,vt−1[i]}i∈[5]. For i ∈ [5], we compute the encodings of new state values as

ψi,t = Add(Mult(ψ′var(t), ψt−1,γ0),Mult(ψvar(t), ψt−1,γ1))

where γ0 := γt,i,0 and γ1 := γt,i,1. We omit the correctness proof of the encoding here, which is presented
in [GV15].

Simulated Public Key Evaluation Algorithm. The simulation strategy was first developed in [BGG+14],
and then adapted by Gorbunov and Vinayagamurthy [GV15] in branching program scenario. In particular,
set Ai = AiRi − xiG for some shared public key matrix A and low norm matrix Ri. Similarly, the state
public keys At,i = ARt,i− vt[i]G, and matrices Ac = ARc−G. The evaluation algorithm EvalSim takes
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as input the description of branching program BP, the attribute vector x, collections of low norm matrices
{Ri}i∈[`], {R0,i}i∈[5],R

c corresponding to input public key, initial state vector and complement matrices
respectively, and a shared matrix A. It outputs a homomorphically derived low norm matrix RBP:

RBP ← EvalSim(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)

In particular, let R′i = Rc
i −Ri for i ∈ [`]. We derive the low-norm matrices Rt,i for i ∈ [5] as

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.

2. Compute

Rt,i = (−R′var(t)G
−1(Vt−1,γ0) + (1− xvar(t)) ·Rt−1,γ0)

+ (−Rvar(t)G
−1(Vt−1,γ1) + xvar(t) ·Rt−1,γ1)

(1)

We let RL,1 be the matrix obtained at L-th step corresponding to state value 1 by the above algorithm.
The correctness requires the norm of RBP remains small and the matrix VBP output by Evalpk satisfies
VBP = ARBP − BP(x)G. We refer to the counterpart in [GV15] for the detailed correctness proof.

In order to achieve correctness and deniability, it is important for us to both lower and upper bound the
norm of ||RBP||. Here we apply the triangular inequality of the norm and obtain the following lemma:

Lemma 4.2. Let Ri,j’s be the matrices defined as above. Then for every t ∈ [`], i ∈ [5] and every error
vector e ∈ Zmq , we have ||eT ·Rt−1,j || −Θ(m1.5) · ||e|| ≤ ||eT ·Rt,i|| ≤ ||e|| · ||Rt−1,j ||+ Θ(m1.5) · ||e||,
where j = γxvar(t) .

Proof. Recall the matrix Ri,j is computed as

Rt,i = (−R′var(t)G
−1(Vt−1,γ0) + (1− xvar(t)) ·Rt−1,γ0) + (−Rvar(t)G

−1(Vt−1,γ1) + xvar(t) ·Rt−1,γ1)

where xvar(t) ∈ {0, 1}. Without loss of generality, we assume xvar(t) = 1, thus we obtain

Rt,i = −R′var(t)G
−1(Vt−1,γ0) + Rt−1,γ1 −Rvar(t)G

−1(Vt−1,γ1)

Since G−1(Vt−1,γ1) ∈ {0, 1}m×m, we know ||G−1(Vt−1,γ1)|| ≤ m. Since matrices Rvar(t),R
′
var(t) were

chosen uniformly at random in ∈ {−1, 1}m×m, we know that their norm is bounded by Θ(
√
m) with

high probability by Lemma 2.3. Therefore, we can bound the norm of term ||R′var(t)G
−1(Vt−1,γ0) +

Rvar(t)G
−1(Vt−1,γ1)|| ≤ Θ(m1.5). By applying the triangular inequality, it holds for every t ∈ [`], i ∈ [5]

and vector e ∈ Zmq ,

||eT ·Rt−1,j || −Θ(m1.5)||e|| ≤ ||eT ·Rt,i|| ≤ ||e|| · ||Rt−1,j ||+ Θ(m1.5)||e||

where j = γxvar(t) .

By applying the above lemma inductively on the equation (1) of computing matrix RBP for input length
`, we can obtain the following theorem:

Theorem 4.3. Let BP be a length ` branching program, and RBP be the matrix as defined above. Then we
have ||eT ·R0,j || − 2m1.5`||e|| ≤ ||eTRBP|| ≤ ||eT || · ||R0,j ||+ 2m1.5`||e|| for some j ∈ [5].

Proof. Applying Lemma 4.2 inductively on input length `, we have

||eTRBP|| ≥ ||eT ·R`−1,j || − 2m1.5||e|| ≥ · · · ≥ ||eT ·R0,j || − 2m1.5`||e||

We can obtain the upper bound of ||eTRBP|| using similar computation.
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Lemma 4.4. Let R is an m×m be a matrix chosen at random from {−1, 1}m×m, and u = (u1, ..., um) ∈
Rm be a vector chosen according to the m dimensional Gaussian with width α. Then we have

Pr
[
||uTR||2 ∈ Θ(m2α2)

]
> 1− negl(m).

Proof. We know with overwhelming probability over the choice of u, all of its entries have absolute value
less than B = αω(logm). Also, we know that with overwhelming probability, we have ||u||2 = Θ(mα2).
We call a sample typical if it satisfies these two conditions. Note that it is without loss of generality to just
consider the typical samples, from a simple union bound argument.

