
Arx: An Encrypted Database using
Semantically Secure Encryption

(Extended version)∗

Rishabh Poddar
UC Berkeley

rishabhp@berkeley.edu

Tobias Boelter
UC Berkeley

t.b@berkeley.edu

Raluca Ada Popa
UC Berkeley

raluca.popa@berkeley.edu

ABSTRACT
In recent years, encrypted databases have emerged as a
promising direction that provides data confidentiality with-
out sacrificing functionality: queries are executed on en-
crypted data. However, many practical proposals rely on a
set of weak encryption schemes that have been shown to leak
sensitive data. In this paper, we propose Arx, a practical
and functionally rich database system that encrypts the data
only with semantically secure encryption schemes. We show
that Arx supports real applications such as ShareLaTeX with
a modest performance overhead.

1. INTRODUCTION
Due to numerous data breaches [7, 26], the public concern

over privacy and confidentiality is likely at one of its peaks to-
day. In recent years, encrypted databases [5,71,76,87] (EDBs)
have emerged as a promising direction towards achieving both
confidentiality and functionality: queries run on encrypted
data. CryptDB [76] demonstrated that such an approach
can be practical and can support a rich set of queries; it
then spurred a rich line of work including Cipherbase [5]
and Monomi [87]. The demand for such systems is demon-
strated by the adoption in industry such as in Microsoft’s
SQL Server [61], Google’s Encrypted Big Query [35], and
SAP’s SEEED [36] amongst others [21, 41, 47, 82]. Most of
these services are NoSQL databases of various kinds showing
that a certain class of encrypted computation suffices for
many applications.
Unfortunately, this area faces a challenging privacy-

efficiency tradeoff, with no known practical system that
does not leak information. The leakage is of two types:
leakage from data and leakage from queries.
Leakage from data is leakage from an encrypted database,

e.g., relations among data items. In order to execute queries
efficiently, the EDBs above use a set of encryption schemes
some of which are property-preserving by design (denoted
PPE schemes), e.g., order-preserving encryption (OPE) [9,
10, 75] or deterministic encryption (DET). OPE and DET
are designed to reveal the order and the equality relation
between data items, respectively, to enable fast order and
equality operations. However, while these PPE schemes con-
fer protection in some specific settings, a series of recent
attacks [27, 39, 64] have shown that given certain auxiliary
information, an attacker can extract significant sensitive
information from the order and equality relations revealed
∗A shorter version of this work was published in Proceedings of the
VLDB Endowment, Vol. 12, No. 11, 2019.

by these schemes. These works demonstrate offline attacks
in which the attacker obtains a PPE-encrypted database
and analyzes it offline. For example, such attackers include
hackers stealing a snapshot of the database, or government
subpoenas.
Leakage from queries refers to what an (online) attacker

can see during query execution. This includes all observable
state in memory, along with which parts of the database are
touched (called access patterns), including which (encrypted)
rows are returned and how many, which could be exploited
in certain settings [16, 37, 46, 51]. Unfortunately, hiding
the leakage due to queries is very expensive as it requires
oblivious protocols (e.g., ORAM [85]) to hide access patterns,
along with aggressive padding [63] to hide the result size.
For instance, Naveed [63] shows that in some cases it is more
efficient to stream the database to the client and answer
queries locally than to run such a system on a server.
A natural question is then: how can we protect a database

from offline attackers as well as make progress against online
attackers, while still providing rich functionality and good
performance?
We propose Arx, a practical and functionally rich database

system that takes an important step in this direction by al-
ways keeping the data encrypted with semantically secure
encryption schemes. Semantic security implies that no in-
formation about the data is leaked (other than its size and
layout), preventing the aforementioned offline attacks on
a stolen database. This model is particularly suitable for
protecting data against subpoenas, in which case there is
only leakage from data, and no leakage from queries.
For an online attacker, Arx incurs pay-as-you-go informa-

tion leakage: the attacker no longer learns the frequency
count or order relations for every value in the database, but
only for data involved in the queries it can observe. In the
worst case (e.g., if the attacker observes many queries over
time), this leakage could add up to the leakage of a PPE-
based EDB, but in practice it may be significantly more
secure for short-lived online attackers. As prior work points
out [11, 19, 56], this model fits the “well-intentioned cloud
provider” which uses effective intrusion-detection systems to
prevent attackers from observing and logging queries over
time, but fears “steal-and-run” attacks. For example, Mi-
crosoft’s Always Encrypted [61] advocates this model.
Unfortunately, there is little work on such EDBs, with

most work focusing on PPE-based EDBs. The closest to our
goal is the line of work by Cash et al. [17,18] and Faber et
al. [29], which builds on searchable encryption. As a result,
these schemes are significantly limited in functionality—they

do not support common queries such as order-by-limit, ag-
gregates over ranges, or joins—and are also inefficient for
write operations (e.g., updates, deletes). Furthermore, for
certain online attackers, these systems have some extra leak-
age not present in PPEs, as we elaborate in §12. To replace
PPE-based EDBs, we need a solution that is always at least
as secure as PPE-based EDBs.
Overall, by exclusively using semantically secure encryp-

tion, Arx prevents the offline attacks above [27,39,64] from
which PPE-based EDBs suffer. For online attackers, Arx is
always either more or as secure as PPE-based EDBs.

1.1 Techniques and contributions
A simple attempt to protect against offline attacks could

be to keep the data encrypted at rest in the database and
only decrypt it when it is in use. However, such an approach
directly leaks the secret key even to a short-lived attacker who
succeeds in taking a well-timed snapshot of memory. Worse,
the key itself would be directly vulnerable to a subpoena, akin
to not encrypting the database at all. A better alternative
might be to consider a hybrid design that uses a PPE-based
EDB, but employs a second layer of encryption for data at
rest on the disk. However, an attacker who similarly obtains
the decryption key gets access to the PPE-encrypted data,
rendering the second layer of encryption useless and leaking
more information than our goal in Arx.
Instead, Arx introduces two new database indices, ArxRange

and ArxEq that encrypt the data with semantic security;
queries on these indices reveal only a limited per-query ac-
cess pattern. ArxRange is for range and order-by-limit queries,
and ArxEq is for equality queries. While ArxRange can be
used for equality queries as well, ArxEq is substantially faster.
To enable range queries, ArxRange builds a tree over the

relevant keywords, and stores at each node in the tree a
garbled circuit for comparing the query against the keyword
in the node [33, 90]. Our tree is history-independent [4] to
reduce structural leakage. The main challenge with ArxRange
is to avoid interaction (e.g., as needed in BlindSeer [72]) at
every node on a tree path. To address this challenge, Arx
draws inspiration from the theoretical literature on Garbled
RAM [30]. Arx chains the garbled circuits on a tree in
such a way that, when traversing the tree, a garbled circuit
produces input labels for the child circuit to be traversed
next. Thereby, the whole tree can be traversed in a single
round of interaction. For security, each such index node may
only be used once, so ArxRange essentially destroys itself
for the sake of security. Nevertheless, only a logarithmic
number of nodes are destroyed per query, and Arx provides
an efficient repair procedure.

ArxEq builds a regular database index over encrypted
values by embedding a counter into repeated values. This
ensures that the encryption of two equal values is different
and the server does not learn frequency information. To
search for a value v, the client provides a small token to the
server, which the server expands into many search tokens
for all occurrences of v. ArxEq provides forward privacy [13],
preventing old tokens from being used to search new data.
Building on top of these two indices, Arx speeds up aggre-

gations by transforming them into tree lookups via ArxAgg.
and supports foreign-key joins with ArxJoin.
Because of the new indices, index and query planning

become challenging in Arx. The application’s administrator
specifies a set of regular indices, thereby expecting a certain

Users

Client Proxy Server ProxyApplication DBMS

query

result

Application Server

planner

query
rewriter

DBMS Server
(under attack)

Figure 1: Arx’s architecture: Shaded boxes depict compo-
nents introduced by Arx. Locks indicate that sensitive data
at the component is encrypted.

asymptotic performance. However, regular indices do not
directly map to Arx’s indices because Arx’s indices pose
new constraints. The main constraints are: Arx cannot use
the same index for both = and ≥ operations, an equality
index on (a, b) cannot be used to compute equality on a
alone, and range queries requires an ArxRange index. With
this in mind, we designed an index planning algorithm
that guarantees the expected asymptotic performance while
building few additional indices.
Finally, we designed Arx’s architecture so that it is

amenable to adoption. Two lessons [74] greatly facilitated
the adoption of the CryptDB system: do not change the DB
server and do not change applications. Arx’s architecture,
presented in Fig. 1, accomplishes these goals. The difference
over the CryptDB architecture [76] is that it has a server-
side proxy, a frontend for the DB server. The server proxy
converts encrypted processing into regular queries to the DB,
allowing the DB server to remain unchanged.
We implement and evaluate Arx on top of MongoDB,

a popular NoSQL database. We show that Arx supports a
wide range of real applications such as ShareLaTeX [81], the
Chino health data platform [20], NodeBB forum [67], and
Leanote [54] amongst others. In particular, Chino is a cloud-
based platform that serves the European medical project
UNCAP [88]. Chino provides a MongoDB-like interface to
medical web applications (running on hospital premises) but
currently operates on plaintext data. The project’s lead-
ers confirmed that Arx’s model fits Chino’s setup perfectly.
Finally, we also show that Arx’s overheads are modest: it
impacts the performance of ShareLaTeX by 11% and the
YCSB [23] benchmark by 3–9%.

2. OVERVIEW
In the rest of this paper, we use MongoDB/NoSQL termi-

nology such as collections (for RDBMS tables), documents
(for rows), and fields (for columns), but we use SQL format
for queries because we find MongoDB’s JS format harder
to read. While we implement Arx for MongoDB, its design
applies to other databases as well.

2.1 Architecture
Arx considers the model of an application that stores

sensitive data at a database (DB) server. The DB server
can be hosted on a private or public cloud. Fig. 1 shows
Arx’s architecture. The application and the database system
remain unmodified. Instead, Arx introduces two components
between the application and the DB server: a trusted client
proxy and an untrusted server proxy. The client proxy
exports the same API as the DB server to the application
so the application does not need to be modified. The server
proxy interacts with the DB server by invoking its unmodified

API (e.g., issuing queries); in other words, the server proxy
behaves as a regular client of the DB server. Unlike CryptDB,
Arx cannot use user-defined functions instead of the server
proxy because the proxy must interact with the DB server
multiple times per client query.
The client proxy stores the master key. It rewrites queries,

encrypts data, and forwards the rewritten queries to the
server proxy for execution along with helper cryptographic
tokens. It forwards all queries without any sensitive fields
directly to the DB server. The client proxy is lightweight:
it does not store the DB and does much less work than the
server. The client proxy stores metadata (schema informa-
tion), a small amount of state, and optionally a cache. The
server runs the expensive part of DB queries, filtering and
aggregating many documents into a small result set.
In most cases, the client proxy processes only the results

of queries (e.g., to decrypt them). However, in some corner
cases, it performs some post-processing; as a result, our im-
plementation needs to duplicate some parts of the typesystem
and expression evaluation logic of the server database.

2.2 Threat Model
Arx targets attackers to the database server. Hence, our

threat model assumes that the attacker does not control or
observe the data or execution on the client-side, and may
only access the server-side which consists of Arx’s server
proxy and the database servers.
Arx considers passive (honest-but-curious) server attack-

ers: the attackers examine server-side data to glean sensitive
information, but follow the protocol as specified, and do not
modify the database or query results. The active attacker is
interesting future work, that can potentially leverage com-
plementary techniques [45, 57, 60, 93]. Further, in the Arx
model, an attacker cannot inject any new queries as she does
not have access to the client application or to the secret keys
at the client proxy, but only to the server.
We consider two types of passive attackers, offline and on-

line attackers, and provide different guarantees for each. The
offline attacker manages to steal one copy of the database,
consisting of (encrypted) collections and indices. It does not
contain in-memory data related to the execution of current
queries (which falls under the online attacker). The online
attacker is a generic passive attacker: it can log and observe
any information available at the server (i.e., all changes to
the database, all in-memory state, and all queries) at any
point in time for any amount of time.

2.3 Security guarantees
Arx has different guarantees for the two attackers.

Offline attacker. Arx’s most visible contribution over PPE-
based EDBs is for the offline attacker. Such an attacker
corresponds to a wide range of real-world instances including
hackers who extract a dump of the database, or insiders who
managed to steal a copy of the database.
For this attacker, Arx provides strong security guarantees

revealing nothing about the data beyond the schema and size
information (the number of collections, documents, items
per field, size of items, which fields have indices and for what
operations). The contents of the database (collections and
indices) are protected with semantically secure encryption,
and the decryption key is never sent to the server. In particu-
lar, Arx prevents the offline attacks of [27,39,64] from which
PPE-based EDBs suffer. In PPE-based EDBs, the attacker

readily sees the order or the frequency of all the values in
the database for PPE-encrypted fields. This is significantly
less secure than the semantically secure schemes in Arx, in
which the attacker does not see such relations.
Online attacker. The online attacker additionally watches
queries and their execution. Arx hides the parameters in
the queries, but not the operations performed. In particu-
lar, Arx does not hide metadata (e.g., query identifiers and
timestamps) or access patterns during execution (e.g., which
positions in the database or index are accessed/returned and
how many). Prior work has shown that, if an attacker can
observe such information from many queries and if certain
assumptions and conditions hold, the attacker can recon-
struct data [16,37,46, 51]. Since each query in Arx reveals
only a limited amount of metadata, the sooner an attacker
is detected (e.g., the fewer queries they observe), the less
information they are able to glean.
For this attacker, Arx aims to always be more or as secure

as PPE-based EDBs. Indeed, for all operations, Arx’s leakage
is always upper-bounded by the leakage in PPE-based EDBs.
This is non trivial: for example, a prior EDB aiming for
semantic security [29] is not always more secure than PPE-
based EDBs, as we explain in §12.
Security definition. To quantify the leakage to online
attackers, we provide a security definition for Arx and its
protocols that is parameterized by a leakage profile L, which
is a function of the database and the sequence of the queries
issued by the client. Our security definition is fairly standard,
and similar to prior work [18,29].
We say that a DB system (or a query execution protocol)

is L-semantically secure if, for any PPT adversary A, the
entirety of A’s view of the execution of the queries is efficiently
simulatable given only L. A invokes the interface exposed
by the client to submit any sequence of queries Q. A then
observes the execution of the queries from the perspective
of the server, i.e., it can observe all the state at the server,
as well as the full transcript of communication between the
client and server. Formally, A’s task is to distinguish between
a real world execution of the queries (Real) between the
client and server, and an ideal world execution (Ideal) where
the transcript is generated by a PPT simulator S that is
only given access to the leakage function L.

Definition 1. Let L be a leakage function. We say that a
protocol Π is L-semantically-secure if for all PPT adversaries
A and for all sequences of queries Q, there exists a PPT
simulator S such that:

Pr[RealΠA(z)(λ,Q) = 1]− Pr[IdealA,S(z),L(λ,Q) = 1]

≤ negl(λ)

where λ is the security parameter, z is auxiliary information,
and negl(λ) a negligible function in λ.

We formalize the leakage profile of Arx and its protocols in
§9, and provide proofs of security with respect to Definition 1
for non-adaptive adversaries (who select the query sequence
beforehand) in Appendix B. Informally, the leakage for ArxEq
includes the list of queries that search for the same keyword;
for ArxRange, the leakage includes the ranks of the bounds
in the range query.

