How low can you go? Using side-channel data to
enhance brute-force key recovery

Jake Longo, Daniel P. Martin, Luke Mather, Elisabeth Oswald, Benjamin
Sach, and Martijn Stam

University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK.
{jake.longo, dan.martin, luke.mather, elisabeth.oswald, ben.sach,
martijn.stam}@bris.ac.uk

Abstract. Side-channel analysis techniques can be used to construct
key recovery attacks by observing a side-channel medium such as the
power consumption or electromagnetic radiation of a device while is it
performing cryptographic operations. These attack results can be used
as auxiliary information in an enhanced brute-force key recovery attack,
enabling the adversary to enumerate the most likely keys first.

We use algorithmic and implementation techniques to implement a time-
and memory-efficient key enumeration algorithm, and in tandem identify
how to optimise throughput when bulk-verifying quantities of candidate
AES-128 keys. We then explore how to best distribute the workload so
that it can be deployed across a significant number of CPU cores and
executed in parallel, giving an adversary the capability to enumerate a
very large number of candidate keys.

We introduce the tool LABYNKYR, developed in C++11, that can be
deployed across any number of CPUs and workstations to enumerate
keys in parallel. We conclude by demonstrating the effectiveness of our
tool by successfully enumerating 2*® AES-128 keys in approximately 30
hours using a modest number of CPU cores, at an expected cost of only
700 USD using a popular cloud provider.

1 Introduction

Brute-force attacks on cryptographic primitives or on systems with crypto-
graphic components have been an important topic of research. The DES cipher,
with an effective security parameter of 56 bits, was eventually demonstrated to
be vulnerable to a direct brute-force attack using custom hardware in the order
of days [6], and a brute-force attack on DES has been used to break the MS-
CHAPv2 authentication protocol [14]. One can also consider brute-force attacks
in which the adversary has auziliary information available; consider dictionary-
based password cracking tools such as oclHashcat!, where an empirical prior
distribution of popular passwords is used to facilitate the recovery of a hashed
password.

! https://hashcat.net/oclhashcat/

Side-channel analysis (SCA) is a powerful tool for extracting cryptographic
keys from secure devices. If an adversary can measure the power consumption of a
device performing cryptographic operations, then the resulting power traces may
subsequently lead to recovery of the secret key [10]. SCA attacks are typically
divide-and-conquer strategies: targeting small portions of a key individually, ob-
taining information on the likelihood of each possible value for the portion of
the key being the correct value, before combining these results to recover a full
key.

Until recently, SCA attacks have been considered to be “all-or-nothing”
strategies: if the attack did not perfectly identify the correct value for each
portion of the key as the most likely, then the attack would be considered a fail-
ure. However, beginning with the work of Veyrat-Charvillon et. al. [18] in 2012,
it is now possible for an adversary to make use of the information produced by
an imperfect attack. In an imperfect attack, the adversary learns some informa-
tion pertaining to the key, but not sufficient information to achieve key recovery
and must hence enumerate the most likely candidate keys in order from most to
least likely using a known plaintext and ciphertext pair. From this perspective,
side-channel attacks are very similar to password cracking attacks—the auxil-
iary information is the result of a side-channel attack (respectively the password
distribution), and the attacker’s strength is constrained by the number of the
most likely keys they are able to check (respectively passwords). Unlike password
cracking, side channel attacks provide distributions on independent portions of
the key, instead of on the entire key. This makes parallelisation of an enumeration
algorithm recovering an entire key non-trivial.

Informally, the number of candidate keys an adversary must enumerate af-
ter an imperfect side-channel attack before learning the correct key is termed
the rank of the key. The rank plays a very important role in determining the
resistance of a device to a side-channel attack. Recent efforts [1,3,7,16,20,19] con-
sidered determining the rank of the correct (known) key after the side-channel
phase of an attack. This scenario is significant for evaluation bodies and certifica-
tion authorities—the potential implication of this recent research has prompted
JHAS (JIL Hardware-related Attacks Subgroup; an industry led group that de-
fines Common Criteria security evaluation practice) to set up a specific working
group to address the issue.

The rank is an extremely informative measure of security, but does not com-
pletely capture the strength of an adversary. If after an attack the rank of a key
is 240 then the adversary (who does not know this) must generate and eliminate
the 240 — 1 candidate keys that were (incorrectly) rated to be more likely by
the attack. However, it is also important to know how challenging this task is
in practice, both in terms of the run-time for the enumeration and verification
algorithms, as well as whether the adversary can parallelise their effort.

Our work focuses on exploring and optimising these properties. We build
upon previous works (such as [3,18,20]) to create a highly parallel tool named
LABYNKYR capable of enumerating large numbers of key candidates with the
goal of minimising computation time, and demonstrate the effectiveness of our

strategy by recovering a key at rank 2% using a modest number of CPU cores
in the order of hours of computation time. In Sec. 2 we provide formalisms and
further motivation for the key enumeration problem. In Sec. 3 and Sec. 4 we
identify fast algorithms for enumerating and verifying key candidates directly
from side-channel data. We then move to exploring how best to parallelise these
algorithms in Sec. 5, before concluding with some real-world benchmarks of the
performance of our tool on a complex, real-world side-channel target in Sec. 6.

2 Key enumeration

Side-channel attacks. We use a bold type face to denote multi-dimensional
variables. A key k can be partitioned into m independent subkeys, each of which
can take one of n possible values (we assume that all subkeys are of the same size).
We denote this as k = (k°,...,k™!) for a test key and sk = (sk?,..., sk™™1)
for the target secret key.

We focus on SCA attacks where a distribution on the subkeys is output, so
that key enumeration is applicable. There are myriad ways to construct SCA at-
tacks (see [12] for an overview) and a whole host of accompanying literature ded-
icated to finding the ‘best’ attack. Formally, the attacker has N power measure-
ments corresponding to encryptions of N known plaintexts x; € X, i=1,..., N
and wishes to recover the secret key sk. The attacker can accurately compute
the internal values under each subkey (normally an independent part of the key)
hypothesis. A distinguisher D7 is then some function which can be applied to
the measurements and the hypothesis-dependent predictions (for the j** subkey)
in order to quantify the correspondence between them. The distinguisher D, on
the complete key, simply runs the subkey distinguishers D’ for j = 0...m — 1
. The outputs from the (full) distinguisher and the subkey distinguishers are D
and D7 respectively. The result of a side channel attack is a set of distinguishing
vectors (referred to as a distinguishing table), which hold the information about
subkeys (when studied individually) and the entire key (when studied jointly).

Each element in a distinguishing vector D7 contains a score associated with
how likely the associated subkey value is to the be correct key. The score d; ;
corresponds to the likelihood of subkey j taking value i. When an adversary uses
a common class of attack strategies, these scores are often estimated correlation
coefficients, but they can also take the form of probability-like values or entropies.
In the case of a perfect SCA attack, the most likely score in each distinguishing
vector will be associated with the correct subkey value, and to recover the key
the adversary needs only to sort the vectors and read off the most likely values
from each. When the correct subkey values have scores that are only close to
the most likely of their respective vectors then the side-channel attack does not
succeed perfectly, yet the scores still contains meaningful information on the
value of the correct key.

An imperfect attack can occur for a variety of reasons. Many types of SCA
attack require the adversary to make assumptions about the form of the infor-
mation leakage produced in the side-channel, however, these assumptions are

often imperfect. In other situations, there may be large amounts of noise in the
data, forcing the adversary to gather more measurements. The quantity of mea-
surements an adversary is able to require may be constrained: the adversary
might have limited access to the target device, or the device may update the
keys after a fixed number of encryptions have occurred. Often both issues are
in-play: the adversary may have a only an approximation for the leakage and
the measurements will contain noise. In this work we are not concerned with the
particular type of SCA attack used; instead we focus on how to best exploit the
information contained within D through enumeration.

Additive scores We assume that the score for an entire key can be calculated
by adding the scores of its constituent subkeys. In practice, SCA attacks may
produce scores that are additive by default, and in the event that this is not the
case a suitable transformation such as taking the logarithm of the scores can
usually be applied.

We denote the score of a key k; as S = Z;":_Ol dyi j where we assume k7 takes
value dy; ; in the distinguishing vector. We require that the scores are positive
and that the most likely key has a lower score: if keys k; and k; have scores S;,
S; and S; < S; then k; is judged by the SCA attack to more likely to be the
correct candidate. If this is not automatically the case it is fairly straightforward
to convert the scores such that this property holds.

Conversion to integer weights. In addition to assuming additive distin-
guishing scores, we also require that the (typically floating-point) scores d; ; be
mapped to a set of integer weights w; ;, mapping a distinguishing table D to a
weight table W as per Fig. 1.

The conversion to weights is necessary to allow the application of the enu-
meration algorithms is described in Sec. 3. The particulars of the method “Map-
ToWeight” used to do the conversion are described in Sec. 3.1.

Enumeration. Enumeration is a procedure that can be applied to the majority
of SCA attacks; any divide-and-conquer SCA strategy is likely to produce an
attack result to which enumeration can be applied. An enumeration capability
is a boon for the adversary whenever the SCA attack does not succeed perfectly;
allowing the adversary to trade-off a reduction in measurements for increased
work enumerating through distinguishing vectors.

