
TumbleBit: An Untrusted Tumbler for
Bitcoin-Compatible Anonymous Payments

Ethan Heilman, Foteini Baldimtsi, Leen Alshenibr, Alessandra Scafuro, Sharon Goldberg
Boston University

ABSTRACT
This paper presents TumbleBit, a new anonymous pay-
ments scheme that is fully compatible with today’s Bit-
coin protocol. TumbleBit allows parties to make pay-
ments through an untrusted Tumbler. No-one, not even
the Tumbler, can tell which payer paid which payee
during a TumbleBit epoch. TumbleBit consists of two
interleaved fair-exchange protocols that prevent theft
of bitcoins by cheating users or a malicious Tumbler.
Our protocol combines fast cryptographic computations
(performed off the blockchain) with standard bitcoin
scripting functionalities (on the blockchain). We prove
the security of TumbleBit using the ideal/real world
paradigm and the random oracle model. Security fol-
lows from the standard RSA assumption. We have im-
plemented our protocol and used it to mix payments
from several participants on the blockchain. Because
our off-blockchain computations run in less than a sec-
ond, TumbleBit’s performance is limited only by the
time it takes to confirm three blocks on the blockchain.

1. INTRODUCTION
One original reason for Bitcoin’s popularity was a per-

ception of anonymity. Indeed, Satoshi originally claimed
that bitcoins could be spent “without information link-
ing the transaction to anyone” [31]. However, it was
subsequently shown that the movement of bitcoins could
be traced through the blockchain [28, 35]. It has since
become clear that anonymity is not guaranteed for the
average Bitcoin user. Thus, two research directions have
since emerged. The first proposes new anonymous and
decentralized cryptocurrencies (e.g., Zerocash [30, 9]).
The second develops anonymity mechanisms that are
compatible with Bitcoin, so-called mixing or tumbler
services [6, 15, 36, 41, 26, 9, 37, 42, 12, 19]. While
the first direction is very promising, its not clear if it
will be widely adopted by users. Thus, we need robust

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

anonymity solutions for Bitcoin’s existing user base.
In this paper, we design, prove secure, and implement

TumbleBit, a new anonymity system that is compatible
with today’s Bitcoin protocol. While several works have
already been proposed to provide anonymity on top of
Bitcoin, TumbleBit presents a new point in the design
space that outperforms these works in several respects.
We compare TumbleBit to prior work in Section 1.1.

TumbleBit uses a untrusted intermediary, the Tum-
bler T , to mix together payments from ℵ distinct payers
(Alice A) to ℵ distinct payees (Bob B). Each epoch of
the protocol requires three blocks to be confirmed on the
blockchain. TumbleBit provides set-anonymity within
an epoch—no one other thanA or B, including the Tum-
bler, can determine which payer A paid which payee B
during a given epoch. Like earlier schemes, we use fees
to resist Sybil and Dos attacks [12], and ephemeral keys
to recover from a malicious Tumbler that tries to link
Alice to Bob by aborting their payment [19].

TumbleBit prevents a malicious Tumbler T from steal-
ing users’ bitcoins. To do this, TumbleBit consists of
two interleaved fair exchange protocols; the first allows
Alice A to swap a bitcoin for an anonymous voucher
from T , and the second allows Bob B to provide T
with an anonymous voucher in exchange for a bitcoin.
The fair exchange property prevents T from stealing
bitcoins by refusing to issue/redeem a voucher. We for-
mally prove that our protocols satisfy this property.1

The security of our scheme relies on the standard RSA
assumption and an equivocal encryption scheme in the
random oracle model (ROM).

Most of our effort is spent on making TumbleBit com-
patible with the today’s Bitcoin protocol. Specifically,
we implement both of TumbleBit’s fair-exchange pro-
tocols using smart contracts [38] via Bitcoin’s current
scripting functionality. Bitcoin scripts offer a very lim-
ited set of instructions—they allow us to implement con-
tracts that exchange a bitcoin for (1) the preimage of a
hash, or (2) an ECDSA signature on a Bitcoin transac-
tion. Nevertheless, we combine these limited scripting

1True fair exchange is impossible in the standard
model [32] and thus alternatives have been proposed,
such as gradual release mechanisms, optimistic models,
or use of a trusted third party. We follow prior works
that use Bitcoin for fair exchange [22, 23] and treat the
blockchain as a trusted public ledger. Other works use
the term Contingent Payment or Atomic Swaps [25, 4].

10.1145/1235

functionalities (on the blockchain) with a cryptographic
protocol (performed off the blockchain) to obtain our
desired anonymity system.

Our cryptographic protocols are specially tailored to
be fast; they run in seconds because they rely on sim-
ple RSA blind signatures, symmetric encryption, and
cut-and-choose techniques. At the core of TumbleBit
is an “RSA evaluation as a service” protocol that may
be of independent interest. This protocol allows Alice
A to pay one bitcoin to T in fair exchange for an RSA
evaluation of an input x (chosen by A) under T ’s secret
key. While our idea is similar in spirit to “zero knowl-
edge contingent payments” [25] or the concurrent work
in [5], we do not need expensive zero-knowledge proofs
or ZK-Snarks [10]; see Section 4.1.

We have implemented our TumbleBit system in 7032
lines of code in C++ and python, using OpenSSL as
our cryptographic library. Our protocol requires only
430K bytes of data on the wire and a combined 0.8
seconds of compute time on a single CPU. Thus, the
performance of our protocol is currently limited only
by the time it takes for three blocks to be added to
Bitcoin’s blockchain; currently, this takes ≈ 30 minutes.
We have used our TumbleBit system to mix payments
from five payers to five payees; the relevant transactions
are visible on the blockchain (Appendix A).

1.1 Related Work
A cryptocurrency tumbler or mixing service provides

a way to mix potentially identifiable or “tainted” coins
with others, such that it becomes hard to trace the trail
to the coin’s original source. We summarize the prop-
erties of prior works in this area in Figure 1.

CoinShuffle [36] builds on CoinJoin [24] to provide a
decentralized tumbler that prevents bitcoin theft. The
anonymity properties of CoinShuffle are rigourously an-
alyzed in [29]. However, CoinShuffle’s anonymity set
is thought to be small as communication overhead in-
creases quadratically [12, 14]. Because CoinShuffle and
CoinJoin perform their mix in a single transaction, they
are particularly vulnerable to DoS attacks (where a user
joins the mix and then aborts, disrupting the protocol
for all other users) and Sybil attacks (where an adver-
sary deanonymizes a user by forcing it to mix with Sybil
identities secretly under her control) [14, 40].

XIM [12] builds on fair-exchange mixers like [6]. XIM
prevents theft, and uses fees to resist DoS and Sybil
attacks—users must pay to participate in a mix, raising
the bar for attacker that seeks to disrupt the protocol by
joining the mix and then aborting. Moreover, an abort
by a single user does not disrupt the mix for others. One
of XIM’s key innovations is a secure method for finding
parties to participate in a mix. However, this also adds
several hours to the protocol, because users must adver-
tise themselves as mix partners on the blockchain.

Blindcoin [41] and its predecessor Mixcoin [15], use
a trusted third party (TTP) to mix Bitcoin addresses.
However, this third party can steal users’ bitcoins; theft
is detected but not prevented. In Mixcoin, the TTP can
also violate anonymity.

CoinSwap [26] is a fair-exchange mixer that allows two
parties to anonymously send bitcoins through an inter-

mediary. Fair exchange prevents the CoinSwap interme-
diary from stealing funds. Unlike our scheme, however,
CoinSwap does not provide anonymity against even a
honest but curious intermediary. Coinparty [42] offers
another decentralized solution, but it is secure only if
2/3 of the mixing parties are honest.

Our work builds on the recent work of [19]. As de-
scribed in Section 2, TumbleBit shares the same anonymity
and fair exchange properties as [19]. Both [19] and Tum-
bleBit uses an untrusted intermediary that cannot harm
anonymity or steal bitcoins. Both TumbleBit and [19]
use anonymous fee vouchers to resist DoS and Sybil at-
tacks (Section 5.4), building on ideas from XIM [12].
However, while [19] requires scripting functionality that
is not currently supported by bitcoin, TumbleBit is fully
compatible with bitcoin. Moreover, while [19] does not
provide an implementation, TumbleBit has been imple-
mented (Section 6) and has been used to mix payments
on the blockchain (Appendix A).

The work related to our ‘RSA evaluation as a service’
protocol is reviewed in Section 4.1.

2. BACKGROUND AND OVERVIEW
Our goal is to allow a payer, Alice A, to anonymously

send 1 bitcoin to a payee Bob B. Alice has her (potentially-
long-term) Bitcoin address AddrA, and Bob chooses a
fresh ephemeral address AddrB . Achieving this goal im-
plies that we also have a Tumbler, since the payer and
payee also could be the same person.

Naturally, if Alice signed a regular Bitcoin transaction
indicating that AddrA pays one 1 bitcoin to AddrB , then
the blockchain would record a link between A and B
and anonymity could be harmed using the techniques
of [28, 35, 11]. An approach to break this linkability is
to introduce a trusted third party that receives bitcoins
from payers, shuffles them and then presents them to
the payees. However, the the trusted third party knows
who is paying who, and can potentially also steal their
bitcoins. Thus, a natural question is

How can we build a system that allows A
to anonymously pay B, without requiring a
trusted third party?