2.4 Admin API
We describe the API exposed by Arx to application admins.

The admin can take an existing application and enhance it

with Arx annotations. Arx’s planner, located at the client
proxy, uses this API to decide the data encryption plan, the
list of Arx indices to build, and a query execution plan for
each query pattern.
Following the example of Microsoft’s SQL Server [61] and

Google’s Encrypted BigQuery [35], Arx requires the admin
to declare what operations will run on the database fields.
By default, Arx considers all the fields in the database to be
sensitive, unless specified otherwise. To use Arx, the admin
specifies the following information during system setup:
1. (Optional) Annotated schema: fields that are unique,

fields that are nonsensitive (if any), and field sizes;
2. The operations that run on sensitive fields;
3. The fields that should be indexed.
For the first, the admin uses the API: collection = { field1:
info1, . . . , fieldn: infon }, to annotate the fields in a col-
lection. This annotation is optional, but it benefits the
performance of Arx if provided. info should specify “unique”
if the values in the field are unique, e.g., SSN. Arx automati-
cally infers primary keys to be unique. info may also specify
a maximum length for the field, which helps Arx choose a
more effective encryption scheme.
Arx encrypts all the fields in the DB by default. However,

the admin may explicitly override this behavior by specifying
info as “nonsensitive” for a particular field. This option
should only be used if (1) the admin thinks this field is
not sensitive and desires to reduce encryption overhead, or
(2) Arx does not support the computation on this field but
the admin still wants to use Arx for the rest of the fields.
However, we caution that though some fields may not be
sensitive themselves, they may leak auxiliary information
about other fields in the database. Hence, the admin should
select such fields with care.
Second, Arx needs to know the query patterns that will

run on the database. Concretely, Arx needs to know what
operations run on which fields, though not the constants
that will be queried—e.g., for the query select * from T
where age = 10, Arx needs to know there will be an equality
check on age. The admin can either specify these operations
directly, or provide a trace from a run of the application and
Arx will automatically identify them.

Third, Arx needs to know the list of regular indices built
by the application. Arx needs this information in order to
provide the same asymptotic performance guarantees as an
unencrypted database. Note that this requirement poses no
extra work on the part of the admin, and is the same as
required by a regular database.

2.5 Functionality
We now describe the classes of read and write queries that

Arx can execute over encrypted data. As we show in §10,
this functionality suffices for a wide range of applications.
Read queries. Arx supports queries of the form:

select [agg doc] fields from collection
where clause [orderby fields] [limit `]

doc denotes a document and [agg doc] aggregations over
documents, which take the form

∑
Func(doc).

∑
can be

any associative operator and Func an arbitrary, efficiently-
computable function. Examples include sum, count, sum of
squares, min, and max. More aggregations can be computed
with minimal postprocessing at the client proxy by combining
a few aggregations, such as average or standard deviation.

The predicate clause is
[
∧i op(fi)

]
where op(fi) denotes

equality/range operations over a field fi such as =,≥ and <.
In addition to these queries, Arx supports a common form

of joins—namely, foreign-key joins—which we describe in §7.
Write queries. Arx supports standard write queries such
as inserts, deletes, and updates.
Constraints. Not all range/order queries are supported by
Arx. First, queries may not contain range operations over
more than one encrypted field—i.e., (5 ≥ f1 ≥ 3)∧ (f2 ≤ 10)
is not supported unless f2 is unencrypted. Second, if the
query contains a limit along with range operations over an
encrypted field, then it may contain an order-by operation
over the encrypted field alone.

3. ENCRYPTION BUILDING BLOCKS
Besides its indices, Arx relies on three semantically-secure

encryption schemes. These schemes already exist in the
literature, so we do not elaborate on them.
BASE is standard probabilistic encryption, e.g., AES-CTR.
EQ enables equality checks using a searchable encryption
scheme similar to existing work [17, 52]. The EQ scheme we
use is as follows. EQEnck(v) = (IV,AESKDFk(v)(IV)), where
IV is a random value and KDF is a key derivation algo-
rithm based on AES. To search for a word w, EQTokenk(w)
computes the token as tok = KDFk(w). To identify if the
token matches an encryption, the server proxy combines
tok with IV and checks to see if it equals the ciphertext:
EQMatch((IV, x), tok) = (AEStok(IV)

?
=x). Note that one

cannot build an index on this encryption directly because
it is randomized. Hence, Arx uses this scheme only for non-
indexed fields (i.e., for linear scans). When the developer
desires an index on this field, Arx uses our new ArxEq index.

EQunique is a special case of EQ. In many applications,
some fields have unique values, e.g., primary keys, SSN. In
this case, Arx makes an optimization: instead of implement-
ing EQ with the scheme above, it uses deterministic encryp-
tion. Deterministic encryption does not leak frequency when
values are unique. Such a scheme is very fast: the server
can simply use the equality operator as if the data were
unencrypted. Databases can also build indices on the field
as before, so this case is an optimization for ArxEq too.
AGG enables addition using the Paillier scheme [70].

4. ArxRange & ORDER-BASED QUERIES
We now present our index enabling range queries and

order-by-limit operations.

4.1 Strawman
We begin by presenting a helpful but inefficient strawman,

that corresponds to the protocols in mOPE [75] and the
startup ZeroDB [28]. For simplicity, consider the index to be
a binary tree (instead of a regular B+ tree). To obtain the
desired security, each node in the tree is encrypted using a
standard encryption scheme. Because such encryption is not
functional, the server needs the help of the client to traverse
the index. To locate a value a in the index, the server and the
client interact: the server provides the root node to the client,
the client decrypts it into a value v, compares v to a, and
tells the server whether to go left or right. The server then
provides the relevant child to the client, and the procedure

> 69_?

> 28_?

> 4_? > 32_?

Enc('ID:91') Enc('ID:23')

> 80_?
...

ArxRange index on patients.age:

5

5

5

ID diagnosis

Enc(Lyme)
Enc(flu)

Enc(23)
Enc(91)

age

Enc(26)
Enc(3)

patients collection:

Figure 2: ArxRange example. Enc is encryption with BASE.

repeats until it reaches a leaf. As a result, each level in the
tree requires a roundtrip, making the process inefficient.

4.2 Non-interactive index traversal
ArxRange enables the server to traverse the tree by itself.

Say the server receives BASEk(a) and must locate the leaf
node corresponding to a. To achieve this goal, the server must
be able to compare BASEk(a) with the encrypted value at a
node, say BASEk(v). Inspired from the theoretical literature
on garbled RAM [30, 31], we store a garbled circuit at
each tree node that performs the comparison, while hiding
a and v from the attacker.
A garbling scheme is a set of algorithms (Garble, Encode,

Eval) [33,90]. Using a garbling scheme, the client can invoke
the algorithm Garble on a boolean circuit f to obtain a
garbled version F of the circuit, along with some secret
encoding information e. Given an input a, the client can run
Encode(e, a) to produce an encoding ea corresponding to the
input. Then, the server can run Eval(F, ea) and obtain the
output y = f(a). The security of garbled circuits guarantees
that the server learns nothing about a or the data hardcoded
in f other than the output f(a) (and the size of a and f).
This guarantee holds as long as the garbled circuit is used
only once. That is, if the client provides two encodings ea
and eb using the same encoding information e to the server,
the security guarantees no longer hold. Hence, our client
provides at most one input encoding for each garbled circuit.
To allow the server to traverse the index without interac-

tion, each node in the index must re-encode the input for
the next node in the path, because the encoding ea of the
input to a node differs from the encoding for its children. We
therefore chain the garbled circuits so that each circuit
outputs an encoding compatible with the relevant child node.
Let N be a node in the index with value v, and let L and

R be the left and right nodes. Let eN , eL, and eR be the
encoding information for these nodes. The garbled circuit
at N is a garbling of a boolean circuit that compares the
input with the hardcoded value v and additionally outputs
the re-encoded input labels for the next circuit:

if a < v then
e′a ← Encode(eL, a); output e′a and ‘left’

else
e′a ← Encode(eR, a); output e′a and ‘right’

Fig. 2 shows how the server traverses the index with-
out interaction. The number at each node indicates the
value v hardcoded in the relevant garbled circuit. Now con-

sider the query: select * from patients where age < 5.
The client provides an encoding of 5, Encode(5) encrypted
with the key for the root garbled circuit. The server runs
this garbled circuit on the encoding and obtains “left” as well
as an encoding of 5 for the left garbled circuit. The server
then runs the left circuit on the new encoding, and proceeds
similarly until it reaches the desired leaf node. Note that
since each node encodes the < operation, in order to perform
≤ operations the client needs to first transform the query
into an equivalent query with the < operation; e.g., age ≤ 5
is transformed to age < 6 instead.
Repairing the index. A part of our index gets destroyed
during the traversal because each garbled circuit may be
used at most once. To repair the index, the client needs to
supply new garbled circuits to replace the circuits consumed.
Fortunately, only a logarithmic number of garbled circuits
get consumed. Suppose a node N and its left child L get
consumed. For each such node N , the client needs two pieces
of information from the server: the value v encoded in N , and
the encoding information for the right child R. The server
therefore sends an encryption of v (i.e., BASE(v), stored
separated in the index), and the ID of the circuit at R. The
ID of each circuit is a unique, random value that is used by
the client proxy (together with the secret key) to generate
the encodings for the circuit; i.e., the ID of the circuit at
R was used to compute eR. Sending ID instead of eR saves
bandwidth because the encoding information is not small
(1KB for a 32-bit comparison).

4.3 The database index
We need to take two more steps to obtain an index with

the desired security.
First, the shape of the index should not leak information

about the order in which the data was inserted. Hence, we
use a history-independent treap [4, 62] instead of a regular
search tree. This data structure has the property that its
shape is independent of the insertion or deletion order.
Second, we store at each node in the tree the encrypted

primary key of the document containing the value. This
enables locating the documents of interest. Note that the
index does not leak the order of values in the database even
though the leaves are ordered: the mapping between a leaf
and a document is encrypted, and the index can be simulated
from size information. If the primary key were not encrypted,
the server would learn such an order.
Query execution. Consider the query select * from
patients where 1 < age ≤ 5. Each node in the index
has two garbled circuits to allow concurrent search for the
lower and upper bounds. The client proxy provides tokens
for values 1 and 5 to the server, which then locates the left-
most and rightmost leaves in the interval (1, 5] and fetches
the encrypted primary keys from all nodes in between. The
server sends the encrypted keys to the client proxy which
decrypts them, shuffles them, and then selects the documents
mapped to these primary keys from the server. The shuffling
hides from the server the order of the documents in the range.

For order-by-limit ` queries, the server simply returns the
leftmost or rightmost ` nodes. Order-by operations without
a limit are not performed using ArxRange. Since they do not
have a limit, they do not do any filtering, so the client proxy
can simply sort the result set itself.
Updating the index. For inserts and deletes, the server
traverses the index to the appropriate position, performs the

operation, and rebalances the index if required. For updates,
the server first performs a delete followed by an insert. As
a result of the rebalancing, all nodes that have at least one
different child node are also marked as consumed (in addition
to those consumed during traversal), and are sent for repair
to the client proxy; however, the total number of consumed
nodes is always upper bounded by the height of the index.
Some update or delete queries may first perform a filter

on a field using a different index, but also requiring deletes
from an ArxRange index as a result. To support this case, we
maintain an encrypted backward pointer from the document
to the corresponding node in the tree. The backward pointers
enable the identification of these nodes without having to
traverse the ArxRange index. Decryption of these pointers
requires a single round of interaction with the client proxy.
Additionally, for monotonic inserts—a common case where

inserts are made in increasing or decreasing order—a cheap
optimization is for the client proxy to remember the position
in the tree of the last value, so that most values can be
inserted directly without requiring traversal and repair.
Concurrency. ArxRange provides limited concurrency be-
cause each index node needs to be repaired before it can be
used again. To enable a degree of concurrency, the client
proxy stores the top few levels of the tree. As a result, the
index at the server essentially becomes a forest of trees and
accesses across different trees can be performed in parallel.
At the same time, the storage at the client proxy is very small
because trees grow exponentially in size with the number
of levels. Queries to the same subtree, however, are still
sequential. This technique improves performance without
impacting the security guarantees of the index.

4.4 Optimizations
We employ several techniques to further improve the per-

formance of ArxRange: (1) we chain garbled circuits together
using transition tables instead of computing the encoding
function inside the circuit; (2) we incorporate recent advances
in garbling in order to make our circuits short and fast; and
(3) we remove index repair from the critical path of a query,
and return the query results to the client before starting
repair. We defer the details to Appendix A.

5. ArxEq & EQUALITY QUERIES
The ArxEq index enables equality queries and builds on

insights from the searchable encryption literature [12], as
explained in §12. We aim for ArxEq to be forward private,
a property shown to increase security significantly in this
context [13]: the server cannot use an old search token on
newly inserted data. We begin by presenting a base protocol
that we improve in stages.

5.1 Base protocol
Consider an index on the field age. ArxEq will encrypt the

value in age (as follows) and it will then tell the DB server
to build a regular index on age.
The case when the fields are unique (e.g., primary key,

IDs, SSNs) is simple and fast: ArxEq encrypts the fields with
EQunique and the regular index suffices. The rest of the
discussion applies to non-unique fields.
The client proxy stores a map, called ctr, mapping each

distinct value v of age that exists in the database to a counter
indicating the number of times v appears in the database.
For age, this map has about 100 entries.

Encrypt and insert. Suppose the application inserts a
document where the field age has value v. The client proxy
first increments ctr[v]. Then, it encrypts v into:

Enc(v) = H(EQunique(v), ctr[v]) (1)
where H is a cryptographic hash (modeled as a random or-
acle). This encryption provides semantic security because
EQunique(v) is a deterministic encryption scheme which be-
comes randomized when combined with a unique salt per
value v: ctr[v]. This encryption is not decryptable, but as
discussed in §8.2, Arx encrypts v with BASE as well. The
document is then inserted into the database.

Search token. When the application sends the query
select ∗ where age = 80, the client proxy computes a search
token using which the server proxy can search for all occur-
rences of the value 80. The search token for a value v is the
list of encryptions from Eq. (1) for every counter from 1 to
ctr[v]: H(EQunique(v), 1), . . . , H(EQunique(v), ctr[v]).

Search. The server proxy uses the search token to recon-
struct the query’s where clause as: age = H(EQunique(v), 1)
or . . . or age = H(EQunique(v), ctr[v]) (with the clauses
in a random order). The DB server uses the regular index
on age for each clause in this query and returns the results.
If the number of values exceeds the maximum query size
allowed by the backend database, then Arx’s server proxy
split the disjunction into multiple queries (at the cost of
additional index lookups).
Note that the scheme provides forward privacy: the server

cannot use an old search token to learn if newly inserted
values are equal to v as they would have a higher counter.

5.2 Reducing the work of the client proxy
The protocol so far requires the client proxy to generate as

many tokens as there are equality matches on the field age.
If a query filters on additional fields, the client proxy does
more work than the size of the query result, which we want
to avoid whenever possible. We now show how the client
proxy can work in time (log ctr[v]) instead of ctr[v].
Instead of encrypting a value v as in Eq. (1), the client

proxy hashes according to the tree in Fig. 3. It starts with
EQuniquek(v) at the root of a binary tree. A left child node
contains the hash of the parent concatenated with 0, and
a right child contains the hash of the parent with 1. The
leaves of the tree correspond to counters 0, 1, 2, 3, . . . , ctr[v].
The client proxy does not materialize this entire tree.

