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Abstract. Over the last decade, hardware Trojans have gained increas-
ing attention in academia, industry and by government agencies. In
order to design reliable countermeasures, it is crucial to understand how
hardware Trojans can be built in practice. This is an area that has re-
ceived relatively scant treatment in the literature. In this contribution,
we examine how particularly stealthy Trojans can be introduced to a
given target circuit. The Trojans are triggered by violating the delays of
very rare combinational logic paths. These are parametric Trojans, i.e.,
they do not require any additional logic and are purely based on subtle
manipulations on the sub-transistor level to modify the parameters of the
transistors. The Trojan insertion is based on a two-phase approach. In
the first phase, a SAT-based algorithm identifies rarely sensitized paths in
a combinational circuit. In the second phase, a genetic algorithm smartly
distributes delays for each gate to minimize the number of faults caused
by random vectors.
As a case study, we apply our method to a 32-bit multiplier circuit
resulting in a stealthy Trojan multiplier. This Trojan multiplier only
computes faulty outputs if specific combinations of input pairs are applied
to the circuit. The multiplier can be used to realize bug attacks, introduced
by Biham et al. In addition to the bug attacks proposed previously, we
extend this concept for the specific fault model of the path delay Trojan
multiplier and show how it can be used to attack ECDH key agreement
protocols.
Our method is a general approach to path delay faults. It is a versatile
tool for designing stealthy Trojans for a given circuit and is not restricted
to multipliers and the bug attack.

1 Introduction

Hardware Trojans have gained increasing attention in academia, industry and
government agencies over the last ten years or so. There is a large body of
research concerned with various methods for detecting Trojans, cf., e.g., [14]. On
the other hand, there is scant treatment in literature about how to design Trojans.
Nevertheless, Trojan detection and design are closely related: in order to design
effective detection mechanisms and countermeasures, we need an understanding
of how Hardware Trojans can be built. This holds in particular with respect to



Trojans that are specifically designed to avoid detection. The situation is akin to
the interplay of cryptography and cryptanalysis.

There are several different ways that hardware Trojans can be inserted into
an IC [14]. The insertion scenarios that have drawn the most attention in the
past are hardware Trojans introduced during manufacturing by an untrusted
semiconductor foundry. One of the main motivations behind this is the fact that
the vast majority of ICs world wide are fabricated abroad, and a foundry can
possibly be pressured by a government agency to maliciously manipulate the
design. However, we note that a similar situation can exist in which the original
IC designer is pressured by her own government to manipulate all or some of the
ICs, e.g., those that are used in overseas products. Similarly, 3rd party IP cores
are another possible insertion point.

The primary setting we consider is modification during manufacturing, but
the method also carries over to the other scenarios mentioned above. The Trojan
will be inserted by modifying a few gates at the sub-transistor level during
manufacturing, so that their delay values increase. The goal is to select and chose
the delays such that only for extremely rare input combinations these delays add
up to a path delay fault. There are many possible ways to increase the delays
in practice in stealthy ways. Since not a single transistor is removed or added
to the design and the changes to the individual gates are minor, the Trojan
is very difficult to detect post-manufacturing using reverse-engineering, visual
inspection, side-channel profiling or most other known detection methods. Due
to the extremely rare trigger conditions, it is also highly unlikely that the Trojan
will be detected during functional testing. Even full reverse-engineering of the IC
will not reveal the presence of the backdoor. Similarly, since the actual Trojan
will be inserted in the last step of the design flow, the Trojan will not be present
at higher abstraction levels such as the netlist. Accordingly, this type of Trojan is
also very interesting for the scenario of stealthy, government-mandated backdoors.
The number of engineers that are aware of the Trojan would be reduced to
a minimum since even the designers of the Trojan-infested IP core would not
be aware that such a backdoor has been inserted into the product. This can
be crucial to eliminate the risk of whistle blowers revealing the backdoor. In
summary, our method overcomes two major problems a Trojan designer faces,
namely making the Trojan detection resistant and to provide a very rare trigger
condition.

1.1 Related Work

The power of hardware Trojans was first demonstrated by King et al. in 2008
by showing how a Hardware Trojan inserted into a CPU can enable virtually
unlimited access to the CPU by an external attacker [15]. The Trojan presented
by King et al. was a Trojan inserted into the HDL code of the design. Similarly,
Lin et al. presented a Hardware Trojan that stealthily leaks out the cryptographic
key using a power side-channel [18]. This Hardware Trojan was also inserted at
the netlist or HDL level, similarly to the Hardware Trojans that were designed
as part of a student Hardware Trojan challenge at ICCD 2011 [19]. How to build
stealthy Trojans at the layout-level was demonstrated in 2013 by Becker et al.
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which showed how a Hardware Trojan can be inserted into a cryptographically
secure PRNG or a side-channel resistant SBox only by manipulating the dopant
polarity of a few registers [4]. Another idea proposed in the literature is the idea
of building Hardware Trojans that are triggered by aging [23]. Such Trojans are
inactive after manufacturing and only become active after the IC has been in
operation for a long time. Kumar et al. proposed a parametric Trojan [17] that
triggers probabilistically with a probability that increases under reduced supply
voltage.

Compared to research concerned with the design of Hardware Trojans, con-
siderably more results exist related to different Hardware Trojan detection
mechanisms and countermeasures. Most research focuses on detecting Hardware
Trojans inserted during manufacturing. In many cases, a golden model is used
that is supposed to be Trojan free to serve as a reference. One important question
is how to get to a Trojan-free golden model. One approach proposed is to use
visual reverse-engineering of a few chips to ensure that these chips were not
manipulated. For this the layout is compared to SEM images of the chip. In [3]
methods of how to automatically do this are discussed. Please note that that
not all Hardware Trojans are directly visibly in black-and-white SEM images.
For example, to detect the dopant-level Hardware Trojans additional steps are
needed, e.g., the method presented by Sugawara et al. [24]. One motivation of
our work is that we might achieve an even higher degree of stealthiness by only
slowing down transistors as opposed to completely changing transistors as has
been done in [4]. Such parametric changes can be done cleverly to make visual
reverse-engineering very difficult as discussed in Section 3. Another approach to
Trojan detection uses power profiles that are used to compare the chip-under-test
with previously recorded side-channel measurement of the golden chip. The most
popular approach uses power side channels, first proposed by Agrawal et al. [2].
The idea to build specific Trojan detection circuitry has also been proposed, e.g.,
in [20]. However, these approaches usually suffer from the problem that a Trojan
can also be inserted into such detection circuitry. Preventing Hardware Trojans
inserted at the HDL level by third party IP cores has been discussed, e.g., in [13]
and [26]. Efficient generation of test patterns for Hardware Trojans triggered by
a rare input signals is the focus of work by Chakraborty et al. in [8] and Saha et
al. in [21].