We start by reviewing a trivial solution that uses elec-
tronic cash (eCash) and a third party called the Tumbler
T . We then review why this trivial solution does not
prevent bitcoin theft by an untrusted Tumbler, and ex-
plain how to deal with this using “smart contracts” [38].

2.1 Trivial solution with eCash.
In [19], it was observed that it might be possible to

solve this problem using a trivial online eCash scheme
based on [16]. Multiple payer-payee pairs pay through
the Tumbler T . The eCash scheme ensures that if enough
payments are made simultaneously through T , then no-
one, not even T , can link a payer A to its payee B. This
unlinkability is achieved via blind signatures.

Blind signatures. In a blind signature scheme, the
signer signs a “blinded” message that it cannot read.
Blind signatures offer the usual signature unforgeability
property, and also blindness— the signer cannot link a

Scheme Prevents Coin Theft Anonymous Resists DoS Resists Sybils Min Mixing Time Compatible with Bitcoin
Coinjoin [24] X small set × × 1 block X
Coinshuffle [36] X small set × × 1 block X
Coinparty [42] 2/3 users honest X some1 X (fees) 2 blocks X
XIM [12] X X X X (fees) hours X
Mixcoin [15] TTP accountable × (TTP) X X (fees) 2 blocks X
Blindcoin [41] TTP accountable X X X (fees) 2 blocks X
CoinSwap [26] X × (TTP)2 X X (fees) 2 blocks X
BSC [19] X X X X (fees) 3 blocks ×
TumbleBit X X X X (fees) 3 blocks∗ X

Table 1: A comparison of Bitcoin Tumbler services. TTP stands for Trusted Third Party. We count
minimum mixing time by the minimum number of Bitcoin blocks. Any mixing service inherently
requires at least one block. 1Coinparty could achieve some DoS resistance by forcing parties to solve
puzzles before participating. 2CoinSwap is not anonymous when the TTP is malicious. ∗TumbleBit
can be modified to run in 2 blocks, see Section 6.4.

Public Input (pk , N)
Payer A Payee B Tumbler T (sk)
sn ←R {0, 1}∗
r ←R Z

∗
N

sn = H(sn) · rpk btc,sn−−−−−−−−−−−−−−−−−−→
σ←−−−−−−−−−−−−−−−−−−− σ = (sn)sk

σ = σ/r
sn,σ−−−→ sn,σ−−−→

btc′←−−

Figure 1: Trivial protocol for anonymous pay-
ments, allows tumbler T to steal bitcoins. All
computations are done modulo N .

particular message/signature pair to a particular exe-
cution of the protocol. A simple blind signature can be
instantiated with RSA (as suggested by Chaum [16]).
The signer has a standard RSA secret key sk and pub-
lic key (pk , N) whereN is an RSA modulus, and (sk , pk)
are RSA exponents. Let G be an RSA full-domain hash
function [8]. Suppose Alice A wants the signer to sign
a message sn. Alice A produces a blinded message sn
by choosing a random “blind” r ← Z∗N and letting

sn = rpkG(sn) mod N.

The signer produces the blind signature as

σ = snsk mod N

and finally Alice unblinds the signature to obtain

σ = σ/r = (G(sn))sk mod N.

Notice that the final σ is just a regular full-domain-
hash RSA signature on message sn and can be verified
as such. Blind signatures can also be constructed from
other cryptographic assumptions, e.g., [33, 13, 3].

Tumbler based on eCash In Figure 1 we show how
blind signatures are applied to this setting. Payer A
sends T a bitcoin btc and a blinded serial number sn. In
return, A obtains a blind signature σ. Payer A unblinds
these values to create an anonymous voucher (sn, σ)
which she uses to pay B. Finally, B obtains a bitcoin by
redeeming (sn, σ) with the tumbler T . Blindness pro-
vides anonymity, by ensuring that T cannot link a blind
signature σ that T issued with an unblinded signature
σ that B redeemed. Unforgeability prevents a cheating
user from issuing a voucher to herself.

2.2 The need for fair exchange
However, this trivial scheme is not robust to a mali-

cious tumbler. That is, a malicious tumbler could steal
bitcoins by (1) refusing to issue A a blind signature σ in
exchange for her bitcoin, or (2) refusing to redeem B’s
anonymous voucher (sn, σ) in exchange for a bitcoin.
[19] solves this problem using Bitcoin scripts that en-
force a fair exchange mechanism: in a first fair exchange
A swaps his bitcoin for a blind signature σ that is pro-
vided by T and in the second fair exchange B swaps an
anonymous voucher (sn, σ) for a bitcoin provided by T .

[19] builds these fair exchanges using scripting func-
tionalities that are just not available in Bitcoin today.
The authors of [19] argue that these functionalities could
be added to Bitcoin via a soft fork. (A fork occurs when
the Bitcoin protocol alters its interpretation of what
blocks can be considered valid.) However, a soft fork
requires consensus from a majority of Bitcoin miners,
and thus can be very challenging to achieve in practice.
As such, in this work we build two fair exchanges that
are analogous to those in [19] and compatible with to-
day’s Bitcoin scripts.

2.3 Bitcoin scripts and smart contacts.
Recall that bitcoins are ‘stored’ in transactions, and

transferred by sending the bitcoins in one transaction
to a new transaction. The blockchain exists to provide
a public record of all such valid transfers.

Each transaction determines the conditions under which
the bitcoins held in that transaction can be moved to an-
other transaction. These rules are specified by a simple
non-Turing-complete scripting language called Script.
We use Script to build “smart contracts” [38] that can
be constructed from the following two transactions:

• The Toffer transaction, where one party offers to pay
his bitcoin to any party that can sign a transaction
that meets some condition C.

• The Tfulfill transaction, which meets the condition C
stipulated in Toffer .

Toffer is posted to the blockchain first, and once Tfulfill

is confirmed by the blockchain, the bitcoins in Tfulfill

flow from the party signing transaction Toffer to the
party signing Tfulfill . Script also supports time-locking

for these contracts (CHECKLOCKTIMEVERIFY fea-
ture [39]), where Toffer additionally stipulates that a
valid Tfulfill must be confirmed by the blockchain within
a specific time window tw . If Tfulfill is not confirmed in
time, then the bitcoins in Toffer revert back to the party
signing Toffer and are no longer on offer to other par-
ties. Two conditions (and some variations on them) are
currently supported by Bitcoin:

Hashing condition (OP RIPEMD160). The con-
dition C stipulated in Toffer is: “Tfulfill must contain
the preimage of value y computed under the hash func-
tion H.” (In this case H would be the hash function
RIPEMD-160.) Then, Tfulfill fulfills this condition by
including a value x such that H(x) = y.

Signing condition (OP CHECKSIGVERIFY). The
condition C stipulated in Toffer is: “Tfulfill must be dig-
itally signed by a signature that verifies under public
key PK .” Then, Tfulfill fulfills this condition if it is
validly signed by the secret key corresponding to public
key PK . This particular condition is the most restric-
tive. First, today’s bitcoin protocol requires the signa-
ture to be ECDSA over the Secp256k1 elliptic curve [34].
No other elliptic curves or types of signatures are sup-
ported. Second, the condition specifically requires Tfulfill

itself to be signed. Thus, one could not use this func-
tionality to build a contract whose condition requires an
arbitrary message m to be signed by PK .

These conditions can be composed under “AND” and
“OR”operators. TumbleBit only requires contracts based
on ANDs and ORs of the two conditions described above.

2.4 Blindly-signed contracts
We now describe the protocol in [19], and explain why

the contracts it requires are not compatible with the
scripting functionalities we just described.

2.4.1 Bitcoin for blind signature.
In the following fair exchange, A offers a bitcoin to
T in exchange for T providing a blind signature σ on
serial number sn, where sn is randomly chosen by A.

Protocol overview. A chooses random sn and then
blinds it to sn. Then, A signs and posts a transac-
tion Toffer that offers one bitcoin under condition“Tfulfill

must contain a blind signature on blinded message sn
that validates under the tumbler’s T public key PK .”
Toffer is also timelocked to time window tw (Section 2.3).
Once Toffer is confirmed by the blockchain, T obtains
the offered bitcoin by posting a transaction Tfulfill con-
taining σ a valid blind signature on sn. Importantly, the
validity of σ in Tfulfill is programmatically enforced by
the bitcoin protocol—namely, Tfulfill will be confirmed
only if miners can use PK to validate that σ is indeed
a valid blind signature on sn.

Why is this a fair exchange? This follows because
the bitcoin offered by A only flows to the tumbler T
once T produces a Tfulfill that contains a valid blind
signature σ. If T fails to do this in time, the timelock
ensures that A loses nothing because the bitcoin offered
in Toffer reverts back to A.

Lack of bitcoin support. Notice, however, that the
condition in Toffer is not currently supported by Bitcoin.