Given a counter value ct, the proxy can compute the leaf cor-
responding to ct, simply by using the binary representation
of ct to compute the corresponding hashes.

T00 = H(T0|| 0) T01 = H(T0|| 1) T10 = H(T1|| 0)

T1 = H(T || 1)T0 = H(T || 0)

T = EQuniquek(v)

Figure 3: Search token tree.

New search token. To search for a value v with counter
ctr[v], the client proxy computes the covering set for leaf
nodes 0, . . . , ctr[v] − 1. The covering set is the set of inter-
nal tree nodes whose subtrees cover exactly the leaf nodes
0, . . . , ctr[v]− 1. E.g., in Fig. 3, ctr[v] = 3 and the covering
set of the three leaves is {T0, T10}. The nodes in the covering

set constitute the search token. The covering set can be
easily deduced from the binary representation of ctr[v]− 1.
Search. The server proxy expands the covering set into the
leaf nodes, and proceeds as before.

5.3 Updates
We have already discussed inserts. For deletes, Arx simply

deletes the document. An update is a delete followed by an
insert. As a result, encrypted values for some counters will
not return matches during search. This does not affect accu-
racy, but as more counters go missing, it affects throughput
because the DB server wastes cycles looking for values with
no matches. It also provides a small security leakage because
a future search leaks how many items were deleted. As a
result, ArxEq runs a cleanup procedure after each deletion.
As a performance optimization, one can run a cleanup proce-
dure when a search query for a value v indicates more than
a threshold of missing counters, relaxing security slightly.
Cleanup. The server proxy tells the client proxy how
many matches were found for a search, say ct. The client
proxy updates ctr[v] with ct, chooses a new key k′ for v, and
generates new tokens as in Fig. 3: T ′00, . . . , T ′ct using k′. It
gives these tokens to the server, which replaces the fields
found matching with these.

5.4 Counter map
To alleviate the burden of storing the counter map at the

client proxy, it is possible to store it encrypted at the server
instead while still providing strong guarantees against offline
attackers. However, we recommend storing it at the client
proxy for increased security against the online attacker. We
now discuss both design points and accompanying tradeoffs.
Counter map at server. The counter map can be stored
encrypted at the server. An entry of the sort v → ct becomes
EQuniquek∗1

(v)→ EQuniquek∗2
(ct), where k∗1 and k∗2 are two

keys derived from the master key, used for the counter map.
When encrypting a value in a document or searching for a
value v, the client proxy first fetches the encrypted counter
from the server by providing EQuniquek∗1

(v) to the server.
Then, the algorithm proceeds the same as above.
To avoid leaking the number of distinct fields, Arx pads

the counter map to the number of documents in the relevant
collection. This scheme satisfies Arx’s security goal in §2.3:
a stolen database remains encrypted with semantic security
and leaks nothing except size information.
Counter map at client. However, we recommend keeping
the counter map at the client proxy for higher security against
an online attacker. If the counter map is stored at the server,
then with every newly inserted value, an online attacker can
see which entry of the counter map is accessed and which
document is inserted in the database. Storing the counter
map at the client hides such correlations entirely.
Though the size of the counter map grows with the number

of different values a field can take, in many cases, the storage
overhead is small—e.g., for low-cardinality fields such as
gender, age, and letter grades. Moreover, in the extreme case
when all values are unique (i.e., the maximum possible size for
a counter map), ArxEq defaults to the regular index built over
EQunique encryptions, which doesn’t need a counter map at
all. The case when there are many distinct values with few
repetitions is less ideal, and we implement an optimization for
this case: to decrease the size of the counter map, Arx groups

multiple entries into one entry by storing their prefixes. As
a tradeoff, the client proxy has to filter out some results.

6. ArxAgg & AGGREGATION QUERIES
We now explain Arx’s aggregation over the encrypted

indices. It is based on AES and is faster than homomorphic
encryption schemes like Paillier [70]. Many aggregations
happen over a range query, such as computing the average
days in hospital for people in a certain age group. Arx
computes the average by computing sum and count at the
server, and then dividing them at the client proxy. Hence,
let’s focus on the query: select sum(daysAdmitted) from
patients where 70 ≤ age ≤ 80.
The idea behind aggregations in Arx is inspired from litera-

ture on authenticated data structures [57]. This work targets
integrity guarantees (not confidentiality), but interestingly,
we use it for computations on encrypted data. Consider the
ArxRange index in Fig. 2 built on age. At every node N in
the tree, we add the partial aggregate corresponding to the
subtree of N . For the query above, N contains a partial sum
of daysAdmitted corresponding to the leaves under N . The
root node thus contains the sum of all values. This value is
stored encrypted with BASE.
To compute the sum over an arbitrary range such as [70, 80],

the server first locates the edges of the range as before, and
then identifies a perfect covering set. Note that the covering
set is logarithmic in the size of the index. For each node in
this set, the server returns the encrypted aggregates of all
its children and the encrypted value of the node itself to the
client proxy, which decrypts them and sums them up.
In the case of (i) inserting/deleting a document, or (ii) mod-

ifying a field having an aggregate, the partial sums on the
path from N to the root need to be updated, where N is the
node corresponding to the changed document. In the second
case, the client also needs to repair the path in the tree, so
the partial sum update happens essentially for free.
This strategy supports any aggregation function of the

form
∑
F (doc) where F is an arbitrary function whose input

is a document, as explained in §2.5. For aggregates over
fields with an ArxEq index, we have a similar strategy to
the aggregates over a range, but we do not describe it here
due to space constraints. For all other cases, we use AGG .
However, the number of such cases is reduced significantly.

7. JOINS USING ArxJoin
We now describe how Arx supports a common class of join

operations, namely, foreign-key joins. Arx extends ArxEq
or ArxRange for this purpose. This assumes that the join
contains:

select [. . .] from C1 join C2
on C1.fkey = C2.ID
where clause(C1) [and eq(C2)]

where C1 and C2 are the two collections being joined, fkey
is the foreign key in C1 pointing to the primary key ID in
C2, and clause is a predicate that can be evaluated using
an ArxEq or ArxRange index. The query may additionally
filter the joined documents in C2 using equality operations,
denoted by eq(C2).

ArxEq-based joins. Consider an example with collection C2
having a primary key ID, and collection C1 having a field age

with ArxEq, and diagnosis which is a foreign key pointing
to C2.ID.
The primary key in the secondary collection C2.ID is en-

crypted with EQunique as before. Consider inserting a docu-
ment with age 10 and diagnosis ‘flu’ in C1, and let’s discuss
how the client proxy encrypts this pair. Since foreign keys
are not unique, C1.diagnosis is encrypted with BASE. Ad-
ditionally, to perform the join, the client proxy computes
an encrypted pointer for C1.diagnosis. When decrypted,
this pointer will point to the appropriate encrypted C2.ID.
Instead of using one key for ArxEq, the client proxy now
uses two keys k1 and k2. It generates a token for each key
as before: t1 and t2. The client proxy includes t1 in the
document as before, and uses t2 to encrypt the diagnosis
‘flu’ as in: J = BASEt2(EQunique(‘flu’)). J will help with
the join. Hence, upon insert, the pair (10, ‘flu’) becomes
(BASE(10), t1, BASE(‘flu’), J). Note that the client does
not add t2 to the document: this prevents an attacker from
decrypting the join pointer and performing joins that were
not requested.
Now consider the join query: select [. . .] from C1 join

C2 on C1.diagnosis = C2.ID where C1.age = 10. To exe-
cute this query, the server proxy computes t1 and t2 for the
age of 10, as usual with ArxEq. It locates the documents of
interest using t1, and then uses t2 to decrypt J and obtain
EQunique(‘flu’). This value is a primary key in C2, and the
server simply does a lookup in C2.
The where clause of the query may additionally filter doc-

uments in C2 using an equality predicate, e.g., where age =
10 and C2.symptom = 'fever'. To filter the joined docu-
ments by symptom, Arx employs the EQ protocol for equality
checks as described in §3. Note that this additional filtering
cannot make use of an index; hence, it is restricted to equality
predicates and may not contain range operations.

ArxRange-based joins. Arx employs a different strategy in
case the where clause of the join query requires an ArxRange
index for execution, e.g., where C1.age > 10. In such a
scenario, ArxJoin’s tokens for C1.age cannot be computed as
described above.
Instead, the foreign key values encrypted with BASE are

directly added to the nodes of the ArxRange index over
C1.age, which already contain the encrypted primary keys of
documents in C1 (as described in §4.3). While traversing the
index in order to resolve the where clause, the server fetches
the encrypted foreign keys as well from the nodes of interest,
and sends them to the client proxy for decryption as with
regular ArxRange. The client decrypts the encrypted foreign
keys, re-encrypts them with EQunique, shuffles them, and
returns them to the server. The server then uses these values
to locate the corresponding documents in C2, and performs
the join. Note that this strategy does not bring any extra
round trips between the proxies.

Updates. The semantics of updates remain unchanged in
the presence of ArxJoin. Updates to the foreign key C1.fkey
simply update the underlying index, ArxEq or ArxRange.
Updates to C2.ID are also straightforward, and do not affect
the pointers in C1. This is because ID is a primary key in C2
and its values are unique.

8. ARX’S PLANNER
Arx’s planner takes as input a set of query patterns, Arx-

specific annotations, and a list of regular indices (per §2.4),

and produces a data encryption plan, a list of Arx-style
indices, and a query plan for each pattern.

8.1 Index planning
Before deciding what index to build, note that ArxRange

and ArxEq support compound indices, which are indices on
multiple fields. For example, an index on (diagnosis, age)
enables a quick search for diagnosis = 'flu' and age ≥ 10.
Arx enables these by simply treating the two fields as one
field alone. For example, when inserting a document with
diagnosis= 'flu', age = 10, Arx merges the fields into one
field 'flu' || 00010, prefixing each value appropriately to
maintain the equality and order relations, and then builds a
regular Arx index.
When deciding what indices to build, we aim to provide

the same asymptotic performance as the application admin
expects: if she specified an index over certain fields, then the
time to execute queries on those fields should be logarithmic
and not require a linear scan. At the same time, we would
like to build few indices to avoid the overhead of maintaining
and storing them. Deciding what indices to build automati-
cally is challenging because (1) there is no direct mapping
from regular indices to Arx’s indices, and (2) Arx’s indices
introduce various constraints, such as:
• A regular index serves for both range and equality op-
erations. This is not true in Arx, where we have two
different indices for each operation. We choose not to use
an ArxRange index for equality operations because of its
higher cost and different security.
• Unlike a regular index, a compound ArxEq index on (a, b)
cannot be used to compute equality on a alone because
ArxEq performs a complete match.
• A range or order-by-limit on a sensitive field can be com-
puted only via an ArxRange index, so it can no longer be
computed after applying a separate index.
All these are further complicated by the fact that the

application admin can explicitly specify certain fields to be
nonsensitive (as described in §2.4), and simultaneously de-
clare compound indices on a mixture of fields, both sensitive
and not. Similarly, queries can have both sensitive as well
as nonsensitive fields in a where clause.
As a consequence of our performance goal and these con-

straints, interestingly, there are cases when Arx builds an
ArxRange index on a composition of a nonsensitive and a
sensitive field. Consider, for example, that the admin built
an index on a, a nonsensitive field, and wants to perform
a query containing where a = and s ≥, where s is sensitive.
The admin expects the DB to filter documents by a rapidly
based on the index, and then, to filter the result by “s ≥”.
If we follow the straightforward solution of building an

ArxRange index on s alone, the resulting asymptotics are
different. The DB will filter by s and then, it will scan the
results and filter them by a, rendering the index on a useless.
The reason the admin specified an index on a might be that
performance is better if the server filters on “a =” first; hence,
the new query plan could significantly affect the performance
of this query especially if the ArxRange index returns a large
number of matches. To deliver the expected performance,
Arx builds a composite ArxRange index on (a, s).
Note that this is beneficial for security too because the

server will not learn which documents match one filter but
not the other filter: the server learns only which documents
matched the entire where clause in an all-or-nothing way.

Despite all these constraints, our index planning algorithm
is quite simple. It runs in two stages: per-query processing
and global analysis. Only the where clauses (including order-
by-limit operations) matter here. The first stage of the
planner treats sensitive and nonsensitive fields equally. For
clarity, we use two query patterns as examples. Their where
clauses are: W1: “a = and b =”, W2: “ x = and y ≥ and z =”.
The indices specified by the admin are on x and (a, b).
Stage 1: Per-query processing. For each where clause
Wi, extract the set of filters Si that can use the indices in a
regular database. Example: For W1, S1 = {(a =, b =)} and
for W2, S2 = {(x =)}.
Then, if Wi contains a sensitive field with a range or order-

by-limit operation, append a “≥” filter on this field to each
member of Si, if the member does not already contain this.
Based on the constraints in §2.5, a where clause cannot have
more than one such field. Example: For W1, S1 = {(a =, b =
)}, and for W2, S2 = {(x =, y ≥)}.
Stage 2: Global analysis. Union all sets S = ∪iSi. Re-
move any member A ∈ S if there exists a member B ∈ S
such that an index on B implies an index on A. The concrete
conditions for this implication depend on whether the fields
involved are sensitive or not, as we now exemplify.
Example: If a and b are nonsensitive, and S contains both
(a =, b =) and (a =, b ≥), then (a =, b =) is removed. If all
of a, b and c are sensitive and S contains both (a =, b =, c ≥)
and (a =, b ≥), then (a =, b ≥) is removed. For W1 and W2

above, if b and y are sensitive (a, x, z can be either way), the
indices Arx builds are: ArxEq (a, b) and ArxRange (x, y).
One can see why our planner maintains the asymptotic

performance of the admin’s index specification: each expres-
sion that was sped up by an index remains sped up. In
§10, we show that the number of extra indices Arx builds is
modest and does not blow up in practice.

8.2 Data layout
Next, laying out the encryption plan is straightforward:
• All values of a sensitive field are encrypted with the same
key, but this key is different from field to field.
• For every aggregation in a query, decide if the where clause

in this query can be supported entirely by using ArxRange
or ArxEq. Concretely, the where clause should not filter by
additional fields not present in the index. If so, update the
metadata of the respective index to follow our aggregation
strategy per §6. If not, encrypt the respective fields with
AGG if the aggregate requires the computation of a sum.
• For every query pattern, if the where clause Wi checks
equality on a field f that is not part of every element of
Si, encrypt f with EQ (since at least one query plan will
need to filter this field by equality without an index).
• For every sensitive field projected by at least one query,

additionally encrypt it with BASE. The reason is that EQ
and our indices are not decryptable.

9. SECURITY ANALYSIS
We now formalize the security guarantees of Arx. We

first develop a formal model of a database system, and then
provide leakage definitions with respect to offline and online
attackers. Proofs of security follow in Appendix B.
Notation. We denote the set of all binary strings of length
n as {0, 1}n. We write [ai]

n
i=1 to denote the list of values

[a1, . . . , an]. If S is a list or a set, then |S| denotes its size.

Protocol (e) Operation Le(DB, q)
EQ where field = w sp(w),Hist(w)
(§3) insert sp(w)

delete –
ArxEq where field = w sp(w),Hist(w)

(§5) cleanup (§5.3) sp(w),Hist(w)
insert, delete –

ArxRange where a ≤ field ≤ b rk(a− 1), rk(b)
(§4) orderby limit ` `

insert, delete v rk(v)
ArxJoin (§7) the same information as ArxEq or

ArxRange, depending on which ArxJoin
was built on, as well as leakage as in EQ
for the foreign key, where each match
identifies a primary key.