1.2 Our contribution

The main contributions of this paper can be summarized as follows:

– We introduce a new class of parametric hardware Trojans, the Path Delay
Trojans. They posses the two desirable features that they are (i) very stealthy
and thus difficult to detect with most standard methods and (ii) have very
rare trigger conditions.

– We present an automation flow for inserting the proposed style of Trojan.
We propose an efficient, SAT solver-based path selection algorithm, which
identifies suitably rare paths within a given target circuit. We also propose a
second algorithm, based on genetic algorithms, for distributing the necessary
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delay along the rare path. The key requirement is to minimize the effect of
the added delay on the remaining circuit.

– As a case study for the effectiveness of the proposed method, a Trojan
multiplier is designed. We were able to identify a rare path and perform
specific delay modification in a 32-bit multiplier circuit model in such a
way that the faulty behavior only occurs for very few combinations of two
consecutive input values. We note that the input space of the multiplier
is (232)2 = 264 so that most random input values occur very rarely during
regular operation.

– We show how the Trojan multiplier can used for realizing the bug attack by
Biham et al. [5, 6] and propose a related attack on the ECDH key agreement
protocol. We provide probabilities for this new bug attack variant. A precom-
putation phase reduces the attack complexity and makes the attacks practical
for real-world scenarios. We show that the attacker can engineer the failure
probability to the desired level by increasing the introduced propagation
delay of the Trojan.

2 Overview of the proposed method

This work implements Trojan functionality in a given target circuit by using path
delay faults (PDF), without modification to logic circuit, to induce inaccurate
results for extremely rare inputs. Before describing the details of our method, we
first define the notion of a viable delay-based Trojan in the unmodified HDL of
the circuit as follows. A viable delay-based trojan must posses the following two
properties.

Triggerability For secret inputs, which are known to the attacker, cause an
error with certainty or relatively high probability.

Stealthiness For randomly chosen inputs, cause an error with extremely low
probability.

As shown in Fig. 1, our method of creating triggerable and stealthy delay-based
Trojans consists of two phases: path selection and delay distribution. We give an
overview of each phase here, and give detailed descriptions in Sec. 4.

Path Selection: The path selection phase finds a rarely sensitized path from the
primary inputs of a combinational circuit to the primary outputs. The algorithm
chooses the path incrementally by adding gates to extend a subpath backward
toward inputs and forward toward outputs. The selection of which gates to include
is guided by controllability and observability metrics so that the path will be
rarely sensitized. To ensure that the selected path can be triggered, a SAT-based
check is performed to ensure that the path remains sensitizable each time a gate
is added. In addition to ensuring that the path is sensitizable, the SAT-based
check also provides the Trojan designer with a specific input combination that
will sensitize the path. This input combination will later serve as the trigger for
the Trojan. Details of the path selection are given in Sec. 4.1.

Delay Distribution: After a rarely sensitized path is selected, the overall delay
of the path must be increased so that a delay fault will occur when the path is

4



Fig. 1: Flowchart of the proposed method for creating a stealthy PDF (path delay
faults).

sensitized; this is required for the Trojan to be triggerable. However, any delay
added to gates on the selected path may also cause delay faults on intersecting
paths, which would cause more frequent errors and compromise stealthiness. Our
delay distribution heuristic addresses this problem by smartly choosing delays
for each gate to minimize the number of faults caused by random vectors. At the
same time, the approach ensures that the overall path delay is sufficient for the
fault to occur when the trigger vectors are applied. Details of delay distribution
are given in Sec. 4.2.

3 Delay Insertion

Delay faults occur when the total propagation delay along a sensitized circuit
path exceeds the clock period. Our algorithm causes delay faults by increasing
the delay of gates on a chosen path. While the approach is compatible with any
mechanism for controlling gate delays, in this section we provide background on
practical methods that a Trojan designer might use to implement slow gates. In
static CMOS logic, a path delay fault is not triggered by a single input vector,
but instead is triggered by a sequence of two input vectors applied on consecutive
cycles. The physical reason for delay being caused by a pair of inputs is that delay
depends on the charging or discharging of capacitances, and the initial states
of these capacitances in the second vector are determined as final states from
the first vector. Assuming the capacitances need to be charged or discharged
along a path, as is the case in delay faults, the delay of each gate depends on
how quickly it can charge or discharge some amount of capacitance on its output
node, and diminishing the ability of a gate to do so will slow it down. There are
several stealthy ways of changing a circuit to make gates slower. As an example,
we list three methods below. We note that circuit designers typically face the
opposite and considerably more difficult task, namely making gates fast. The
ever-shrinking feature size of modern ICs is amenable to our goal of slowing gates
down through minuscule alterations.

Decrease Width A gate library typically includes several drive strengths for
each gate type, corresponding to different transistor widths. A narrow tran-
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sistor is slower to charge a load capacitance because transistor current is
linear in channel width. A straightforward way to increase delay is to replace
a gate with a weaker variant of the same gate, or to create a custom cell
variant with an extremely narrow channel. A limitation to using a downsized
gate is that an attacker who delayers the chip could potentially observe the
sizing optically, depending on how much the geometry has been altered.