We are solely interested in how well enumeration can compensate for poor
attacks. To this end, we describe the enumeration problem in terms of the output
of a generic side-channel attack. After an attack has occurred an adversary has
a weight table W which contains, for each subkey, a measure of the likelihood
that subkey takes a particular value. A simple definition of a key enumeration
algorithm takes in the weight table W and returns a list of the B most likely
keys, where B is a predetermined budget. Additionally, it may be useful for the
adversary to enumerate “at an offset” — to ignore the first O most likely keys
(for instance which may have already been enumerated).

Distinguishing table D

K0 K K2 K K2 K
o doo dy 4 dy, L P dom2 Aot
1] dyo d, d,, L P d; o d;
2| dy d,, d,, Ayg | orereenms [d,
3| 95 ds d,, dyy |ooeee | d; I I dy s
n-2 [duz0 n-2,1 n-2,2 Gpg | coeremeeneiennn, dioma| [nzm W MapToWeight(D)
n-1[d., d.i; d.is Ao [oo A im2| [Fotm
Weight table W
K0 K K2 K K2 K
o[Woo W4 Woo Wog | oevemremniinnnnn, Womz | [Womt
1| Wy w, W, Wi [W [W
2 W, W, w,, Wog | eereniinin, W0 | [Wama
3| W, W, , w,, Wyy [oee | W, I W0 Wy
n-2| %20 n-2,1 W2 N2 [e Wozm2| [Wnomi
010 | | Watn | [Worz | [Wag | crevreeeeemeeennnns S I

Fig. 1. The conversion of floating-point distinguishing scores to integer weights using
a conversion function MapToWeight.

For completeness, we define the rank of a key. We denote the weight of the
secret key sk as W = 227:01 Wi ; Where we assume sk’ takes value wgys ; in

the weight table.

Definition 1 (Key rank). Given the weight table W, and the score W of the
secret key sk, count the number of keys with a score strictly less than W.

If multiple keys have the same scores as the secret key, we assume without loss
of generality that it is ranked first. This is the worst case scenario for a device
owner as this is the earliest an adversary will enumerate the key. We denote the
key rank of the secret key, for a given weight table, as rankg, (W).

Bounding keys. For an enumeration algorithm to be able to enumerate the
B next-most likely keys given an offset O, it is necessary to determine how to
identify which of the candidate keys fulfil these criteria. The solution is to use
ranges of weights to define non-overlapping groupings of keys: for Wy < Wy <
Wa, the ranges [Wy, Wi] and [W7 + 1, W3] define two sets of candidate keys,
where all of the candidates in the first set are more likely than those in the
second. Weights are used instead of keys as it avoids the issue of multiple keys

having the same weight (therefore having to enumerate some keys for a given
weight but not all).

Thus we arrive at a formalisation of an enumeration algorithm:
{k;}; + enumerate(W, Wnin, Winaz)-

Given the weight table W and an inclusive range of weights [Win, Winazl,
return all keys with weight within the specified range.

Verification. Enumeration produces a list (or set) of the most likely keys, but
the adversary still needs to check each one: to recover the secret key, each of the
keys in the list is checked using a wverification algorithm, which takes the set of
enumerated keys and returns either the correct key or L if the correct key is not
found:

sk/ L+ verify({k;}:)-

Since side-channel attacks are typically known-plaintext attacks, verification
of a single key can be performed by encrypting the known plaintext(s) under the
candidate key and checking whether the output matches the given ciphertext(s).
Some block ciphers will be easier to verify than others: in this work we consider
the best-case verification scenario for the adversary, in which AES-128 encryp-
tions can be accelerated using hardware-level instructions. If the targeted cipher
is (for instance) DES, then the adversary must use a software implementation of
the algorithm if they are to use standard non-specialised computing resources.

Search. We term the combination of both the verification and enumeration
components as a key search:

search(W, Winin, Winaz) = verify(enumerate(W, Win, Winaz))-

The total expected runtime of the full search process has to take into account
both the time to enumerate the keys and the time to iterate through the enumer-
ated list until verification returns a key. Since the latter allows an early abort,
the order in which keys are checked matters (order-optimality will be discussed
in more detail towards the end of the section). To maximize key recovery capa-
bility, given fixed resources, it is necessary to optimise both the enumeration and
verification components for speed; after all, total run-time will depend primarily
on the slowest of these two algorithms.

Parallelism. Any significant cryptanalytic effort benefits greatly from paral-
lelism. We use a model where multiple parallel execution units (PEUs) operate as
independently as possible. In this work we consider PEUs to be CPU cores, but
any reasonable definition (specialised hardware, distributed computing systems)
is meaningful.

Given a number of PEUs (and a table W), we aim to minimize the expected
time to recover the secret key. Parallelising the verification of the set of keys
is relatively straightforward: the verification of each element in the set is an

Parallel search inputs
Weight table W
K K K K K™? K™
o Allocate by keys to PEUg
© Allocate b, keys to PEU4
© Allocate bj keys to PEU2
o Allocate b, keys to PEUg

ne1 [Moso | [Moss | [Wose] [os]

Key space

<+—— most likely least likely ———>

k, Ky, .1 Ko vyt LS Ko, by by b1 Kz
T] %] = SR E—

Wamin w, W, W, w, Womax
<+——— lowest weight highest weight ——>

Parallel search

@earch (W, Wpmin, W,)\ Ksearch (W, W,+1, Wz)\ ﬂearch (W, Wy +1, Wg)\

i [enumerate] i [enumerate | i [enumerate |
o : ol : ol :
B | B | B
S . S . N
i[Cverty i ([Cvery ¢ ([Cvery ¢
search (W, Wy+1,W,)
{[enumerate |
! :
B
Pl 5
i[Cverty i

_ PEU, J _ PEU, J _ PEU, /

Fig. 2. Example overview of how a parallel adversary can search the most likely por-
tions of the global key space by partitioning along ranges of weights and allocating
distinct partitions to different parallel units.

independent event and thus scales linearly across increasing numbers of PEUs.
For example, if we are able to verify 226 keys per second on one PEU, then we
will be able to verify 227 keys per second using two. However, as will be discussed
in Sec. 3, extending enumeration algorithms to distribute work is decidedly non-
trivial.

Figure 2 illustrates how an adversary can construct a parallel search capabil-
ity by dividing up the candidate key space along the range of key weights. If there
are ¢ PEUs, then the simplest strategy is to find ¢ weight ranges that each define
approximately the same number of candidate keys, distributing the workload as
evenly as possible across the available parallelism. This assumes that it costs
the same time to enumerate each key — in practice this may not always be the
case, and consequently it may be preferable to assign different numbers of keys

Strategy A: [Co | C; | C5 [C5|Co | C |Co|C5|Co| Ci|Co|Cs

k0 k20 k40 k60 k80 k100 k120 k140 k160 k‘I80 k200 k220

Strategy B: | Cy C, c, Cy

k0 k20 k40 k60 k80 k100 k120 k140 k160 k180 k200 k220

Fig. 3. Two strategies for the allocation of tasks when aiming to find kso in a set
of 240 candidate keys ko, ..., kasg, in a parallel environment consisting of four PEUs
Co,...,C3.

to different search tasks, but with the overarching goal of evenly distributing the
workload.

A naive approach is to divide the entire key-space by the number of PEUs,
and assign that many keys to each PEU. In practice, it will be preferable to
restrict the size of each individual search task. Figure. 3 shows two possible
strategies for allocating search tasks in a hypothetical experiment. In this sce-
nario there are 240 possible keys ko, ..., kasg and four PEUs cg,...,c3. The
correct key is kgg, and let us assume that the adversary takes two hours to enu-
merate and verify 20 keys. Using strategy A, the adversary will identify ksg after
119 minutes has elapsed. Using strategy B, the adversary would have to wait
354 minutes to arrive at the result, nearly 3 times as long. This is suggestive
for ensuring that the size of any one task is not too large, indicating that it
is preferable for PEUs to process many smaller interleaved search tasks rather
than a single large task.

Further justification for restricting the size of each search task is that if the
size of the set of keys produced by the enumeration is too large then the memory
footprint may become too high — for instance, a set of 238 AES-128 candidates
would, in the worst-case, consume 4 TiB of memory. As will be described in
Sec. 3, it is possible to interleave the verification of smaller subsets of the can-
didates as they are produced within the enumeration algorithm. This is the
approach adopted throughout this work.

A final consideration when building a parallel tool is the ratio of the number
of enumeration components to verification components. In some circumstances,
such as an AES-128 scenario, as explored in Sec. 4, keys can be verified ex-
tremely quickly. In these cases, it is unlikely that a enumeration algorithm can
produce candidates fast enough to meet the throughput of a verification com-
ponent. Alternatively, such as when attacking a cipher for which no hardware
acceleration is available, the inverse scenario may occur. It will be difficult to
predict the optimal ratio of enumeration to verification components prior to
runtime, particularly as there would be additional synchronisation overhead. In

the remainder of this work, we explore performance where each enumeration
component is paired with a single verification component.

Order-optimality. Each call to an enumeration algorithm produces a list of
key candidates. This list can be returned in-order or out-of-order. Given a list
of B keys ki,...,kp, an order-optimal enumeration algorithm orders the list
such that if ¢ < j then k; is more likely than k; (W; < W;). A non-optimal
enumeration algorithm must enumerate all keys with weights within a defined
range, but may return the list in any order.