Firstly, T is required to sign sn, a blinded message with
has a specific structure induced by the blind signature
scheme; today, Bitcoin Script only supports the veri-
fication of ECDSA signatures over Secp256k1. Given
that Toffer needs to verify a blind signature, and we do
not have secure constructions of blind signature from
ECDSA, checking the condition in Toffer with Script is
impossible without the introduction of a new opcode.

In Section 4.2, we realize this protocol in bitcoin-
compatible manner using bitcoin’s hashing condition.

2.4.2 Wrapper protocol from [19].
[19] uses a second fair exchange, where B offers a valid

anonymous voucher (sn, σ) to T in exchange for a bit-
coin. To prevent T from stealing bitcoins, this fair ex-
change (1) forces T to commit to redeeming the anony-
mous voucher (sn, σ) even before he issues it, and is
thus (2) wrapped around the bitcoin-for-blind-signature
fair exchange between A and T that we just described.
This way, T cannot honestly complete the bitcoin-for-
blind-signature fair exchange with A and then refuse to
redeem B’s corresponding anonymous voucher.

Protocol description. The protocol is as follows.

1. The payerA chooses her serial number sn, and hashes
it to hsn = H(sn) where H is the Bitcoin hash func-
tion. A sends hsn to B.

2. B asks the tumbler T to post a transaction Toffer

offering one bitcoin under condition: “Tfulfill must be
signed by the public key of B and contain (1) the hash
preimage of hsn under H and (2) a valid signature
on that preimage that verifies under the public key
of T .” Toffer is timelocked to time window tw ′ > tw .

3. After the blockchain confirms Toffer , the payer A and
tumbler T engage in the bitcoin-for-blind-signature
fair exchange described above. At the end of this fair
exchange, A learns a blind signature σ on her blinded
serial number sn.

4. A unblinds these values to obtain the anonymous
voucher (sn, σ) which she provides to B.

5. Finally, B completes the fair exchange by posting
a transaction Tfulfill which contains (sn, σ). Notice
Tfulfill fulfills the condition in T because (1) sn is a
valid preimage for hsn (i.e., hsn = H(sn)) and (2) σ
is valid signature on sn. Once Tfulfill is confirmed by
the blockchain, the bitcoin in Toffer flows from T to
B. To speed up the protocol, this transaction can be
confirmed in the same block as the Tfulfill from the
bitcoin-for-blind-signature fair exchange.

The whole protocol requires four transactions that can
be confirmed in three blocks of the bitcoin blockchain.
[19] calls this three-block window an “epoch”.

Why is this a fair exchange? This follows because
by signing the value hsn in Toffer , the tumbler T com-
mits to redeeming the voucher (sn, σ). Meanwhile, B
cannot steal this bitcoin from T because B cannot forge
the signature σ on the serial number sn. Instead, B ob-
tains a bitcoin from T iff B posts a Tfulfill containing

valid voucher (sn, σ) where hsn = H(sn); if B fails to
do this, the bitcoin offered in Tfulfill reverts back to T .

Lack of bitcoin support. However, this fair-exchange
mechanism also cannot be constructed from the script-
ing functionalities currently supported by bitcoin. The
problem arises in the second condition of Toffer , which
requires “a valid signature on that preimage that veri-
fies under the public key of T ”. First, we are requir-
ing a signature on an arbitrary message (namely on
the randomly-chosen serial number sn that is the hash
preimage of hsn) rather than on a message structured
as a Bitcoin transaction. Second, Bitcoin scripts only
support ECDSA signatures over Secp256k1, and we lack
instantiations of ECDSA blind signatures.

In Section 5, we solve this problem by using bitcoin-
compatible protocol that fairly exchanges a bitcoin for
a new type of anonymous voucher.

3. ANONYMITY AND SECURITY
All payers A and payees B run our protocol in lock-

step during a three-block epoch. All users know the
start of an epoch (because e.g., it has a starting block of
height divisible by three). We also require payer A and
payee B to trust each other; if they didn’t, a malicious
A could always publicly proclaim that she paid B.

Set-anonymity within an epoch. Assume pay-
ers only make one anonymous payment per epoch, and
payees only accept one payment per epoch. Then, if ℵ
payments completed during the epoch, the probability
of linking any chosen payer A to a payee B should not be
more than 1

ℵ plus some negligible function [19, 12]. This
holds for any adversary that inspects the blockchain,
and even for a potentially malicious T .

Remark: Intersection attacks. While this no-
tion of anonymity is commonly used in Bitcoin tum-
blers (e.g., [12, 19]), it does suffer from the following
weakness. Any adversary that observes the transactions
posted to the blockchain within one epoch can learn
which payers and payees participated in that epoch.
Then, this information can be correlated to de-anonymize
users across epochs (e.g., using frequency analysis or
techniques used to break k-anonymity [18]). These ‘in-
tersection attacks’ follow because set-anonymity is com-
posed across epochs; see also [12, 29] for discussion.

Recovery from anonymity failures. We also re-
quire TumbleBit users to be able to recover from anonymity
failures that result from (1) payments that do not com-
plete during an epoch, or (2) epochs where the anonymity
set is too small (e.g., ℵ = 1).

DoS Resistance. The Tumbler T should resist Denial
of Service (DoS) attacks where a malicious user starts
and aborts many parallel runs of the protocol.

Sybil Resistance. The protocol should resist Sybils
(i.e., identities that are under the control of single user)
that attempt to deanonymize a target user.

We explain why TumbleBit satisfies these properties in
Section 5.4.

Fair exchange. We formally specify the fair ex-
change properties of our schemes in Sections 4.2.1 and 5.4.

At a high level, we require that the Tumbler T cannot
steal bitcoins from payer A or payee B. A and B should
not be able to steal either: B should not be able to claim
a bitcoin from T unless his corresponding payer really
sent B a payment through T . A should not use a sin-
gle bitcoin to pay multiple payers B. Finally, A should
not be able to convince B that she paid him without
actually spending a bitcoin.

4. BITCOIN FOR RSA EXPONENTIATION
FAIR EXCHANGE

We now show how to realize a Bitcoin-compatible fair
exchange where A pays one bitcoin to T in exchange for
T computing an RSA exponentiation to its RSA secret
key sk . This protocol is a crucial building block for our
TumbleBit scheme, but is also of independent interest.
Essentially, such a protocol allows a user to “purchase”
two specific operations from T : (a) an RSA signature
and, (b) an RSA decryption. Both these operations
could be done “blind” (i.e., blind signature and blind
decryption) if the user first blinds the message to be
signed/decrypted2.

Specifically, our protocol fairly exchanges one bitcoin
from Alice A for the computation by T of

f−1
RSA(y, sk , N) = ysk mod N

where the input y is chosen by Alice A, sk is T ’s se-
cret RSA key and N is the RSA modulus. The RSA
verification function is

fRSA(x, pk , N) = xpk mod N

and where pk is T ’s public RSA key.

4.1 Approaches from the literature
Generic solutions exist for this problem.

Contingent payments. Greg Maxwell described a
protocol for“zero-knowledge contingent payments”(ZKCP)
[25]. The scheme in [25] swaps one bitcoin from Al-
ice A in exchange for having T compute any publicly-
verifiable function f on an input of A’s choosing. The
idea is as follows. After T computes the result f(y)
on Alice’s input y, it encrypts the result under a ran-
domly chosen key k to obtain a ciphertext c, and hashes
the encryption key to obtain h = H(k). T then sends
Alice A the ciphertext c and hash h along with a zero-
knowledge (ZK) proof that they were formed correctly.
(This proof must been done in zero knowledge, because
T should not reveal k of f(y) to A before being paid
with A’s bitcoin.) After A verifies the proof, A posts a
transaction Toffer offering one bitcoin under condition:
“Tfulfill must contain the hash preimage of h”. T claims
the bitcoin by posting a transaction Tfulfill containing
k. Now A can use k to decrypt c to obtain her desired
output f(y). This realizes a fair exchange because the
offered bitcoin reverts back to A if T fails to post a valid
Tfulfill in a timely manner.

2We use RSA because it lets us blind a single message
multiple times (i.e., Blind m to m̄. Then blind m̄ to ¯̄m.
etc.) Our technique could be used by other operators
that have this property.

ZKCP via ZK-Snarks. Recently, [27] showed
how to instantiate the ZP proofs used in this proto-
col with ZK-Snarks [10]. The function f was a 16x16
Sudoku puzzle and the resulting protocol was run and
completed within about 20 seconds. We could use this
approach in our setting by (1) letting f be f−1

RSA, an RSA
decryption/signature, and (2) using [27]’s ZK-snark but
replacing the verification of the Sudoku puzzle with an
RSA verification fRSA. A disadvantage of this approach
is that RSA verification within a ZK-Snark is likely to be
slower than Sudoku puzzle verification; one reason for
this is that state-of-the-art ZK-Snarks operate in prime
order fields of (roughly) 254 bits. Since a 2048-bit RSA
verification deals with 2048-bit long numbers, each such
number has to be split up and expressed as an array of
smaller ones, making arithmetic operations much more
complicated [17]. In any case, our protocol for RSA ex-
ponentiation is faster (running in< 1 second) than [27]’s
protocol for 16x16 Sudoku puzzles (Section 6).