Then we consider a fixed typical choice of vector u = (u1, ..., um) ∈ Rm. We write the inner product
of uT · r where r = (r1, . . . , rm) is sampled uniformly from {−1, 1}m. We observe that E

[
||uT · r||2

]
=

E
[∑m

i=1 r
2
i u

2
i +

∑
i<j≤m rirjuiuj

]
=
∑m

i=1 u
2
i = ||u||2. This is because each ri, rj are independent and

have mean 0.
Now, for such a fixed u we denote random variablesX1, . . . , Xm be i.i.d. samples of rTu. It is not hard

to see that

• ||uTR||2 = X2
1 +X2

2 + · · ·+X2
m, (one can view Xi as the i-th entry of uTR),

• E
[
||uTR||2

]
= m||u||2.

Next we claim that for each i, X2
i ≤ mB2ω(logm) with overwhelming probability. By Hoeffding’s

inequality, we have

Pr

∣∣∣∣∣∣
∑
j∈[m]

rjuj

∣∣∣∣∣∣ > t

 < 2e−
2t2

m·4B2 .

This is because each rjuj ∈ [−B,B]. (Recall that we consider a fixed u for the typical case). By setting
t =
√
mBω(logm), we have Pr[|Xi| > t] < negl(m). Thus X2

i ≤ mB2ω(logm) with overwhelming
probability. So we can consider truncated versions of X2

i ’s, where we cut out the large samples. This
will only induce a negligible statistical distance, and change the expectation by a negligible amount. For
simplicity of presentation, we still use the notation X2

i ’s in the following arguments, but the reader should
keep in mind that they were truncated.

Next again we apply Hoeffding’s inequality to the X2
i ’s to obtain

Pr
[∣∣||uTR||2 −m||u||2∣∣ > t′

]
< 2e

− 2t′2∑m
i=1

(mB2ω(logm))2 = 2e
− 2t′2
m3B4ω(logm) .

By taking t′ = m||u||2/2, we have

Pr
[∣∣||uTR||2 −m||u||2∣∣ > t′

]
< 2e

− ||u||4

2mB4ω(logm) .

Since u is typical, we know that ||u||2 = Θ(mα2). Also recall that B = αω(logm). So we have

Pr
[
||uTR||2 ∈ Θ(m2α2)

]
> 1− 2e

− m
ω(logm) = 1− negl(m).

This completes the proof.
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4.2 Construction of Flexibly Bi-Deniable ABE for Branching Programs

In this part, we present our flexibly bi-deniable AB-BTS scheme for bounded-length Branching Programs.
We use a semantically-secure public key encryption Π = (Gen′,Enc′,Dec′) with message space MΠ =
Zm×mq and ciphertext space CΠ. For a family of branching programs of length bounded by L and input space
{0, 1}`, the description of BiDenAB-BTS = (Setup,DenSetup,Keygen, SampleP, SampleU,TestP,FakeRCoins,
FakeSCoins) are as follows:

• Setup(1λ, 1L, 1`): On input the security parameter λ, the length of the branching program L and length
of the attribute vector `,

1. Set the LWE dimension be n = n(λ), modulus q = q(n,L). Choose Gaussian distribution parameter
s = s(n). Let params = (n, q,m, s).

2. Sample one random matrix associated with its trapdoor as

(A,TA)← TrapGen(q, n,m)

3. Choose `+ 6 random matrices {Ai}i∈[`], {V0,i}i∈[5],A
c from Zn×mq .

4. Choose a random vector u ∈ Znq .

5. Compute a public/secret key pair (pk′, sk′) for a semantically secure public key encryption (pk′, sk′)←
Gen′(1λ)

6. Output the public parameter pp and master secret key msk as

pp = (params,A, {Ai}i∈[`], {V0,i}i∈[5],A
c,u, pk′), msk = (TA, sk

′)

• DenSetup(1λ, 1L, 1`): On input the security parameter λ, the length of branching program L and length
of attribute vector `, the deniable setup algorithm runs the same computation as setup algorithm, and
outputs

pp = (params,A, {Ai}i∈[`], {V0,i}i∈[5],A
c,u, pk′), msk = (TA, sk

′) fk = (TA, sk
′)

• Keygen(msk,BP): On input the master secret key msk and the description of a branching program BP,
BP = (v0, {var(t), {γt,i,0, γt,i,1}i∈[5]}t∈[L]).

1. Homomorphically compute a public matrix with respect to the branching program BP: VBP ←
Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A

c).

2. Sample a low norm vector rBP ∈ Z2m
q , using

rBP ← SampleLeft(A,TA, (VBP + G),u, sq)

such that rTBP · [A|VBP + G] = u.

3. Output the secret key skBP for branching program as skBP = (rBP,BP).

• SampleP(pp,x): On input public parameters pp and attribute x,

1. Choose an LWE secret s ∈ Znq uniformly at random.

2. Choose noise vector e← DZmq ,α, and compute ψ0 = sTA + e.

3. Choose one random matrices Rc ← {−1, 1}m×m, and let ec = eTRc. Compute an encoding of
constant 1: ψc = sT (Ac + G) + ec.
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4. Encode each bit i ∈ [`] of the attribute vector:

(a) Choose a random matrix Ri ← {−1, 1}m×m, and let ei = eTRi.
(b) Compute ψi = sT (Ai + xiG) + ei.