At first glance, the order-optimal approach appears to be more desirable, as
an adversary will be able verify more likely keys before less likely ones. However,
the definition does not extend to a parallel setting in a way that allows for an
efficient instantiation of an algorithm — each PEU would have to synchronise
to ensure the correct ordering of candidates across all enumerated lists is main-
tained, which becomes increasingly expensive as the number of PEUs increases.
A weaker definition is achievable in which each PEU is order-optimal on the
subset of the key space the PEU is enumerating, but the global synchronisation
of the search across many PEUs is not required.

Building a parallel search tool. In this work we will focus on the following
three areas, with the aim of building a fast and highly-parallel tool for running
key enumeration:

1. Identifying fast algorithms for enumerating key candidates, in both order-
optimal and non-optimal settings, described in Sec. 3.

2. Identifying fast methods for verifying 128-bit AES key candidates, described
in Sec. 4.

3. Exploring and identifying challenges associated with how best to select weights
for parallelism, described in Sec. 5.

The ultimate goal is to allow the adversary to search as many key candidates as
possible within a fixed amount of time: informally, the more keys an adversary
can enumerate, the more likely the adversary is to recover the key. Simultane-
ously, we would also like to maximise the number of PEUs that an adversary
can deploy.

3 Accelerating enumeration

Our starting point was to identify fast enumeration algorithms. We are addi-
tionally concerned with ensuring that the memory complexity of the algorithms
is kept low—if too high, this might impact on the number of PEUs that may be
run on a single host.

3.1 Conversion of scores into weights.

We define a function, MapToWeight, that converts positive floating-point dis-
tinguisher scores (0 < d; ; < 1) into non-negative integer weights. We require a
mapping to achieve this, and also require MapToWeight to transform the raw
scores such that the highest score is mapped to the lowest weight: in raw score
format, the greater the score the more likely the key candidate, in the integer
weight format, the smaller the weight the more likely the key candidate. This is
necessary to fulfil the requirements of the some of the enumeration algorithms
used throughout this work. Our starting point is the conversion function as de-
scribed in [16,15]: as such, the MapToWeight function is defined as follows:

w; ;= L?I’*D‘ 'di,jJ - mlinLpro‘ . dl,jJ +1,

where « is the precision of the largest score and p is the required precision.
The multiplication by 2P~% scales the weights to have the required precision
and the floor converts the scores to integers. By the subtracting the smallest
weight in each vector, the scores maintain their relationship while having the
smallest value as 1. The runtime of the enumeration algorithms to be described
is normally dependent on the weight, and so having a smaller weight increases
efficiency.

If the precision p is less than the precision in the raw distinguishing scores,
then the MapToWeight process is compressive — keys that may have unique
scores in their raw form maybe be “compressed” together by MapToWeight,
and assigned equal likelihood after the conversion is complete. This compression
has an impact on the viability of an order-optimal algorithm: an order-optimal
algorithm that enumerates over weights can only be order-optimal in the weights
and not the underlying scores. Therefore, a higher compression ratio resulting
from the MapToWeight function, the further away from being ‘truly optimal’
the algorithm will be.

Search tasks are defined using a range of weights, which in turn defines the
number of keys to be enumerated. At higher levels of compression, the more keys
will be allocated the same weight, and thus it is more difficult for an adversary
to find ranges of weights for which approximately the same number of keys will
be enumerated. At the extreme end under very high levels of compression, the
number of PEUs that may be deployed will be restricted, even when each search
task enumerates keys with a single unique weight value. This will factor into the
quantity of precision required to be retained by MapToWeight.

3.2 Threshold

Our starting point is an algorithm denoted THRESHOLD. Given a weight table
W containing additive integer weights (computed using MapToWeight) and a
threshold weight Wy, THRESHOLD returns a list of all keys with a weight less
than than Wr.

Algorithm 1 shows how this is achieved. Since the weights are sorted it is
possible to work down each distinguishing vector, enumerating full keys, until

10

Algorithm THRESHOLD(Wr, W):

W' + sortAscending(W)

partial Sum + [0]™

partial Sum[m — 1] < 0

for j from m — 2 down to 0 do
partialSum|j| < partialSuml[j + 1] + wy ;

end for

L {}

L +THRESHOLDRECURSE(0, 0, “”, W, W' L)

return L

Algorithm THRESHOLDRECURSE(j, w, key, Wr, W’ L):
for i from 0 up ton — 1 do
newW « w + wj ;
if newW + partialSum[j] > W, then
break
else if j = m — 1 then
K + setKeyBytes({key}, j, 1)
L+ LU{K}
else
nK + setKeyBytes({key}, j,1)
L + THRESHOLDRECURSE(j + 1, newW, nK, Wr, W' L)
end if
end for
return L

Algorithm 1. The THRESHOLD enumeration algorithm.

the total score is too large. The next vector is then incremented and the previous
are reset. This process repeats until all keys with weight less than W; have been
enumerated. The function setKeyBytes(L,j,i) takes in a list L of (partially
constructed) keys and sets the j*® subkey (in each key) to be ®;(i) (where ®;
is the permutation corresponding to the inverse of the sorting). While in this
case setKeyBytes will only take in a single key at a time, a generalisation is
required for algorithms given in the next section. partial Sum is storing partial
sums of the most likely key for a subset of the key bytes. This is used as an
early termination condition, since if the most likely key can not meet the weight
restrictions, it is not worth recursing further as the less likely keys won’t meet
the conditions either.

A key rank algorithm can be used to select the threshold W such that only
the B most likely keys are enumerated — the weight Wy for a given key k can
be computed through summation of the individual weights associated with each
subkey value for the key. Given a key k, if the rank of k as estimated by a rank
algorithm is B, then the threshold Wy can be chosen to be the weight of the
key Wy. This achieved using a binary search and repeatedly re-ranking.

11

The time complexity of THRESHOLD is O(rank -log Wymas +m-n-logn+m-
B-logn), where O(rank) is the time complexity of the chosen key rank algorithm
and the weight table W takes O(m - n - logn) to be sorted. A technique to be
given in Sec. 5.2 can be utilised for the key rank of Martin et al. [16] to eliminate
the multiplicative log Wyqa factor. The memory complexity is that of the key
rank algorithm. In experiments that follow, we use the rank algorithm from [16]
with the improvements from [15].

The primary drawback of THRESHOLD is that it must always start enumer-
ating from the most likely key. Consequently, whilst the simplicity and relatively
strong time complexity of THRESHOLD is desirable, in a parallelised environment
it can only serve as the first enumeration algorithm (or can only be used in the
first search task).

3.3 Parallelisable enumeration

To build a viable parallelisable enumeration tool, we need a complement to
THRESHOLD that can enumerate keys that have weights in a range [Wr,, Wr,),
for Wp, < Wr,. With this in mind, we attempted to improve upon the enumer-
ation algorithm of Martin et al. (denoted as MOOS from this point forward) as
it has this capability [16]. The MOOS algorithm, including some improvements
detailed in [15] is given in Algorithm 2, and is hereafter referred to as MOOS+.

For completeness, we provide a description of the MOOS+ algorithm. A key
enumeration problem with integer weights W and weight boundaries Wy, Ws
can be expressed as a graph with Ws - m + 2 nodes (the + 2 correspond to an
accept and reject node denoted A and R respectively). A node N; ; corresponds
to subkey 7 having (partial weight) j. Each node has n outgoing edges, one for
each value the subkey can take. For value [in subkey ¢ the edge (labelled 1) goes
from Njj to Niy1 jtw,,- If the weight j +w;; is greater than W the edges goes
to R instead. For i = m—1 the edges are treated slightly differently. If j+wm—1,
is in the range [W7, Wa) the edge goes to A, else it goes to R. The algorithm RC
given in Algorithm 2 is used to calculate which node an edge goes to.

A path from Ny to A corresponds to a key with weight in the range
[W1, W3), where the key is determined by the labels on the edges taken. It is
these keys that will be enumerated. The algorithm starts with assigning values
to the last subkey and works backwards to the first subkey (over all weights and
possible value for the given subkey). Using the underlying graph structure it is
possible to efficiently calculate all the keys with a single pass over all (active)
nodes in the graph.

A node N; ; is called active if there is a path from it to Ny (which stores
the final answer). Only active nodes contribute to the final solution (identifying
active nodes is discussed in more detail towards the end of the section).

Martin et al. [16] state that the time complexity of their algorithm is O(m? -
n-W-B-logn). It is argued that this is the case because all m-n-W nodes in the
graph are visited and for each node at most B keys have a new value appended to
them, where each key has length m -log n. However as the algorithm is described
it is possible n™ ! keys are stored and then only narrowed down to the required

12

Algorithm MOOS+(m,n, Wy, Wy, W):
for j from m — 1 down to 0 do
for w from 0 up to W5 — 1 do
for i from n — 1 down to 0 do
Klw] + K[w]||setKeyBytes(Old[RC(j,w, i, W1, W, W)], 4, 1)
end for
end for
Old + Keys
end for
return K/[0]

Algorithm RC(j,w, i, Wi, Wa, W):
if w+w;; > W, then
return Reject
else if j =m — 1 then
if w4+ w5 < Wi then
return Reject
else
return Accept
end if
else
return (j+1,0,w + w; ;)
end if

Algorithm 2. The Martin et al. algorithm [16] plus improvements as detailed in [15].

B keys in the last distinguishing vector. Consider the case where all partial
keys, without a value for the first distinguishing vector, are valid and it is only
considering the last distinguishing vector that narrows the keys to the required
B keys. This gives a time complexity of O(m? - n™ - W -logn). To achieve the
time complexity expressed within the paper, only the B most likely partial keys
are stored at each stage.

