
Better Two-Round Adaptive Multi-Party Computation∗†

Ran Canetti‡ Oxana Poburinnaya§ Muthuramakrishnan Venkitasubramaniam¶

Abstract

The only known two-round multi-party computation protocol that withstands adaptive corruption of
all parties is the ingenious protocol of Garg and Polychroniadou [TCC 15]. We present protocols that
improve on the GP protocol in a number of ways. First, concentrating on the semi-honest case and taking
a different approach than GP, we show a two-round, adaptively secure protocol where:
• Only a global (i.e., non-programmable) reference string is needed. In contrast, in GP the reference

string is programmable, even in the semi-honest case.
• Only polynomially-secure indistinguishability obfuscation for circuits and injective one way func-

tions are assumed. In GP, sub-exponentially secure IO is assumed.
Second, we show how to make the GP protocol have only RAM complexity, even for Byzantine cor-
ruptions. For this we construct the first statistically-sound non-interactive Zero-Knowledge scheme with
RAM complexity.

∗ c© IACR 2017. This article is the final version submitted by the authors to the IACR and to Springer-Verlag on Jan 10, 2017.
The version published by Springer-Verlag is available at <DOI>."
†Research done by the first two authors was supported by the NSF MACS Frontier project. Research done by the the third

author was supported by a Google Faculty Research Grant and NSF Awards CNS-1526377 and CNS-1618884.
‡Boston University, Tel Aviv University, and the CPIIS. canetti@bu.edu. Supported in addition by ISF grant 1523/14.
§Boston University. oxanapob@bu.edu
¶University of Rochester. muthuv@cs.rochester.edu

1

Contents

1 Introduction 1
1.1 Our results: semi-honest setting . 4
1.2 Our results: malicious setting . 4
1.3 Related work . 5
1.4 Our techniques: semi-honest case . 7
1.5 Our techniques: malicious case . 11

2 Building blocks 12
2.1 Puncturable randomized encryption . 13
2.2 Honest-but-curious Equivocal Commitments . 16

3 Our MPC protocol against semi-honest adversaries 17

4 The Proof of the Main Theorem 20
4.1 An Overview of the Hybrids . 21
4.2 The Full Descrition of Hybrids. 24

5 RAM-efficient MPC Protocol Against Malicious Adversaries 33
5.1 RAM-efficient Statistically-Sound Non-interactive Zero Knowledge 34

A An Overview of The Garbling Scheme by Canetti and Holmgren 38

B Explainability Compiler 39

C Three Round MPC against Malicious Adversaries 40

2

1 Introduction

Adaptive security of protocols, namely security against an adversary that decides whom to corrupt adaptively
during the execution of the protocol, has been an ongoing focus in cryptography. Indeed, adaptive security
better captures real life adversaries, which can often make adaptive corruption choices.

Two cases which are of particular importance in this setting are (a) the case where no data erasures are possi-
ble, hence the adversary gets to see all the past internal states of a corrupted party, and (b) the case where all
parties are eventually corrupted. Indeed, while for static corruptions the case of all parties being corrupted is
uninteresting, for adaptive corruptions the case of all parties being eventually corrupted is of central interest.
For one, in the case of protocols for computing randomized functions, it allows requiring that the internal
randomness of the function remains hidden even when the entire state of the system is exposed. It also
allows arguing about the security of other, uncorrupted parties in a larger system which uses our protocol.
Furthermore, the combination of these properties allows demonstrating leakage tolerance properties even
when all parties may leak some side-channel information on their local computations [BCH12]. We call
protocols that are secure in this setting fully adaptive.

Constructing fully adaptive protocols is a significant challenge. The difficulty here is that the adversary
eventually sees all the inputs and random choices of the parties, and yet security of the output and the com-
putational process should be maintained. Indeed, such protocols with constant number of rounds appeared
only recently [CGP15, DKR14, GP14]; among these protocols, only [GP14] is a multiparty protocol with
two rounds (which is the minimum possible).

We construct better two-round, fully adaptive protocols for general multi-party computation. Our improve-
ments span a number of security, functionality, and efficiency aspects. We start by presenting and discussing
some of these aspects.