5. Encode the initial state vector v0 = (1, 0, 0, 0, 0), for i ∈ [5]

(a) Choose a random matrix R′0,i ← {−1, 1}m×m, and let R0,i = ηR′0,i, e0,i = eTR0,i, where the
noise scaling parameter η is set in Section 4.3.

(b) Compute ψ0,i = sT (Ai + v0[i]G) + e0,i.

6. Compute c = sTu + e, where e← DZq ,s

7. Use PKE to encrypt randomly chosen matrices Rc, {Ri}i∈[`] and {R0,i}i∈[5]:

Ti ← Enc′(pk′,Ri),T
c ← Enc′(pk′,Rc),T0,i ← Enc′(pk′,R0,i)

8. Output the ciphertext

ctx = (x, ψ0, {ψi}i∈[`], ψ
c, {ψ0,i}i∈[5], c, {Ti}i∈[`],T

c, {T0,i}i∈[5])

• SampleU(pp,x): Output a uniformly random vector ct ∈ Zmq ×Z`mq ×Z`mq ×Z5m
q ×Zq×C`Π×CΠ×C5

Π.

• TestP(skBP, ctx): On input the secret key skBP for a branching program BP and a ciphertext associated
with attribute x, if BP(x) = 0, output ⊥, otherwise,

1. Homomorphically compute the evaluated ciphertext of result BP(x)

ψBP ← Evalct(BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5], {Ac
i , ψ

c
i }i∈[`])

2. Then compute φ = [ψ0|ψBP]T · rBP. Accept ctx as a P-sample if |c− φ| < 1/4, otherwise reject.

• FakeSCoins(rS): Simply output the P-sample c as the randomness r∗S that would cause SampleU to output
cx.

• FakeRCoins(pp, fk, ctx,BP): On input the public parameters pp, the faking key fk, a ciphertext ctx and
description of a branching program BP

1. If BP(x) 6= 0, then output skf ← Keygen(fk,BP).

2. Otherwise, parse ciphertext ctx as

ctx = (x, ψ0, {ψi}i∈[`], ψ
c, {ψ0,i}i∈[5], c, {Ti}i∈[`],T

c, {T0,i}i∈[5])

Compute e← Invert(A,TA, ψ0). Then decrypt ({Ti}i∈[`],T
c, {T0,i}i∈[5]) respectively using Dec(sk′, ·)

to obtain {Ri}i∈[`],R
c, {R0,i}i∈[5]. Compute evaluated error

eBP ← Evalct(BP,x, {Ai, e
TRi}i∈[`], {V0,i, e

TR0,i}i∈[5], {Ac, eTRc})

such that eBP = eTRBP.

3. Homomorphically compute a public matrix with respect to the branching program BP: VBP ←
Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5], {Ac

i}i∈[`]). Then sample a properly distributed secret key rBP ∈
Z2m
q , using

rBP ← SampleLeft(A,TA, (VBP + G),u, s)
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4. Sample correlation vector y0 ← DZmq ,β2q2Im×m . Then sample correlation coefficient µ← Dγ , and set
vector y1 = (µeBP +DZm,Q)q, where

Q = β2Im×m − γ2α2RT
BPRBP (2)

5. Let y = (y0|y1), then sample and output the faked secret key sk∗BP = r∗BP as r∗BP ← y+D
Λ+rBP−y,

√
s2−β2 ,

using SampleD(ExtBasis(A,TA,VBP + G), rBP − y,
√
s2 − β2), where Λ = Λ⊥([A|VBP + G]).

The SampleP algorithm is similar to the ABE ciphertexts in the work [GV15], except that we add another
scaling factor η to the rotation matrices R0,i’s. This allows us to both upper and lower bound the noise
growth, which is essential to achieve bi-deniability. As we discussed in the introduction, the FakeRCoins
embeds the evaluated noise into the secret key, so that it will change the decrypted value of the targeted
ciphertext, but not others. Next we present the theorem we achieve and a high level ideas of the proof. We
describe the intuition of our proof as follows.

Overview of Our Security Proof. At a high level, our security proof begins at the Fake experiment (cf.
Definition 3.1 for a formal description), where first a ciphertext ct∗ and its associated noise terms e∗ are
sampled, then a fake key r∗ is generated that “artificially” fails to decrypt any ciphertext with noise vector
(oriented close to) e∗. In the end, we will arrive at the Real experiment, where an honest key r is generated
that “genuinely” fails to decrypt the honestly generated, coerced ciphertext ct∗. (Multi-ct coercion security
follows by a standard hybrid argument that repeatedly modifies respective r∗ to r for each coerced ct∗

in order.) In order to transition from Fake to Real, we move through a sequence of computationally- or
statistically-indistinguishable hybrid experiments.

The first set of intermediate experiments (represented by H1 and H2 in our formal proof) embeds the
attribute x of the challenge ciphertext ct∗ in the public parameters, in a similar fashion to the begin-
ning of every SIM-secure proof of lattice-based ABE. Indistinguishability follows via the Leftover Hash
Lemma [DRS04]. (Note that the additional hybrid in our proof is used to ensure that the random rotation
matrices R employed by the LHL for public key embedding of x are the exact same matrices R as used
to generate the noise terms of the coerced ct∗, and uses the security of any semantically-secure PKE for
computational indistinguishability.)