ZKCP via Garbled Circuits. As an alterna-
tive to ZK-Snarks, one could use more generic ZK proof
based on zero-knowledge garbled circuits (GC) as shown
in [20]. While GC-based ZK proofs work reasonably well
for evaluating hash functions, they are computationally
heavier for modular exponentiations (like the one in-
volved in the RSA verification) because the latter do
not have a “good” (i.e., short) Boolean circuit represen-
tation [21].

Incentivizing correct computation. A different
approach that also uses GCs was proposed in [22]. Two
parties use GCs to compute an arbitrary function g(a, b)
without revealing their respective inputs a and b, and
with the added feature that if one party aborts the pro-
tocol before the output is revealed, then other party is
automatically compensated with bitcoins. To use this
protocol in our setting, the function g should be f−1

RSA,
input a is the RSA secret key sk of T , and b becomes
the input y chosen by A. Then, if T aborts the proto-
col before A learns the output, then the bitcoin offered
by A reverts back to A. Again, however, the efficiency
of this approach is limited the computational overhead
of performing modular exponentiations inside a garbled
circuit.

Our protocol sidesteps these issues because it avoids
ZK proofs or GCs; instead, we use simple RSA opera-
tions along with a custom cut-and-choose technique.

4.2 fRSA evaluation as a service
The goal of this scheme is to allow A to pay one bit-

coin to T in (fair) exchange for a computation of be
f−1

RSA, which is essentially an RSA signature/decryption
from T on A input y. The output of the protocol is
ysk mod N . The core idea similar to that of contingent
payments: T evaluatesA’s input y by computing ysk ,
encrypts the result under a randomly chosen key k to
obtain a ciphertext c, hashes the key k under bitcoin’s
hash as h = H(k) and then provides (c, h) to Alice. A
posts a Toffer offering one bitcoin in exchange for the
preimage of h, and T earns the bitcoin by publishing
k in Tfulfill . As before, we need to find a way for A
to validate that the preimage of h will really decrypt c

Ffair-RSA is parameterized by a function (fRSA, f
−1
RSA) and

expiration time tw ∈ N.
Parties: A, T , and adversary S.

Setup. Pick (pk , sk) for (fRSA, f
−1
RSA). Send (Setup,

pk) to A and S, and (Setup, pk , sk) to T .

Evaluation. On input (request, sid, y, 1BTC) from
A: If y is in the range of fRSA, send (request, sid, A,
y) to T . Start counter tw sid = 0.
On input (evaluate,sid, A) from T : Send
(sid, f−1

RSA(sk , y)) to A. Send (payment, sid, 1BTC)
to T . If tw sid = tw , send (refund no-service,
sid,1BTC) to A.

Figure 2: Ideal Functionality Ffair-RSA.

to the her desired value. This time, we do it using a
cut-and-choose technique and the blinding properties of
RSA. The full protocol is shown in Figure 3.

4.2.1 Security Definition
Informally, we want to capture the following two fair-

ness requirements:

• (Fairness for Tumbler T) After one execution of
the protocol A will learn f−1

RSA(y, sk) on exactly one
input y of her choice.

• (Fairness for Alice A) T will earn 1 bitcoin iff A
obtains a correct value f−1

RSA(y, sk).

We model the above two requirements with an ideal
functionality, that we call Ffair-RSA, shown in Fig. 2.
Ffair-RSA acts like a trusted party between A and T .
Ffair-RSA receives a preimage request of the form (y, 1
bitcoin) from A, and it forwards the request to T . If T
agrees to reveal the preimage of y to A, then T receives
1 bitcoin while A receives x = f−1

RSA(y, sk). Otherwise,
if T refuses, A will get 1 bitcoin back, and T receives
nothing. Fairness is modeled by the fact that A can re-
quest a preimage only if she sends 1 bitcoin to Ffair-RSA;
similarly, T receives 1 bitcoin only if he agrees to re-
veal f−1

RSA(y, sk) to A. Therefore, Ffair-RSA captures the
fairness requirement that we need in our scheme.

Remark 2. Note that, when fRSA, f
−1
RSA is the RSA

trapdoor function, A can always learn pre-images of ran-
dom values (i.e., values that are not of her choice) with-
out interacting with Ffair-RSA. That is, A can compute
y = xpk mod N , in which case, she trivially“knows”
that ysk mod N = x.

Remark. Note that functionality Ffair-RSA does not
provide any privacy for A. Indeed, T learns A’s input y
(even if she refuses to provide her with the service). To
use Ffair-RSA in our TumblerBit scheme, users will have
to first blind their inputs to Ffair-RSA.

We follow the standard ideal/real world paradigm.
To prove that a protocol securely realizes Ffair-RSA, one
must show that the view obtained by a real world ad-
versary Adv, corrupting either T or A and playing the
real protocol where T participates with the secret sk ,

can be simulated by the ideal-world adversary (which
is a PPT simulator S) that interacts only with Ffair-RSA
(and thus learns no information or bitcoins apart from
what is allowed by the fair functionality).

Definition 1 (Secure realization of Ffair-RSA).
A protocol π securely realizes Ffair-RSA if, for every PPT
adversary Adv corrupting either A or T , there exists
a PPT Simulator S such that the view viewreal of Adv
participating in the real protocol π is computationally in-
distinguishable from the view viewideal generated by S.
Where viewreal contains the randomness and the input
of Adv together with the transcript of the protocol.

Our proof is in the Random Oracle (RO) model [7];
hash functions are modeled as perfectly random func-
tions, and in the security proof the simulator can pro-
gram their answers.

4.2.2 Protocol Description
We overview the protocol in Figure 3. Instead of ask-

ing T to provide just one (c, h) pair, T will be asked to
provide n + m such pairs. Then, we use the cut-and-
choose idea: A will ask T to “open” n of these pairs, by
revealing the randomly-chosen keys ki’s used to create
each of the n pairs. In order for a malicious T to suc-
cessfully cheat A, it would have to correctly identify all
the n “challenge” pairs and form them properly (so it
does not get caught cheating), while at the same time
malforming all the m unopened pairs (so it can claim a
bitcoin from A without actually providing a blind sig-
nature in return). However, because T cannot predict
which pairs A asks it to open, it will succeed at its goal
with very low probability 1/

(
m+n
n

)
.

However, we have a problem. Why should T agree to
open any of the (c, h) values that it produced? Indeed, if
A received the opening of a correctly formed (c, h) pair,
she would be able to recover her desired blind signature
without paying her bitcoin (note that serial numbers are
random values, so any valid signature on any sn should
have the value of a bitcoin). As such, we introduce the
notion of “fake values”. Specifically, the n (c, h)-pairs
that A asks T to open will decrypt to “fake values”
rather than blind signatures. Before T agrees to open
them, A must prove that these n values are indeed fake.
Specifically, the “fake” inputs to the protocol are

δi = (ρi)
pk mod N

for a randomly chosen ρi ←R Z
∗
N . A proves the fakeness

of an input by providing its ρi to T . The idea is that
when T evaluates f−1

RSA on a fake input δi, the result is

(δi)
sk = ((ρi)

pk)sk = ρi mod N

which is utterly useless to A, since A already knows ρi.
For this reason, T will agree to open the (c, h) pairs

corresponding to fake values, as long as A is able to first
prove they are fake. Once Alice confirms the correctness
of the opened “fake” (c, h) values, she posts a Toffer of-
fering one bitcoin for the keys k that open all of the m
“real” (c, h) values that remain unopened. (Specifically,
Toffer offers one bitcoin under the condition: “Tfulfill

contains the hash preimages of h1, ..., hm”.)

Public input: pk , N
Alice A Tumbler T
Input: y Secret input: sk

1. Prepare Real Set R
For i ∈ [n], pick ri ∈ Z∗n
di ← y · (ri)pk mod N

2. Prepare Fake set F
For i ∈ [m], pick ρi ∈ Z∗n
δi ← (ρi)

pk mod N
Evaluation

3. Mix Sets.
Randomly permute {d1 . . . dn, δ1 . . . δm} For i = 1 . . . n+m

to obtain {β1 . . . βn+m}
β1...βn+m−−−−−−−→ Evaluate βi: si = βsk

i mod N
Let R be the indices of the di Encrypt the result si:
Let F be the indices of the δi – Choose random ki ∈ {0, 1}λ1

– ci = Hprg(ki)⊕ si
Commit to the keys: hi = H(ki)

c1,...,cn+m←−−−−−−−
(h1,...,hn+m)
←−−−−−−−−−
F,ρi ∀i∈F−−−−−−→ Check validity of Fake Set F .

For all i ∈ F :
Verify that βi = (ρi)

pk mod N ,
i.e., A knows all pre-images for values

Check validity of T ’s answers in Fake Set F . If test passes, reveal the

For all i ∈ F ,
r′i,ki ∀i∈F←−−−−−−− keys for the ci∀i ∈ [F]. Else, abort.