Figure 4: Query leakage in Arx’s protocols.

9.1 Preliminaries
A database system is a pair of stateful random access

machines (Client,Server). The server Server stores a database
DB, and the client Client can through interaction with Server
compute queries out of a set of supported queries, which
may modify the database.

Database. A database DB = {T1, . . . ,Tn} is a set of collec-
tions. Each collection Ti = (Fi, Indi, [(idj ,Dj)]j)) comprises
a set of fields Fi = {f1, . . . , fmi} of size mi; a set of indices
Indi; and a list of identifier-document pairs, where idj is the
identifier for document Dj . A document Dj = [w1, . . . , wmi]
is a list of keywords where wi is indexed by field fi (denoted
wi = Dj [fi]). Here, wi ∈ {0, 1}‖fi‖ ∪ {φ}, where ‖fi‖ denotes
the size of the keywords in the field’s domain. Also, we write
‖T‖ to denote the number of documents in collection T.
Given a collection T, we write T(w) to denote the set

of identifiers of documents that contain w, i.e., T(w) =
{id | ∃(id,D) ∈ T s.t. w ∈ D}.
Indices. Given a collection Ti and a field f, an index I ∈ Indi
is a search tree built over the keywords Dj [f], for all Dj ∈ Ti.
We represent the search tree as a tuple (V,E) of nodes and
edges, where each node contains a function f that enables
tree traversal. We define the shape of an index shape(I) = E
to be the set of edges. Since a field may contain multiple
indices (i.e., both ArxEq and ArxRange), we write I(f) to
refer to all the indices maintained on a field f.

Schema. Let E = {BASE,EQ,EQunique,ArxEq,ArxRange}
denote the set of protocols supported by Arx. We define the
schema S of a collection Ti to be its name, its set of fields,
the size of each field, protocols maintained per field, and the
shapes of all indices:

S(Ti) = (i, {fj , ‖fj‖, plan(fj), shape(I) ∀I ∈ I(fj)}mj=1).
Here, plan(fj) = {e ∈ E} is the set of protocols maintained
on field fj . The schema of a database DB is then given by
S(DB) =

⋃
i S(Ti).

Queries. A predicate pred = (f, op) is a tuple compris-
ing a field f and an operation op over the field, where
op ∈ {<,≥,=, < and ≥, orderby limit}. A query q =
(ts,T, qtype, pred, params) is a 5-tuple that comprises a times-
tamp ts, the name of a collection T, a query type qtype ∈
{read, insert, delete}, a predicate pred, and query param-
eters params corresponding to the predicate. We model
updates as a delete followed by an insert.
As an example, for the query select * from patients

where 1 ≤ age < 5, we have T = patients, qtype = read,
pred = (age, <), params = (1, 5), and D = φ.

Note that our definition of a query consists only of a single
predicate for simplicity of exposition. We model queries with
multiple predicates as a list of single-predicate queries; as
a result, our leakage definitions are an upper bound on the
actual query leakage.
For insert queries, we further model the insert to include

additional operations for fields that have one or more indices
maintained on them, one operation per index. For example,
consider the following insert query: insert into patients
(name, age) values (‘alice’, 30), and let the age field
contain both ArxEq and ArxRange indices. In this case, we
first insert the document into the database (which creates
an identifier for the document). Next, for each field in the
document, we insert the corresponding value into the indices
maintained on the field: i.e., for the field age, we (i) perform
an insert into its ArxEq index; and (ii) perform another
insert into its ArxRange index. We model delete operations
similarly.
We write DB(q) = ([idi]i, e) to denote the set of identifiers

of documents that satisfy q along with the protocol e ∈ E
used to execute q. For inserts, deletes, and updates, [idi]i
indicates the list of documents inserted, deleted, or updated.
Admin API. During system setup, for each collection Ti,
the admin supplies a predicate set :

P(Ti) = {[(fj , opj)]j | fj ∈ Fi} ,
which is the set of query predicates that will be issued by
Client over the collection (as described in §2.4). The global
predicate set is then given by P(DB) =

⋃
i P(Ti).

9.2 Leakage definitions
We define the leakage profile of Arx, L = {Loff ,Lon}: first

for the database itself (offline attacker), then for the execution
of each query (online attacker).

Definition 2 (Offline leakage of a database).
The leakage of a database DB is:

Loff(DB) = (S(DB),P(DB), {∀Ti ‖Ti‖}),
where S(DB) is the schema of the database, and P(DB) is
the global predicate set of the database.

Before defining the leakage of queries, we define the rank
of an element x in a list L = [a1, . . . , an] as rk(L, x) =
|{ai | ai ≤ x}|, and we write rk(x) if L is clear from context.
Our online leakage function Lon is stateful, and maintains

the query history of the database Q(DB) = [qi]i as a list of
every query issued by Client. We denote the query history
of a collection T as Q(T) = {q | q ∈ Q(DB) and q.T = T}.
Given collection T with a field f that has the EQ or ArxEq

protocol maintained on it, we define the search pattern of a
keyword w (following Bost [13]) as:
sp(w,T, f) = {q.ts | ∃ q ∈ Q(T) s.t. q.pred is (f,=), and w ∈
q.params},
and we write sp(w) if T and f are clear from context. Es-
sentially, sp leaks which equality queries relate to the same
keyword. Similarly, for collection T with a field f containing
the EQ or ArxEq protocol, we define the write history of
keyword w as:
WHist(w,T, f) = {(q.ts, q.qtype, id) | ∃ q ∈ Q(T) s.t. id ∈
DB(q), q.qtype ∈ {insert, delete}, and D[f] = w},
where and D is the document corresponding to id. We write
WHist(w) if T and f are clear from context. Essentially,
WHist leaks the list of all write operations on keyword w.

Finally, let T0 be the state of collection T in the initial
database, before any queries are issued. Then, we define the

history of keyword w as Hist(w,T) = (T0(w),WHist(w,T)),
and we write Hist(w) if T is clear from context.

Definition 3 (Online leakage of queries). Let
([idi]i, [ej]j)← DB(q). Then, the leakage of a query q over
database DB is:
Lon(DB, q) = ((q.ts, q.T, q.qtype, q.pred), [idi]i,Le(DB, q))
where Le(DB, q) is additional leakage due to the protocol e
used to execute the query, as detailed in Fig. 4.

We note that the leakage of ArxEq, as captured in Fig. 4,
is similar to that of Sophos [13] and Diana [14].

10. EVALUATION
We now show that Arx supports real applications with a

modest overhead.
Implementation. While the design of Arx is decoupled
from any particular DBMS, we implemented our prototype
for MongoDB 3.0. Arx’s implementation consists of ∼11.5K
lines of Java, and ∼1800 lines of C/C++ code. We used
the Netty I/O framework [66] to implement Arx’s proxies.
We also disable query logs and query caches to reduce the
chance that an offline attacker gets information an online
attacker would see, as discussed in Grubbs et al. [38].
Testbed. To evaluate the performance of Arx, we used
the following setup. Arx’s server proxy was collocated with
MongoDB 3.0.11 on 4 cores of a machine with 2.3GHz Intel
E5-2670 Haswell-EP processors and 256GB of RAM. Arx’s
client proxy was deployed on 4 cores of an identical machine.
A separate machine with 48 cores was used to run the clients.
In throughput experiments, we ran the clients on all 48 cores
of the machine to measure the server at maximum capacity.
All three machines were connected over a 1GbE network; to
simulate real-world deployments, we added a latency of 10ms
(RTT) to each server using the tc utility.

10.1 Functionality
To understand if Arx supports real applications, we evalu-

ate Arx on seven existing applications built on top of Mon-
goDB. We manually inspected the source code of each appli-
cation to obtain the list of unique queries issued by them, and
cross-verified the list against query traces produced during
an exhaustive run of the application. All these applications
contain sensitive user information, and Arx encrypts all fields
in these applications by default.
Fig. 5 summarizes our results. With regard to unsup-

ported queries across the applications, 4 of the 11 were due
to timestamps; Arx can support these queries in case the
timestamps are nonsensitive and explicitly specified as such
by the application admin. The limitation was the number
of range/order operations Arx allows in the query, as ex-
plained in §2.5. For NodeBB, the two unsupported queries
performed text searches, and for Leanote, the five queries
were evaluating regular expressions, both of which Arx can-
not support. Even so, these are only a small fraction of the
total queries issued, which are tens to hundreds in number.
In general, the table shows that Arx can support almost all
the queries issued by real applications. In cases where an
application contains queries that are not supported by Arx,
the application admin should consider whether the applica-
tion needs the query in that form and if she can adjust it
(e.g., by removing a filter that is not necessary or that can be
executed in the application). The admin could also consider

Application Examples of fields Unsupported queries Number of indices Total indices
Total Excl. timestamps ArxEq ArxRange Vanilla Arx

ShareLaTeX [81] document lines, edits 1 – 12 4 12 16
Uncap (medical) [88] heart rate, tests – – 0 2 2 2
NodeBB (forum) [67] posts, comments 2 2 13 4 12 17
Pencilblue (CMS) [73] articles, comments 3 – 46 27 70 73
Leanote (notes) [54] notes, books, tags 5 5 64 28 69 92
Budget manager [15] expenditure, ledgers – – 5 0 5 5
Redux (chat) [79] messages, groups – – 3 0 3 3

Figure 5: Examples of applications supported by Arx: examples of fields in these applications; the number of queries not
supported by Arx when all fields were considered sensitive, and when timestamps were excluded; how many Arx-specific indices
the application requires; and the total number of indices the database builds in the vanilla application and with Arx. Since
ArxAgg is built on top of ArxEq and ArxRange, we do not count it separately.

Scheme Enc. Dec. Token Operation
BASE 0.327 0.13 – –

EQ 4.998 – 2.353 Match: 2.368
EQunique 0.012 0.047 – Equality: ∼0

AGG 16,254 15,116 – Sum: 8

Figure 6: Microbenchmarks of cryptographic schemes used
by Arx in µs.

Height Token Cover Expansion
8 3.7 9.5 131.9
10 4.6 14.5 542.3
12 5.5 20.5 2164.9

Figure 7: Microbenchmarks of ArxEq operations in µs .

if the unsupported data field is nonsensitive and mark it
as such, but this should be done with care. The table also
shows that though Arx’s planner increases the number of
indices by 20%, this number does not blow up. The main
reason is that the number of fields with order queries that
are not indexed by the application is small.

10.2 Microbenchmarks
Encryption building blocks. The cryptographic schemes
used by Arx are efficient, as shown in Fig. 6. The reported
results are the median of a million iterations.

ArxEq microbenchmarks. The ArxEq protocol encrypts
a value v as (BASE(v), t), where t is a token for the value
computed using the search token tree as described in §5. The
time to compute t is directly proportional to the height of the
tree, involving a hash computation at each level. We evaluate
the time taken to compute t for different tree heights, and
report the results as the median of a 100K iterations in Fig. 7.
The results show that ArxEq encryption is efficient.

To search for v, the client proxy computes the covering set
of all tokens and sends it to the server. The computation
depends on the number of existing tokens for v, which ranges
from 1 to 2h where h is the height of the tree. We compute
the cover for a randomly selected number of tokens, and
report the median time over 100K iterations. The server
proxy searches for v by expanding the covering set into all
possible tokens. Fig. 7 shows that the operations are efficient
and the client proxy does little work compared to the server.

ArxRange microbenchmarks. Our garbled circuits are
implemented in AES, which takes advantage of existing hard-
ware implementations. For a 32-bit value, the garbled circuit
is 3088 bytes long, the time to garble is 19.8K cycles and
the time to evaluate is 7.8K cycles. For a 128-bit value, the
circuit is 12.3KB in size, the time to garble is 70.1K cycles
(0.03ms) and the time to evaluate is 29.1K cycles.

10.3 Performance of ArxEq
We evaluate the overall performance of ArxEq (without

the optimization for unique values) using relevant queries
issued by ShareLaTeX. These queries filter documents by
one field using ArxEq. We loaded the database with 100K
documents representative of a ShareLaTeX workload.
Fig. 8 compares the read throughput of ArxEq with a regu-

lar MongoDB index, when varying the number of duplicates
per value of the indexed field. The ArxEq scheme expands
a query from a single equality clause into a disjunction of
equalities over all possible tokens. The number of tokens
corresponding to a value increases with the number of du-
plicates. The DB server essentially looks up each token in
the index. In contrast, a regular index maps duplicates to
a single reference and can fetch them all in a scan. Both
indices need to fetch the documents for each primary key
identified as a matching, which constitutes a significant part
of the execution time. Overall, ArxEq incurs a penalty of
55% in the worst case, of which 8% is due to Arx’s proxy.
When all fields are unique, the added latency due to ArxEq is
small—1.13ms versus 0.94ms for MongoDB. As the number
of duplicates increases, the latency of both MongoDB and
Arx increase as well—at 100 duplicates, Arx’s latency is
42.1ms, while that of MongoDB is 18.8ms.
Fig. 9 compares the write throughput of ArxEq with in-

creasing number of duplicates. The write performance of a
regular B+Tree index slowly improves with increased dupli-
cation, as a result of a corresponding decrease in the height
of the tree. In contrast, writes to an ArxEq index are indepen-
dent of the number of duplicates by virtue of security: each
value looks different. Further, since each individual insert
requires the computation of a single token (a constant-time
operation), the write throughput of ArxEq remains stable in
this experiment. As a result, the net overhead grows from
18% (when fields are unique) to 25% when there are 100
duplicates per value. Latency follows a similar trend (see
Fig. 11) and remains stable for ArxEq at ∼3.3ms. For a
regular MongoDB index, the latency slowly improves from
2.7ms to 2.5ms as the number of duplicates grows to 100.

YCSB Benchmark. Since Arx is a NoSQL database, we
also evaluate its overhead using the YCSB benchmark [23].
YCSB conforms to ArxEq’s optimized case when fields are
unique. In this experiment, we loaded the database with
1M documents. Arx considers all fields to be sensitive by
default, including the primary key. Hence, the primary key
has an ArxEq index and the rest of the fields are encrypted
with BASE. Fig. 10 shows the average performance of Arx
versus vanilla MongoDB, across four different workloads
with varying proportions of reads and writes, as specified.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10 20 30 40 50 60 70 80 90 100

R
e
a
d
s
/s
e
c

No. of duplicates

MongoDB
Proxy
Arx

Figure 8: ArxEq read throughput with
increasing no. of duplicates.

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 10 20 30 40 50 60 70 80 90 100

W
ri
te
s
/s
e
c

No. of duplicates

MongoDB
Proxy
Arx

Figure 9: ArxEq write throughput with
increasing no. of duplicates.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

50%R,
50%U

95%R,
5%U

95%R,
5%I

50%R,
50%RMW

-3%

-7% -9%

-4%

T
h
ro
u
g
h
p
u
t
(o
p
s
/s
e
c
) MongoDB

Proxy
Arx

Figure 10: YCSB throughput for dif-
ferent workloads.

Dup. Read latency (ms) Write latency (ms)
Mongo Proxy Arx Mongo Proxy Arx

1 0.94 1.04 1.13 2.69 2.72 3.30
10 1.91 2.23 4.29 2.69 2.66 3.34
20 3.81 4.19 8.49 2.62 2.65 3.28
50 9.40 10.09 20.86 2.55 2.53 3.33
100 18.80 20.23 42.10 2.50 2.51 3.35

Figure 11: ArxEq latency of reads and writes with increasing
no. of duplicates.