The next set of intermediate experiments (given by H3,H4, and H5 in our formal proof) perform the
“main, new work” of our security proof. Specifically, they “swap the order” of the generation of the pk
matrices {A}, the public coset u (in the public parameters and in the coerced ciphertext), and the error
vector(s) e in the coerced ciphertext components. (An additional hybrid is used to toggle the order of a
“correlation vector” y – a random, planted vector used to allow for a more modular analysis of these steps.)
In each case, we give a statistical argument that the adversary’s view in adjacent hybrids is indistinguishable
or identical, using elementary properties of multi-dimensional Gaussians.

In the next step (given by H6), we apply the eLWE+ assumption to (roughly) change every component
of the coerced ciphertext ct∗ to uniform – except for the final c∗ component used to blind the message µ.

In the final step (given by H7), we transition to the Real experiment by changing the c∗ component to
uniform (in the presence of Dual Regev decryption under honest z), using our sharper noise analysis as
described above to show statistical indistinguishability of the final decryption output of z on ct∗.

Theorem 4.5. Assuming the hardness of extended-LWEq,β′ , the above algorithms form a secure attribute-
based bitranslucent set schemem, as in Definition 3.2.

Lemma 4.6. For parameters set in Section 4.3, the AB-BTS defined above satisfies the correctness property
in Definition 3.2.
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Proof. As we mentioned in Remark 3.3, the correctness of faking algorithms is implied by the bi-deniability
property. Therefore, we only need to prove the correctness of normal decryption algorithm. For branching
program BP and input x, such that BP(x) = 1, we compute ψt,i for t ∈ [`] as

ψt,i = Add(Mult(ψ′var(t), ψt−1,γ0),Mult(ψvar(t), ψt−1,γ1))

= Add

(
[sT (−A′var(t)G

−1(Vt−1,γ0) + (vt[γ0] · (1− xvar(t))) ·G) + e1],

([sT (−A′var(t)G
−1(Vt−1,γ1) + (vt[γ1] · xvar(t)) ·G) + e2]

)
= sT

[ (
−A′var(t)G

−1(Vt−1,γ0)−A′var(t)G
−1(Vt−1,γ1)

)︸ ︷︷ ︸
Vt,i

+
(
vt[γ0] · (1− xvar(t)) + vt[γ1] · xvar(t)

)︸ ︷︷ ︸
vt[i]

·G
]

+ et,i

At the end of the ciphertext evaluation, since BP(x) = 1, we can obtain ψBP = sT (VBP + G) + eBP,
where eBP = eTRBP. Recall that the secret key sk = rBP satisfying [A|VBP + G] · rBP = u. Then for
c− [ψ0|ψBP] · rBP, it holds that

c− [ψ0|ψBP]T · rBP = e− eTRBP · rBP
Now we need to compute a bound for the final noise term. By applying Theorem 4.3, we obtain that

||eT || · ||RBP||+ 2m1.5`||e|| ≤ (2m1.5`+ η
√
m)||e|| ≤ α

√
m(2m1.5`+ η

√
m) · sq

√
m ≤ 1

4

So by setting the parameters appropriately, as in Section 4.3, we have that

|c− [ψ0|ψBP]T · rBP| ≤ 1/4

and the lemma follows.

Lemma 4.7. Assuming the hardness of extended-LWEq,β′ , the AB-BTS scheme described above is bi-
deniable as defined in Definition 3.2.

Proof. First, we notice that because SampleU simply outputs its random coins as a uniformly random ct,
we can use ct itself as the coins.

We prove the bi-deniability property by a sequence of hybrids Hi with details as follows:

Hybrid H0: Hybrid H0 is the same as the view of adversary A in the right-hand faking experiment in
the definition of bi-deniability. We use the fact that algorithm Invert successfully recovers e from ct with
overwhelming probability over all randomness in the experiment.

Hybrid H1: In hybrid H2, we switch the encryptions of matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c) in the cipher-

text to encryptions of zero.

Recall that in hybrid H0, we encrypt the randomness matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c) using semanti-

cally secure PKE Π, i.e.

Ti ← Enc′(pk′,Ri), Tc ← Enc′(pk′,Rc), T0,i ← Enc′(pk′,R0,i)

In hybrid H1, we just set

Ti ← Enc′(pk′,0), Tc ← Enc′(pk′,0), T0,i ← Enc′(pk′,0)

to be encryptions of 0 ∈ Zm×m to replace encryptions of matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c).

21



Hybrid H2: In hybrid H2, we embed random matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c) and challenge attribute

x∗ in the public parameters pp.

Recall that in hybrid H1 the matrices ({Ai}i∈[`], {V0,i}i∈[5],A
c) are sampled at random. In hybrid H2, we

slightly change how these matrices are generated. Let x∗ = (x∗1, ..., x
∗
` ) be the challenge attribute that the

adversary A intends to attack. We sample matrices ({Ri}i∈[`], {R′0,i}i∈[5],R
c) uniformly random from

{−1, 1}m×m and set R0,i = ηR′0,i, which would be used both in the generation of public parameters and
challenge ciphertext. We set ({Ai}i∈[`], {V0,i}i∈[5],A

c) respectively as

Ai = ARi − x∗iG, V0,i = AR0,i − v0[i]G, Ac = ARc −G

where v0 = [1, 0, 0, 0, 0]. The rest of the hybrid remains unchanged.