Improving time and memory complexity The time and memory complexity of
the MOOS algorithm is dependent on the data structure and method used to
store the partial key candidates as they are enumerated. The naive method is to
use a list containing each (partial) candidate. Martin et al. give an adjustment
to the way keys are stored (using a tree) to reduce the memory footprint [16].
This strategy also improves the time complexity of the algorithm: the result has
time complexity O(m-n-W -logn+ B-m-logn). The first term occurs because
each node in the graph is touched once and a single value (between 0 and n — 1)
is written. The second term corresponds to taking the tree of key values and
converting them into keys to be tested. There are B keys stored within the tree
and each key contains m - logn bits, giving the desired result. Alongside the
initial Martin et al. algorithm MOOS, these optimisations allow us to define two

13

Algorithm ActiveNodeFinder(W, W):
activeNodes + [{}];’ZOI
activeNodes[0] «+ {0}
for j from 1 up tom — 1 do
for i from n — 1 down to 0 do
for w in activeNodes[j — 1] do
if w4+ wro(w,),; <W then
activeNodes[j] < activeNodes[j| U {w 4+ Wrc (jw,i),5}
end if
end for
end for
end for
return activeNodes

Algorithm 3. Algorithm to calculate the active nodes in graph.

further algorithms: LIST, using lists to store partial candidates, and FOREST,
using tree-like data structures.

Finding active nodes The MOOS paper touches on the fact that any node that
does not contribute to the final answer can be skipped. We provide an efficient
algorithm to calculate the graph nodes that must be computed on. Whilst skip-
ping of nodes does not change the asymptotic time (or memory) complexity, in
practice it may provide a performance benefit. The algorithm is given in Algo-
rithm 3. Since only nodes whose partial keys will be enumerated are visited, each
node can contain at most B keys. Consequently, this solution fixes the issue with
the initial algorithm given by Martin et al. whilst also increasing the efficiency.
Since the active nodes do not vary based on the underlying memory structure
used by the algorithm, this improvement can be incorporated irrespective of how
the partial key candidates are stored in memory, allowing for the construction
of two further algorithms: ANF/LisT and ANF /FOREST, denoting that the
list and forest data structure versions are paired with the active node finder
optimisation.

Using node parents A final observation is that instead of storing the partial keys
within the graph, the parents of each node can be stored instead. While a node
has at most two children, it can have at most n - W parents. In the algorithm,
when a node is visited, its right child is calculated and the node’s index is stored
within the right child. This has memory requirement O(n-m-W), instead of the
originals complexity of O(B-W). Depending on the number of keys enumerated
and the implementation being attacked, this algorithm may be more desirable.
Given the resulting memory structure keys can be computed by following the
parents from the accept node to the start node to construct valid keys. This
allows for one final candidate, ANF/BACKTRACKING. Due to the backtracking
technique, it is vital that only valid paths are considered and thus this algorithm
can not be constructed without ActiveNodeFinder.

14

3.4 Order-optimal enumeration

The algorithms described so-far meet the weaker definition of enumeration: the
B most likely keys are enumerated but the order in which they are produced is
arbitrary. In the following section we consider ways of producing order-optimal
variants of the algorithms discussed so far.

The THRESHOLD algorithm cannot be converted into an order-optimal form
without significant modification. However, there is potential to convert the vari-
ous modifications to the MOOS algorithm. An initial starting point is to replace
the list of partial keys, stored at each node, with a priority queue. A priority
queue is a data structure which allows the minimum value to be removed effi-
ciently, and so by repeatedly removing the key with the smallest weight we are
able to test the keys constructed by the algorithm in an optimal order. Using a
priority queue increases the time complexity by a factor of O(log B). The partial
key is added to the priority queue with weight w + w; ;, where w is the weight
of the current node. When the partial keys have their value updated the weight
does not change. This is because the weight originally selected will be the weight
of the completed key and thus does not need to be adjusted. This allows us to de-
fine an order-optimal priority-queue based algorithm ORDEREDQUEUE, and an
equivalent using the ActiveNodeFinder optimisation ANF/ORDEREDQUEUE.

The priority queue adds some algorithmic overhead. A more algorithmically
efficient solution is to observe that, after the MOOS enumeration algorithm has
finished running, K[0] contains all keys with weight less than W. However, more
generally K[i] contains all keys with weight less than W —i (the subgraph with-
out the first ¢ rows is exactly the graph when the algorithm is called with weight
W —). Hence, by testing keys from K[W — 1] to K|0] the keys will be enu-
merated in order of likelihood. The downside is that keys will be tested multiple
times. A key with weight less than W — 1 will appear in the sets K[1] and K|0]
and thus will be tested twice. To avoid testing keys multiple times the right
child function must be modified to only accept keys with weight ezactly W — 1.
This restriction means that all keys will appear in the ‘top row’ of the graph at
most once. Enumerating the keys from K[W — 1] to K[0] enumerates all keys
optimally. This variation does not change the time complexity of the original al-
gorithm (regardless if the data-structure is a list or tree). This allows us to define
four new order-optimal algorithms (using a list or tree, and with or without Ac-
tiveNodeFinder): ORDEREDLIST, ANF /ORDEREDLIST, ORDEREDFOREST and
ANF /ORDEREDFOREST.

3.5 Comparison of enumeration algorithms

We now have multiple algorithms to compare: the THRESHOLD algorithm and the
variations of the MOOS+ algorithm using different underlying memory struc-
tures, each of which can be deployed with or without the active node finder
optimisation. Table 1 summarises the time and memory complexity of the can-
didate algorithms we considered in this research. To best explore the real-world
performance of these, and since some of the improvements do not affect either

15

Time to enumerate 2'%eys (seconds) Time to enumerate 2'%eys (seconds)

A2 A3 A4 A5 A6 A2 A3 A4 A5

Time to enumerate 2%keys

1 00

500
@

1 2400
s
]
8

1 2300
£

200

100

0 Jll
A5

A5 A6 A2 A3 A6

A6
Time to enumerate 2°°keys

A4 A4
Algorithm Algorithm

Precision: [0 12 bits NI 16 bits I 20 bits

—><— Curtailed due to excessive run-time

Fig. 4. Benchmarking information for candidate enumeration algorithms using on a
single core of a Xeon E5-1650 v2 CPU. Algorithms listed in Table 1 that are not shown
were not benchmarked due to excessive run-time.

the asymptotic memory or time complexity, we will investigate the algorithms
empirically. To support the replication of our results, the full configuration used
to generate the following data is outlined in Appendix A.

Enumeration performance Figures 4 and 5 give a speed and memory com-
parison of the non-order-optimal enumeration algorithms (respectively). The
run-time was measured as the time taken to enumerate the first B keys, for
B = 210218 925 and 232, As many of the algorithms have a run-time depen-
dent on the weight parameter, we also controlled for the amount of precision
used in the MapToWeight process, re-running each algorithm using attack re-
sults converted using 12, 16 and 20 bits of precision. The run-time experiments
were performed on a single core of a Xeon E5-1650 v2 CPU, and averaged over
50 repetitions. We are not concerned with the absolute value of the observed
times as this is subject to the particular hardware and the quality of the imple-
mentation, and instead focus of the degree of relative performance between the

16

Algorithm ID Time Complexity

THRESHOLD A6 O(rank —|— m-n-logn+m- (0O + B) -logn)
MOOS [16] A0 O(m?-n™ - Wy, , - logn)

LisT Al O(m?-n-Wy,,, - B-logn)
ANF/LisT A2 O(m?-n-Wy,,, - B-logn)

FOREST A3 O(m-n-Wy,,,-logn+m-B-logn)
ANF /FOREST A4 O(m-n-Wy,,, -logn+m- B -logn)
ANF /BACKTRACKING A5 O(m-n-Wy,,,-log(m-n-Wy,,,)+m-B - logn)
ORDEREDQUEUE OAl | O(m? -n-Wx,, - B-logn-logB
ANF /ORDEREDQUEUE OA2 | O(m? n Wiy, - B-logn-log B
ORDEREDLIST OA3 | O(m? n-Wi,,, B -logn)

ANF /ORDEREDLIST OA4 | O(m?* - n-Wi,,, - B-logn)
ORDEREDFOREST OA5 | O(m-n-Wy,, , -logn+m- B -logn)
ANF /ORDEREDFOREST | OA6 | O(m-n-Wi,,, -logn+m-B-logn)
Algorithm ID Memory Complexity

THRESHOLD A6 O(rank)

MOOS [16] A0 O(m-n™ - Wy,, 5 -logn)

LisT Al O(m - Wy, - B -logn)

ANF/LisT A2 O(m - Wy, - B-logn)

FOREST A3 O(m - Wy, - B-logn)

ANF /FOREST A4 O(m - Wy, - B-logn)

ANF /BACKTRACKING A5 O(m-n-Wi,,,-log(m-n-Wi,,)
ORDEREDQUEUE OAl | O(m Wy, , - B-logn)

ANF /ORDEREDQUEUE | OA2 | O(m-Wy,,, - B -logn)
ORDEREDLIST OA3 | O(m Wiy, - B-logn)

ANF /ORDEREDLIST OA4 | O(m Wy, - B-logn)
ORDEREDFOREST OA5 | O(m - Wy, , - B-logn)

ANF /ORDEREDFOREST | OA6 | O(m-Wy,,, - B-logn)

Algorithm ID Supports enumeration with offset
THRESHOLD A6 X

MOOS [16] A0 v

List Al v
ANF/LisT A2 v

FOREST A3 v

ANF /FOREST A4 v

ANF /BACKTRACKING A5 v
ORDEREDQUEUE OA1 v
ANF/ORDEREDQUEUE 0OA2 v
ORDEREDLIST OA3 v

ANF /ORDEREDLIST OA4 v
ORDEREDFOREST OA5 v

ANF /ORDEREDFOREST | OAG6 v

Table 1. Properties of the candidate enumeration algorithms. To enumerate between
keys with rank O and O + B, the weights corresponding to these keys (Wy, and

Wio,) are input into the algorithms.