Raise Threshold A second way of increasing gate delay is to increase threshold
voltages of selected transistors through doping or body biasing. Dual-Vt
design is common in ICs and allows transistors to be designated as high or
low threshold devices; low threshold devices are fast and used where delay is
critical, and high threshold devices are slow and used elsewhere to reduce
static power. Typically no more than two threshold levels are used on a single
chip because creating multiple thresholds through doping requires additional
process steps, but in principle an arbitrary number of thresholds can be
created. Body biasing, changing the body-source voltage of MOSFETs, is
another way to change threshold and delay [16]; specifically, a reverse body
bias (i.e., body terminal at lower voltage than source) raises threshold voltage
and slows down a device. Regardless whether the mechanism is doping or
body biasing, a raised threshold voltage will cause transistors to turn on later
when an input switches, and to conduct less current when turned on, so the
output capacitance connected to the transistor will be charged or discharged
more slowly. Both, changing to dopant concentrations and body biasing, are
difficult to detect, even with invasive methods.

Increase Gate Length Delay of chosen gates can be increased by gate length
biasing. Lengthening the gate of transistor causes a reduction in current, and
therefore increases delay [11]. Again, the likelihood of detection depends on
the degree of the alteration.

WL

n+ n+
p IN

VIN
VOUT

(a) Annotated NMOS transistor

 0

 1

0ps 50ps 100ps

V
o
lt

ag
e

C
u
rr

en
t

Time

Vin
Vout

iN

(b) Switching Event

Fig. 2: Propagating an input transition to an output transition requires current
to charge or discharge a capacitor. Decreasing width or increasing length of
MOSFETs are two ways of reducing switching current and increasing propagation
delay.
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We note that the methods sketched above (and other slow-down alterations)
can be combined such that each manipulation is relatively minor and, thus, more
difficult to detect.

4 Finding a Trojan Path

Fundamentally, the challenge in designing and validating triggerable and stealthy
delay-based Trojans is that timing and logical sensitization cannot be decoupled.
Regardless of the type of path sensitization considered, the probability of causing
an error is not a well-defined concept until after delays are assigned. Therefore,
when designing a candidate Trojan, path selection and delay assignment must
both be considered. We will use a heuristic for this which combines logical path
selection and delay distribution along a chosen path.

4.1 Phase I: Rare Path Selection

In this phase we try to select a path among huge number of paths existing in the
netlist of a multiplier circuit, in such a way that random inputs will very rarely
sensitize the path. The rareness is a first step towards ensuring stealthiness of
the Trojan.

Controllability and Observability: Before giving our algorithm, we intro-
duce several preliminaries. First, we note that every node in the circuit has a
controllability metric and an observability metric associated with the 0 value
and the 1 value. Controllability and observability are common metrics used in
testing. Controllability of a 0 or 1 value on a circuit node is an estimate of the
probability that a random input vector would induce that value on that node.
Observability of a 0 or 1 value on a node is an estimate of the probability with
which that value would propagate to some output signal when a random vector
is applied. For rareness, we seek a path that includes low controllability nodes
and low observability nodes, as this would indicate that the values on the path
rarely occur randomly, and when they do occur they are usually masked from
reaching the outputs. We estimate controllability using random simulation, and
observability using random fault injection [12].

Timing Graph: The propagation delays of logic paths in combinational VLSI
circuits are typically represented using weighted DAGs called timing graphs.
Each node in a circuit will have two nodes in the timing graph, representing
rising and falling transitions on the node; we use the terms transition and node
interchangeably when discussing timing graphs. A directed edge between two
nodes exists if the transition at the tail of the edge can logically propagate to
the one at the head. The edges that exist in the timing graph therefore depend
on the logic function of each gate in the circuit (see Fig. 3).

For example, an AND gate with inputs A and B, and output X, will have
an edge from A ↑ to X ↑, from A ↓ to X ↓, from B ↑ to X ↑, and from B ↓ to
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Fig. 3: Circuit and corresponding timing graph.

X ↓, but will not have an edge from A ↑ to X ↓ because a rising transition on an
AND gate input cannot induce a falling output. In timing analysis, e.g. STA, the
edge weights of a timing graph represent propagation delay, but for our purpose
of path selection, the delays are ignored and we utilize only the connectivity of
the timing graph.

Selecting a Path Through Timing Graph: Our path selection technique
seeks to find a path π through the timing graph of the circuit that is rarely
sensitized. Note that the delays are not considered in this phase of the work.
Path π is initialized to contain a single hard to sensitize transition somewhere in
the middle of the circuit. More formally, the starting point for the path search
is a rising or falling transition on a single node such that the product of its 0
and 1 controllability values is the lowest among all nodes in the circuit. This
initial single-node path π is then extended incrementally backward until reaching
the primary inputs (PIs), and extended incrementally forward until reaching the
primary outputs (POs). The backward propagation is given in Alg. 1, and the
forward propagation is given in Alg. 2.

First we explain the backward propagation heuristic in Alg. 1. Starting from
the first transition (i.e. the tail) on the current path π, we repeatedly try to extend
the path back toward the PIs by prepending one new transition to the path.
To select such a transition, the algorithm creates a list of candidate transitions
that can be be prepended to the path. In the timing graph, these candidates
are predecessor nodes to the current tail of π. The list of candidate nodes is
then sorted according to diffj, the difficulty of creating the necessary conditions
to justify the transition. See Tab. 3 in the appendix for the formula used to
compute diffj for each transition on each gate type. Note that our difficulty
metric is weighted to always prefer robust sensitization first, and only resort to
non-robust sensitization when there are no robustly sensitizable nodes in the list
of candidates. Whenever a node is prepended to π to create a candidate path π′

(line 5) the sensitizability of π′ is checked by calling check-sensitizability function.
In this function SAT-based techniques [9] are used to check sensitizability of a
path and to find a vector pair that justifies and propagates a transition along
the path (line 6). If the SAT solver returns SAT, then path π′ is known to be a
subpath of a sensitizable path from PIs to POs. Because the candidates are visited
in order of preference, there is no need to check other candidates after finding a
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first candidate that produces a sensitizable path. At this point, the algorithm
updates π to be π′ and the algorithm exits the for loop having extended the path
by one node. If this newly added tail node is not a PI, then the algorithm will
again try to extend it backwards.