“R” refers to proportion of reads, “U” to updates, “I” to
inserts, and “RMW” to read-modify-write. The reduction in
throughput is higher for read-heavy workloads as a result
of the added latency due to sequential decryption of the
result sets. Overall, the overhead of Arx is 3%-9% across
workloads, showing that indexing primary keys is fast with
Arx. Increase in latency due to Arx is also unremarkable—the
average read latency increases from 2.31ms to 2.43ms under
peak throughput, while average update latency increases
from 2.36ms to 2.47ms in the 50%R - 50%U workload.

10.4 Performance of ArxRange
We now evaluate the latency introduced by ArxRange. We

pre-inserted 1M values into the index, and assumed a length
of 128 bits for the index keys, which is sufficient for composite
keys. We cached the top 1000 nodes of the index at the client
proxy, which amounted to a mere 88KB of memory. We
subsequently evaluated the performance of read and write
operations on the index. Fig. 12 illustrates the latency of
each operation, divided into three parts: (1) the time taken
to traverse the index, (2) the time taken to decrypt the
retrieved document IDs (for reads)—this incurs a network
roundtrip as described in §4.3; (3) the time taken to retrieve
the corresponding results (for reads) or insert the document
(for writes), and (4) the time taken to repair the index. The
generation of fresh garbled circuits in order to repair the
index contributes the most towards latency.
Overall, range queries cost more than writes because the

former require a network roundtrip in order to decrypt the
retrieved IDs before fetching the corresponding documents.
The cost of traversing a path in the index is ∼3ms. We note
that the strawman in §4.1 incurs a roundtrip overhead for
each node in the path, while our protocol incurs only a single
roundtrip cost for decrypting the IDs in the leaves of the
index. Fig. 12 also highlights the improvement when the
index can be optimized for monotonic inserts, which was
common in the applications we evaluated. We also note that
though the overall latency of ArxRange is high, the results of
a range query can be returned to the client before performing
the repair operation (see §4.4). Thus, in low load scenarios,
the effective latency of a range query drops to ∼15ms.

We next measure the throughput of ArxRange in Fig. 15.
Without client-side caching of nodes, the throughput of the
index is very limited, since each operation requires the cir-
cuit at the root of the index to be replenished, forcing the
operations to be sequential. However, when the top few
levels of the tree are cached at the client, multiple queries to
different parts of the index can proceed in parallel, and the
throughput increases by more than an order of magnitude (at
which point the client proxy in our testbed gets saturated).

10.5 Performance of ArxAgg
The cost of computing an aggregate over a range in Arx

is essentially equal to the cost of computing the range query.
This is because traversing the index for a range query auto-
matically computes the covering set. As a result, with 1M
values in the index, aggregating over a range takes ∼3 ms in
Arx, equal to the cost of traversing the index.

10.6 End-to-end evaluation on ShareLaTeX
We now evaluate the end-to-end overhead of Arx using

ShareLaTeX [81], a popular web application for real-time
collaboration on LaTeX projects, that uses MongoDB for
persistent storage. We chose ShareLaTeX because it uses
both of Arx’s indices, it has sensitive data (documents, chats)
and is a popular application. ShareLaTeX maintains multiple
collections in MongoDB corresponding to users, projects,
documents, chat messages, etc. We considered all the fields
in the application to be sensitive, which is the default in Arx.
The application was run on four cores of the client server.

Before every experiment, we pre-loaded the database with
100K projects, 200K users, and other collections with 100K
records each. Subsequently, using Selenium (a tool for au-
tomating browsers [80]), multiple users launch browsers in
parallel and collaborate on projects in pairs—(i) editing doc-
uments, and (ii) exchanging messages via chat. We ran the
user processes on a separate machine with 48 cores. Fig. 13
shows the throughput of ShareLaTeX in a vanilla deployment
with regular MongoDB, compared to its performance with
Arx in various configurations. The client proxy is either col-
located with the ShareLaTeX application sharing the same
four cores, or deployed on extra and separate cores. The ap-
plication’s throughput declines by 29% when the client proxy
and ShareLaTeX are collocated; however, when two separate
cores are allocated to Arx’s client proxy, the reduction in
throughput stabilizes at a reasonable 10%.
Fig. 14 compares the performance of Arx with increasing

load at the application server, when four separate cores are
allocated to Arx’s client proxy. It also shows the performance
of MongoDB with the proxy without the Arx hooks. Note
that each client thread issues many requests as fast as it

 0

 5

 10

 15

 20

 25

 30

 35

Read Write Read Write Monotonic

L
a
te
n
c
y
 (
m
s
)

Traversal
Decrypt IDs
Operation

Repair

ArxMongoDB

Figure 12: ArxRange latency of reads
and writes.

 0

 2000

 4000

 6000

 8000

 10000

C
ollocated

1 core
2 cores

3 cores

4 cores

-29% -25%
-10% -10% -11%

T
h
ro
u
g
h
p
u
t
(o
p
s
/m
in
)

MongoDB Arx

Figure 13: ShareLaTeX performance
with Arx’s client proxy on varying cores

 2000

 3000

 4000

 5000

 6000

 7000

 16 24 32 40 48

T
h
ro
u
g
h
p
u
t
(o
p
s
/m
in
)

No. of clients

MongoDB
Proxy
Arx

Figure 14: ShareLaTeX performance
with increasing no. of client threads

 0
 100
 200
 300
 400
 500
 600

Read Write Read WriteT
h
ro
u
g
h
p
u
t
(o
p
s
/s
)

With cachingWithout caching

Figure 15: ArxRange throughput, with and without caching.

can, bringing a load equivalent to many real users. At
peak throughput with 40 clients and 100% CPU load at the
application, the reduction in performance due to Arx is 11%;
8% is due to Arx’s proxy, and the remaining 3% due to its
encryption and indexing schemes.
Finally, the latency introduced by Arx is modest compared

to the latency of the application. In conditions of low stress
with 16 clients, performance remains bottlenecked at the
application, and the latency added by Arx is small in com-
parison, increasing from an average of 268ms per operation
to 280ms. At peak throughput, the latency of vanilla Share-
LaTeX is 355ms, which grows by 15% to 408ms with Arx,
having marginal impact on user experience.
In sum, Arx brings a modest overhead to the overall web

application. There are two main reasons for this. First,
web applications have a significant overhead themselves at
the web server, which masks the latency of Arx’s protocols.
Second, even though ArxRange is not cheap, it’s one out of a
set of multiple operations Arx runs, with the others being
faster and overall more common in applications.

10.7 Storage
Arx increases the total amount of data stored in the

database because: (1) ciphertexts are larger than plaintexts
for certain encryption schemes, and (2) additional fields are
added to documents in order to enable certain operations,
e.g., equality checks using EQ, or tokens for ArxEq indexing.
Further, ArxRange indices are larger than regular B+Trees,
because each node in the index tree stores garbled circuits.
Vanilla ShareLaTeX with 100K documents per collection
occupied 0.56GB in MongoDB, with an extra 48.7 MB for
indices. With Arx, the data storage increased by 1.9× to
1.05GB. The application required three compound ArxRange
indices, which together occupied 8.4GB of memory at the
server proxy while indices maintained by the database oc-
cupied 56.5MB. This resulted in a net increase of 16× at
the DB server. We note, however, there remains substantial
scope for optimizing index size in our implementation.
Finally, the application required two ArxEq indices for

which counter maps were maintained at the client proxy,

which in turn occupied 8.6MB of memory, illustrating that
ArxEq imposes modest storage overhead at the application
server. Moreover, the values inserted into the counter maps
were distinct; in case of duplicates, the memory requirements
would be proportionately lower.

10.8 Comparison with CryptDB
Arx supports fewer queries than CryptDB, but we find

their functionalities are nevertheless comparable. For ex-
ample, CryptDB supports all the queries in the TPC-C
benchmark [86], while Arx supports 30 out of 31 queries.
Arx also enables a rich class of applications as shown above,
though it does not support group-by operations (for secu-
rity issues), arbitrary conjunctions of range filters, and more
generic joins, supported by CryptDB.
As regards performance, on one hand, CryptDB’s order

and equality queries via PPE schemes are faster than Arx’s—
with a reported overhead of ∼1ms [76], as opposed to a few
milliseconds in Arx—but also significantly less secure. On
the other hand, Arx’s aggregate over a range is an order of
magnitude faster for the same security, because CryptDB
uses Paillier [70] to compute aggregates which requires a
homomorphic multiplication per value in the range. For a
range of 10, 000 values, aggregates take 80ms in CryptDB
compared to ∼3ms in Arx. Overall, Arx is a heavier solution
due to the significant extra security, but remains at par with
CryptDB in terms of overall impact on target applications:
both systems report an overhead on the order of 10%.

11. LIMITATIONS AND FUTURE WORK
ArxRange extensions. Our current ArxRange index is a
binary tree. An interesting extension is to implement the
index for data structures with higher fanout such as B-trees,
e.g., by (i) storing at each node in the tree multiple garbled
circuits; and (ii) using a history-independent B-treap data
structure [34], instead of a binary treap.
History-independence. One needs to be careful that when
logically implementing a history-independent data structure
(as in ArxRange), the physical implementation of it is history-
independent as well. For example, in our treap data structure,
we ultimately require file system support for implementing
secure deletion [6, 78]. This is because, when a node is log-
ically deleted, the file system needs to ensure that instead
of merely unlinking the data structure in memory, all copies
of the data (caches, in-memory and disk) are in fact physi-
cally removed so as to become irrecoverable to an attacker.
Implementing secure deletion is complementary to our work.
Transactions. Arx currently does not support transac-
tional semantics. While our techniques can be extended to

transactional systems as well, it has significant practical chal-
lenges. For instance, our ArxRange index requires updates to
multiple nodes in the tree per query along with interaction
with the client, making support for transactions complicated.
However, doing so is interesting future work.

12. RELATED WORK
We compare Arx with state-of-the-art EDBs, and discuss

protocols related to its building blocks, ArxEq and ArxRange.
We do not discuss PPE-based EDBs [5,71,76,87] further as
we have already compared Arx against them extensively in
§1 and §2.3. Seabed [71] hides frequency in some cases, but
still uses PPE.

EDBs using semantically-secure encryption. This cat-
egory is the most relevant to Arx, but unfortunately, there is
little work done in this space. First, the line of work in [17,29]
is based on searchable encryption, but is too restricted in
functionality. It does not support joins, order-by-limit queries
(commonly used for pagination, more common than range
queries in TPC-C [86]), or aggregates over a range (because
the range identifies a superset of the relevant documents for
security, yielding an incorrect aggregate). Regarding security,
while being significantly more secure than PPE-based EDBs
for offline attackers, for online attackers they could leak more
than PPE-based EDBs because their range queries leak the
number of values matching sub-ranges as well as some prefix
matching information—leakage that is not implied by order.
Arx addresses all these aspects. Other recent works [43,48]
also support equality-based queries but do not support range,
order-by-limit, or aggregates over range queries; the former
doesn’t support inserts or updates either.
Second, BlindSeer [72] is another EDB providing semantic

security. BlindSeer provides stronger security than Arx and
even hides the client query from the server through two-party
computation. Its primary drawbacks with respect to Arx are
performance and functionality. BlindSeer requires a large
number of interactions between the client and server. For
example, for a range query, the client and server need to
interact for every data item in the range (and a few times
more) because tree traversal is interactive. If the range
contains many values, this query is slow. In Arx, there is
no interaction in this case. BlindSeer also does not handle
inserts easily, nor does it support deletes, updates, aggregates
over ranges or order-by-limit queries.
Finally, Obladi [24] targets much stronger guarantees than

Arx by combining ACID semantics with ORAM, but conse-
quently, is also orders of magnitude slower.

Work related to ArxEq. ArxEq falls in the general category
of searchable-encryption schemes and builds on insights from
this literature. While there are many schemes proposed in
this space [12,13,17,25,29,40,44,50,53,65,68,83,84], none of
them meets the following desired security and performance
from a database index. Besides semantic security, when
inserting a value, the access pattern should not leak what
other values it equals, and an old search token should not
allow searching on newly inserted data (forward privacy),
both crucial in reducing leakage [13]. Second, inserts, updates
and deletes should be efficient and should not cause reads to
become slow. ArxEq meets all these goals. Perhaps the closest
prior work to ArxEq is [17]. This scheme uses revocation
lists for delete operations, which adds significant complexity
and overhead, as well as leaks more than our goal in Arx: it

lacks forward privacy and the revocation lists leak various
metadata. Sophos [13] also provides forward privacy, but
uses expensive public key cryptography instead of symmetric
key. Diana [14] is similar to ArxEq.
Work related to ArxRange. There has been a significant
amount of work on OPE schemes in both industry and re-
search communities [1–3,9,10,22,42,55,58,59,69,75,77,89,91].
OPE schemes are efficient but have significant leakage [64].
Order-revealing encryption (ORE) provides semantic secu-
rity [11,19,56]. The most relevant of these is the construction
by Lewi and Wu [56] which is more efficient than ArxRange
because it does not need replenishment, but also less secure
because it leaks the position where two plaintexts differ.
Thus, it is not strictly more secure than OPE.

Acknowledgments
We thank our anonymous reviewers for their invaluable feed-
back. This research was supported by NSF CISE Expedi-
tions #CCF-1730628, and gifts from the Sloan Foundation,
Hellman Fellows Fund, Bakar Fund, Alibaba, Amazon, Ant
Financial, Arm, Capital One, Ericsson, Facebook, Google, In-
tel, Microsoft, NVIDIA, ScotiaBank, Splunk, and VMWare.

13. REFERENCES
[1] D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally.

Database Management as a Service: Challenges and
Opportunities. In Proc. ICDE, 2009.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Proc.
SIGMOD, 2004.

[3] G. W. Ang, J. H. Woelfel, and T. P. Woloszyn. System
and Method of Sort-Order Preserving Tokenization. US
Patent Application 13/450,809, 2012.

[4] C. R. Aragon and R. G. Seidel. Randomized search
trees. In Proc. FOCS, 1989.

[5] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. A secure
coprocessor for database applications. In Proc. FPL,
2013.

[6] S. Bajaj and R. Sion. HIFS: History Independence for
File Systems. In Proc. CCS, 2013.

[7] S. Bearak. 2018 Data Breaches – The Worst So Far,
2018. https://www.identityforce.com/blog/2018-
data-breaches.

[8] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations
of Garbled Circuits. In Proc. CCS, 2012.

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-Preserving Symmetric Encryption. In Proc.
EUROCRYPT, 2009.

[10] A. Boldyreva, N. Chenette, and A. O’Neill.
Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In Proc.
CRYPTO, 2011.

[11] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry,
and J. Zimmerman. Semantically Secure
Order-Revealing Encryption: Multi-input Functional
Encryption Without Obfuscation. In Proc.
EUROCRYPT, 2014.

[12] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A Survey
of Provably Secure Searchable Encryption. ACM
Computing Surveys (CSUR), 2014.

https://www.identityforce.com/blog/2018-data-breaches
https://www.identityforce.com/blog/2018-data-breaches

[13] R. Bost. Sophos - Forward Secure Searchable
Encryption. In Proc. CCS, 2016.

[14] R. Bost, B. Minaud, and O. Ohrimenko. Forward and
Backward Private Searchable Encryption from
Constrained Cryptographic Primitives. In Proc. CCS,
2017.

[15] Budget Manager. https://goo.gl/chFmct.
[16] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart.

Leakage-Abuse Attacks against Searchable Encryption.
In Proc. CCS, 2015.