17

ing 2" Peak memory en: 2"%keys
1800 Peak memory er 2 keyo 2000 a ¥
1600 1800
1400 1600
1400
1200 _
@ @
H S 1200
=1000 =
g 21000
]]
£ 800 E
> >
§ S 800
& 600 &
600
400 400
200 200
| el |
0 P 0
A2 A3 A4 A5 A6 A2 A3 A4 A5 A6
Peak memory enumerating 2°°keys)
6000 ry g y! 2500 Peak memory enumerating 2°°keys
5000
2000
4000 —
@ @
= 21500 -
g >
23000 2
s]
£ £
< 1000
3 3
2000 <
500
1000
0 0 -
A2 A3 A4 A5 A6 A2 A3 A4 A5 A6
Algorithm Algorithm

Precision: [12 bits I 16 bits I 20 bits
—X— Curtailed due to ing 16 GiB

Fig. 5. Memory usage benchmarking information for candidate enumeration algorithms
using on a single core of a Haswell i7-4770K CPU. Algorithms listed in Table 1 not

shown were not benchmarked due to excessive run-time and/or memory usage beyond
the 16 GiB available on the host.

algorithms. The memory experiments were performed on a machine with 16 GiB
RAM, and we used the valgrind tool Massif with the pages-as-heap option set
to record the peak memory usage.

Order-optimal enumeration performance Figures 6 and 7 give a speed and mem-
ory comparison of the order-optimal enumeration algorithms (respectively). An
immediate observation is that the overhead of supporting order-optimality is
significant, with measured run-times of the algorithms far exceeding that of the
non-order-optimal equivalents. As the number of keys in a single enumeration
task decreases, the parallel system will begin to approach the weaker definition
of order-optimality. Consequently, by selecting a suitable parallelisation strategy
(with reference to Fig. 3), and adversary can achieve a more desirable trade-off in
terms of run-time. As such, for the remainder of this work, we no longer consider
order-optimal algorithms.

18

Time to optimally enumerate 2'°keys Time to optimally enumerate 2'°keys

Time (seconds)
> ®
Time (seconds)
o ® 3

IS

n

o

OA2 OA4 OA5 OA2 OA4 OA5 OA6
Time to optimally enumerate 225keys Time to optimally enumerate 232keys
1200 1600
1400
1000
1200
800
= —1000
@ @
k] °
2 2
8 8
L%, 600 z 800 -
o o
£ £
= = 600
400
400
200
200
0 — —— —— 0
OA2 OA4 OA5 OA6 OA2 OA4 OA5 OAe
Algorithm Algorithm

Precision: (I 12 bits I 16 bits I 20 bits

—>— Curtailed due to excessive run-time

Fig. 6. Benchmarking information for candidate order-optimal enumeration algorithms
using on a single core of a Xeon E5-1650 v2 CPU. Algorithms listed in Table 1 that
are not shown were not benchmarked due to excessive run-time.

Evaluation It can be seen that the two most desirable algorithms for enumeration
are THRESHOLD and ANF /FOREST. THRESHOLD is by far the most efficient of
the algorithms, both asymptotically and in practice. However, it can only be run
once and can only enumerate the first batch of most likely keys. ANF/FOREST
is the best candidate to run in tandem with THRESHOLD; it manages to both
minimise run-time and memory usage for at all levels of effort and MapToWeight
precision.

4 Accelerating verification

As described in Sec. 2, the adversary needs to be able to verify the correctness
of candidate keys as quickly as they are enumerated. In most cases, to verify a
candidate requires a check to see if the encryption of a known plaintext under the
candidate key matches a known ciphertext. In some SCA attacks, the attacker
may for instance recover the final round key of AES. To verify keys in this

19

Peak memory optimally enumerating 2'%eys Peak memory optimally enumerating 2'*keys

1000

1200

©
=3
3

1000

Peak memory (MiB)
N @ A 9 o N ®
8 8 8 & 8 3 8
s 8 8 8 8 & 8

Peak memory (MiB)

IS @ @

) 3 3

3 3 3

=)
3

OA2 OA4 OA5 OA6 OA2 OA4 OA5 OA6

Peak memory optimally enumerating 2*°keys Peak memory optimally enumerating 2*%keys
4500 1500

4000

3500

3000 _.1000

2500

2000

Peak memory (MiB)
Peak memory (MiB]

a
3
3
a
=}
S

1000

500

: -,

OA2 OA4 OAS OA6 oA2 OA4 0A5 0A6
Algorithm Algorithm
Precision: [12 bits [16 bits I 20 bits
—>— Curtailed due to ing 16 GiB.

Fig. 7. Memory usage benchmarking information for candidate order-optimal enumer-
ation algorithms using on a single core of a Haswell i7-4770K CPU. Algorithms listed
in Table 1 not shown were not benchmarked due to excessive run-time and/or memory
usage beyond the 16 GiB available on the host.

scenario, the adversary must do additional work by first reversing the AES key
expansion before performing the actual encryption check.

The process of key verification can be considered utilitarian to the problem
of enumeration, however, the result of accelerating verification is very much con-
gruent to the overall attack goal (i.e., minimising time required to achieve key
recovery). Whilst enumeration is largely independent of the underlying ‘target
algorithm’ (requiring only independence of subkeys), the verification stage is in-
trinsically dependent on it. In this section we discuss how best to leverage the
hardware available for maximising key verification throughput by making exten-
sive use of the micro-architectural features at our disposal. A typical workstation
will feature specialised instructions with the explicit purpose of acceleration com-
mon cryptographic operations. If we consider the specific case of AES-128, this is
true for any workstation featuring an Intel (> Westmere) or AMD (> Bulldozer)
processor. We focus on the former platform in attempting to accelerate verifi-
cation using the Intel AES-NT instructions [9]. Our strategy is two-fold: we first

20

Instruction Latency | Reciprocal Throughput
aesimc 12 2
aesenc 7 1
aesdec 7 1
aesenclast 7 1
aesdeclast 7 1
aeskeygenassist 10 2

Table 2. AES-NI instructions and corresponding performance on the Sandy Bridge
microarchitecture.

attempt to minimise the number of instructions required to perform verification
of a single key candidate. We then attempt to maximise pipeline occupancy via
time-sliced parallelism over multiple candidates.

4.1 Minimising work

Intel benchmarks a vanilla AES-NI accelerated AES-128-ECB encryption appli-
cation parallelising over 4 data blocks (64 bytes) with an average throughput
of 1.28 cycles/byte. This figure relies on pre-computation of the key expansion
and the round keys residing in the register space, we hence assume this figure
approximates the best throughput achievable for key verification. The AES-NI
instruction performance metrics (see Table 2) suggest they were designed to
reflect a typical use-case (i.e., encryption/decryption under a single key) and
not inherently optimised for key verification. This is primarily attributed to the
aeskeygenassist instruction that facilitates key expansion operations, specif-
ically, it performs the required SubBytes, RCON and rotation functions to the
first 32-bits of the key as part of the AES ScheduleCore. Albeit convenient,
the instruction has a high latency (relative to other associated AES-NI instruc-
tions). We opt instead to leverage the aesenclast instruction in combination
with computing multiple key expansions as proposed by Gstir and Schléffer [8]
and improved by Bogdanov et al. [3]. We develop on their approach to further
minimise the number of associated instructions per AES round as shown in Pseu-
docode 12. We note that in a pure brute-force setting it is possible to optimise
the key verification algorithmically by computing on partial differential trails as
described by Bogdanov et al. [2]. However, this is largely not applicable in our
setting as the enumeration process has an implicit ordering that is independent
of the key structure.

4.2 Filling the pipeline

Taking into account the instruction latency and associated reciprocal throughput
for the AES-NT extensions, the proposed pseudocode does not make efficient use

2 The pseudocode is intended to illustrate structure only: a working implementation
will need to consider the RCON overflow in round 8 and special structure of the final
round.

21

Pseudocode: Key verification of 4 keys.
Input: keys[4], data[l]
RC «+ {0x00010000,0x00010000,0x00010000,0x00010000}
MS « {0x0906030C,0x05020£08,0x010E0B04,0x0D0OA0700}
rkeys[0-3] < transpose(keys)
state[0-3] « keys[0-3] & data
for 7 from 1 up to 10 do
tmp < aesenclast(rkeys[3], RC)
tmp < shufflebytes(rkeys[3], MS)
RC <« shiftleft(RC, 1)
rkeys[0] + rkeys[0] & tmp
rkeys[1] + rkeys[1] @ rkeys|0]
rkeys[2] < rkeys[2] @ rkeys[1]
rkeys[3] < rkeys[3] @ rkeys[2]
keys < transpose(rkeys)
state < aesenc(rkeys)

end for
Pseudocode 1. Verification using AES-NI.