Algorithm 1: Extend path backward to PIs while trying to maximize
difficulty of justification while ensuring that path will remain sensitizable.

Require: A sensitizable subpath π in timing graph of circuit.
Ensure: A longer sensitizable subpath π in timing graph that starts at a PI
1: while tail(π) /∈ PIs do
2: candidates← (∀n|n ∈ pred(tail(π))) {transitions that can be prepended to π}
3: candidates.order(diffj) {Order candidates by difficulty of justification}
4: for n′ ∈ candidates do
5: π′ ← (n′, π) {Create a candidate path by prepending current path}
6: if check-sensitizability(π′) = SAT then
7: π ← π′ {candidate accepted, update path π with new tail}
8: Exit for loop
9: end if

10: end for
11: end while

The forward propagation algorithm (Alg. 2) is similar to the aforementioned
backward propagation algorithm, except that it adds nodes to the head of the
path until reaching POs. At each step of the algorithm, a list of candidates is
again formed. In this case, the candidates are successors of the head of the path
(line 2) instead of predecessors of the tail, and they are ordered according to
difficulty of propagation (line 3) instead of difficulty of justification. Each time a
new candidate path is created by adding a candidate node to the existing path,
a sat check is again performed to ensure that the nodes are only added to π if it
remains sensitizable (line 6).

4.2 Phase II: Delay Distribution

Once a path is selected, we must increase the delay of the path so that the total
path delay will exceed the clock period and an error will occur when the path is
sensitized. Yet, we must be careful in choosing where to add delay on the path,
because the gates along the chosen path are also part of many other intersecting
or overlapping paths. Any delay added to the chosen path therefore may cause
errors even when the chosen path is not sensitized. To ensure stealthiness, we
must minimize the probability of this by smartly deciding where to add delays
along the path.

We use a genetic algorithm to decide the delay of each gate that will cause
the Trojan to be stealthy. Genetic algorithm is an optimization technique that
tries to minimize a cost function by creating a population of random solutions,
and repeatedly selecting the best solutions in the population and combining and
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Algorithm 2: Extend path forward to POs while trying to maximize
difficulty of propagation while ensuring that path will remain sensitizable.

Require: A sensitizable subpath π in timing graph of circuit.
Ensure: A longer sensitizable subpath π in timing graph that ends at a PO
1: while head(π) /∈ POs do
2: candidates← (∀n|n ∈ succ(head(π))) {transitions that can be appended to π}
3: candidates.order(diffp) {Order candidates by difficulty of propagation}
4: for n′ ∈ candidates do
5: π′ ← (π, n′) {Create a candidate path by appending to current path}
6: if check-sensitizability(π′) = SAT then
7: π ← π′ {candidate accepted, update path π with new head}
8: Exit for loop
9: end if

10: end for
11: end while

mutating them to create new solutions; the quality of each solution is evaluated
according to a fitness function. We use the genetic algorithm function ga in
Matlab [1], and do not utilize any special modifications to the genetic algorithm
implementation. Our interaction with the ga function is limited to providing
constraints that restrict the allowed solution space, and a fitness function for
evaluating solutions. We describe these constraints and fitness function here.

Constraint on Total Path Delay Given a chosen path π comprising gates
(p0, p1, . . . , pn) and assuming a target path delay of D, the genetic algorithm
decides the delay of each gate on the path. Our first constraint therefore specifies
that the sum of assigned delays along the path is equal to the target path delay D.
To cause an error, D must exceed the clock period, and we later show advantages
of using different values of D.

D =

n∑
i=0

di (1)

Constraint on Delay of Each Gate Next we provide the genetic algorithm
with a hint that helps it to discover reasonable delays for each gate. In this step,
we use d′i to represent the nominal delay of the ith gate on chosen path π, and
si to represent the a slack metric associated with the same gate. Each slack
parameter si describes how much delay can be added to the corresponding gate
without causing the path to exceed the clock period. Because the targeted path
delay D does exceed the clock period, gate delays are allowed to exceed their
computed slack. The slack for each gate is computed as a function of the nominal
delay of the gate, data dependency, and the clock period [25] [10]. The following
equation shows the constraint on delay of gate i, where c is a constant.

d′i + si − c ≤ di ≤ d′i + si + c (2)
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Fitness Function Simply stated, the cost function that we want to minimize
is the probability of causing an error when random input vectors are applied
to the circuit. Because there is no simple closed-form expression for this, we
use random simulation to evaluate the cost of any delay assignment. When the
genetic algorithm in Matlab needs to evaluate the cost of a particular delay
assignment, it does so by executing a timing simulator. The timing simulator, in
our case ModelSim, applies random vectors to the circuit-under-evaluation and
a golden copy of the circuit and compares the respective outputs to count the
number of errors that occur. These errors are caused by the delay assignments
in the circuit-under-evaluation. The cost that is returned from the simulator
is the percentage of inputs that caused an error for this delay assignment. As
the genetic algorithm proceeds through more and more generations of solutions,
the quality of the solutions improve. Matlab’s genetic algorithm implementation
comes with a stopping criterion, so we simply allow the algorithm to run until
completion.

5 Experimental Results

We now evaluate the effectiveness of our method of designing Trojans, using a
32× 32 Wallace tree multiplier as a test case. The circuit has a nominal critical
path of length 128, and the delay of this path is 2520 ps.

5.1 Evaluation of Phase I (Path Selection)

To evaluate the ability of our path selection algorithm (Sec. 4.1) to find a rare
path, we compare the stealthiness of the path selected by the algorithm against
the stealthiness of 750 randomly chosen paths. For each of these paths, we seek
to find how often an error would occur under random inputs if the path delay is
increased. We measure this by uniformly increasing the delay of each gate on the
path such that the total delay of the path is 5040 ps, which is twice the delay of
the nominal critical path. After the delay modification, 10,000 random vectors
are applied and the number of error-causing vectors is counted. The histogram
of Fig. 4 shows the result; the x-axis represents error rates, and the y-axis shows
how many of the paths have each error rate. The result shows that a majority
of paths would cause frequent errors if their delay is increased, and these paths
are thus unsuitable for stealthy Trojans. The rare path (RP) selected by our
algorithm caused an error for only 4 of 10,000 vectors. By comparison, the best
of the random paths caused an error in 174 of 10,000 vectors. In this experiment,
the path chosen by the path selection algorithm is 43x less likely to cause an error
than the best of 750 random paths. Note that this experiment is conservative
in that the amount of additional delay added is very large, and the delay is not
smartly distributed along the path to minimize detection.