[17] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,
M. Rosu, and M. Steiner. Dynamic Searchable
Encryption in Very-Large Databases: Data Structures
and Implementation. In Proc. NDSS, 2014.

[18] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu,
and M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Proc.
CRYPTO, 2013.

[19] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu.
Practical Order-Revealing Encryption with Limited
Leakage. In Proc. IACR-FSE, 2016.

[20] Chino.io: Security and Privacy for Health Data in the
EU. https://chino.io/.

[21] CipherCloud. CASB+ Platform.
http://www.ciphercloud.com.

[22] CipherCloud. Tokenization.
http://www.ciphercloud.com/tokenization.

[23] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proc. SOCC, 2011.

[24] N. Crooks, M. Burke, E. Cecchetti, S. Harel,
R. Agarwal, and L. Alvisi. Obladi: Oblivious
Serializable Transactions in the Cloud. In Proc. OSDI,
2018.

[25] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions
and efficient constructions. In Proc. CCS, 2006.

[26] H. Daitch. 2017 Data Breaches, 2017.
https://www.identityforce.com/blog/2017-data-
breaches.

[27] F. B. Durak, T. M. DuBuisson, and D. Cash. What
Else is Revealed by Order-Revealing Encryption? In
Proc. CCS, 2016.

[28] M. Egorov and M. Wilkison. ZeroDB white paper.
arXiv:1602.07168, 2016.

[29] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu,
and M. Steiner. Rich Queries on Encrypted Data:
Beyond Exact Matches. In Proc. ESORICS, 2015.

[30] S. Garg, S. Lu, and R. Ostrovsky. Black-Box Garbled
RAM. In Proc. FOCS, 2015.

[31] S. Garg, P. Mohassel, and C. Papamanthou.
TWORAM: Round-Optimal Oblivious RAM with
Applications to Searchable Encryption. Cryptology
ePrint Archive, Report 2015/1010, 2015.
http://eprint.iacr.org/2015/1010.

[32] O. Goldreich. The Foundations of Cryptography -
Volume 2: Basic Applications. Cambridge University
Press, 2004.

[33] O. Goldreich, S. Micali, and A. Wigderson. How to
Play ANY Mental Game. In Proc. STOC, 1987.

[34] D. Golovin. B-Treaps: A Uniquely Represented
Alternative to B-Trees. In Proc. ICALP, 2009.

[35] Google. Encrypted BigQuery client. https:
//github.com/google/encrypted-bigquery-client.

[36] P. Grofig, M. Haerterich, I. Hang, F. Kerschbaum,
M. Kohler, A. Schaad, A. Schroepfer, and W. Tighzert.
Experiences and observations on the industrial
implementation of a system to search over outsourced
encrypted data. In Sicherheit, 2014.

[37] P. Grubbs, M. Lacharité, B. Minaud, and K. G.
Paterson. Learning to Reconstruct: Statistical Learning
Theory and Encrypted Database Attacks. In Proc.
IEEE S&P, 2019.

[38] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why
Your Encrypted Database Is Not Secure. In Proc.
HotOS, 2017.

[39] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed,
and T. Ristenpart. Leakage-Abuse Attacks against
Order-Revealing Encryption. Cryptology ePrint
Archive, Report 2016/895, 2016.
http://eprint.iacr.org/2016/895.

[40] W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song.
ShadowCrypt: Encrypted Web Applications for
Everyone. In Proc. CCS, 2014.

[41] iQrypt: Encrypt and query your database.
http://iqrypt.com/.

[42] H. Kadhem, T. Amagasa, and H. Kitagawa. MV-OPES:
Multivalued-Order Preserving Encryption Scheme: A
Novel Scheme for Encrypting Integer Value to Many
Different Values. IEICE Trans. Info. & Sys., 2010.

[43] S. Kamara and T. Moataz. SQL on
Structurally-Encrypted Databases. Cryptology ePrint
Archive, Report 2016/453, 2016.
http://eprint.iacr.org/2016/453.

[44] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic
searchable symmetric encryption. In Proc. CCS, 2012.

[45] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun.
Verena: End-to-End Integrity Protection for Web
Applications. In Proc. IEEE S&P, 2016.

[46] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill.
Generic Attacks on Secure Outsourced Databases. In
Proc. CCS, 2016.

[47] J. Kepner, V. Gadepally, P. Michaleas, N. Schear,
M. Varia, A. Yerukhimovich, and R. K. Cunningham.
Computing on Masked Data: A High Performance
Method for Improving Big Data Veracity.
arXiv:1406.5751, 2014.

[48] M. Kim, H. T. Lee, S. Ling, S. Q. Ren, B. H. M. Tan,
and H. Wang. Better Security for Queries on Encrypted
Databases. Cryptology ePrint Archive, Report
2016/470, 2016. http://eprint.iacr.org/2016/470.

[49] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider.
Improved Garbled Circuit Building Blocks and
Applications to Auctions and Computing Minima. In
Proc. CANS, 2009.

[50] K. Kurosawa. Garbled Searchable Symmetric
Encryption. In Proc. FC, 2014.

[51] M.-S. Lacharité, B. Minaud, and K. G. Paterson.
Improved Reconstruction Attacks on Encrypted Data
Using Range Query Leakage, 2018.

[52] C. Lan, J. Sherry, , R. A. Popa, S. Ratnasamy, and

https://goo.gl/chFmct
https://chino.io/
http://www.ciphercloud.com
http://www.ciphercloud.com/tokenization
https://www.identityforce.com/blog/2017-data-breaches
https://www.identityforce.com/blog/2017-data-breaches
http://eprint.iacr.org/2015/1010
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
http://eprint.iacr.org/2016/895
http://iqrypt.com/
http://eprint.iacr.org/2016/453
http://eprint.iacr.org/2016/470

Z. Liu. Embark: Securely Outsourcing Middleboxes to
the Cloud. In Proc. SIGCOMM, 2015.

[53] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and
A. Boldyreva. Mimesis Aegis: A Mimicry Privacy
Shield-A System’s Approach to Data Privacy on Public
Cloud. In Proc. USENIX Security, 2014.

[54] Leanote. https://leanote.com/.
[55] S. Lee, T.-J. Park, D. Lee, T. Nam, and S. Kim.

Chaotic Order Preserving Encryption for Efficient and
Secure Queries on Databases. IEICE Trans. Info. &
Sys., 2009.

[56] K. Lewi and D. J. Wu. Order-Revealing Encryption:
New Constructions, Applications, and Lower Bounds.
In Proc. CCS, 2016.

[57] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated Index Structures for Aggregation
Queries. ACM Trans. Info. & Sys. Sec., 2010.

[58] D. Liu and S. Wang. Programmable Order-Preserving
Secure Index for Encrypted Database Query. In Proc.
CLOUD, 2012.

[59] D. Liu and S. Wang. Nonlinear order preserving index
for encrypted database query in service cloud
environments. Concurrency and Computation: Practice
and Experience, 2013.

[60] R. Merkle. Secrecy, authentication and public key
systems / A certified digital signature. PhD thesis,
Stanford University, 1979.

[61] Microsoft SQL Server. Always Encrypted Database
Engine. https://goo.gl/51LwQ9.

[62] M. Naor and V. Teague. Anti-persistence: History
Independent Data Structures. In Proc. STOC, 2001.

[63] M. Naveed. The Fallacy of Composition of Oblivious
RAM and Searchable Encryption. Cryptology ePrint
Archive, Report 2015/668, 2015.
http://eprint.iacr.org/2015/668.

[64] M. Naveed, S. Kamara, and C. V. Wright. Inference
Attacks on Property-Preserving Encrypted Databases.
In Proc. CCS, 2015.

[65] M. Naveed, M. Prabhakaran, and C. A. Gunter.
Dynamic Searchable Encryption via Blind Storage. In
Proc. IEEE S&P, 2014.

[66] Netty Project, 2017. http://netty.io/.
[67] NodeBB. https://nodebb.org/.
[68] W. Ogata, K. Koiwa, A. Kanaoka, and S. Matsuo.

Toward Practical Searchable Symmetric Encryption. In
Proc. IWSec, 2013.

[69] G. Özsoyoglu, D. A. Singer, and S. S. Chung.
Anti-Tamper Databases: Querying Encrypted
Databases. In Proc. DBSec, 2003.

[70] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proc.
EUROCRYPT, 1999.

[71] A. Papadimitriou, R. Bhagwan, N. Chandran,
R. Ramjee, A. Haeberlen, H. Singh, A. Modi, and
S. Badrinarayanan. Big Data Analytics over Encrypted
Datasets with Seabed. In Proc. OSDI, 2016.

[72] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,
S. G. Choi, W. George, A. Keromytis, and S. Bellovin.
Blind Seer: A scalable private DBMS. In Proc. IEEE
S&P, 2014.

[73] PencilBlue. https://goo.gl/SS4biS.

[74] R. A. Popa. Building Practical Systems that Compute
on Encrypted Data. PhD thesis, MIT, 2014.

[75] R. A. Popa, F. H. Li, and N. Zeldovich. An
Ideal-Security Protocol for Order-Preserving Encoding.
In Proc. IEEE S&P, 2013.

[76] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting Confidentiality
with Encrypted Query Processing. In Proc. SOSP,
2011.

[77] F. Y. Rashid. Salesforce.com Acquires SaaS Encryption
Provider Navajo Systems, 2011.
https://goo.gl/MKiF2b.

[78] J. Reardon, D. Basin, and S. Capkun. SoK: Secure
Data Deletion. In Proc. IEEE S&P, 2013.

[79] Redux. https://goo.gl/AWZy6z.
[80] Selenium. http://www.seleniumhq.org/.
[81] ShareLaTeX. https://www.sharelatex.com/.
[82] Skyhigh. Skyhigh Security Cloud.

https://www.skyhighnetworks.com/.
[83] D. X. Song, D. Wagner, and A. Perrig. Practical

Techniques for Searches on Encrypted Data. In Proc.
IEEE S&P, 2000.

[84] E. Stefanov, C. Papamanthou, and E. Shi. Practical
Dynamic Searchable Encryption with Small Leakage.
In Proc. NDSS, 2014.

[85] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher,
L. Ren, X. Yu, and S. Devadas. Path ORAM: an
extremely simple oblivious RAM protocol. In Proc.
CCS, 2013.

[86] TPC-C Transation Processing Benchmark.
http://www.tpc.org/tpcc/.

[87] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing Analytical Queries over Encrypted Data.
PVLDB, 6(5):289–300, 2013.

[88] UNCAP: Ubiquitous iNteropable Care for Ageing
People. http://www.uncap.eu/.

[89] L. Xiao, I.-L. Yen, and D. T. Huynh. Extending Order
Preserving Encryption for Multi-User Systems.
Cryptology ePrint Archive, Report 2012/192, 2012.
http://eprint.iacr.org/2012/192.

[90] A. C. Yao. How to Generate and Exchange Secrets
(Extended Abstract). In Proc. FOCS, 1986.

[91] D. Yum, D. Kim, J. Kim, P. Lee, and S. Hong.
Order-Preserving Encryption for Non-uniformly
Distributed Plaintexts. In Proc. WISA, 2011.

[92] S. Zahur, M. Rosulek, and D. Evans. Two Halves Make
a Whole: Reducing Data Transfer in Garbled Circuits
using Half Gates. In Proc. EUROCRYPT, 2015.

[93] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB:
Verifiable SQL for outsourced databases. In Proc. CCS,
2015.

APPENDIX
Appendix A discusses some optimizations incorporated by
the ArxRange index. In Appendix B, we provide formal
proofs of security for Arx.

A. ArxRange OPTIMIZATIONS
In this section, we discuss some optimizations incorporated

by the ArxRange index.

https://leanote.com/
https://goo.gl/51LwQ9
http://eprint.iacr.org/2015/668
http://netty.io/
https://nodebb.org/
https://goo.gl/SS4biS
https://goo.gl/MKiF2b
https://goo.gl/AWZy6z
http://www.seleniumhq.org/
https://www.sharelatex.com/
https://www.skyhighnetworks.com/
http://www.tpc.org/tpcc/
http://www.uncap.eu/
http://eprint.iacr.org/2012/192

Optimizing garbled circuit chaining. For performance
we do not compute the encoding function inside the garbled
circuit. Instead, we chain the garbled circuits together by
augmenting each garbled circuit with a transition table.
The transition table aids in translating an input label Ii for
the current circuit to an input label for the correct child
circuit corresponding to the same bit value. Note that the
server should not be able to infer the underlying bit value
that the label corresponds to but nevertheless should be able
to translate it to the correct label for the next circuit.
The garbled circuit at each node first performs the com-

parison a < v, and outputs a key K0 or K1 based on the
result of the comparison. This key is the label of the output
wire in the instantiation of the scheme.

For each bit i of the input, the transition table stores four
ciphertexts. Let I0[i], I1[i] denote the i-th input labels in
the encoding ea for the current circuit; let O0

0 [i], O1
0 [i] be the

corresponding labels for the left child, and O0
1 [i], O1

1 [i] for the
right child. The table stores the following four ciphertexts:

E(K0, I
0[i], O0

0[i]),
E(K0, I

1[i], O1
0[i]),

E(K1, I
0[i], O0

1[i]),
E(K1, I

1[i], O1
1[i]).

Here E denotes a double-key-cipher implemented as
E(A,B,X) = H(A||B) ⊕ X, where H is a random oracle.
Hence, without having both A and B, it is impossible to
learn any information about X. We note that there are
many other instantiations of such double-key-ciphers in the
literature, with different security guarantees under different
assumptions but for simplicity we just resort to a random
oracle in this construction.
The values in the transition table are not stored in a fixed
order. Instead, the point-and-permute technique [8] is em-
ployed, which means that if the least significant bit (LSB)
of I0[i] is 0, the table entries are stored in the order as writ-
ten and otherwise switched. This way the evaluator knows
which ciphertext is the correct one without learning what bit
value corresponds to the label. A formal discussion follows
in Appendix B.1.1.
Concurrency. ArxRange provides limited concurrency be-
cause each index node needs to be repaired before it can be
used again. To provide a degree of concurrency, the client
proxy stores the top few levels of the tree. As a result, the
index at the server essentially becomes a forest of trees and
accesses within each such tree can be performed in parallel.
At the same time, the storage at the client proxy is very small
because trees grow exponentially in size with the number of
levels. For example, for less than 40KB of storage on the
client proxy (which corresponds to about 12 levels of the
tree because the tree is not entirely full), there will be about
1024 nodes in the first level of the tree, so up to 1024 queries
can proceed in parallel. Queries to the same subtree still
need to be sequential. A common case for such queries are
monotonic inserts. Fortunately, for these, the optimization
described in §4.3 avoids the tree traversal and the repair. Of
course, queries to another ArxRange index or to other parts
of the database can proceed in parallel.
Garbled circuit design. One of the main drawbacks of
garbled circuits is that converting even a simple program
to a circuit often results in large circuits, and hence bad
performance. We put considerable effort into making our
garbled circuits short and fast. First, we used the short cir-
cuit for comparison from [49], which represents comparison

of n-bit numbers in n gates. Second, we employ transition
tables between two garbled circuits, to avoid embedding the
encoding information for a child circuit inside the garbled
circuit. Since the encoding information is large, this opti-
mization reduces the size of the garbled circuit by a factor
of 128. Third, we use the half-gates technique [92] to further
halve the size of the garbled circuit. Fourth, since all garbled
circuits have the same topology but different ciphertexts, we
decouple the topology from the ciphertext it contains. The
server hardcodes the topology and the client transmits only
ciphertexts.
As a result of our optimizations, a garbled 32-bit compari-

son circuit is only 1040 bytes in our implementation, which
is as small as two Paillier ciphertexts. Evaluating it takes
only 64 fixed-key AES invocations of which 32 come for free
as they are independent and hence can exploit instruction
level parallelism. A single AES instruction has a latency of
7 cycles on modern CPUs.