Verify that hi = H(ki)
Decrypt si = Hprg(ki)⊕ ci
Verify that i.e., (si)

pk = (ρi)
pk mod N

Post transaction Toffer

Offer 1 bitcoin under condition
“the spending transaction provides T checks on A

preimages of hj for each j ∈ R.”
y,(rj)

pkS∀j∈R
−−−−−−−−−→ Verify βj = y · (rj)pk mod N ∀j ∈ R

Post transaction Tfulfill

Post kj for each j ∈ R
Obtain Output
For j ∈ R:

Learn kj from Tfulfill .
Decrypt cj to get sj = Hprg(kj)⊕ cj
If sj is s.t. (sj)

pk = βj mod N ,
Obtain ysk =

sj
(rj)

mod N .

Figure 3: fRSA Function Evaluation as a Service.
H and Hprg are modeled as random oracles, and
instantiated in our implementation as H with
RIPEMD-160, and Hprg is ChaCha20 with a 128-
bit key, so that λ1 = 128.

However, we now have another problem. If each one
of the “real” (c, h) values opened to a different value,
then A will obtain m blind signatures instead of one.
This will not be fair to T . We solve this problem by
adding an extra step: once A posts Toffer , she proves to
T that all m“real” values open to the same input. Once
T verifies this, she agrees to post Tfulfill to contains all
m of the k values that open the “real” (c, h) pairs. We
do this as follows. The m real inputs that A sends to T
at the start of the protocol are

dj = y(rj)
pk mod N

where each dj is the same message y RSA-blinded un-
der a different blind rj ←R Z∗N . Then, when T signs
(computes the f−1

RSA of the real input dj , the result is

(dj)
sk = (y(rj)

pk)sk = (y)skrj mod N

each of which is an evaluation of the same value y.
Thus, just after A’s transaction Toffer is confirmed by

the blockchain, A proves to T that her real inputs dj are
correctly formed. To do this, A will reveal all blinds rj

to T . As this point, T has committed to all its values,
and thus T might as well redeem its bitcoin from A.
Thus, T posts Tfulfill containing the keys k needed to
open the real (c, h) pairs. Alice can obtain the output
of f−1 on her input y as long as at least one of these
(c, h) is validly formed and thus can be opened by a k
value in Tfulfill .

Theorem 1. If the RSA assumption holds, and if
functions Hprg : {0, 1}λ1 → {0, 1}λ2 and H : {0, 1}s1 →
{0, 1}s3 are independent random oracles, protocol in Fig. 3
securely realizes Ffair-RSA in the random oracle model.

The proof is in the full version.

5. TUMBLEBIT PROTOCOL
We now show how to use fRSA evaluation as a service

(Section 4.2) to build our TumbleBit protocol.

5.1 A new type of “voucher”.
Our approach is inspired by [19], which ‘wraps’ its

bitcoin-to-blind-signature fair exchange in another pro-
tocol that realizes a tumbler. In [19], the tumbler T
posts a Toffer committing to the redemption of a valid
anonymous voucher in exchange for a bitcoin. Then, the
payee B redeems the bitcoin by posting a Tfulfill contain-
ing the valid voucher. The voucher is (sn, σ), where sn
is a serial number randomly chosen by the payer A, and
σ is an signature on sn under the tumbler T ’s public key.
Recall also the σ is the unblinding of a blind signature.

The problem with the voucher in [19] is that validat-
ing (sn, σ) requires a signature-verification functionality
this is not supported by bitcoin scripts. We now deal
with this by introducing a new ‘voucher’ that can be
validated using only the bitcoin-supported “signature
condition”. (Recall from Section 2.3 that this condi-
tion is “Tfulfill must be digitally signed by an ECDSA-
Secp256k1 signature that verifies under public key PK .”)
Our new voucher is a transaction Tfulfill signed by bit-
coin’s ECDSA-Secp256k1 signature. This signature will
be computed under an ephemeral public key (SK eph

T ,PK eph
T)

freshly chosen by the tumbler T for this specific run of
the protocol. We shall shortly see why this key needs
to be ephemeral.

5.2 Overview of the TumbleBit protocol.
Like [19], our TumbleBit protocol uses wrapper pro-

tocol wrapped around our fRSA evaluation as a service.
The full wrapper protocol is in Figure 4. We overview
the protocol here.

1. The protocol starts by having T post a timelocked
Toffer offering one bitcoin in exchange for a valid
“voucher” from B. More precisely, Toffer offers one
bitcoin under the condition “Tfulfill must be digitally
signed by an ECDSA-Secp256k1 signature that veri-
fies under public key PK eph

T and PKB.” Notice that
we are requiring two ECDSA-Secp256k1 signatures
on Tfulfill ; the signature under the ephemeral PK eph

T
which realizes a valid ‘voucher”, and a signature un-
der the long term PKB that ensures that T can will
redeem the voucher if it is submitted by this specific
payee B.

2. B convinces T to sign the required voucher. Specif-
ically, the bulk of of the wrapper protocol allows B
to obtain

z = fRSA(ε, pk , N)

The value ε allows B to open an encryption c` to a
valid ‘voucher’. Specifically, c` encrypts an ECDSA-
Secp256k1 signature σ` on a transaction Tfulfill .

3. The payee B asks the payer A to “invert” the value
z. To do this, the payer A interacts with T to have
T blindly invert z (using T ’s secret RSA sk), in ex-
change for A’s bitcoin. Blindless here means that T
(or anyone) cannot link T ’s current interaction with
A with the original value z (and thus T ’s interaction
with B). This will realize our anonymity goal, be-
cause it means that T will not be able to determine
which A was paying which B.

How will this blind inversion be performed? This is
the point where we use our protocol for f−1

RSA evalu-
ation as a service. Thus, A will obtain the desired
pre-image of z by engaging in the protocol of Figure 3
with T . Specifically, A first blinds z to

y = z · rpk mod N

where r ←R Z
∗
N where r is a randomly chosen blind

value3. Next, A performs the f−1
RSA evaluation with

the tumbler T on input y. At end of this fair ex-
change, A swaps her bitcoin in exchange for value
(y)sk where

(y)sk = (z · rpk)sk = (z)sk · r = ε · r mod N

The result is actually the inversion of z, blinded with
r. Thus, A can unblind the result as

(y)sk/r = ε · r/r = ε mod N

thus unveiling ε.

4. A provides ε to B. B uses ε to open the commit-
ment c` that contains the ECDSA-Secp256k1 signa-
ture σ` on a transaction Tfulfill . Finally, B ECDSA-
Secp256k1 signs Tfulfill under his own key SKB, and
posts the result to the blockchain in order to claim
his bitcoin from T .

5.3 Details of the wrapper protocol.
We describe Step 2 of the wrapper in more detail.

How does B obtain the required z and encryption c`
from T? We use cut-and-choose with “real” and “fake”
values as in Section 4.2, along with several new tricks.
B prepares µ distinct “real” transactions and η “fake”

transactions, and then hides these values by hashing
them under H ′. (H ′ is the ‘Hash256’ hash function (i.e.,
SHA256 cascaded with itself) that bitcoin uses as part
of its “hash-and-sign” paradigm for ECDSA-Secp256k1
signatures.) B now creates a set of µ+ η hash values β`
for ` = 1...µ + η by permuting the hashes of the “real”
and “fake” transactions. These β` are sent to T .

3B could also blind the value z before handing it to A.
In that case even if A doesn’t care about her anonymity
and neglects to blind B would still be protected.

Next, T signs each β` to obtain an ECDSA-Secp256k1
signature σ`. Each σ` is then hidden inside an encryp-
tion c` which can decrypted with key ε`. Finally, T
hides each ε` (the encryption keys) by using RSA trap-
door function:

z` = fRSA(ε`, pk , N)

All κ pairs of (c`, z`) are sent back to B. As each ε` is
uniformly chosen at random, z` computationally hides
ε`, under the RSA assumption 4.

Now we are back to the trick in Section 4.2. B needs
to check that the η “fake” (c`, z`) pairs are correctly
formed by T . To do this, B asks T to provide the keys
ε` to the fake pairs. As before, T revels these keys only
after B has proved that the η pairs really are fake. Once
this is done, B knows that T can cheat with probability
no larger than 1/

(
µ+η
η

)
.

Now we need a new trick. We want to ensure that if
at least one of the “real” (c`, z`) pairs opens to a valid
ECDSA-Secp256k1 signatures σ`, then just one key ε
can be used to open this pair. We need this because the
payee B must decide which encryption of ε` to give to
the payee A for decryption before B knows which of the
(c`, z`) pairs is validly formed. We solve this problem
by “chaining” together the ε` values that corresponds to
“real” values. Specifically, T also provides B with the
following µ− 1 quotients

q2 =
εj2
εj1

, ..., qµ =
εjµ
εjµ−1

mod N

where {j1, ..., jµ} = R are the indices for the “real”
values. This solves our problem since knowledge of
ε = εj1 allows B to recover of all other εj` , since εj` =
ε1 · q2 · ... · q`.

On the flip side of this coin, what happens if B ob-
tains more than one valid ECDSA-Secp256k1 signature
by opening the (c`, z`) pairs? Fortunately, however, we
don’t need to worry about this. The Toffer transaction
posted by T offers just one bitcoin in exchange for a
ECDSA-Secp256k1 signature under an ephemeral key
PK eph

T that T uses only once during this protocol exe-
cution with this specific payee B. Thus, even if B gets
many such ECDSA-Secp256k1 signatures, only one of
them can be used to redeem the bitcoin offered in the
Toffer transaction, and the rest are useless.