5.2 Evaluation of Phase II (Delay Distribution)

To evaluate the effectiveness of our delay distribution method, we apply the
proposed method (Sec. 4.2) on 10 paths from the multiplier. These 10 paths

11



Fig. 4: Fault simulation of rare path and 750 random paths of 32× 32 Wallace
tree multiplier.

Fig. 5: Error probability of circuit before and after optimizing delay assignment
of rare path and 9 other paths in a 32× 32 Wallace tree multiplier.

are the rare path chosen by the path selection algorithm, and 9 paths randomly
selected from the set of all paths that caused less than 10% error rates in Fig. 4.
For each of these paths, we use the genetic algorithm to optimally allocate a
total delay of 3276 ps (i.e. 1.3 times of the delay of the nominal critical path)
over the path, and then evaluate the error probability using random simulation
with 5,000,000 vectors. Fig. 5 shows the error probability of each path before
and after applying our proposed delay distribution method. In each case, the
optimization step reduces the probability of causing an error by at least 3.5x.
For the rare path (RP), just one error in 5,000,000 vectors is caused after delay
distribution. This result shows that, for a given total path delay, optimizing the
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delay assignment along the path can reduce the probability of having an error
when random vectors are applied. It is important to note that this improvement
in stealthiness comes from minimizing the side effects of the added delay, and
does not impact triggerability when vectors are applied that actually sensitize
the entire chosen path.

5.3 Overall Evaluation

We evaluate our overall methodology comprising path selection and delay dis-
tribution on the 32× 32 Wallace Tree multiplier circuit. Instead of assuming a
particular clock frequency, here we examine whether it is possible to add delay to
the chosen rare path such that the circuit will (1) exceed the nominal critical path
delay of 2520 ps when the applied input sensitizes the rare path, and (2) always
have delay of less than 2520 ps otherwise. We first distribute delay uniformly
over the path, and then apply the same total delay to the path but distribute it
using the genetic algorithm (Sec. 4.2). The results are shown in Tab. 1. Despite
simulating 260 million random vectors, we are unable to randomly discover any
vectors in which the circuit delay exceeds 2520 ps. Yet, when applying a vector
pair produced by our SAT-based sensitization check, we observe that the chosen
path delay does exceed 2520 ps. As simulating 260 million vectors on a circuit this
size already used more than 240 hours of computation on an AMD Opteron(TM)
Processor running at 2.3GHz with 8 cores and 64 GB RAM, it will become
quite expensive to check increasing numbers of vectors beyond 260 million. This
highlights a significant challenge: given a space of 2128 possible vector pairs that
might cause an error, it is very hard to estimate the probability of an error that
is sufficiently rare. If the probability of error is around or above roughly 2−26,
then random simulation will suffice to find a few errors and estimate the error
probability. If the probability of error is below roughly 2−98 it would be possible
to use SAT to exhaustively enumerate all 230 vectors that would cause an error.
Unfortunately, for very interesting region of error probabilities between 2−26 and
2−98 there is no clear solution for estimating the error probabilities.

When the amount of delay added to the rare path is increased, and the
probability of error grows above 2−26, the error probability can feasibly be
estimated with random simulation. In this regime, we can evaluate the tradeoff of
delay and trigger probability. For example, when the chosen path is given a total
delay of 3150 ps allocated using genetic algorithm for delay distribution, and
the circuit is operated at a clock period of 2800 ps (as might be reasonable for a
nominal critical path of 2520 ps) an erroneous output occurs with probability
of roughly 2−24 (once every 16 million multiplications) when random inputs are
applied. The overall tradeoff is shown in Fig. 6 for different clock periods. One
can exploit this tradeoff to create a desired error probability by increasing or
decreasing the total amount of delay added to the chosen path.

6 Bug Attack On ECDH with a Trojan Multiplier

The main motivation of choosing a multiplier as our case study is the bug attack
paper by Biham et al. [5, 6]. They showed how several public key implementations
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Table 1: Probability of exceeding the nominal critical path delay in a 32 × 32
Wallace Tree Multiplier after adding delay to the rare path. When uniformly
distributing the delay over the path, the longest delay exceeds 2520 ps for 57
of 200,000 random applied vectors. After using genetic algorithm (Sec. 4.2) to
distribute the delay, the circuit delay never exceeds 2520 ps in 260 million random
vectors.

Delay Distribution
Uniform GA

num. of times exceeding 2520 ps 57 0
num. of random vectors applied 200,000 260M

prob. of exceeding 2520 ps 0.0003 < 2−26

Fig. 6: Increasing the rare path delay increases the probability of causing an
error when random vectors are applied. This delay is allocated to gates according
to the delay distribution algorithm. The results are shown for different clock
periods.

can be attacked if the used multiplier computes a faulty response for some rare
inputs. The real-world implications of bug attacks were first demonstrated by
Brumley et al. in 2012 when they showed how a software bug in an implementation
of the reduction step of an elliptic curve group operation in OpenSSL could be
exploited to recover private ECDH-TLS server keys [7]. Note that while they
exploited a software bug as opposed to a hardware bug and a modular reduction
as opposed to a multiplication, the attack idea itself is the same as in the original
bug attack paper [5].