Hybrid H3: In hybrid H3, we change the generation of matrix A and vector u in public parameters pp.

Let A be a random matrix in Zn×mq . The construction of matrices ({Ai}i∈[`], {V0,i}i∈[5],A
c) remains

the same, as in hybrid H2. Sample error vectors e that would be used in algorithm SampleP later. Then
compute the error vector

eBP∗ ← Evalct(BP,x, {Ai, e
TRi}i∈[`], {V0,i, e

TR0,i}i∈[5], {Ac, eTRc})

and choose a correlation coefficient µ← Dγ , and set vector y1 = (µeBP∗ +DZm,Q)q, where

Q = β2Im×m − γ2α2RT
BP∗RBP∗

Then let y = (y0|y1), where y0 ← DZmq ,β
2q2Im×m . Sample vector rBP∗ ← y +DZ2m−y,(s2−β2)q2I2m×2m

,
and compute matrix

VBP∗ ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)

Set vector u in public parameters pp as u = [A|VBP∗ ] ·rBP∗ . Since A is a random matrix without trapdoor
TA to answer key queries, we will use trapdoor TG to answer queries as follows. Consider a secret key
query for branching program BP such that BP(x∗) = 0. To respond, we do the following computations:

1. First, we compute
RBP ← EvalSim(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R

c,A)

to obtain a low-norm matrix RBP ∈ Zm×mq satisfying ARBP − BP(x∗)G = VBP.

2. Then, we sample rBP using

rBP ← SampleRight(A,G,RBP,TG,u, sq)

such that
rTBP · [A|VBP + G] = u

By Lemma 2.7, vector rBP is distributed as required.

The computation of answering P -sampler query, SampleP is the same as hybrid H1 with error vectors e,
For faking receiver coins, FakeRCoins, simply output the vector rBP∗ pre-sampled in the generation of
vector u before.

Hybrid H4: In hybrid H4, we change the generation order of vector y and error vector e.

First sample vector y = (y0|y1) ← DZ2m,β2q2I2m×2m
and compute rBP∗ from y as in previous hybrid.

Next, we compute error term e as e = νyT1 RBP∗/q +DZm,Q′ , where ν ← Dτ , τ = γα2/β2, and DZm,Q′

is sampled as L′DZm1 ,Im×m
for

Q′ = L′L′T = α2I− τ2β2RT
BP∗RBP∗ (3)
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Additionally, we modify the challenge ciphertext to be

ψ∗0 = sTA/q + e, ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

and c∗ = sTu +DZm,αIm×m .

Hybrid H5: In hybrid H5, we change the generation order of secret key rBP∗ and vector y.

We first sample matrix rBP∗ from discrete Gaussian distribution DZ2m,s2q2I2m×2m
, and set vector u in

public parameters pp to be u = [A|VBP∗ ] · rBP∗ , where

VBP∗ ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5], {Ac
i}i∈[`])

Then set y = (y0|y1) = rBP∗/2 +DZ2m,(β2−s2/4)q2I2m×2m
. The remainder of the hybrid remains roughly

the same. In particular, the challenge ciphertext ct∗ is generated in the same manner as Hybrid H4. We
break the noise term e into two terms e = e

(1)
0 + e

(2)
0 + νyT1 RBP∗/q, where e

(1)
0 ← DZm,β′Im×m , e

(2)
0 ←

DZm,Q′−β′2Im×m and β′ = α/2.

Hybrid H6: In hybrid H6, we change how the challenge ciphertext is generated by using the Extended-
LWE+ instance.

First sample uniformly random vector b ∈ Zm and set the challenge ciphertext as

ψ∗0 = b/q + e
(2)
0 , ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

and c∗ = rTBP∗ [Im×m|RBP∗ ](b/q − e
(1)
0 ) +DZm,αIm×m .

Hybrid H7: In hybrid H7, we change the challenge ciphertext to be uniformly random.

In algorithm SampleP, sample uniformly random vectors ct ∈ Zmq × Z`mq × Zmq × Z5m
q × Zq and outputs

ct.

Claim 4.8. Assuming the semantic security of PKE Π = (Gen′,Enc′,Dec′), hybrid H0 and H1 are compu-
tationally indistinguishable.

Proof. Observe there is only one difference between hybrids H0 and H1 occurs in the challenge ciphertext,
i.e. the encryption (under PKE Π) of the random matrices Si are replaced by encryption of 0. If a PPT adver-
sary A distinguishes between the H0-encryptions of ({Ri}i∈[`], {R0,i}i∈[5], {Rc}) and the H1-encryptions
of 0 with non-negligible probability, then we can construct an efficient reduction B that uses A to break the
semantic security of PKE Π with similar probability.

Claim 4.9. Hybrids H1 and H2 are statistically indistinguishable.