Randomness-hiding functionalities. Consider a set S of parties that want to run a secure function
evaluation protocol in order to jointly generate an obfuscated program, where the program is to be used in
some other protocol that involves additional parties. Security of the obfuscated program should be preserved
even when everybody in the set S is corrupted (which could be important for the remaining honest parties
in the other protocol). Note that this program-obfuscating functionality is randomized, and security of the
overall system requires that the randomness of thsi function remains secret even when all parties in S are
corrupted. Another example of such a task is to instruct parties to joinly sample an RSA public key N = pq
without knowing the actual factorization p, q, even when the secret information of all parties is pooled
together. We call protocols that hide the actual randomness which was used to compute the function even
when everybody is corrupted randomness-hiding.

We note that the standard methodology of evaluating a randomized functionality via secure evaluation of a
circuit, where some of the input values to the circuit are the result of xor-ing the local random inputs of all
parties, results in a protocol that is inherently not randomness-hiding.1. With this approach the adversary
corrupting everybody learns tthe randomness of each and every party, and therefore the internal randomness
of the function (e.g. random coins of obfuscation); thus no security is left.

1For instance, parties can choose randomness ri, make it part of their input, and evaluate the functionality
F ((x1, r1), . . . , (xn, rn)) = f(x1, . . . , xn;

⊕
ri).

1

Randomness hiding is also useful in another, perhaps less obvious, scenario. Adaptive security is often used
to argue leakage tolerance ([BCH12]): assume parties are computing a randomized functionality, and the
adversary decides to leak 1 bit of each party’s randomness. If the protocol looses security when everybody
is corrupted, the simulator from [BCH12] cannot simulate such leakage, since the argument from [BCH12]
requires that the simulator should be able to potentially simulate the full randomness of each party whose
internal state was leaked, even though the adversary actually sees only a single bit of randomness of each
party.2 In contrast, if the protocol supports randomness-hiding functionalities, then the simulator can sim-
ulate randomness of all parties, and therefore the protocol remains leakage-tolerant even if the adversary
decides to leak from everybody.

Global common reference string. In the common reference string (CRS) model, all parties have access
to a string, generated in advance by a trusted entity (which doesn’t need to participate in the protocol).
In a local (sometimes called programmable) CRS model, which is most often used, the simulator has the
power to generate the CRS itself. This makes the task of designing protocols easier, since the simulator can
generate the CRS in such a way that it knows corresponding trapdoors and therefore has more power than
the adversary. The major drawback of a local CRS is that when two different protocols use the same CRS,
there is no guarantee of security whatsoever, even if each of them separately is secure. Thus, to preserve
security of a protocol that was proven secure in the local CRS model within a larger system, one has to make
sure that no other protocol in the system will ever use that same CRS, either inadvertently or via malicious
protocol design. See e.g. [CDPW07] for more discussion.

To overcome these issues with composability, the global CRS model was introduced. In this model the
simulator doesn’t have the power to generate the CRS; instead, it has to work with a given CRS. The global
CRS model makes significantly weaker trust assumptions on the reference string and its generation process.
In particular, a global CRS can be known globally and used by all protocols in the system without any prior
coordination; in this sence composition-wise the global CRS model is very close to the plain model: once we
proved that the protocol is secure with a global CRS, we don’t need to take this CRS into account anymore,
since it can be used by any other protocol without the risk of compromising security.

On the need of the common reference string. Our protocol works in a common reference string (CRS)
model. While there is no evidence that computing randomness-hiding functionalities require a CRS3, it is
not known how to compute general randomness-hiding functionalities in the plain model. In fact, this is
an interesting open problem, and solving it would allow to remove the CRS requirement from many works
(including this work), where the CRS is an obfuscated program whose keys and randomness should remain
hidden.

As discussed in [IKOS10], adaptively secure protocols for randomized functionalities are tightly connected
to extractable one way functions (EOWF). Namely, this work shows that the existence of such a protocol for
general functionalities in the plain model implies that EOWFs with uniform auxiliary input don’t exist, since
one-wayness of the function can be broken by first using the simulator to obtain random coins for a given
output and then by running the extractor on these random coins to extract the actual input of the EOWF.

2To be more precise, [BCH12] require that there exist a translation function which maps ideal world internal state into real world
internal state.

3Indeed, some simple functions can be computed in a randomness-hiding way even in the plain model; for instance, the function
f(r) = gr , where g is a group generator and r is randomness, can be simply computed by choosing a random element in a group;
in this case randomness r remains unknown.