5.4 Fair exchange and anonymity.
The wrapper protocol should satisfy the following:

Completeness for B. At the end of the proto-
col, B obtains zi = fRSA(εi, pk , N) and encryptions ci
of valid ECDSA-Secp256k1 signatures that can be un-
locked with knowledge of εi.

Completeness for T . At the end of the protocol, T
has issued locked signatures ci that can be unlocked only
if some payer will pay 1 bitcoin to learn f−1

RSA(zj1 , sk , N).

Fairness for B. For any arbitrarily malicious Tum-
bler, there is negligible probability that the protocol suc-
cessfully ends but B is not able to unlock ci.

4Each ε` is also used in the encryption c`, and hashed.
As we model hash functions are random oracles, we are
able to prove that ε` is still computationally hidden.

Fairness for T . For any PPT malicious B, there is
negligible probability that T accepts a voucher from B
but T never completed a ‘fRSA evaluation as a service’
for evaluating z (with some payer A during the epoch).

The full version gives a proof sketch of why the protocol
in Figure 4 satisfies the above fairness and completeness
properties.

Set-anonymity within an epoch. We need to
make sure that the values passed between payer A and
payee B cannot be used to link A to B. Notice that B
provides the value z to payee A, and A provides ε to
back to B. As long as the confidentiality of the con-
tents and existence of the communication between A
and B is preserved, neither T nor any third party can
use use these values to link their payments. This follows
because A information-theoretically blinds z to y before
engaging in her fair exchange protocol with T , and then
unblinds the result before she passes ε to B.

Recovery from anonymity failures. Like [19],
the anonymity provided by TumbleBit crucially relies on
the fact that B uses an ephemeral bitcoin address (i.e.,
a new cryptographic public key that is chosen freshly)
in each epoch. Let us now see how this is helpful.

Consider first a malicious T that, during one epoch
has posted Toffer for its exchanges with all payers A,
and the Toffer for its exchange with all payees A. Then,
T decides not to provide the Tfulfill for the exchange
with one payer A. It follows that the corresponding
payer B will not be able to provide a valid Tfulfill (since
this would require forging a valid voucher). As such, the
malicious T could match the aborted exchange with A
with the aborted exchange with B to learn that A was
trying to pay B. To recover from this, we follow [19] and
require B to discard his ephemeral address and never
use it again if T aborts the protocol. Note that B loses
nothing, since the abort ensures that no funds have been
transferred to B’s ephemeral address.

Let us now consider a non-aborting epoch with a small
anonymity set. If B is comfortable with the size of his
anonymity set, he can use standard Bitcoin transactions
to move the bitcoin from his ephemeral address to his
long-lived bitcoin address. Otherwise, if he thinks that
the anonymity set is too small, B can remix, i.e., choose
a new fresh ephemeral address Addr ′B and rerun the
protocol where his old ephemeral address AddrB pays
his new ephemeral address Addr ′B . Remixing can con-
tinue until B is happy with the size of his anonymity
set, and he transfers his funds to his long-lived address.

DoS and Sybil protection. Since T can not trust B
or A, T should not be required to cover the cost of the
transaction fee for first transaction contract Toffer that
T posts to the blockchain (see Figure 4). To address
this, we apply [12, 19]’s idea of anonymous fee vouchers.
An anonymous voucher is a blind signature σ that T
provides to A in exchange for a small payment; A could
pre-purchase these vouchers in bulk, before she begins
participating in TumbleBit. Then, when A is ready to
participate, she unblinds σ to σ and provides it to B
who passes it along to T . All of this is done off the
blockchain. The protocol begins once T is sure that it
was paid for its efforts.

Payee Bob B(SKB,PKB) Tumbler T (sk , (pk , N))

Choose ECDSA ephemeral key (SKeph
T ,PKeph

T)

Post transaction Toffer timelocked for tw0 offering one
bitcoin under the condition: “Tfulfill must be digitally

signed by a signature that verifies under PKeph
T and a

signature that verifies under PKB.”
Create and hash µ unique transactions fulfilling Toffer :
Tfulfill

1, · · · ,Tfulfill
µ

ht1 = H(Tfulfill
1), · · · , htµ = H(Tfulfill

µ)

Create η fake transaction hashes:
Randomly choose r1, ..., rη
ft1 = H′(0...0 ‖ r1), · · · , ftη = H′(0...0 ‖ rη)

Randomly permute {ht1 . . . htµ, ft1 . . . ftη}
to obtain {β1 . . . βµ+η}

Let R be the indices of the hti
β1...βµ+η−−−−−−−→

Let F be the indices of the fti For ` = 1 . . . µ+ η

ECDSA sign β` to get σ` = Sig(SKeph
T , β`))

Randomly choose ε` ∈ ZN .
Create Encryption c` = Hprg(ε`)⊕ σ`
Compute z`=fRSA(ε`, pk , N)

i.e., z` = (ε`)
pk mod N

(c1,z1),...(cµ,zη)
←−−−−−−−−−−−−

F,R−−−→
ri ∀i∈F−−−−−−→

For all i ∈ F
Verify fakeness, i.e., βi = H(0...0 ‖ ri)

εi ∀i∈F←−−−−−−
For all i ∈ F ,

Validate RSA evaluation zi = (εi)
pk mod N

Validate ci:
Decrypt σi = Hprg(εi)⊕ ci
ECDSA-Ver(PKeph

T , H(0...0 ‖ ri), σi) = 1
Prepare quotients:

For R = {j1, ..., jµ}, set q2 =
εj2
εj1

, ..., qµ =
εjµ
εjµ−1

q2,...,qµ←−−−−−−
RSA validate the quotients:

For R = {j1, ..., jµ} check that

zj2 = zj1 · (q2)pk mod N
...

zjµ = zjµ−1
· (qµ)pk mod N

Send z = zj1 to Payer A

A runs protocol in Figure 3 with T to blindly obtain ε = f−1
RSA(z, sk , N)= zsk mod N.

Payer A provides ε to B
Let R = {j1, j2,, jµ}
Recover the other epsilons:
εj1 = ε
εj2 = εj1 · qj2 mod N

...
εjµ = εjµ−1

· qµ mod N

Recover the ECDSA signatures:
For ` = 1, ..., µ:

Decrypt σ` = Hprg(εj`)⊕ cj`

If ∃ an ECDSA signature σ` that is valid for some real

transaction Tfulfill
i under PKeph

T , sign Tfulfill
i under

SKB, and post it to blockchain along with σ`.

Figure 4: Wrapper protocol. (sk , (pk , N)) are the RSA keys for the tumbler T . (SK eph
T ,PK eph

T) and
(SKB,PKB) are ECDSA-Secp256k1 keys. (Sig, ECDSA-Ver) is an ECDSA-Secp256k1 signature scheme.
We model H,H ′ and Hprg as random oracles. In our implementation, H is SHA256 and H ′ is ‘Hash256’,
i.e., SHA-256 cascaded with itself, which is the hash function used in bitcoin’s “hash-and-sign”
paradigm with ECDSA-Secp256k1. Hprg first hashes its 2048-bit input to 256 bits using SHA-256,
and then uses the result as a key for ChaCha20.

Per [12], fees vouchers raise the cost of an DoS attack
where B starts and aborts many parallel sessions, lock-
ing T ’s bitcoin in the blockchain via Toffer transactions.
This similarly provides Sybil resistance, making it ex-
pensive for an adversary to trick a target payer or payee
into participating in an epoch where all other users are
Sybils under the adversary’s control.

6. IMPLEMENTATION
To show that TumbleBit is performant and fully com-

patible with Bitcoin, we implemented our protocols and
tumbled 5 payments between 10 parties (5 payers and 5
payees, i.e., ℵ = 5) resulting in 20 transactions posted
to the blockchain. See Appendix A for the Bitcoin trans-
action IDs created during the tumble.

6.1 Instantiation.
We instantiated our protocols with 2048-bit RSA. The

hash functions and signature schemes are instantiated
as described in the captions to Figure 3 and Figure 4.
The only exceptions are the following minor differences.

• For the protocol in Figure 4: (1) Instead of encrypting
si by XORing with Hprg(ki), we encrypted si with
with AES-128 in CBC mode. (2) Instead of choosing
“fake” values as δi = (ρi)

pk , we choose a random 256-
byte value γi, zero out the first 128-bits, and hash
the result with full-domain hash G, obtaining a 2048-
bit pseudorandom string fsni. We then RSA-blind
fsni by choosing random %i ∈ Z∗n and letting δi =
fsni(%i)

pk mod N . The Tumbler T can later check
the validity of the fake set by obtaining %i, γi from A,
and confirming that δi/(%i)

pk = G(0∗||γi).

• For the protocol in Figure 3: Instead of encrypting
σ` by XORing with Hprg(ε`), we encrypted σ` by first
hashing (the 2048-bit) εi with SHA-256, and then us-
ing the first 128 bits of the output to encrypt σ` with
with AES-128 in CBC mode.

These issues have negligible impact on performance, and
have been removed from TumbleBit’s current implemen-
tation.