Proof. Observe the only difference between hybrids H1 and H2 is the generation of matrices

({Ai}i∈[`], {V0,i}i∈[5], {Ac
i}i∈[`])

The random matrices ({Ri}i∈[`], {R0,i}i∈[5], {Rc
i}i∈[`]) are used in the generation of public parameters pp:

Ai = ARi − x∗iG, V0,i = AR0,i − v0[i]G, Ac = ARc −G

and the construction of errors in challenge ciphertext

ei = eTRi, ec = eTRc, e0,i = eTR0,i

Then by Leftover Hash Lemma 2.4, the following two distributions are statistically indistinguishable

(A, {ARi}i∈[`], {AR0,i}i∈[5], {ARc}, ẽ) ≈ (A, {Ai}i∈[`], {V0,i}i∈[5], {Ac}, ẽ)

where ẽ = ({ei}i∈[`], {e0,i}i∈[5], {ec}). Hence, hybrid H0 and H1 are statistically indistinguishable.
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Claim 4.10. Hybrids H2 and H3 are statistically indistinguishable.

Proof. Observe there are three differences between hybrid H2 and H3: The generation of matrix A and
vector u in pp, challenge secret key skBP∗ and the computation methods to answer secret key queries. By
the property of algorithm TrapGen(q, n,m) in Lemma 2.6, the distribution of matrix A in hybrid H2 is
statistically close to uniform distribution, from which matrix A in hybrid H3 is sampled.

For secret key queries regarding branching program BP, in hybrid H2, we sample vector rBP, using

rBP ← SampleLeft(A,TA, (VBP + G),u, s)

While in hybrid H3, we sample vector rBP, using

rBP ← SampleRight(A,G,RBP,TG,u, sq)

By setting the parameters appropriately as specified in Section 4.3, and the properties of algorithms SampleLeft
and SampleRight in Lemma 2.7, the answers to secret key queries are statistically close.

By Leftover Hash Lemma 2.4, the distribution ([A|VBP∗ ], [A|VBP∗ ] · rBP∗) and ([A|VBP∗ ],u) are
statistically close. Hence, hybrid H2 and H3 are statistically indistinguishable.

Claim 4.11. Hybrids H3 and H4 are statistically indistinguishable.

Proof. The only difference between the two experiments is in the choice of y and e, specifically, the choice
of the y1 component of y = (y0|y1). We will show that the joint distribution of (e,y1) is identically
distributed in these two hybrids:

In hybrid H3, y1 is set as y1 = (µeBP∗ + DZm,Q)q, where Q = β2Im×m − γ2α2RT
BP∗RBP∗ with

e← DZm,α2Im×m and

eBP∗ ← Evalct(BP,x, {Ai, e
TRi}i∈[`], {V0,i, e

TR0,i}i∈[5], {Ac, eTRc})

Therefore, in hybrid H3, we may write the joint distribution of (e,y1) as T1 · DZ2m,I2m×2m
, where T1

def
=(

αIm×m 0m×m
γαqRT

BP∗ qL

)
for Q = LLT ∈ Zm×m via the Cholesky decomposition due to Lemma 2.1.

In hybrid H4, vector y = (y0|y1) is sampled as y = (y0|y1) ← DZ2m,β2q2I2m×2m
. Then e is com-

puted as e = νyT1 RBP∗/q + DZm,Q′ , where ν ← Dτ , τ = γα2/β2, and Q′ = α2I − τ2β2RT
BP∗RBP∗ .

Then in hybrid H4, we may write the joint distribution of (e,y1) as T2 · DZ2m,I2m×2m
, where T2

def
=(

L′ τβRBP∗

0m×m βqIm×m

)
for Q′ = L′L′T ∈ Zm×m via the Cholesky decomposition due to Lemma 2.1.

We claim equality of the following systems of equations:

T1T
T
1 =

(
α2Im×m γα2qRBP∗

γα2qRT
BP∗ γ2α2q2RT

BP∗RBP∗ + q2LLT

)
=

(
L′L′T + τ2β2RBP∗R

T
BP∗ τβ2qRBP∗

τβ2qRT
BP∗ β2q2Im×m

)
= T2T

T
2 .

This fact may be seen quadrant-wise by our choice of τ = γα2/β2 and the settings of Q = LLT

and Q′ = L′L′T in Equations (2) and (3). It then follows that (T−1
2 T1)(T−1

2 T1)T = I2m×2m, implying
T1 = T2Q

∗ for some orthogonal matrix Q∗. Because the spherical Gaussian DZ2m,I2m×2m
is invariant

under rigid transformations, we have T1 · DZ2m,I2m×2m
= T2Q

∗ · DZ2m,I2m×2m
= T2 · DZ2m,I2m×2m

, and
the claim follows.

24



Claim 4.12. Hybrids H4 and H5 are statistically indistinguishable.

Proof. Observe the main difference between hybrids H4 and H5 is the order of generation of vectors
y and rBP∗ : In hybrid H4, we first sample y = (y0|y1) ← DZ2m,β2q2I2m×2m

and set rBP∗ ← y +
DZ2m−y,q2(s2−β2)I2m×2m

, while in hybrid H5, we first sample rBP∗ ← DZ2m,s2q2I2m×2m
and set y =

(y0|y1)← rBP∗/2 +DZ2m,(β2−s2/4)q2I2m×2m
. By setting parameters appropriately as in Section 4.3, these

two distributions are statistically close.

Claim 4.13. Assuming the hardness of extended-LWE+
n,m,q,DZm,β′ ,R

for any adversarially chosen distribu-

tion over matrices R ∈ Zm×mq , then hybrids H5 and H6 are computationally indistinguishable.