2

We also stress that the CRS appears to be essential, even in the semi-honest setting. Recall that in the case of
non-adpative semi-honest security, CRS is not needed; indeed, instead of having a CRS, parties can generate
the CRS by themselves, in the plain model, in the beginning of the protocol, at the cost of one more round.
However, this is not true in the case of adaptive security. The reason is that our CRS contains secrets (e.g.
randomness of the obfuscation, PRF keys) which shouldn’t be known to anybody, including parties running
the protocol. Working in the plain model would require parties to generate this CRS in a way that even all
parties together do not know corresponding secrets. As discussed in the previous paragraph, this is an open
problem.

Computation and communication complexity. The majority of existing protocols assume that the
function is represented as a circuit. This means that the work of parties and, in some cases, the length of
communication both depend on the size of a circuit to be computed. Given that Turing machines and RAM
machines may have significantly more efficient parameters than circuits, building MPC protocols which use
the advantage of more efficient models of computation is an important task. (In particular, in the case of
RAM computation that does not necessarily need to access all the input, the gap could be exponential.)

Although we cannot take advantage of a potentially sublinear RAM computations (indeed, unlike, say, the
persistent garbled RAM setting where database garbling phase could be long, but the actual computations
are very short, the MPC setting requires the computation to touch every input), multiparty computation
can still benefit from the RAM model in several ways. As one example, consider the case where parties are
willing to trade some security for efficiency; in this case they can obtain efficiency close to the input-specific
running time (rather than worst-case running time)4. For instance, let’s say there is a database with medical
data, and a group of researchers is interested in average age of persons satisfying some sparse property P
(say, having rare medical condition). If these researches don’t care about hiding P , then they can compute
the average fairly efficiently, with running time comparable to the number of entries satisfying P . However,
if P cannot be made public, then need to run a protocol with P being their secret input; this immediately
makes their running time worst-case (for all possible P), which is comparable to the size of the database. If
these researches are willing to sacrifice some security to gain efficiency (for instance, if others are allowed to
learn that P is a rare disease, but cannot learn which one), then they can perform very efficient computation
(like in the first case), while still having meaningful security guarantees.

On the limitations of the [IK02, AIK06] approach in the fully adaptive setting. A natural approach to
obtaining protocols with RAM efficiency is to use ideas of [IK02, AIK06]: Instead of directly evaluating
the desired function, have the parties jointly evaluate a garbling (or, randomized encoding) of the function
and input. Then each party locally computes the output. Plugging-in a RAM-efficient garbling scheme
([CHJV15, CH16]) results in RAM-efficient protocols. However, this approach has a caveat in our fully
adaptive setting: note that the functionality which needs to be computed (i.e. garbling) is randomized. If we
want to achieve full adaptive security, the randomness used in the garbling should remain hidden even when
everybody is corrupted; in other words, for the whole construction to be secure, the underlying protocol
should be randomness-hiding. However, the only two-round protocol with full adaptive security we know
(that of [GP14]) is not randomness-hiding, and therefore to use this approach we need to come up with
adaptively secure randomness-hiding protocol first.

4Recall that the security of MPC requires that no information about inputs of parties is leaked. Running time of a program M
on input x could potentially leak information about x. Therefore if full security is needed then programs should necessarily work
as long as their worst-case running time, even if computation on this particular input is short.

3

1.1 Our results: semi-honest setting

Our main result is the first two-round MPC protocol with global (non-programmable) CRS, which is secure
against adaptive semi-honest corruption of all parties. Besides globality, our protocol has other features:
First, the protocol allows to securely compute even randomness-hiding functionalities, and furthermore, it
guarantees leakage tolerance even when every party can be leaked from (for the discussion on why this
is usually not the case, see the paragraph about randomness-hiding functionalities in the first part of the
introduction). Second, the protocol is RAM-friendly, i.e. the amount of communication in our protocol only
depends on the RAM size of a function, not on its circuit size, and the work of each party which obtains the
output is proportional to RAM complexity of the function. Third, we assume only polynomially secure IO
and injective OWFs.

Theorem 1. Assuming injective one way functions and indistinguishability obfuscation for circuits, there
exists a two-round multiparty protocol with global CRS for computing any randomized functionalities, even
randomness-hiding ones. The protocol is adaptively secure against honest-but-curious corruptions of possi-
bly all parties, with oblivious simulation. Its communication complexity depends on λ, {|xi|}ni=1, y, |f |RAM
(logarithmic parameters omitted), and time and space of every party depends on λ, {|xi|}ni=1, y, |f |RAM,
and time or space needed to evaluate RAM f(x1, . . . , xn) in the worst case.