Scripts. By default, Bitcoin clients and miners only
operate on transactions that fall into one of five stan-
dard Bitcoin transaction templates. We therefore con-
form to the Pay-To-Script-Hash(P2SH) [2] transaction
template, which is a standard transaction type. The
contracts specified in our protocol description are ex-
actly equivalent, in security and functionality, when re-
formulated as P2SH transactions.

To format Toffer as a P2SH transaction we specify a
redeem script whose conditions must be met to fulfil the
transaction. This redeem script is hashed, and its hash
is stored in Toffer .

To spend Toffer , a transaction Tfulfill is constructed.
Tfulfill includes (1) the redeem script and (2) a set of
input values that the redeem script is run against. For
example, the redeem script for our ‘fRSA evaluation as
a service’ protocol checks that the input values in Tfulfill

contains the correct preimages and that Tfulfill is signed
by A’s public key:

OP_RIPEMD160, h1, OP_EQUALVERIFY,

...

OP_RIPEMD160, h15, OP_EQUALVERIFY,

PubKey, OP_CHECKSIG

where h1,...,h15 are h1, ..., h15 from Figure 3 and PubKey

is the Tumbler T ’s permanent bitcoin address (i.e., pub-
lic key). The input values (that are stored in Tfulfill) and
the redeem script is run against are

signature

k15

...

k1

signature is a signature under the the Tumbler T ’s per-
manent bitcoin address. The preimages k1, ..., k15 are
such that H(k`) = h` per Figure 3. To programmati-
cally validate that Tfulfill can fulfils Toffer , the redeem
script Tfulfill is hashed, and the resulting hash value is
compared to the hash value stored in Toffer . If these
match, the redeem script is run against the input val-
ues in Tfulfill . Tfulfill fulfils Toffer if the redeem script
outputs true.

6.2 Choosing number of ‘real’ and ‘fake’.
In our ‘f−1

RSA evaluation as a service protocol’ (Fig-
ure 3), the probability that T could cheat is parame-
terized by m (the number of “real” values) and n (the
number of “fake” values). Recall from Section 4.2 that
T can cheat with probability 1/

(
m+n
m

)
.

From a security perspective, we want m and n to be
as large as possible, but in practice we face constraints
from the Bitcoin protocol. Our main constraint on m
is that m RIPEMD-160 hash outputs must be stored
in the redeem transaction for our ‘fRSA Function Eval-
uation as a Service’ protocol. However, P2SH redeem
scripts are limited in size to 520 bytes, which means
m ≤ 21. Furthermore, increasing m also increases the
transaction fee, since fees paid (to miners) to confirm
a transaction on the blockchain scale with the size of
the transaction. Fortunately, however, the choice of n
is not limited by the constraints of the bitcoin protocol,
because “fake” values are dealt with completely off the
blockchain. The only drawback to increasing n is that
we then have to perform more RSA exponentiations (off
the blockchain).

Thus, our strategy is to choose m and n so that the
probability that the Tumbler T cheats without getting
caught is bound by 2−80; this probability is smaller than
the collision resistance of RIPEMD-160. We also want
to minimize m as much as possible while keeping n to a
reasonable number. Under these constraints, we chose
m = 15 and n = 285, ‘f−1

RSA evaluation as a service
protocol’ (Figure 3).

We used the same values of µ = 15 and η = 285 in our
implementation of the wrapper protocol (Figure 4).5

5Note, however, that the wrapper protocol has no
Bitcoin-related constraints on the choice of µ and η,
since µ, η play no role in the number of inputs that must
be provided with the Tfulfill . Thus, we could have min-
imize the number of RSA computations that we per-
form (which is µ + η) by taking µ = η = 42. If we

6.3 Performance evaluation
All tests were performed on EC2-medium t2.medium

instances (2 Cores, 4 GB of RAM). We used standard
benchmarking software to find that they could perform
a 2048-bit RSA signing and verification in 1469µs and
440µs respectively. Bitcoin transaction signatures (ECDSA-
Secp256k1) were significantly faster, with signing and
verification taking 66µs and 104µs respectively.

Latency. To test the impact that network latency
would have on our ‘fRSA Function Evaluation as a Ser-
vice’ protocol, we ran A on a server in Oregon and T
on a server in Tokyo. The average RTT between servers
was 92.4 ms. We ran the off-blockchain portion of this
protocol 2000 times. Its average running time was 1.29
seconds.

Compute time. We next reduced RTT to near zero,
by allowing all parties to run on the same server. We
again performed 2000 tests and found average running
times of 0.465 and 0.361 seconds for the off-blockchain
computations in ‘fRSA Function Evaluation as a Ser-
vice’ and our wrapper protocol, respectively. Therefore,
the total compute time for the off-blockchain portion of
TumbleBit is 0.826 seconds, on average.

Bandwidth. The combined bandwidth of the full
TumbleBit protocol consumed by all parties was 430
KB, which is roughly 1/5th size of an average webpage
(2212 Kb [1]).

Thus, we argue that performance of TumbleBit is
bound only by the time it takes to confirm blocks on
the blockchain; this follows because it typically takes
≈ 10 minutes to confirm a block, and the off-blockchain
portions of TumbleBit run in ≈ 1 second.

6.4 Coordinating on epochs
Thus far we have assumed that transactions ‘posted

to the blockchain’ are then confirmed in the next dis-
covered block. This is not unreasonable, but Bitcoin
provides no inherent guarantee that a transaction will
be confirmed in a timely manner. A transaction might
not be confirmed for a variety of reasons. For exam-
ple, there may be insufficient space in the block, or the
block might have been discovered by a miner that had
not learned about the transaction. As the number of
participants in a TumbleBit epoch grows, the risk that a
transaction is confirmed “late” grows as well. If a trans-
action is confirmed too late (i.e., in a different block that
that of the other users), this will abort the anonymous
payment for the relevant participant in the TumbleBit
epoch.

If TumbleBit is to scale to thousands of participants,
more work is required to solve this problem. We plan to
address this issue in future versions of TumbleBit. One
viable approach involves scaling the epoch window with
the number of mix participants, to provide a margin of
error for “late” transactions. Another idea is to borrow

do this, the probability that T can cheat is still bound
by the RIPEMD-160 collision probability of 2−80, but
we have to perform 3x fewer RSA computations. This
change could significantly improve the performance of
the wrapper protocol.

a technique from [26], to reduce the size an epoch to
two blocks.

Two-block epoch. The idea is to have A and T set
up a ‘2-of-2 escrow’ transaction TA,T that will act as ‘in-
surance’ for the A-to-T portion of the TumbleBit proto-
col. Specifically, TA,T timelocks a Bitcoin from A under
the condition “the spending transaction must be signed
by both A and T ”. TA,T may be confirmed in the same
block as the Toffer transaction that initiates the wrap-
per protocol in Figure 4. The TumbleBit protocol then
runs as in Figure 4, with the following modifications to
its A-to-T portion: (1) The Toffer in the A-to-T proto-
col (Figure 3) now spends the bitcoin offered in TA,T ,
and is thus signed by both A and T . This transaction
Toffer is not posted to the blockchain. (2) Tfulfill is as in
Figure 3, but Tfulfill is also not posted to the blockchain.
(3) When the A-to-T protocol completes, then A and
T both sign a new transaction TfulfillA,T that trans-
fers the bitcoin in TA,T to the Tumbler T . This final
TfulfillA,T transaction is posted to the blockchain, and
may be confirmed in the same block as the Tfulfill from
the wrapper protocol. Thus, the entire protocol com-
pletes in only two blocks.

Why does this work? In our original protocol, we re-
quired Toffer for the B-to-T portion of the protocol to
be confirmed before the Toffer for the A-to-T part of
the protocol. This protects Payer A. Why? Suppose
A posted the Toffer for the A-to-T part of the proto-
col, but a cheating T decides not to post the Toffer for
the B-to-T part of protocol. In this case, the cheating
T could claim a bitcoin from Payer A in exchange for
an RSA evaluation, but this RSA evaluation is of no
value for the Payee B (and therefore also of no value for
A) if T refuses to initiate the B-to-T protocol. How-
ever, the two-epoch design prevents T from cheating
this way: if T refuses to initiate the protocol with B,
then A can refuse to sign any transaction spending the
funds in TA,T , and thus A will not lose her Bitcoins.

Acknowledgements
We thank Ethan Donowitz for assistance with the pre-
liminary stages of this project, and Omer Paneth, Dim-
itris Papadopoulos, Leonid Reyzin, Ann Ming Samborski,
and Sophia Yakobov for useful discussions.

7. REFERENCES
[1] Http archive: Trends, 2015.
[2] Bitcoin wiki: Pay to script hash, 2016.
[3] Masayuki Abe. A secure three-move blind signature

scheme for polynomially many signatures. In
EUROCRYPT’01, pages 136–151, 2001.

[4] Adam Back, G Maxwell, M Corallo, Mark
Friedenbach, and L Dashjr. Enabling blockchain
innovations with pegged sidechains. 2014.

[5] Wac law Banasik, Stefan Dziembowski, and Daniel
Malinowski. Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts.
Cryptology ePrint Archive, Report 2016/451, 2016.
http://eprint.iacr.org/.