B. FORMAL SECURITY ANALYSIS
In this section, we first formalize the construction of rele-

vant data structures in Arx. We then prove the security of
the individual encryption schemes in our system, followed by
proofs of security for the overall system and its protocols.

B.1 Preliminaries
We start with formally defining the primitives used by the

ArxRange index.

Notation. We denote the set of all binary strings of length n
as {0, 1}n. A boolean circuit f : {0, 1}n → {0, 1}m computes
a function that takes a string of length n as input, and
outputs a string of length m. Given a list X, we write X[i]
to refer to the i-th element in X.

B.1.1 Branching Garbled Circuit Chains
ArxRange makes use of a branching garbled circuit chain,

which we formally define in this section. Abstractly, this
new cryptographic primitive allows one to build a network of
garbled circuits where each node branches into other nodes
and the output of the garbled circuit inside every node
determines which path to take.
We first recall the definition of a garbling scheme [8].

Definition 4 (Garbling Scheme). A garbling
scheme is a tuple of algorithms G = (Garble, Encode, Eval)
• (F, e, d)← Garble(1λ, f)
On input the security parameter λ and a boolean circuit
f : {0, 1}n → {0, 1}m, Garble outputs (F, e) where F is a
garbled circuit, e is encoding information, and d is decoding
information.
• X ← Encode(e, x)
On input encoding information e and an input x ∈ {0, 1}n,
Encode outputs a garbled input X.
• Y ← Eval(F,X)
On input (F,X) as above, Eval outputs a garbled output
Y .
• y ← Decode(d, Y)
On input decoding information d and a garbled output Y ,
Decode outputs a plain output y.

Our garbling scheme is projective [8]; in other words, e =
[X0

1 , X
1
1 , . . . , X

0
n, X

1
n] encodes a list of tokens, one pair for

each bit in the input x ∈ {0, 1}n. Encode(e, ·) uses the bits
of x = x1 · · ·xn to output a list X = [Xx1

1 , . . . , Xxn
n].

In most settings, the circuit f is public. Circuit privacy
can always be achieved through a universal circuit but this
incurs a significant performance penalty. In ArxRange, it is
publicly known that the circuits are comparison circuits, but
the constants those circuits compare against should remain
secret. To quantify the amount of information that can be
leaked without compromising security, we define the XOR-
topology of a circuit.

Definition 5 (XOR-Topology). The XOR-topology
Φxor(f) of a circuit f is a function that maps the circuit f
to a circuit where every non-XOR gate is replaced with an
AND gate.

Following Bellare et al. [8], we define the security of a
garbling scheme in terms of a leakage function Φ.

Definition 6 (Garbled Circuit Security).
• GC Circuit Privacy (gc-circuit-prv.simΦ): Intuitively,
the garbled circuit F should not reveal any more informa-
tion than Φ(f). Concretely, there must exist a simulator
S that takes input (1λ,Φ(f)) and whose output is indistin-
guishable from F generated the usual way.
• GC Evaluation Privacy (gc-eval-prv.simΦ): Intuitively,
the collection (F,X) should not reveal any more informa-
tion about x than f(x). Concretely, there must exist a
simulator S that takes input (1λ,Φ(f), f(x)) and whose
output is indistinguishable from (F,X) generated the usual
way.

We continue with the definition of a branching garbled
circuit chain:

Definition 7 (BGCC). A branching garbled circuit
chain is a tuple of algorithms G = (Generate, Encode, Eval)
• (F, e)← Generate(1λ, f, e0, e1)
On input the security parameter λ in unary, a boolean
circuit f : {0, 1}n → {0, 1}, encoding information e0, e1,
Generate outputs (F, e) where F is a branch-chained garbled
circuit, and e is encoding information.
• X ← Encode(e, x)
On input encoding information e and an input x suitable
for f , Encode outputs a garbled input X.
• (b,Xb)← Eval(F,X)
On input (F,X) as above, Eval outputs a bit b = f(x) and
garbled inputs Xb = Encode(ef(x), x).

Similar to Definition 6, we define the security of a BGCC
scheme in terms of a leakage function Φ.

Definition 8 (BGCC Security).
• BGCC Circuit Privacy (bgcc-circuit-prv.simΦ):
Intuitively F should not reveal any more information than
Φ(f). Concretely, there must exist a simulator S that takes
input (1λ,Φ(f)) and whose output is indistinguishable from
F generated the usual way.
• BGCC Evaluation Privacy (bgcc-eval-prv.simΦ):
Intuitively, the collection (F,X) should not reveal any
more information about x than (f(x), Xf(x)). Concretely,
there must exist a simulator S that takes input (1λ,Φ(f),
f(x), Xf(x)) and whose output is indistinguishable from
(F,X) generated the usual way.

BGCC Construction. Following the high-level descrip-
tion in Appendix A we provide a formal description of our
BGCC construction. Our branching garbled circuit chain
construction is based on a linear garbling scheme. Concretely
we use the half-gate garbled circuit scheme [92] for efficiency,
which satisfies Definition 6.

Construction 1 (BGCC). Let G∗ = (Garble∗,
Encode∗, Eval∗, Decode∗) be the half-gate garbling scheme.
Let f : {0, 1}n → {0, 1} be a boolean circuit with n inputs
and 1 output, and H a random oracle.

Generate(1λ, f, e0, e1):
1. (F ∗, e∗, d∗)← Garble∗(1λ, f)

2. Let K0 (respectively K1) be the 0-label (respectively,
1-label) for the output wire in F ∗.

3. Compute list of input labels for the current circuit
I0 ← Encode∗(e∗, 0n)
I1 ← Encode∗(e∗, 1n)

4. Compute list of input labels for the left child
O0

0 ← Encode∗(e0, 0n)
O1

0 ← Encode∗(e0, 1n)

5. Compute list of input labels for the right child
O0

1 ← Encode∗(e1, 0n)
O1

1 ← Encode∗(e1, 1n)

6. T 0
0 ← [], T 0

1 ← [], T 1
0 ← [], T 1

1 ← [] (empty lists)
7. for i = 1, . . . , n:

(a) b = LSB(I0[i]), b = 1− b
(b) T 0

0 [i]← H(K0 ‖ Ib[i])⊕Ob0[i]
T 0

1 [i]← H(K1 ‖ Ib[i])⊕Ob1[i]
(c) T 1

0 [i]← H(K0 ‖ Ib[i])⊕Ob0[i]
T 1

1 [i]← H(K1 ‖ Ib[i])⊕Ob1[i]
8. F ← (F ∗, d∗, {T 0

0 , T
0
1 , T

1
0 , T

1
1 })

9. Output (F, e∗)

Encode(e, x):
1. Output Encode∗(e, x)

Eval(F,X):
1. Parse the input as F = (F ∗, d∗, {T 0

0 , T
0
1 , T

1
0 , T

1
1 }).

2. b← Decode∗(d∗,Eval∗(F ∗, X))

3. Let Kb be the label on the output wire of F ∗

4. Xb ← [] (an empty list)
5. for i = 1, . . . , n:

(a) d = LSB(X[i])

(b) Xb[i]← T db [i]⊕H(Kb ‖X[i])

6. Output (b,Xb)

Theorem 1. The BGCC construction 1 satisfies the syn-
tax and correctness guarantees as stated in definition 7.

Proof. The correctness instantly follows from the cor-
rectness of the garbling scheme.

Theorem 2. The BGCC construction 1 satisfies the
BGCC security definitions bgcc-circuit-prv.simΦxor

and
bgcc-eval-prv.simΦxor

.

Proof. We first prove that the underlying half-gate gar-
bling scheme satisfies gc-circuit-prv.simΦ and gc-eval-prv.simΦ

for Φ = Φxor.
Evaluation privacy follows from theorem 1 in [92]. Though

the theorem includes the whole circuit topology in the leakage,
an examination the proof reveals that in fact only the XOR-
Topology is leaked. Specifically, in the proof the simulator
only makes its decisions based on whether a particular gate

is an XOR gate or not and does not depend on the concrete
type of the gate if it is not an XOR gate.
Circuit-privacy of the half-gate scheme can be easily seen

by having a closer look at the garbling algorithm of the
half-gate scheme.
The random oracle H is with probability 1− negl(λ) never

evaluated more than once on the same input, hence the
transition table is indistinguishable from random.
Given this, the construction of our simulators is straight-

forward. Our simulator for bgcc-circuit-prv.simΦxor
invokes

the simulator of the underlying garbling scheme to obtain
a simulation of a garbled circuit F . The simulator adds
transition tables consisting of random bits and the output is
indistinguishable from a branching garbled circuit generated
the usual way.
Similarly, our simulator for bgcc-eval-prv.simΦxor

on in-
put (1λ,Φxor(f), f(x), Xf(x)) invokes the simulator of the
underlying garbling scheme to get a simulation (F,X). The
simulator adds a transition table to F that would lead to
the output of Xf(x).

B.1.2 Treap data structure
In ArxRange we want to ensure that an attacker upon

intrusion does not learn anything about the execution of
past queries. A standard balanced binary search tree, e.g., a
red-black tree or an AVL tree, may assume different shapes
depending on the order of insertion. Define a binary search
tree as a set of nodes N. Each node node ∈ N contains
an identifier nid, some information x, and pointers to two
children nodes child← [nid0, nid1], where nid0 is the left child
and nid1 is the right child.

Definition 9 (Shape of a Binary Search Tree).
We define the shape of a binary search tree N to be the set
of 3-tuples {(nidi, nidi0, nidi1)}i for all nidi ∈ N.

To prevent the shape from leaking information about the
order of insertion of nodes, we use a history-independent
treap [4] data structure to implement our index. A treap
is a probabilistic tree data structure in which each key is
given a (randomly chosen) numeric priority. As with any
binary search tree, the inorder traversal order of the nodes
is the same as the sorted order of the keys. The structure of
the tree is determined by the requirement that it be heap-
ordered: that is, the priority number for any non-leaf node
must be greater than or equal to the priority of its children.
Thus, the root node is the maximum-priority node, and its
left and right subtrees are formed in the same manner from
the subsequences of the sorted order to the left and right of
that node.
To insert a value into the treap, the value is first simply

added to the treap at the corresponding leaf position. Next,
based on the piority value of the inserted node, the treap
is rebalanced via rotations, starting from the inserted leaf,
all the way up to the root. The rotations are necessary to
preserve the property that each node has a priority higher
than its children.
To delete a value from the treap, the corresponding node

is first rotated down the treap either into a leaf position, or
into a position where it only has a single child node. The
node is then discarded. The rotations are performed in a
manner that preserve the treap’s properties.
We now outline properties of this data structure relevant

to our construction.

Definition 10 (Rank of an Insert). For a se-
quence of insert queries Q = {q1, . . . , qn} where qi = (vi, i) is
a tuple comprising the inserted value vi and its position i in Q,
define the rank of a query: rank(qi) = |{(vj , j) ∈ Q|vj < vi}|,
i.e., the number of queries in the sequence that insert a
smaller value.

Fact 1. If a sequence of insert queries Q = {q1, . . . , qn}
generates a treap with certain shape, then the sequence of
inserts Q′ = {(rank(q1), 1), . . . , (rank(qn), n)} generates a
treap with the same shape, assuming the same random treap
priority values for nodes in both sequences.

B.1.3 Building blocks
BASE is implemented as AES in counter mode with a ran-

dom initialization vector, and is semantically secure (per [32],
Definition 5.2.8) under standard cryptographic assumptions.
AGG is the Paillier encryption scheme.

EQunique is a pseudorandom function.

B.2 Overall proofs of security
We provide proofs for the security of Arx and its protocols.

We start by proving the security of the different protocols
in Arx. We then provide a proof for the overall security
guarantees of Arx per Definition 1.

Theorem 3. The EQ and ArxEq schemes are L-
semantically secure per Definition 1 under standard cryp-
tographic assumptions, for L defined in Definition 3 and
Fig. 4.

We omit the proof for Theorem 3 because it is very similar
to that of Diana [14].
We now prove the security of the ArxRange scheme. Fig. 16

provides the real world experiment for ArxRange, and Fig. 17
provides the ideal world experiment. We show that these
two worlds are indistinguishable. We first provide detailed
pseudocode for ArxRange in Figs. 20 and 21. The protocol
executes the submitted queries by invoking the interface
exposed by Client (Fig. 20), which in turn communicates
with Server (Fig. 21) to execute the queries. We do not
model the optimizations for concurrent query execution and
monotonic inserts, described in §4.4.

Theorem 4. The ArxRange scheme is L-semantically se-
cure per Definition 1 assuming standard cryptographic as-
sumptions and the random oracle model, for L defined in
Definition 3 and Fig. 4.

Proof. We construct a simulator Sim for the ideal world
execution of ArxRange in Fig. 22. Sim internally uses SimBGCC,
the simulator for our BGCC construction (Construction 1), to
simulate the execution of the BGCC circuits in the index. We
describe the key aspects of the Sim’s behavior here; Fig. 22
provides a concrete construction.
Essentially, Sim replicates the functionality of Client and

Server, with the difference being that Sim internally main-
tains a regular treap index directly over the values it receives
as input (i.e., the output of the leakage function, which is the
ranks of the actual values). Sim’s main task is to simulate the
BGCC circuits in the index during query execution, which
it does as follows. Whenever it needs to traverse the index
given the rank of a value in the index, Sim identifies the node
corresponding to that rank along with the unique path in
the index from the root to the node. It then invokes SimBGCC

L(Q):
1. Ranks maps each query to a rank

Ranks← { }
2. S ← []
3. Compute global rank for each query

For all queries q ∈ Q:
(a) If q is an insert query:

i. Let v ← value to be inserted
ii. r ← rk(S, v)

iii. For all ranks r′ ∈ Ranks.values:
A. Increment r′ if r′ ≥ r

iv. Ranks[q]← r

v. Append v to S
(b) Else if q deletes by id:

i. Let q′ ← query that inserted id

ii. Ranks[q]← Ranks[q′]

(c) Else if q searches or deletes by range:
i. Let (a, b)← query range
ii. ra ← rk(S, a− 1) + 1

iii. rb ← rk(S, b)

iv. Ranks[q]← (ra, rb)

4. L← []

5. For all queries q ∈ Q:
(a) If q is an insert query:

i. Let v be the value to be inserted
ii. Replace v with Ranks[q]

(b) Else if q searches or deletes by range:
i. Let (a, b)← query range
ii. Replace (a, b) with Ranks[q]

(c) Append q to L
6. Output L

Figure 18: Leakage function for ArxRange.

Data item Description
nid Node identifier

ckt0, ckt1 Two copies of a garbled circuit
BASE(v) Ciphertext for the value v at the node
BASE(id) Encrypted document identifier that the

node points to
child← [nid0, nid1] Identifiers of children nodes

Figure 19: Contents of a node in an ArxRange index.