Proof. Suppose A has non-negligible advantage in distinguishing hybrid H5 and H6, then we use A to
construct an extended-LWE+ algorithm B as follows:

Invocation. B invokes adversary A to commit to a challenge attribute vector x∗ = (x∗1, ..., x
∗
` ) and chal-

lenge branching program BP∗. Then B generates RBP∗ by first sampling ({Ri}i∈[`], {R0,i}i∈[5], {Rc}) as
in the hybrid, and computes

RBP ← EvalSim(BP,x, {Ri}i∈[`], {R0,i}i∈[5], {Rc},A)

Then it receives an extended-LWE+ instance for the matrix R = RBP∗ as follows:

{A, b = sTA + e, z0, z1, 〈z0, b− e〉+ e, 〈zT1 R, b− e〉+ e′}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , e, z0, z1

$← χn and e, e′ $← χ. Algorithm B aims to leverage
adversary A’s output to solve the extended-LWE+ assumption.

Setup. B generates matrices ({Ai}i∈[`], {V0,i}i∈[5], {Ac}) as specified in hybrid H1. Then, B sets chal-
lenge secret key skBP∗ = rBP∗ = (r∗0|r∗1) = (z0|z1) from extended-LWE+ instance and computes vector
u as in hybrid H5.

Secret key queries. B answers adversary A’s secret key queries as in hybrid H2.

Challenge ciphertext. B answers adversary A’s P -sample query by setting

ψ∗0 = b/q + e
(2)
0 + νyT1 RBP∗/q, ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

and c∗ = rTBP∗ [Im×m|RBP∗ ](b/q − e(1)) +DZm,αIm×m .

Faking receiver coin query. B answers adversary A’s faking receiver coin query by outputting the
extended-LWE instance’s vector skBP∗ = rBP∗ .

Output. B outputs whatever A outputs.

We can rewrite the expression of c∗
′

to be

c∗
′

= ([A∗|A∗RBP∗ ]
(
z0
z1

)
)Ts/q +DZ1,α

= ((z0|z1)
( A∗T

RT
BP∗A

∗T
)
)s/q +DZ1,α = z0A

∗Ts/q + z1R
T
BP∗A

∗Ts/q +DZ1,α

= 〈z0, b/q − e(1)〉+ 〈zT1 RBP∗ , b/q − e(1)〉+DZ1,α

We can see that if the eLWE+ instance’s vector b is pseudorandom, then the distribution simulated by
B is exactly the same as H5. If b is truly random and independent, then the distribution simulated by B is
exactly the same as H6. Therefore, if A can distinguish H5 from H6 with non-negligible probability, then
B can break the eLWE+

n,m,q,D(α/2)q ,α
′,Sf∗

problem for some α′ ≥ 0 with non-negligible probability.
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Claim 4.14. Hybrids H6 and H7 are statistically indistinguishable.

Proof. Recall the only difference between hybrids H6 and H7 is the generation of challenge ciphertext. In
hybrid H7, we observe if ψ∗0 is chosen from uniform distribution, then by Leftover Hash Lemma 2.4, it holds

ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

is also uniformly random (in their marginal distribution). Therefore, it remains to show that c∗ is still
uniformly random even conditioned on fixed samples of (ψ∗0, {ψ∗i }i, {ψ∗0,i}i, {ψc}).

As calculated above, we can unfold the expression of c∗ as

c∗ = 〈z0, b/q − x(1)〉+ 〈zT1 RBP∗ , b/q − x(1)〉+DZ1,α

We note that b/q − x(1) = ψ∗0 − x(1) − x(2) − νRBP∗y1/q, thus if we show that

〈RBP∗z1, νRBP∗y1/q〉

is close to uniform distribution (modulo 1), then c∗ will also be close to the uniform distribution (modulo
1), as c∗ is masked by this uniformly random number. Recall in hybrids, we set y1 = z1/2 + (shift), so it is
sufficient to analyze

〈RBP∗z1, νRBP∗y1/q〉 = ν〈RBP∗z1,RBP∗z1/q〉 = ν||R∗BP∗z1||2/q

By applying Lemma 4.2 inductively on matrix RBP∗ , we can obtain that

||R∗BP∗z1||2/q ≥
(||R0,jz1|| −Θ(m1.5)`||z1||)2

q

where R0,j ∈ {−1, 1}m×m. Since vector z1 is sampled from Gaussian with width sq, so its two-norm is
at least

√
m(sq) with overwhelming probability. Then by Lemma 4.4, the distribution ν||R∗BP∗z1||2/q is a

Gaussian distribution with width at least

d = τ
(ηsqm−Θ(m2`)sq)2

q
=
γα2(ηsqm−Θ(m2`)sq)2

β2q

We recall again that ν was sampled from a Gaussian with parameter τ = γα2/β2. By our setting of
parameters, we have d/ω(log(n)) ≥ 1. A Gaussian with such width is statistically close to uniform in the
domain Z1. This completes the proof.

This completes the proof of Lemma 4.7. Further, Theorem 4.5 follows from Lemmas 4.6 and 4.7. A
(flexibly) bi-deniable ABE from LWE then follows.