Implementation Processor

E5-1650 | E5-2670 | i7-4790
Intel ref [9] 34.32 28.57 28.85
Intel on-the-fly 4x [9] 5.04 4.65 4.45
Bogdanov et al. [3] 4x 2.72 2.59 2.97
Pseudocode 1 4x 2.52 2.42 2.65
Pseudocode 1 8x 2.01 2.11 2.32
Pseudocode 1 8x (interleave + prefetch) 1.76 1.89 2.26

Table 3. Key verification single-core throughput in cycles/byte (as per [9]) averaged
over 10,000 trials.

of the processor pipeline. A bottleneck originates in the dependency chain gen-
erated during the key expansion operations and propagates into the encryption
operations resulting in lost cycles whilst the processor waits for the round keys
to become available. To mitigate these dependencies, we follow the Intel per-
formance guidelines to effectively compute on 8 key candidates in parallel. The
parallelism is achieved by carefully interleaving the key expansion operations
with round operations.

4.3 Memory caching

A keen reader will notice that parallelising over 8 key candidates has effectively
exhausted the register space for holding the set of cipher states and keys. In
fact, we do indeed spill into memory and store portions of the state informa-
tion temporarily out of register space. To utilise memory without a significant

22

performance penalty we rely on the L1 data cache (~ 5 cycle delay) and, once
again, interleave the AES-NI operations with the memory operations to ensure
the pipeline does not stall. This is of course not without risk; data in the cache
may be evicted at any point. We attempt to manage the risk by way of memory
management hint instructions (i.e., prefetcht0) to minimise the chance of a
cache miss.

Table 3 compares the performance throughput of our proposed implementa-
tion with previous literature. Whilst the degree is somewhat platform dependent,
we do observe a consistent improvement over previously proposed optimisations.

5 Parallelism

There is sufficient data in Sec. 3 to conclude that the optimal arrangement for our
parallel enumeration tool is to combine the THRESHOLD and ANF /FOREST algo-
rithms; the first search task uses THRESHOLD, and the remainder use ANF /FOREST.
If the global minimum and maximum weights assigned to key candidates after
the weight conversion process are Wymin and Wypee, then THRESHOLD must
enumerate keys with weight from W, up to Wp, where Wy is chosen such
that the number of candidate keys with weights in this range is not too large. In
parallel, ANF /FOREST can enumerate candidate keys with weight greater than
Wr. Pertinent questions are now to understand how best to choose the threshold
Wr given to the THRESHOLD, how much precision to retain in the MapToWeight
process, and how best to allocate ranges of weights to ANF/FOREST to be run
in parallel.

5.1 The role of weight

The level of precision retained in the weight conversion function MapToWeight
is the key to leveraging the amount of parallelism available to an adversary — it
determines the maximum number of PEUs the adversary can deploy.

Recall the MapToWeight process for converting floating-point distinguishing
scores to integer weights is compressive as described in Sec. 3.1. The level of this
compression controls the degree of parallelism available. If the global minimum
and maximum weights assigned to keys after the conversion process are Wypin
and Wymaz, then the maximum number of PEUs that can be used is Wymar —
Wymin + 1, as each search task must be assigned at least one unique weight
value w, for Wymin < w < Wemae- If the level of compression is too large
(the bits of precision retained is low), then the adversary will not be able to
put sufficient search tasks in flight to use all the available PEUs. There is a
secondary disadvantage resulting from a high level of compression — the number
of keys with the same weight may potentially become extremely large. Taking for
instance AES-128, and a precision of 6 bits, there are 2128 possible keys and only
16 - 26 possible weight values a key can be assigned to. Therefore even if the first
PEU only enumerates keys with weight W, in the worst case scenario the

23

Maximum number of PEUs possible when enumerating 2*total keys in batches of size at least 2,
x 10 for a variety of score to integer weight conversion methods Ci ive number of keys at 15 bits of precision
18 7 50 . - ; X : :

=)

Number of PEUs
®

2 14063
7414
7 11 21 1065
BKMTW 5bits 6bits 12bits 15bits 16 bits 20 bits 20

0 1000 2000 3000 4000 5000 6000 7000
Enumeration tasks completed

Precision in MapToWeight

Fig. 8. (Left) The maximum number of PEUs available when MapToWeight function
is run at varying degrees of precision and when the adversary wishes to enumerate the
first 2°° most likely keys. (Right) The cumulative number of keys enumerated as single
enumeration algorithm invocations complete, when MapToWeight is supplied with 15
bits of precision.

second core may have to begin enumerating keys with a very low rank, reducing
the effectiveness of the parallelism.

There is a secondary implication: once the conversion of scores to weights
is applied, it may not be possible to select a range of weights such that ap-
proximately the same number of keys will be enumerated by multiple PEUs (in
essence, making it difficult to evenly distribute work). This is further evidence
for the dangers of running a high level of compression.

However, running too low a level of compression can be harmful—the run-
time of ANF /FOREST is linear in W, and thus the time for any single invocation
of the enumeration algorithm to complete will increase. Reconciling the goals of
minimising the run-time of an enumeration algorithm and increasing parallelism
is now difficult: the more precision we retain in MapToWeight, the more PEUs
can be used, but at the cost of increasing the sequential run-time of each search
task.

To illustrate this relationship between precision and the degree of parallelism,
we used a sample SCA attack and calculated the maximum number of PEUs
that could be run in parallel when the MapToWeight function is run at varying
degrees of precision, and when the adversary wishes to enumerate the 2°0 most
likely keys. We also compare an alternative conversion process to MapToWeight
termed BKMTW, which is fully described in Bogdanov et al. [3].

The left-hand side of Fig. 8 shows how the level of precision affects the degree
of deployable parallelism. We can observe that when MapToWeight uses fewer
than 12 bits of precision that the number of available PEUs is heavily restricted.
The process detailed by Bogdanov et al. does poor job at facilitate parallelism,

24

proving to be more compressive than MapToWeight at 5 bits of precision®. The
right-hand side of the figure illustrates how the workload is distributed at 15 bits
of precision, showing how the number of keys assigned the same weight increases
as the depth of the keys increases.

Balancing these concerns is non-trivial. Figure 8 gives important evidence,
suggesting that the level of precision should be at least 12 bits (and that the
technique of [3] is flawed). The prior thought experiment of Fig. 3 suggests
that going higher than 12 bits is beneficial. Using the benchmarks calculated in
Sec. 3 it can be seen that 20 bits of precision results in a significant overhead,
and thus we propose compromise to use around 15-18 bits of precision. It may be
possible to adjust the weight for different search tasks: having higher precision
for tasks that enumerate deeper keys to increase the available parallelism, and
lower weights for earlier tasks to improve the runtime. However, care must be
taken to perform this in a manner that does not skip over keys or result in keys
being tested multiple times. Therefore, for the remainder of this work we will
consider the same precision for all tasks.

A final concern is how best to choose how many key candidates to allocate
to the initial search task that uses the THRESHOLD algorithm. The algorithm is
significantly faster than the alternatives, and thus it seems logical to assign as
many keys as possible. However, eventually one would arrive at a similar problem
as with strategy B in Fig. 3 — if the THRESHOLD algorithm will enumerate an
extremely large portion of the key space, and the correct key is at the end of that
portion, then the adversary will have to wait longer than if a smaller portion
was allocated and more parallel instances of ANF/FOREST were used instead.
The suggested strategy for an adversary would be to assign only as many keys to
the initial task as a function of the maximum length of time they are prepared
to wait for a result. Fortunately, the run-time of the algorithm is approximately
linear in the number of keys it is expected to enumerate, and thus it is possible
for an adversary to extrapolate the expected run-time from small trial runs.

5.2 How to allocate weights

We have proposed parallelising by dividing up the total key space into smaller
portions each defined by a range of weights, but so far have not explained how an
adversary can determine the appropriate weight values. Martin et al. [16] recom-
mend choosing a weight, ranking using the weight* and then binary searching in
this manner to find a suitable weight for a desired enumeration effort. This will
use O(log Wypmaz) calls to the rank function. We are able to reduce the number

3 The suggested process is to take |50 - |d| + 0.5] for a floating-point score d. This has
several issues; the scores are not distributed evenly, and perhaps more importantly
the process does not convert multiplicative scores to additive weights — the enu-
meration algorithm of [3] assumes multiplicative distinguishing tables but requires
additive scores.

4 In the rank algorithm of Martin et al. [16], finding the rank of a weight is equivalent
to finding the rank of a key with that weight.

25

of calls to the rank algorithm by using the algorithm only once on the maximum
global weight Wyy,4e, and by returning the top row of the resulting graph. Po-
sition 7 in the resulting array contains the number of keys with weight less than
Wymaa — 1. This is due to the fact that the sub-graph without the first ¢ rows,
is exactly the graph generated by the algorithm when the weight W40 — 4 is
used. This array can the be binary searched over to choose the correct weight
for the enumeration effort, using only a single call to the key rank algorithm.

The same observation can be used to reduce the number of calls to the
ActiveNodeFinder algorithm. Due to the structure of the algorithm, the “active
columns” (within the weight limit) are almost identical. By computing the active
columns for weight Wy.,q, all other weights will have a set of active columns
which is a subset of this active set. However, it is more efficient to test a few extra
columns per weight than it is to recalculate the ActiveNodeFinder algorithm for
every weight. Thus we use a single call to the ActiveNodeFinder algorithm for
all calls to the enumeration algorithm.