6.1 Fault Model of the Trojan Multiplier

The Trojan Multiplier introduced in the precious Section has a different fault
model than the one assumed in [5]. In particular, the output of the Trojan
Multiplier does not only depend on the current input but also on the previous
inputs, i.e., it has a state. We define the multiplication of two 32-bit numbers
a1, b1 with our Trojan Multiplier as ỹ = MULa0,b0(a1, b1) where a0, b0 is the
previous input pair to the multiplier. The list F of quadruples (a0, b0, a1, b1) are

14



all input sequences for which the Trojan Multiplier computes a faulty response:

For all (a0, b0, a1, b1) ∈ F : ỹ = MULa0,b0(a1, b1) 6= y = a1 · b1
For all (a0, b0, a1, b1) /∈ F : ỹ = MULa0,b0(a1, b1) = y = a1 · b1

(3)

Outputs computed with the Trojan Multiplier are always represented with a tilde.
An ECC scalar multiplication of point Q ∈ E with an integer k is denoted as
R = k ·Q. An elliptic curve scalar multiplication using the Trojan Multiplier is
denoted with an �, i.e., R̃ = k �Q. In the following we assume that an attacker
has knowledge of the Trojan Multiplier or access to a chip with the Trojan
Multiplier such that the attacker knows for which inputs R̃ 6= R.

The attack complexity strongly depends on the probability that a multiplica-
tion results in a faulty response. In order to be able to compute this probability
we make following definitions:

1. PM(a1,b1): Probability that for two random 32-bit integers a1, b1 there exits
at least one pair of 32-bit integers a0, b0 such that ỹ = MULa0,b0(a1, b1)
computes a faulty response

2. PM(a1): Probability that for a random 32-bit integers a1 there exits at least one
triplet of 32-bit integers a0, b0, b1 such that ỹ = MULa0,b0(a1, b1) computes
a faulty response. Probability PM(b1) is defined in the same fashion.

3. PM(a0,b0|a1,b1): Probability that for two random 32-bit integers a0, b0 and
two given integers a1, b1 the multiplication ỹ = MULa0,b0(a1, b1) computes
a faulty response if there exists at least one other input pair a′0, b

′
0 for which

ỹ = MULa′
0,b

′
0
(a1, b1) computes a faulty response

4. PM(a0|a1,b1=b0): Probability that for a random 32-bit integers a0, and two
given integers a1, b1 the multiplication ỹ = MULa0,b0(a1, b1) with b0 = b1
computes a faulty response if there exists at least one other input pair a′0, b

′
0

for which ỹ = MULa′
0,b

′
0
(a1, b1) computes a faulty response

Furthermore, we make following assumptions regarding these probabilities for
the Trojan Multiplier :

1. PM(a1) ≈ PM(b1) and PM(a1,b1) = PM(a1) · PM(b1)

2. PM(a0,b0|a1,b1) ≈ 0.09
3. PM(a0|a1,b1=b0) ≈ 0.18

Assumption (1) follows from the fact that both inputs have the same impact
on the propagation path of the signal. Hence it is reasonable that both values
are equally important to determine if a multiplication fails. Assumption (2) is
based on experimental results in which 892 out of 10,000 multiplication failed
when a0 and b0 are changed randomly while keeping a1,b1 constant. Assumption
(3) is based on a similar experiment in which 1813 out of 10,000 multiplication
failed when a0 was changed randomly and b0 was fixed to b0 = b1 and a1 was
kept constant as well.

6.2 Case Study: An ECDH implementation with Montgomery
Ladder

For our case study we assume a 255-bit ECDH key agreement with a static public
key. Furthermore, we assume the implementation uses the Montgomery Ladder

15



scalar multiplication. The ECDH key agreement works as follows: Given are a
standardized public curve E (e.g. Curve25519) and the point G ∈ E. The private
key of the server is a 255 bit integer ks and the corresponding public key is
Qs = ks ·G. The key agreement is started by the client by choosing a random
255-bit integer kc and computing Qc = kc ·G. The client sends Qc to the server
and computes the shared key R = ks ·Qs. The server computes the shared secret
key R using Qc and his secret key ks by computing R = kS · Qc. Usually, the
key agreement is followed by a handshake to ensure that both the client and the
server are now in possession of the same shared session key R.

The general idea of the bug attack is that the attacker makes a key guess
of the first l bits of the secret key Ks. Then the attacker searches for a point
Q = m · G such that the scalar multiplication R̃ = ks � Q results in a failure
if, and only if, the most significant bits of ks are indeed the l bits the attacker
guessed. The attacker then sends Q to the server and completes the ECDH key
exchange protocol by making a handshake with the shared key R = m ·Qs. If this
handshake fails, the expected multiplication error in the Trojan Multiplier has
occurred and hence, the attacker knows that his key guess is correct. This way
more and more bits of the key are recovered consecutively. In the Montgomery
Ladder scalar multiplication only one bit of the key is processed in each ladder
step and the attack works as follows:

1. Input: Elliptic curve E with point G ∈ E and public server key Qs ∈ E
2. Initialization: Set k = 1(2)
3. Repeat for key bit 2 to 255:

(a) Define k0 = k||0(2) [Append a zero to the key k]
(b) Define k1 = k||1(2) [Append a one to the key k]
(c) Repeatedly choose a value m and compute Q = m ·G until:

(P̃i = ki �Q) 6= (Pi = ki ·Q) for i ∈ {0, 1}
(P̃j = kj �Q) = (Pj = kj ·Q) for j 6= i, j ∈ {0, 1}

(d) Send Q to the server and complete handshake with R = m ·Qs

(e) If handshake failed, set k = ki, else set k = kj

The attack described above is a straight forward adaption of the bug attack
from [7]. However, in the Trojan multiplier scenario the attack can be improved
significantly by adding a precomputation step. The main idea is to not use
randomly generated points Q in step 3.c) but to use points Q in which the x-
coordinate Qx contains a b1 for which the Trojan Multiplier ỹ = MULa0,b0(a1, b1)
has a high chance to return a faulty response. That is, b1 is one of the inputs
for which the Trojan Multiplier fails. In each step of the Montgomery Ladder
algorithm the projective coordinate Z2 is computed with Z2 ← Z2 ·Qx