Our result improves the state of the art in a number of ways. In particular, this is:

• The first 2-round fully adaptive semi-honest MPC with global setup5

• The first 2-round fully adaptive semi-honest MPC which doesn’t require subexponential security of
iO;

• The first 2-round fully adaptive semi-honest MPC which supports all (even randomness-hiding) func-
tionalities, and which therefore is fully leakage tolerant.

Making this protocol secure against malicious adversaries. The common techniques [CLOS02] can be ap-
plied to compile this protocol into its malicious version. The resulting protocol needs 4 rounds - two rounds
should be added in the beginning to do a malicious coin toss by first committing to inputs and randomness
and then partially opening randomness. We observe however that the first round of the semi-honest protocol
is a commitment round as well, and thus in the malicious version we can use CLOS commitments as if they
were round-1 messages of the semi-honest protocol. Thus, then protocol requires only three rounds (round
1 for commitments, round 2 for partial opening randomness, and round 3 for round 2 of the semi-honest
protocol). The resulting protocol preserves all properties of the semi-honest version (in particular, it re-
mains randomness-hiding as long as there is at least one uncorrupted party during round 2, which could be
corrupted later). The only property that is lost is globality of the CRS, which is inherent in the malicious
setting). The resulting protocol outperforms the protocol by Dachman-Soled et al [DKR14], which is a
4-round protocol against semi-honest adversaries.

1.2 Our results: malicious setting

As an additional result, we show how to make the protocol of [GP14] RAM-efficient: namely, we construct
the first RAM-efficient statistically-sound non-interactive zero-knowledge proofs, and then plug this NIZK

5We underline that the approach of [GP14] requires a local CRS even in the honest-but-curious setting.

4

into the protocol of [GP14]. Compared to the malicious version of our first protocol, this protocol needs
only two rounds (instead of three), however, it requires subexponentially-secure iO, and is not randomness-
hiding.

Theorem 2 ([GP14]). Assuming the existence of RAM-efficient statistically sound NIZK, subexponentially
secure iO for circuits, and one way functions, there exists a two-round multiparty protocol with local CRS
adaptively secure against malicious corruptions of possibly all parties. Its communication complexity de-
pends on λ, {|xi|}ni=1, y, |f |RAM (logarithmic parameters omitted), and time and space of every party de-
pends on λ, {|xi|}ni=1, y, |f |RAM, and time or space needed to evaluate RAM f(x1, . . . , xn) in the worst
case.

RAM-efficient statistically sound NIZK. We construct the first RAM-efficient NIZK with statistical
soundness, assuming statistically-sound NIZK for circuits (which can be obtained from trapdoor permuta-
tions) and a RAM-efficient garbling scheme (which can be built from iO and OWFs [CH16]) :

Theorem 3. (Informal) Assuming statistically sound non-interactive zero knowledge (NIZK) for circuits
and a succinct garbling scheme for RAM, there exists a NIZK for RAM, where the work of the prover and
the size of the proof depends on |R|RAM, and the work of the verifier depends on the RAM complexity of R
(where R(x,w) is a relation which defines the language for the proof).

We note that our succinct NIZK is useful also in other settings. For instance, in the two-round protocol of
Garg et. al. ([GGHR14]) the parties exchange obfuscated programs which compute next message functions
(of some underlying many-round protocol) together with a proof that the computation was done correctly.
If the underlying protocol has number of rounds proportional to the RAM complexity of the function (say,
the protocol by Damgard et. al., [DMN11]), plugging our RAM-efficient NIZK makes [GGHR14] protocol
RAM-efficient.

1.3 Related work

Fully adaptively secure protocols. Until now, only three constant-round fully adaptively secure pro-
tocols were known. [CGP15] is a two-round protocol for two-party computation; [DKR14] is an MPC
protocol, but requires 4 rounds; both protocols have global CRS and allow to compute randomness-hiding
functionalities. [GP14] is a two-round MPC protocol secure against malicious adversaries; thus their refer-
ence string is necessarily local6. Their protocol doesn’t support randomness-hiding functionalities.

All three protocols require the function to be represented as a circuit: namely, the core part in both [CGP15,
DKR14] are Yao garbled circuits7. The protocol of [GP14] requires a statistically-sound NIZK for the
statement f(x1, . . . , xn) = y, and prior to our work such proofs required verification time proportional to
the size of the circuit.