5.3 Related work

The work most closely aligned with the goals of our own tool is that of Bog-
danov et al. from SAC 2015 [3]. In addition to exploring how best to verify
AES-128 keys, they describe an enumeration algorithm called SKEA that re-
quires the conversion of distinguisher scores to integer weights. Similarly to the
algorithms we explored, SKEA is parallelisable along the weight dimension. As
already discussed in Sec. 5.1, their algorithm requires an extremely high level of
compression in the conversion process, resulting in a very low level of parallelism
comparable to running MapToWeight at less than 5 bits of precision.

It would be possible to replace their conversion process with MapToWeight,
but it is unclear as to how this would affect the run-time complexity. The asymp-
totic complexity of SKEA is dependent on the maximum weight Wy,,4., but
there is no further asymptotic or empirical information available as to how the
run-time of SKEA scales with increasing W other than the recommendation to
run at very low precision. The only real point of comparison that can be made is
to compare the run-time of our ANF /FOREST at 5 bits of precision. Bogdanov
et al. report a enumeration throughput of 22°:58 keys per second on a single core
of an i5 2400 CPU. Averaged over 200 experiments, the enumeration through-
put of ANF/FOREST on an i7 4770K CPU when enumerating the first 228 most
likely keys at 5 bits of precision was 22°92 keys per second and 22°8% keys per
second at 6 bits of precision.

Approximately at the time of the submission of this work, Poussier et al. [17]
published a key enumeration algorithm based on the key rank algorithm of
Glowacz et al. [7]. The algorithm uses histogram convolution techniques to enu-
merate keys with a certain weight. Figure 7 in the referenced paper suggests
that their approach can enumerate 232 keys in approximately 100 to 1000 sec-
onds (exclusive of the cost of verification) at an equivalent of MapToWeight
using 11 bits of precision, using an i7-3770 CPU. Our best comparison is in the
bottom-right hand quadrant of Fig. 5, which shows that ANF/FOREST (A4)

26

and THRESHOLD (A6) can enumerate 232 keys in under 100 seconds at 12 bits of
precision, suggesting that ANF/FOREST (A4) and THRESHOLD (AG6) are more
efficient.

6 A tool for key enumeration

Using the performance improvements and experimental results from the previous
sections, we have developed a tool named LABYNKYR capable of performing
highly-parallelised searching of the key space, using any number of CPU cores
and any number of compute nodes as PEUs. We will make this code publicly
available to allow side-channel evaluators to better assess the strength of their
adversaries.

6.1 Implementation

LABYNKYR is written in C++11 and uses threading to schedule search tasks
defining small numbers of keys to search between CPU cores within a single
compute node. The allocation of search tasks over multiple nodes can be pre-
computed (running a rank algorithm as per Sec. 5.2 and binary searching) if
the total number of nodes and their associated CPU core counts is known, and
so no real inter-node communication is necessary. This allows us to build a
scalable tool that is optimal to run in both single-machine workstation and
supercomputing cluster environments without any additional effort, as well as
across highly distributed systems such as compute clouds.

In high-level abstract terms, LABYNKYR consists of two main modules: an
“allocation” component to be run once, that finds the best allocation of portions
of the candidate key space (search tasks) across the available parallelism, and a
“search” component, run once per compute node, that enumerates and verifies
keys given the list of search tasks assigned to that node.

Allocation A function allocate(node_count, cores_per node, budget_ offset,
max_budget) which takes in a number of compute nodes, the number of CPU
cores each node has, the total desired enumeration budget B (e.g to enumerate
250 candidates), and a starting budget offset O (e.g skip enumerating the first
230 keys) to allow for a resumption capability. The enumeration budget can be
set to the entire key space if the adversary wishes to run indefinitely. The al-
location component calculates the minimum and maximum weights associated
with each incremental batch of keys to search, and distributes these tasks evenly
across the requisite number of nodes and cores.

Search A function search(search_tasks, maximum_time) which is run in a
new process once per unique compute node. This call instantiates a queuing sys-
tem and one worker thread per core. Each worker thread listens for new search
tasks of keys to enumerate and verify. When a search task is queued, a worker
thread enumerates and verifies all the key candidates. The search process can

27

run indefinitely and attempt to execute all tasks necessary to search all keys be-
low a specified budget, or can be given a time threshold in seconds after which
all worker threads will cease computing tasks. Giving, as input, a maximum_time
of zero seconds allows the node to run until all allocated search tasks are com-
pleted. If the allocation function is called with an excessively large budget, then
LABYNKYR will effectively run indefinitely until the time exceeds the maximum.
LABYNKYR outputs the number of keys searched over time and their associated
weight ranges, and so a resumption capability is easily achieved by re-running
the allocation component with the budget_offset set to the total number of
keys searched in the first run.

6.2 Benchmarking

We tested the performance of our tool in two scenarios. In the first, we attempted
to see how many keys we could search in a single day using a standard work-
station, and in the second we attempted to see how fast we could search a large
number of keys in a highly-parallelised environment using a supercomputing
cluster.

We utilise a interesting real-world data attack described by the authors of
Longo et al. at CHES 2015 [11] to illustrate how to integrate enumeration using
a Differential Power Analysis (DPA) attack on a complex device. We selected
the most challenging scenario listed in the CHES 2015 paper: an attack on a
hardware AES implementation utilising EM measurements. We associated each
enumeration algorithm instance with the AES-128 verification technique outlined
in Sec. 4.

Single workstation benchmark. In the first benchmark we aimed to explore
how many keys an adversary could reasonably expect to search on a single work-
station in a 24 hour period. The workstation in question consisted of a hexa-core
Ivy Bridge-EP Intel Xeon E5-1650v2 CPU and 32 GiB of 1600 MHz DDR3 RAM.

The DPA attack in question used 41,300 EM traces and we converted the
distinguishing vectors into integer weights using MapToWeight at 15 bits of
precision. The rank of the correct key was approximately 24°?, and we allocated
search tasks using a budget B = 259, an amount we would not expect to be able
to cover in a single day. The effort was distributed evenly by LABYNKYR across
six cores, with the initial search task (to be executed using the THRESHOLD
algorithm) set to cover the first 236 key candidates, and the remaining tasks
consisting of at least 23° candidates to be executed using the ANF/FOREST
algorithm.

In the 24 hour period the workstation searched a total 241825 keys. Figure 9
illustrates how the keys were searched over time. The large peak in the middle
and bottom graphs is associated with the instance at which the keys enumerated
by the THRESHOLD algorithm were verified. Of most interest is how the time
spent in each task increases as the rank of the keys tested increases, in tandem
with the number of keys that must be enumerated in a given task increasing.

28

Cumulative keys enumerated

41.8631 . . .
S
» 40.8631
>
Q
x 0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
Keys enumerated per task
36541 2 T T T T T T T T
3
» 35.5412 i
>
Q
x O L 1 | | | i 1 I
0 200 400 600 800 1000 1200 1400 1600
— Time spent enumerating each task
% 4000 T T T T T T T T
c
Q
[$]
\Omi 2000 .
()
g O 1 1 1 1 I 1 1 1
= 0 200 400 600 800 1000 1200 1400 1600

Enumeration tasks completed

Fig.9. (Top) The cumulative number of key candidates searched as tasks complete.
(Middle) The number of key candidates searched per task. (Bottom) The time spent
in each search task.

The gentle slope of the curve suggests that the distribution of work across the
cores is very even—evidence that LABYNKYR is able to distribute work evenly
at 15 bits of precision.

Compute cluster benchmark. In the following benchmark we attempted to
confirm whether we could very quickly recover a low-ranked key by leveraging
a large quantity of PEUs. Here we used the same data set as in the previous
example, but used a slightly worse attack for which fewer traces were available.

We used the Martin et al. rank algorithm at 20 bits of precision to determine
that the rank of the key was 2479979 and consequently would expect to have to
search approximately that many keys before finding the correct one. We allowed
each core to run indefinitely until the correct key was found (by setting the total
budget to be 248).

In total we used 400 Sandy Bridge Intel Xeon E5-2670 CPUs, clocked at 2.6
GHz and with 4 GiB RAM available per core. The effort was distributed evenly
by LABYNKYR across these cores, creating 4284 distinct search tasks, with the
initial task (to be executed using the THRESHOLD algorithm) containing the first
236 key candidates, and the remaining tasks consisting of between 230 — 238.6
candidates to be enumerated using the ANF /FOREST algorithm. We converted
the distinguishing vectors produced by a DPA attack using 40,324 traces into
integer weights using MapToWeight at 15 bits of precision.

29

LABYNKYR found the correct key after 32.42 hours of wall-clock time. In total
247-992 o1 approximately 280 trillion keys were enumerated and verified. Amazon
EC2 compute-optimised “c3.4xlarge” instances provide 16 Intel Xeon E5-2680
v2 cores at a cost of 0.84 USD per hour as of the writing®. These CPU cores
are superior to the ones used in this benchmark, but are likely close enough to
serve as a useful guide. If our experiment was performed on Amazon’s cloud, we
would have required 25 of these instances for (at most) 32.42 hours, equating to
a predicted cost of approximately 680.82 USD.