1 Hence,
Qx, and therefore also b1, is used in every ladder step. Furthermore, the value Z2

is different depending on the currently processed key bit. Our improved attack
targets this 255-bit integer multiplication Z2 ·Qx to find a Q such that (P̃i 6= Pi)

while (P̃j 6= Pj) as needed in step 3.c) of the attack algorithm.
Unfortunately, the attacker cannot freely choose Q since the attacker needs

to know m such that Q = m ·G to finish the handshake. Instead of computing

1 See Appendix B of the IACR ePrint version for the Montgomery Ladder algorithm.
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suitable points for each attack, we propose to search for t suitable points Q
during a precomputation step as described below:

1. Input: Elliptic curve E with point G ∈ E
2. Initialization: m = 1, Q = G
3. Repeat t times:

(a) m = m+ 1, Q = Q+G
(b) If Qx contains b1, store m and Q in list L

To compute the probability that the 255-bit integer multiplication Z2 ·Qx fails
the used multiplication algorithm is important. We assume that the schoolbook
multiplication is used. One 255-bit schoolbook multiplication consists of 64
multiplications of which 8 have b1 as an operand. Since one of these multiplication
is a 31-bit multiplication and we assume that only 32-bit multiplications can
trigger the Trojan, 7 32-bit multiplications with b1 that can trigger the Trojan
are performed in each ladder step. Furthermore, due to the FOR loops in the
schoolbook multiplication, in 6 of these 7 multiplications b0 = b1, i.e., the second
operand in the multiplication remains unchanged. Note that PM(a0|a1,b1=b0) ≈
0.18 and hence this is actually not a problem but rather helpful. The average
number AQ of points Q that need to be tested until a failure occurs for key bit 1
or 0 is therefore:

AQ =
1

2
· 1

PM(a1) · PM(a0|a1,b1=b0) · 6 + PM(a1) · PM(a0,b0|a1,b1) · 1

Let us assume that the attacker tries to find a point Q for key bit i. Since the
attacker searches for a fault in the last Montgomery Ladder step, for every point
Q the attacker needs to compute i− 2 Montgomery Ladder steps (for the first
key bit no step is needed) and then two Montgomery Ladder steps for key bit 1
and 0 respectively to check if the multiplication fails. Hence, in total the attacker
needs an average of AM Montgomery Ladder steps to recover a 255 bit key:

AM =

255∑
i=2

(i ·AQ) =
2552 + 255

2
·AQ ≈ 216 ·AQ

To compute t points Q during the precomputation such that b1 is in Qx the
attacker needs in average

AP = t · 1

PM(b1)

point additions. We chose t = 16 ·AQ which results in a failure probability of
ca. 3.3 · 10−8 which should be small enough for all reasonable attack scenarios.
Table 2 summarizes the attack complexity for our improved bug attack with
precomputation for different parameters for the Trojan Multiplier. To put these
numbers into perspective, the hardware implementation of curve25519 presented
in [22] can compute roughly 239.3 Montgomery Ladder steps per second on a Xilinx
Zynq 7020 FPGA. Hence, especially for a failure probability of PM(a1,b1) = 2−48

the attack complexity of 239 Montgomery ladder steps (and 250 point additions
that only need to be done once) is quite practical in a real-world scenario. On the
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Table 2: Attack complexity of the proposed improved Bug Attack using the
Trojan Multiplier assuming a 256 bit curve.

PM(a1,b1) 2−64 2−48 2−32

Precomputation complexity (point additions) 266.8 250.8 234.8

Storage Requirement 14 PB 55 TB 215 GB

Attack complexity (scalar multiplications) 230.8 222.8 214.8

Attack complexity (Montgomery Ladder Steps) 246.8 238.8 230.8

other hand, the probability that the Trojan is triggered unintentionally during
normal operation is about 2−37 which is low enough to not cause problems (see
Appendix 19 for details).

7 Conclusion

This paper introduced a new type of parametric hardware Trojans based on rarely-
sensitized path delay faults. While hardware Trojans using parametric changes
(i.e. that only modify the performance/parameters of gates) have been proposed
before, the previously proposed parametric hardware Trojans cannot be triggered
deterministically. They are instead either triggered after time by aging [23],
triggered randomly under reduced voltage [17] or are always on and can leak keys
using a power side-channel [4]. In contrast, the proposed parametric hardware
Trojan in this paper can be triggered by applying specific input sequences to
the circuit. Hence, this paper introduces the first trigger-based hardware Trojan
that is realized solely by small and stealthy parametric changes. To achieve this,
a SAT-based algorithm is presented which efficiently searches a combinational
circuit for paths that are extremely rarely sensitized. A genetic algorithm is then
used to distribute delays over all the gates on the path so that a path delay fault
occurs when trigger inputs are applied, while for other inputs the timing criteria
are met. In this way, a faulty response is computed only for a very small subset
of input combinations.

To demonstrate the usefulness of the proposed technique, a 32-bit multiplier
is modified so that, for some multiplications, faulty responses are computed.
These faults can be so rare that they do not interfere with normal operations
but can still be used by the Trojan designer for a bug attack against public
key algorithms. As a motivating example, we showed how this can be achieved
for ECDH implementations. Please note that while we used a multiplier as
our case study, the general idea of path delay Trojans and the tool-flow and
algorithms presented in this paper are not restricted to multipliers. Hence, this
work shows that by only making extremely stealthy parametric changes to a
design, a malicious factory could insert backdoors to leak out secret keys.
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Table 3: Computation of diffj for different gate types. In the case of 2-input
gates, we assume without loss of generality that input A is the on-path input
and B is the off-path input. The first two columns show the output transition,
and the input transition that we are trying to justify for this output transition.
Columns 3-6 show the values that the on-path input (A) and off-path input (B)
must take in the first and second cycles to justify the desired transition. The
final column shows the formula to compute diffj in terms of the controllability
of the inputs.

output input A B
Diffj

trans. trans. v(1) v(2) v(1) v(2)

X = AND(A,B)
X ↓ A ↓ 1 0 1 1 C1(A) ∗ C0(A) ∗ C2

1 (B)
X ↑ A ↑ 0 1 - 1 C0(A) ∗ C1(A) ∗ C1(B)