[6] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin
Uzun. Bitter to better - how to make bitcoin a better
currency. In Financial Cryptography and Data
Security. Springer, 2012.

http://eprint.iacr.org/

[7] Mihir Bellare and Phillip Rogaway. Random oracles
are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM conference
on Computer and Communications security, pages
62–73. ACM, 1993.

[8] Mihir Bellare and Phillip Rogaway. The exact security
of digital signatures-how to sign with rsa and rabin. In
EUROCRYPT, pages 399–416, 1996.

[9] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In IEEE Security and Privacy (SP),
pages 459–474, 2014.

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. Snarks for C:
verifying program executions succinctly and in zero
knowledge. In CRYPTO, pages 90–108, 2013.

[11] Alex Biryukov, Dmitry Khovratovich, and Ivan
Pustogarov. Deanonymisation of clients in bitcoin p2p
network. In ACM-CCS, pages 15–29, 2014.

[12] George Bissias, A Pinar Ozisik, Brian N Levine, and
Marc Liberatore. Sybil-resistant mixing for bitcoin. In
Workshop on Privacy in the Electronic Society, pages
149–158. ACM, 2014.

[13] Alexandra Boldyreva. Threshold signatures,
multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In PKC,
volume 2567, pages 31–46, 2003.

[14] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind
Narayanan, Joshua A Kroll, and Edward W Felten.
Sok: Research perspectives and challenges for bitcoin
and cryptocurrencies. In IEEE - SP, 2015.

[15] Joseph Bonneau, Arvind Narayanan, Andrew Miller,
Jeremy Clark, JoshuaA. Kroll, and EdwardW. Felten.
Mixcoin: Anonymity for bitcoin with accountable
mixes. In Financial Cryptography and Data Security,
2014.

[16] David Chaum. Blind signature system. In CRYPTO,
1983.

[17] Antoine Delignat-Lavaud, Cedric Fournet, Markulf
Kohlweiss, and Bryan Parno. Cinderella: Turning
shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation.

[18] Srivatsava Ranjit Ganta, Shiva Prasad
Kasiviswanathan, and Adam Smith. Composition
attacks and auxiliary information in data privacy. In
ACM SIGKDD, pages 265–273. ACM, 2008.

[19] Ethan Heilman, Foteini Baldimtsi, and Sharon
Goldberg. Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions.

[20] Marek Jawurek, Florian Kerschbaum, and Claudio
Orlandi. Zero-knowledge using garbled circuits: how to
prove non-algebraic statements efficiently. In
ACM-CCS, pages 955–966, 2013.

[21] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and
Kevin RB Butler. Pcf: A portable circuit format for
scalable two-party secure computation. In Usenix
Security, volume 13, pages 321–336, 2013.

[22] Ranjit Kumaresan and Iddo Bentov. How to use
bitcoin to incentivize correct computations. In
ACM-CCS, pages 30–41. ACM, 2014.

[23] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How
to use bitcoin to play decentralized poker. In
ACM-CCS, pages 195–206. ACM, 2015.

[24] G Maxwell. Coinjoin: Bitcoin privacy for the real
world, 2013.

[25] Greg Maxwell. Zero knowledge contingent payment.

[26] Gregory Maxwell. Coinswap: transaction graph
disjoint trustless trading, 2013.

[27] Gregory Maxwell. The first successful zero-knowledge

contingent payment. Bitcoin Core
https://bitcoincore.org/en/2016/02/26/
zero-knowledge-contingent-payments-announcement/,
February 2016.

[28] S Meiklejohn, M Pomarole, G Jordan, K Levchenko,
GM Voelker, S Savage, and D McCoy. A fistful of
bitcoins: Characterizing payments among men with no
names. In ACM-SIGCOMM Internet Measurement
Conference, IMC, pages 127–139, 2013.

[29] Sarah Meiklejohn and Claudio Orlandi.
Privacy-enhancing overlays in bitcoin. In Financial
Cryptography and Data Security, volume 8976, pages
127–141. 2015.

[30] Ian Miers, Christina Garman, Matthew Green, and
Aviel D Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In IEEE Security and Privacy
(SP), pages 397–411, 2013.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. (2012):28, 2008.

[32] Henning Pagnia and Felix C. Gärtner. On the
impossibility of fair exchange without a trusted third
party, 1999.

[33] David Pointcheval and Jacques Stern. Provably secure
blind signature schemes. In ASIACRYPT, pages
252–265, 1996.

[34] Certicom Research. Sec 2: Recommended elliptic curve
domain parameters, 2010.

[35] Dorit Ron and Adi Shamir. Quantitative analysis of
the full bitcoin transaction graph. In Financial
Cryptography and Data Security, pages 6–24. Springer,
2013.

[36] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate.
Coinshuffle: Practical decentralized coin mixing for
bitcoin. In ESORICS, pages 345–364. Springer, 2014.

[37] Amitabh Saxena, Janardan Misra, and Aritra Dhar.
Increasing anonymity in bitcoin. In Financial
Cryptography and Data Security, pages 122–139.
Springer, 2014.

[38] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

[39] Peter Todd. Bip 65: Op checklocktimeverify. Bitcoin
improvement proposal, 2014.

[40] Florian Tschorsch and Björn Scheuermann. Bitcoin
and beyond: A technical survey on decentralized
digital currencies.

[41] Luke Valenta and Brendan Rowan. Blindcoin: Blinded,
accountable mixes for bitcoin. In Financial
Cryptography and Data Security, pages 112–126.
Springer, 2015.

[42] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze,
Nicolas Inden, and Klaus Wehrle. Coinparty: Secure
multi-party mixing of bitcoins. In Proceedings of the
5th ACM Conference on Data and Application
Security and Privacy, pages 75–86. ACM, 2015.

APPENDIX
A. TUMBLEBIT TRANSACTIONS ON BIT-

COIN’S BLOCKCHAIN
We performed a tumble with five anonymous pay-

ments using our TumbleBit implementation (ℵ = 5).
We provide the transaction IDs (txids) of the transac-
tions created by TumbleBit so that they can be located
on the Bitcoin blockchain.
T publishes five Toffer starting the wrapper protocol:

bd8cb3c30ca57eefacd0d3823bc3f9a17808a1c10e4dd37a9f9938d2e0133f16
f4e687ab434f9d64fc90613b5ed11febebf8e52db687c5ebf67d02a129772dd4
2499370a7fd576ae06bbafcac56cb9148ad8de22673b72c8a918d9b9c909d544

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

d78d4c576c4789b0cc6cfdc5b33b5f696491725bef98b078930b0bde1966d6b1
29e72d4ca23f167d979657a9e4813683258498fe1169d89694baaad965ea1b7c

Each A publishes a Toffer starting fRSA:

1c8b70af66d73bc75ff1caefde520b4611ebe807eeb74d90901294dd09c6d72d
5172ec41921d0130711c6af22ab083f53965dad266e66a90616890c4387530b5
dc2d000ba61061bf7785b0aa463b51db2cd36d49bcd83adb8329980f77d27a06
781a2013a7ac28e0f7a94e3e3f2e3bef72aa1c33bc4992022da7e19fddc82908
6bd46f1ce8363d86a03376d7ebb84ce49c3d5b3881abbdcf7ad93a9373fb9bba

T publishes five Tfulfill spending the Toffer each A
published in the last step:

dbaa883d210de99b484f9051988dbf31292a69e0a4a5977a483b73089d6b2ed8
89b5f92241ee902b9452cd8f276a929b5ca8cea15cce1e10b2ee51d9f1f196d8
8f427ddf5e260ac2e93962d711b930dc50e631cd954edc525cefea6dff8ed228
ade89b3b90983b93975733aea0a572b5cbba0206c27358408a57346cfa631d77
77a15175f3b6c53c997ce87fe42105920bbccd1f54e35cd9b75f785fb091696a

Finally each B claim their bitcoins by spending the
Toffer which T published in the first step.

c267220d13c590d8e860078fad1eef4f33981993416997409b9bb604b1870229
e1666ced63c70612f3b2af143278d97a90a669c1cc33594fbcabe415622a9d23
a2fb6f5f558218669e7754540e60db52e22d51a2773f924d76b0edb174e52703
e1e9e61bf27147f0df567c835b01f932ca9d5fb13f8f9f1ba1d6f3b0506bfc78
3019aa5cf743d86e335f993e290efa81c64a7af30e994c3e8bc35e0ddc5d2a01

	Introduction
	Related Work

	Background and Overview
	Trivial solution with eCash.
	The need for fair exchange
	Bitcoin scripts and smart contacts.
	Blindly-signed contracts
	Bitcoin for blind signature.
	Wrapper protocol from bsc.

	Anonymity and Security
	Bitcoin for RSA exponentiationFair exchange
	Approaches from the literature
	fRSA evaluation as a service
	Security Definition
	Protocol Description

	TumbleBit Protocol
	A new type of ``voucher''.
	Overview of the TumbleBit protocol.
	Details of the wrapper protocol.
	Fair exchange and anonymity.

	Implementation
	Instantiation.
	Choosing number of `real' and `fake'.
	Performance evaluation
	Coordinating on epochs

	References
	TumbleBit transactions on Bitcoin's Blockchain