Veyrat-Charvillon et al. project that their enumeration algorithm of SAC
2012 may be able to enumerate 24° keys using a single core and 70 GiB RAM
in nine days [18]. Bogdanov et al. report searching up to 2% keys using 8 CPU
cores. Details on the exact running time are unclear, but interpreting the results
of Figures 8, 9 and 10 in the referenced work suggests the task took less than
approximately four days [3]. We have no direct comparison for a parallel imple-
mentation of the Poussier et al. algorithm that includes the cost of verification
and that benchmarks run-time over multiple cores [17]. We believe LABYNKYR
fares favourably to these efforts: we are able to support a much larger degree
of parallelism, and as reported in Sec. 5.3, are likely to be at least as efficient
in straight-line code. We hope that our benchmarks serve as a useful point of
reference for future efforts.

7 Conclusion

In this work we have explored the capabilities of brute-force adversaries armed
with side-channel information and an auxiliary key enumeration and verifica-
tion capability. We have identified how best to allocate the brute-force workload
across massively parallel systems and have explored how best to optimise the
necessary algorithms for speed and memory complexity. With this knowledge we
have developed a powerful tool “LABYNKYR” for running the enumeration phase
that can be run on a small handful of workstations, across a large supercomput-
ing cluster or in the cloud.

Our real-world benchmarks demonstrate that it is perfectly possible for an
adversary equipped with relatively modest levels of computing resources (rela-
tive to say a government agency or an owner of a botnet), or with a small amount
of cash and access to a computing cloud, to enumerate and verify the 248 — 250
most-likely keys in the order of hours using the results of a side-channel attack
on AES-128. This demonstrates that these ‘enhanced’ side-channel adversaries
are realistic threat and must be incorporated into the evaluation and certifica-
tion procedures such as Common Criteria [5]. Our benchmarks are a useful aid
that allows an evaluator to more accurately assess the strength of a particular
adversary.

Future research directions are twofold. Firstly, it is important to focus on
exploring how best to distribute computing resources between key enumeration

® https://aws.amazon.com/ec2/pricing/

30

and verification. Various factors, including the depth of the keys being enumer-
ated and hardware support for verification control the optimal ratio. Gains from
optimising this ratio may be significant, and it is highly likely that a tool will
have to adapt this changing ratio during the computation itself.

Secondly, the level of precision retained when converting floating-point distin-
guishing vectors into integer weights is crucial. Increasing the amount of precision
retained allows for more parallelism, but at a cost of increasing the run-time of
key enumeration algorithms. It will be important for future efforts to further
explore the nature of this relationship.

Acknowledgements This work was carried out using the computational facilities
of the Advanced Computing Research Centre, University of Bristol —
http://www.bris.ac.uk/acrc/.

This work has been supported in part by EPSRC via grant EP/N011635/1.

Data access Information necessary to repeat the benchmarking is supplied in
Appendix A. The parallel attacks described in Sec. 6 use the attack as described
by Longo et al. [11].

References

1. D. J. Bernstein, T. Lange, and C. van Vredendaal. Tighter, faster, simpler side-
channel security evaluations beyond computing power. IACR Cryptology ePrint
Archive, 2015:221, 2015.

2. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the
full aes. In ASTACRYPT 2011, pages 344-371. Springer, 2011.

3. A. Bogdanov, I. Kizhvatov, K. Manzoor, E. Tischhauser, and M. Witteman. Fast
and memory-efficient key recovery in side-channel attacks. TACR Cryptology ePrint
Archive, 2015:795, 2015.

4. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, CHES 200/, volume 3156 of
LNCS, pages 135-152. Springer Berlin / Heidelberg, 2004.

5. BSI. Common Criteria, Techical editor. Application of Attack Potential to
Smart Cards. http://www.commoncriteriaportal.org/files/supdocs/CCDB-2009-
03-001.pdf, 2009.

6. EFF. Frequently Asked Questions (FAQ) About the Electronic Frontier Foun-
dation’s DES Cracker Machine https://w2.eff.org/Privacy/Crypto/Crypto_
misc/DESCracker/HTML/19980716_eff_des_faq.html (accessed 21st may 2016).

7. C. Glowacz, V. Grosso, R. Poussier, J. Schiith, and F. Standaert. Simpler and more
efficient rank estimation for side-channel security assessment. In Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March
8-11, 2015, Revised Selected Papers, pages 117-129, 2015.

8. D. Gstir and M. Schliffer. Fast software encryption attacks on aes. In
AFRICACRYPT 2013, pages 359-374. Springer, 2013.

9. S. Gueron. White Paper: Intel Advanced Encryption Standard (AES) New In-
structions Set. Technical report, Intel, 2012.

10. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Proceedings of
CRYPTO 1999, pages 388-397, London, UK, 1999. Springer-Verlag.

31

11. J. Longo, E. D. Mulder, D. Page, and M. Tunstall. Soc it to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In Cryptographic Hardware
and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 620—640, 2015.

12. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

13. S. Mangard, E. Oswald, and F.-X. Standaert. One for All — All for One: Unifying
Standard DPA Attacks. IET Information Security, 5(2):100-110, 2011.

14. M. Marlinspike, D. Hulton, and M. Ray. Defeating pptp vpns and wpa2 enterprise
with ms-chapv2. Defcon, July, 2012.

15. D. P. Martin, L. Mather, E. Oswald, and M. Stam. Characterisation and Estima-
tion of the Key Rank Distribution in the Context of Side Channel Evaluations.
TACR Cryptology ePrint Archive, 2016:491, 2016.

16. D. P. Martin, J. F. O’Connell, E. Oswald, and M. Stam. Counting keys in parallel
after a side channel attack. In Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part 1I, pages 313-337, 2015.

17. R. Poussier, F.-X. Standaert, and V. Grosso. Simple key enumeration (and rank
estimation) using histograms: an integrated approach. TACR Cryptology ePrint
Archive, 2016:573, 2016.

18. N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert. An Optimal
Key Enumeration Algorithm and Its Application to Side-Channel Attacks. In
L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography, volume 7707
of LNCS, pages 390—406. Springer, 2012.

19. N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Security Evaluations be-
yond Computing Power. In T. Johansson and P. Q. Nguyen, editors, FURO-
CRYPT, volume 7881 of LNCS, pages 126-141. Springer, 2013.

20. X. Ye, T. Eisenbarth, and W. Martin. Bounded, yet Sufficient? How to Determine
Whether Limited Side Channel Information Enables Key Recovery. In CARDIS
2014, volume 7707 of LNCS. Springer, 2014.

A Replication of benchmarking

In the following section we outline the necessary information to replicate the
enumeration algorithm benchmarking in Sec. 3.

Side-channel data was simulated according to the ‘standard’ DPA scenario
as in Mangard et al. [13]. An attacker has N power measurements or traces T;
corresponding to encryptions of N known plaintexts x; € X, i = 1,..., N and
wishes to recover the secret key sk. For each subkey (so j = 0,...,m — 1) we
assume that each trace T; is condensed to a single point of interest P; ; and that
this value P; ; decomposes additively as P; = Pexp + Proise- Here Peyp, called
the signal, is a deterministic function of the value of the subkey sk’ and the
relevant input xz;, whereas Pjise, called the noise, is drawn at random according
to some distribution that does not depend on any of the input values (including
the secret key sk). The signal-to-noise ratio (SNR) is then defined as the ratio of
the variance in the signal (when ranging over secret keys and plaintexts) divided

32

by the variance in the noise:%
Var(Pexp)

NR = — o exp)
SNR Var(Phoise)-

The SNR is used to quantify the amount of leakage within a given measurement:
the higher the SNR, the more information within the trace that can be exploited.

A single point of interest P;; can be simulated using a randomly chosen
plaintext x;, a target function fg; defined over the j-th subkey, a leakage function
L, and a noise value € sampled from a distribution, where:

P;j = Lo fgi(z;) +e.

In our experiments we set the target functions to be the output of the j-th
SubBytes operation in the first round of the AES. The leakage function L was
taken to be the Hamming weight of the output of these target functions, and the
noise was sampled from a Gaussian distribution N'(0,02) with zero mean and a
variance o2 chosen such that the SNR was a low value of 0.03125 (or 275)7. We
used 100 randomly generated plaintexts for each repeat experiment, and then
launched a correlation DPA attack using the Hamming-weight power model (as
per [4]) to create 16 distinguishing vectors, one for each byte of an AES-128 key.
The distinguishing table was then passed into the MapToWeight function with
a precision of 12, 16 or 20 bits.

Speed measurements were taken using the difference of two C++11 <chrono>
library std: :chrono: :high resolution_clock: :now() function calls. Peak mem-
ory recorded was taken to be the peak memory usage identified by the valgrind
tool Massif, with the pages-as-heap option set. Each sample point on the graphs
in Figures 6 and 4 is of the average of 50 repeated experiments using data simu-
lated as above and supplied with freshly chosen random plaintexts and sampled
noise. Figures 5 and 7 use 10 repeated experiments in which the maximum ob-
servation over the 10 is recorded, as the time needed for Massif to evaluate the
memory usage is expensive and we were primarily concerned with memory usage
in terms orders of magnitude, as implementation quality and optimisation can
always be tweaked.

5 Strictly speaking the SNR is defined relative to a subkey and should be indexed by
j; however when we refer to the SNR it will be the same for all subkeys.

7 In this context of targeting the AES SubBytes operation and using Hamming weight
leakage, the signal Pexp has variance 2.0, and thus for a specified SNR the requisite
variance of the Gaussian distribution used to sample Pioise is 2.0 divided by this
SNR.

33