Client.Setup():
1. Initialize the root node:

root← ⊥
2. Initialize encoding information for both copies of the

circuit at the root (see §4.3):
e0root ← ⊥
e1root ← ⊥

Client.Search(a, b):
1. Generate input tokens for the index:

tok0 ← Encode(e0root, a)
tok1 ← Encode(e1root, b)

2. (IDs,N)← Server.Search(root.nid, root.nid, tok0, tok1)

3. Client.Repair(N)

4. Output IDs

Client.Insert(id, v):
1. Create a new garbled node node (see Fig. 19)
2. If root 6= ⊥

(a) tok← Encode(e0root, v)

(b) N←
Server.Insert(id,BASE(id),BASE(node.nid),
node, root.nid, tok)

(c) Client.Repair(N)
Else
(a) Server.Insert(id,BASE(id),BASE(node.nid),

node,⊥,⊥)
Client.Repair(N):

1. For node ∈ N (traverse from leaves to root)
(a) Generate two new BGCC circuits ckt0 and ckt1

for node

(b) Server.Repair(node.nid, ckt0, ckt1)

2. Update root, e0root, and e1root

Client.Delete(a, b):
1. Generate input tokens for the index

tok0 ← Encode(e0root, a)
tok1 ← Encode(e1root, b)

2. N← Server.Delete(root.nid, root.nid, tok0, tok1)

3. Client.Repair(N)

Client.DeleteID(id):
1. N← Server.DeleteID(id)

2. Client.Repair(N)

Client.Decrypt(C):
1. P ← []

2. For c ∈ C:
(a) Decrypt c and append to P

3. Shuffle and output P

Figure 20: Pseudocode for the Client-side execution of
ArxRange. The node data structure is shown in Fig. 19, and
Server is as defined in Fig. 21.

Server.Setup():
1. Index maps a node identifier nid to a node

Index ← { }
2. IDsfwd maps a node identifier nid to an encrypted

document identifier BASE(id)
IDsfwd ← { }

3. IDsrev maps a document identifier id to an encrypted
node identifier BASE(nid)
IDsrev ← { }

Server.Traverse(node, tok, i):
1. Nodes ← { }
2. While node 6= ⊥:

(a) Evaluate the i-th BGCC circuit at node
(dir, tok)← Eval(node.ckti, tok)

(b) Add the evaluated node to Nodes so that it can
be repaired later
Nodes← Nodes ∪ {node}

(c) Retrieve the next node in the path
If node.child[dir] 6= ⊥
i. node← Index[node.child[dir]]

Else break
3. Output (dir, node,Nodes)

Server.Search(nidl, nidr, tokl, tokr):
1. nodel ← Index[nidl]

2. noder ← Index[nidr]

3. (·, leafl,Nl)← Server.Traverse(nodel, tokl, 0)

4. (·, leafr,Nr)← Server.Traverse(noder, tokr, 1)

5. Do in-order traversal of Index from leafl to leafr, and
collect the intermediate nodes in S

6. Initialize empty set O
7. For node ∈ S:

(a) Append IDsfwd[node.nid] to O
8. L← Client.Decrypt(O)

9. Output (L,Nl ∪ Nr)

Server.Repair(nid, ckt0, ckt1):
1. node← Index[nid]

2. node.ckt0 = ckt0
node.ckt1 = ckt1

Server.Insert(id,BASE(id),BASE(nid), nodenew, nid0, tok):
1. nid← nodenew.nid

2. IDsfwd[nid]← (BASE(id))

3. IDsrev[id]← (BASE(nid))

4. Index[nid]← nodenew

5. node← Index[nid0]

6. (dir, parent,N)← Server.Traverse(node, tok, 0)

7. parent.child[dir] = nid

8. Rebalance the index
9. Output N

Server.Delete(nidl, nidr, tokl, tokr):
1. nodel ← Index[nidl]

2. noder ← Index[nidr]

3. (·, leafl,Nl)← Server.Traverse(nodel, tokl, 0)

4. (·, leafr,Nr)← Server.Traverse(noder, tokr, 1)

5. Do in-order traversal of Index from leafl to leafr, and
collect the intermediate nodes in S

6. Initialize empty set O
7. For node ∈ S

(a) Append IDsfwd[node.nid] to O
(b) Delete IDsfwd[node.nid] from the IDsfwd map
(c) Delete Index[node.nid] from the Index map

8. L← Client.Decrypt(O)

9. For id ∈ L
(a) Delete IDsrev[id] from the IDsrev map

10. N← {Nl ∪ Nl} \ {S}
11. Adjust node pointers, and rebalance the index
12. Add to N all nodes with at least one different child

node after rebalancing
13. Output N

Server.DeleteID(id):
1. nid← Client.Decrypt(IDsrev[id])

2. Delete IDsfwd[nid] from the IDsfwd map
3. Delete Index[nid] from the Index map
4. Delete IDsrev[id] from the IDsrev map
5. Adjust node pointers, and rebalance the index
6. N← all nodes with at least one different child node

after rebalancing
7. Output N

Figure 21: Pseudocode for the Server-side execution of ArxRange. The node data structure is shown in Fig. 19.

RealArxRange
A

(λ,Q):
1. Transcript← { }
2. Execute queries and produce transcript

For all queries q ∈ Q:
(a) If q is an insert query:

i. Let (id, v) ← identifier and value pair to be
inserted

ii. R← Client.Insert(id, v)

(b) Else if q deletes by id:
i. R← Client.Delete(id)

(c) Else if q searches by range:
i. Let (a, b)← range bounds in the query
ii. R← Client.Search(a, b)

(d) Else if q deletes by range:
i. Let (a, b)← range bounds in the query
ii. R← Client.Delete(a, b)

(e) Append R to Transcript

3. Output A(Transcript)

Figure 16: Real world experiment for ArxRange, where
Client is as defined in Fig. 20.

IdealArxRange
A,Sim,L(λ,Q):

1. Simulate query execution and produce transcript
(a) Transcript← Sim(L(Q))

2. Output A(Transcript)

Figure 17: Ideal world experiment for ArxRange. The
leakage function L is given in Fig. 18.

to simulate the execution of the BGCC nodes in the path.
Specifically, for each node in the path, Sim checks whether
its child is the left node or the right, and accordingly invokes
SimBGCC to simulate the BGCC circuit at the node. In doing
so, it retroactively updates the function invocations in the
transcript that previously created the node. Note that the
root circuit is also part of the path during traversal; using
the tokens outputted by SimBGCC for the root, Sim simulates
the real-world client-server interaction for the search / insert
/ delete operation that triggered the traversal.

We argue the indistinguishability of the real and ideal

world views, as follows. The adversary’s view contains all
communication between Client and Server (i.e., the inputs
to the API exposed by Server and the outputs), along with
all server state. Private network communication includes
garbled nodes, tokens, and ciphertexts, the indistinguishabil-
ity of which follows from Theorem 2 and the security of the
BASE encryption scheme (Appendix B.1.3). The indistin-
guishability of the index at the server follows from the fact
that each node in the index contains a BGCC, an encryption
of the key and an encryption of the payload (the value).
The indistinguishability of BGCCs follows from Theorem 2,
and the indistinguishability of the latter two follows from
the security of the encryption scheme. Finally, the indistin-
guishability of the server’s execution (i.e., traversal of the
index) follows because given indices with the same shape
and queries with the same rank, the outputs of the BGCCs
in the execution are the same (since the path from the root
to the leaf is the same).

We now prove the overall security of Arx. For simplicity, we
only consider queries on ArxEq and ArxRange indices; we do
not model ArxAgg and ArxJoin since they are straightforward
extensions of the underlying ArxEq or ArxRange index. For
the online attacker, we assume that the initial database is
empty, and all documents are inserted into the database
using a sequence of Insert operations.
Additionally, as described in §9, we model queries that

have multiple predicates as a sequence of queries, such that
each query in the sequence contains at most one predicate
and touches at most a single index. As a result, our leakage
definitions are an upper bound on the actual query leakage.

Theorem 5. The Arx database system is L-semantically
secure per Definition 1 for L as defined in Definitions 2
and 3, assuming standard cryptographic assumptions and the
random oracle model.

Proof. We first briefly recall the definition of a database
DB from §9: DB = ({T1, . . . ,Tn} where each collection
Ti = (Fi, Indi, [(idj ,Dj)]j)). In addition, before the actual
execution of queries, the admin supplies a list of query pred-
icates P(Ti) for each collection Ti. Since every individual

query pertains to a specific collection, without loss of gen-
erality, we henceforth assume that the database contains
a single collection T. Further, since we model queries as
operating over single fields, without loss of generality we
further assume that the collection contains a single field f,
such that every protocol e ∈ E is maintained on it. With the
exception of ArxRange, each protocol adds a corresponding
ciphertext to the documents.
We proceed to prove the theorem using a series of hybrids.

Hybrid H0. This corresponds to the real world view of Aon.
Hybrid H1. Same as H0, but with the database system
modified as follows. Given a list of queries Q, the system
first reorders the queries—it groups together all the queries
that operate on ArxEq in order of their timestamps and
pushes the group to the end of the query list, and similarly
for all the EQ and ArxRange queries as well. It then executes
the queries in order, capturing the view per query into the
transcript. Finally, it reorders the per-query items in the
transcript in accordance with their original order in Q. Since
the per-index query execution is independent of other indices
and the database, with independent key material, this hybrid
is indistinguishable from H0.
Hybrid H2. Same as H1, except that for the queries predi-
cated on the field fEQ, the server obtains a response from the
simulator for the EQ protocol SimEQ.
Hybrid H3. Same as H2, except that for the queries predi-
cated on the field fArxEq, the server obtains a response from
the simulator for the ArxEq protocol SimArxEq.
Hybrid H4. Same as H3, except that for the queries predi-
cated on the field fArxRange, the server obtains a response from
the simulator for the ArxRange protocol SimArxRange.
Hybrid H5. For every collection Ti, we replace the cipher-
texts in all documents Dj ∈ Ti with random strings.
The construction of a simulator for the ideal world follows

directly from H5. The indistinguishability of the hybrids
follows from Theorems 3 and 4 and the security of Arx’s
building blocks (Appendix B.1.3).

Sim(L(Q)):
1. Initialize the root node and data structures:

root← ⊥, Index← { }, IDsfwd ← { }, IDsrev ← { }
2. Transcript← { }
3. Simulate query execution and produce transcript

For all queries q ∈ L(Q):
(a) If q is an insert query:

i. Let id← identifier for value to be inserted
ii. R← Sim.Insert(id,Ranks[q])

(b) Else if q deletes by id:
i. R← Sim.Delete(id)

(c) Else if q searches by range:
i. R← Sim.Search(Ranks[q])

(d) Else if q deletes by range:
i. R← Sim.Delete(Ranks[q])

(e) Append R to Transcript

4. For all nodes in Index from leaves to root without ckti:
(a) Generate node.ckti using SimBGCC

(b) Update the Insert or Repair invocation in
Transcript with the simulation of node.ckti for
when node was last generated or repaired

5. Output Transcript

Sim.Search(a, b):
1. (·, leafl,Nl)← Sim.Traverse(nodel, a, 0)

2. (·, leafr,Nr)← Sim.Traverse(noder, b, 1)

3. Do in-order traversal of Index from leafl to leafr, and
collect the intermediate nodes in S

4. Initialize empty set O
5. For node ∈ S:

(a) Append IDsfwd[node.nid] to O
6. IDs← Sim.Decrypt(O)

7. Sim.Repair(Nl ∪ Nr)
8. Output IDs

Sim.Traverse(node, v, i):
1. Nodes ← { }
2. While node 6= ⊥:

(a) Evaluate node by comparing v with the value at
the node

(b) Add the node to Nodes
Nodes← Nodes ∪ {node}

(c) Retrieve the next node in the path
If node.child[dir] 6= ⊥
i. node← Index[node.child[dir]]

Else break
3. For each node in Nodes from leaf to root, simulate the

circuits at each node using SimBGCC as follows:
(a) If node is a leaf:

i. Choose random b

ii. Choose random labels tok
Else
i. Set b = 0 if the left child of node is in Nodes,

else b = 1

ii. Set tok based on the output of SimBGCC for
the child node

(b) Generate node.ckti and corresponding tokens
using SimBGCC on input b and tok

(c) Update the Insert or Repair invocation in
Transcript with the simulation of node.ckti for
when node was last generated or repaired

4. Simulate the client-server interaction for the calling
function (i.e., Search, Insert, or Delete): Update the
invocation of the calling function in Transcript with
the tokens output by SimBGCC for the root node in
step 3b

5. Output (dir, node,Nodes)

Sim.Repair(N):
1. For n ∈ N (traverse from leaves to root)

(a) node← Index[n.nid]

(b) Delete the circuits ckt0 and ckt1 at node (these
will be generated using SimBGCC later)

2. Update root

Sim.Delete(a, b):
1. (·, leafl,Nl)← Server.Traverse(nodel, a, 0)

2. (·, leafr,Nr)← Server.Traverse(noder, b, 1)

3. Do in-order traversal of Index from leafl to leafr, and
collect the intermediate nodes in S

4. Initialize empty set O
5. For node ∈ S

(a) Append IDsfwd[node.nid] to O
(b) Delete IDsfwd[node.nid] from the IDsfwd map
(c) Delete Index[node.nid] from the Index map

6. IDs← Sim.Decrypt(O)

7. For id ∈ IDs
(a) Delete IDsrev[id] from the IDsrev map

8. N← {Nl ∪ Nl} \ {S}
9. Adjust node pointers, and rebalance the index

10. Add to N all nodes with at least one different child
node after rebalancing

11. Sim.Repair(N)

Sim.DeleteID(id):
1. nid← Sim.Decrypt(IDsrev[id])

2. Delete IDsfwd[nid] from the IDsfwd map
3. Delete Index[nid] from the Index map
4. Delete IDsrev[id] from the IDsrev map
5. Adjust node pointers, and rebalance the index
6. N← all nodes with at least one different child node

after rebalancing
7. Sim.Repair(N)

Sim.Insert(id, v):
1. Create a new node node (see Fig. 19) additionally

containing v, but without the circuits ckt0 and ckt1
(these will be generated using SimBGCC later)

2. nid← node.nid

3. IDsfwd[nid]← (BASE(id))

4. IDsrev[id]← (BASE(nid))

5. Index[nid]← node

6. If root 6= ⊥
(a) (dir, parent,N)← Sim.Traverse(root, v, 0)

(b) parent.child[dir] = nid

(c) Rebalance the index
7. Sim.Repair(N)

Sim.Decrypt(C):
1. P ← []

2. For c ∈ C:
(a) Decrypt c and append to P

3. Shuffle and output P

Figure 22: Simulator for ArxRange.

	Introduction
	Techniques and contributions

	Overview
	Architecture
	Threat Model
	Security guarantees
	Admin API
	Functionality

	Encryption Building Blocks
	ArxRange & Order-based Queries
	Strawman
	Non-interactive index traversal
	The database index
	Optimizations

	ArxEq & Equality Queries
	Base protocol
	Reducing the work of the client proxy
	Updates
	Counter map

	ArxAgg & Aggregation Queries
	Joins using ArxJoin
	Arx's Planner
	Index planning
	Data layout

	Security analysis
	Preliminaries
	Leakage definitions

	Evaluation
	Functionality
	Microbenchmarks
	Performance of ArxEq
	Performance of ArxRange
	Performance of ArxAgg
	End-to-end evaluation on ShareLaTeX
	Storage
	Comparison with CryptDB

	Limitations and Future Work
	Related Work
	References
	ArxRange Optimizations
	Formal security analysis
	Preliminaries
	Branching Garbled Circuit Chains
	Treap data structure
	Building blocks

	Overall proofs of security