X = OR(A,B)
X ↓ A ↓ 1 0 - 0 C1(A) ∗ C0(A) ∗ C0(B)
X ↑ A ↑ 0 1 0 0 C0(A) ∗ C1(A) ∗ C2

0 (B)

X = XOR(A,B)

X ↓ A ↓ 1 0 0 0 C1(A) ∗ C0(A) ∗ C2
0 (B)

X ↓ A ↑ 0 1 1 1 C0(A) ∗ C1(A) ∗ C2
1 (B)

X ↑ A ↑ 0 1 0 0 C0(A) ∗ C1(A) ∗ C2
0 (B)

X ↑ A ↓ 1 0 1 1 C1(A) ∗ C0(A) ∗ C2
1 (B)

X = BUFF(A)
X ↓ A ↓ 1 0 - - 1
X ↑ A ↑ 0 1 - - 1

X = INV(A)
X ↓ A ↑ 0 1 - - 1
X ↑ A ↓ 1 0 - - 1

Table 4: Computation of diffp for different gate types. In the case of 2-input
gates, we assume without loss of generality that input A is the on-path input and
B is the off-path input. The first two columns show the output transition, and the
input transition that we are trying to propagate for this on-path input transition.
Columns 3-6 show the values that the output (X) and off-path input (B) must
take in the first and second cycles to propagate the desired transition. The final
column shows the formula to compute diffp in terms of the controllability of
the off-path input and observability of output.

output input X B
Diffp

trans. trans. v(1) v(2) v(1) v(2)

X = AND(A,B)
X ↓ A ↓ 1 0 1 1 OB1(X) ∗OB0(X) ∗ C2

1 (B)
X ↑ A ↑ 0 1 - 1 OB0(X) ∗OB1(X) ∗ C1(B)

X = OR(A,B)
X ↓ A ↓ 1 0 - 0 OB1(X) ∗OB0(X) ∗ C0(B)
X ↑ A ↑ 0 1 0 0 OB0(X) ∗OB1(X) ∗ C2

0 (B)

X = XOR(A,B)

X ↓ A ↓ 1 0 0 0 OB1(X) ∗OB0(X) ∗ C2
0 (B)

X ↓ A ↑ 1 0 1 1 OB1(X) ∗OB0(X) ∗ C2
1 (B)

X ↑ A ↑ 0 1 0 0 OB0(X) ∗OB1(X) ∗ C2
0 (B)

X ↑ A ↓ 0 1 1 1 OB0(X) ∗OB1(X) ∗ C2
1 (B)

X = BUFF(A)
X ↓ A ↓ 1 0 - - OB1(X) ∗OB0(X)
X ↑ A ↑ 0 1 - - OB0(X) ∗OB1(X)

X = INV(A)
X ↓ A ↑ 1 0 - - OB1(X) ∗OB0(X)
X ↑ A ↓ 0 1 - - OB0(X) ∗OB1(X)
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B Montgomery Ladder

To be able to compute the exact attack complexity the details of the Montgomery
Ladder are important to determine how many manipulations are performed in
each step. Algorithm 3 and Algorithm 4 describe the details of the assumed
Montgomery Ladder implementation.

Algorithm 3: Montgomery Ladder

Input: A 255-bit scalar s and the x-coordinate Qx of Q ∈ E
Output: c-coordinate Px of point P ∈ E with P = s ·Q

1 X1 ← 1; Z1 ← 0; X3 ← Qx ; Z2 ← 1
2 for i← 254 downto 0 do
3 b← bit i of s
4 c← bit i− 1 of s for i < 254 else c← 0
5 if b⊕ c = 1 then
6 Swap(X1, X2)
7 Swap(Z1, Z2)

8 (X1, Z1, X2, Z2)← LADDERSTEP (Qx, X1, Z1, X2, Z2)

9 Px ← X1/Z1

10 return Px

Algorithm 4: LADDERSTEP of the Montgomery Ladder (for
curve 25519)

Input: Qx, X1, Z1, X2, Z2

Output: X1, Z1, X2, Z2

1 T1 ← X2 + Z2

2 X1 ← X2 − Z2

3 Z2 ← X1 + Z1

4 X1 ← X1 − Z1

5 T1 ← T1 · Z2

6 X2 ← X2 · Z2

7 Z2 ← Z2 · Z2

8 X1 ← X1 ·X1

9 T2 ← Z2 −X1

10 Z1 ← T2 · a24

11 Z1 ← Z1 +X1

12 Z1 ← T2 · Z1

13 X1 ← Z2 ·X1

14 Z2 ← T1 −X2

15 Z2 ← Z2 · Z2

16 Z2 ← Z2 ·Qx

17 X2 ← T1 +X2

18 X2 ← X2 ·X2

19 return X1, Z1, X2, Z2

Computing the failure probability of a scalar multiplication In this
subsection we describe how the failure probability of a Montgomery Ladder scalar
multiplication with schoolbook multiplication on the Trojan Multiplier can be
compute. To compute the probability that the computation fails we fist compute
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the probability that a computation does not fail. As noted previously, in a 255-bit
schoolbook integer multiplications with 32-bit word size, 64 multiplications are
performed. From this 64 multiplications, 49 multiplications are the multiplications
of two 32-bit numbers, while 6 are 32-bit times 31-bit multiplications and one 31-
bit times 31-bit multiplications. We again assume that only 32-bit multiplications
can result in a faulty response. In 42 multiplications the second operand is the
same as in the previous multiplications and hence the probability that such a
multiplication fails is:

PM(a1,ab) · PM(a0|a1,b1=b0)

For 7 multiplications the failure probability is:

PM(a1,ab) · PM(a0,b1|a1,b1)

The probability that no failure occurs during one Montgomery Ladder step is
therefore:

(1− PM(a1,ab))
42 · (1− PM(a0,b1|a1,b1))

7

A 255-bit scalar multiplication requires 254 Montgomery Ladder steps. Hence
the probability that a failure occurs is given by:

1− ((1− PM(a1,ab))
42 · (1− PM(a0,b1|a1,b1))

7)254
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