4.3 Parameter Setting

The parameters in Table 1 are selected in order to satisfy the following constraints:
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Parameters Description Setting
n,m lattice dimension n = λ,m = n2 log n

` length of input to branching program ` = n

q modulus (resp. bit-precision) smallest prime ≥ n1.5m2.5ω(log n)

α sampling error terms e, e 1
n2.5 log3 n

β sampling correlation vector y α/2

γ sampling correlation coefficient µ 1
n log1.5 n

s sampling secret key r 3β/2

η scaling parameter for R0,j Θ(m`)

Table 1: Parameter Description and Simple Example Setting

• To ensure correctness in Lemma 4.6, we have αsqm(η
√
m+ 2m1.5`) ≤ 1/4 .

• To ensure deniability in Hybrid H7, we have d/ω(log(n)) > γα2(ηsqm−Θ(m2`sq))2

β2qω(log(n))
> 1.

• To ensure large enough LWE noise, we need α ≥ (
√
n log1+δ n)/q.

• To apply the leftover hash lemma, we need m ≥ 2n log(q).

• To ensure that the matrix Q in FakeRCoins is positive definite, we have β ≥ αγ
√
η
√
m+ 2m1.5`; To

ensure that the matrix Q′ in the security proof is positive definite, we have α ≥ τβ
√
η
√
m+ 2m1.5`.

This constraint will also imply that in the security proof, both Q′ and Q′ − β′Im×m are positive definite
(note β′ = α/2).

• To ensure hybrids H3 and H5 are well-defined, we have s > β and β > s/2. Let s := (3/2)β.

Regev [Reg05] showed that for q >
√
m/β′, an efficient algorithm for LWEn,m,q,χ for χ = Dβ′q

(
and

β′q ≥
√
nω(log(n))

)
implies an efficient quantum algorithm for approximating the SIVP and GapSVP

problems, to within Õ(n/β′) approximation factors in the worst case. Our example parameter setting yields
a bi-deniable AB-BTS based on the (quantum) hardness of solving SIVP

Õ(n9.5)
, respectively GapSVP

Õ(n9.5)
.

(We write this term to additionally absorb the (1/q2) loss from our LWE to eLWE+ reduction.) We leave
further optimizing the lattice problem approximation factor to future work.

4.4 From AB-BTS to Flexible Bi-Deniable ABE

We present the instantiation of a flexible bi-deniable ABE using our AB-BTS scheme described above. We
let Σ′ = (Setup′,DenSetup′,Keygen′,SampleP′,SampleU′, TestP′,FakeRCoins′,FakeSCoins′) be an AB-
BTS scheme. Then the flexible bi-deniable ABE Σ = (Setup,DenSetup,Keygen,Enc,DenEnc,Dec, SendFake,
RecFake) is:

• Setup(1λ): Run algorithm (pp′,msk′)← Setup′(1λ) in AB-BTS and set pp = pp′,msk = msk′.

• DenSetup(1λ): Run algorithm (pp′,msk′, fk′) ← DenSetup′(1λ) in AB-BTS and set pp = pp′,msk =
msk′, fk = (fk′,msk′).

• Keygen(msk, f): Run algorithm sk′f ← Keygen′(msk, f) in AB-BTS and set skf = sk′f .

• Enc(pp,x, µ; (r
(1)
S , r

(2)
S )): On input the message µ ∈ {0, 1}, if µ = 0, then run ci ← SampleU′(pp,x; r

(i)
S )

for i = 1, 2, otherwise, µ = 1, run c1 ← SampleU′(pp,x; r
(1)
S ) and c2 ← SampleP′(pp,x; r

(2)
S ). Output

ctx = (c1, c2).
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• DenEnc(pp,x, µ; (r
(1)
S , r

(2)
S )): On input the message µ ∈ {0, 1}, then run ci ← SampleP′(pp,x; r

(i)
S ) for

i = 1, 2, otherwise, µ = 1, run c1 ← SampleU′(pp,x; r
(1)
S ) and c2 ← SampleP′(pp,x; r

(2)
S ). Output

ctx = (c1, c2).

• Dec(ctx, skf ): If f(x) 6= 0, then output ⊥. Otherwise, parse ctx = (c1, c2) and run bi ← TestP′(skf , ci)
for i = 1, 2. Output 0 if the b1 = b2 and 1 if b1 6= b2.

• SendFake(pp, rS , µ, µ
′): If µ = µ′, return rS . If (µ, µ′) = (0, 1), then run r∗(2)

S ← FakeSCoins′(pp, r
(2)
S )

and return (r
(1)
S , r

∗(2)
S ). Else if (µ, µ′) = (1, 0), run r∗(1)

S ← FakeSCoins′(pp, r
(1)
S ) and return (r

∗(1)
S , r

(2)
S ).

• RecFake(pp, fk, ctx, f, µ
′): Parse ctx = (c1, c2) and use fk to decrypt the ciphertext ctx then obtain the

plaintext µ. If µ = µ′, then run the honest key generation of the BTS scheme, i.e. sk′f ← Keygen′(msk′, f).
Otherwise, run sk′f ← FakeRCoins′(pp, fk, cµ+1, f). Return sk′f .

Similar to the work by Canetti et al. [CDNO97] and O’Neil et al. [OPW11], the following, desired
theorem can be proven in a straightforward manner.

Theorem 4.15. Assume that Σ′ is a flexible bi-deniable AB-BTS, as in Definition 3.2. Then Σ is a flexibly
bi-deniable ABE, as in Definition 3.1.
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