In addition, [CGP15, GP14] require subexponentially-secure iO.
6We note however that merely using their protocol in the semi-honest case doesn’t allow for a local CRS: their approach requires

proving statements to an obfuscated program, which requires NIZK (and therefore a local CRS) even in the honest-but-curious case.
7Which cannot be easily switched to the garbling scheme for RAM. For instance, in both protocols the underlying garbling

scheme should support bit-by-bit garbling of an input. [DKR14] makes even further use of the actual construction of garbled
circuits.

5

RAM-efficient protocols. Existing protocols for (even static) RAM MPC follow one of the two ap-
proaches. The work of Boyle et al ([BCP15]) shares a paradigm of Damgard et al ([DMN11]) which instructs
parties to jointly evaluate steps of a RAM CPU; this approach results in number of rounds proportional to
the number of CPU steps needed to compute a function.

The other approach, introduced by Ishai and Kushilevitz ([IK02], [AIK06]), requires parties to jointly evalu-
ate a randomized encoding of the function and input and then locally compute the output of this randomized
encoding. Thus, plugging a RAM-efficient garbling scheme ([CHJV15, CH16]) into known constructions
results in statically-secure RAM-efficient protocols. However, in order to achieve adaptive security, the un-
derlying protocol must support randomness-hiding functionalities. Prior to our work, no fully adaptive, two
round protocol with randomness hiding was known.

Constant round adaptively secure RAM-efficient protocols. Combining several existing techniques,
it is possible to construct adaptively secure protocols for RAM. Namely, following the Ishai-Kushilevitz
approach outlined above, we can plug the succinct garbling schemes for RAM into constant-round adaptively
secure MPC (such as [DKR14, GP14]). The first protocol yields a fully adaptive MPC for RAM with 4
rounds; we refer to this protocol as “augmented [DKR14]”.

The second construction, however, loses full security, since evaluating a garbling is a randomized function-
ality, and since their protocol doesn’t guarantee secrecy of randomness of the function when everybody is
corrupted. Namely, the simulator of the composed scheme will not be able to simulate the random coins of
each party, since it needs to simulate generation randomness of the garbling scheme, consistent with sim-
ulated garbled values. This can be circumvented by using a garbling scheme where the simulator can also
simulate random coins of the garbling, i.e. “adaptively secure” garbling 8 It is possible to construct such
a garbling scheme by putting a mechanism allowing deniability (like in deniable encryption of [SW14])
on top of a garbling algorithm of RAM-efficient garbling scheme, say, [CH16], and obfuscating the whole
circuit. This obfuscated circuit is a CRS of an adaptive garbling scheme9. Such a construction seems to give
a RAM-efficient MPC protocol, which even allows to compute randomness-hiding functionalities (roughly,
because the deniability mechanism of [SW14] generates random coins which are hidden from everybody).
Still, this approach, which we call “augmented [GP14]”, requires subexponentially-secure iO, and, since
they use NIZK even in the semi-honest case, a local CRS.

In the table below we compare our result with existing work on constant round fully adaptive MPC([DKR14,
GP14]), as well as with augmented versions of these protocols described above. All parameters are for the
semi-honest setting.

Rounds supports RAM global CRS randomness hiding assumptions
[DKR14] 4 - + + iO+OWF
[GP14] 2 - - - subexp. iO+OWF
augmented [DKR14] 4 + + + iO+OWF
augmented [GP14] 2 + - + subexp. iO+OWF
our result 2 + + + iO+OWF

8Note that usually the term “adaptive security” in the context of garbling is used to denote a different property: that the adversary
can choose new inputs and functions after seeing garbled values.

9With this approach the environment has to fix inputs before seeing the CRS, i.e. this garbling scheme is only selectively secure.
However, this is good enough for the protocol of [GP14], since they anyway use complexity leveraging and subexponentially-secure
iO.

6

Succinct NIZK proofs. The only approach for building NIZK proof systems where the length of the
proof is independent of a circuit is based on encrypting satisfying assignment via FHE and making the
verifier homomorphically evaluate the SAT circuit. This includes the work of [Gen09], who proposed the
approach, and [Gro11], who shows how to bring the size of the proof down from |w|·poly(λ) to |w|+poly(λ)
(where w is the witness and λ is a security parameter); thus, the question of communication complexity of
NIZK is resolved. However, in both schemes the verifier needs to do the work proportional to the circuit
complexity of the function. Up to now we didn’t know any fully succinct NIZK proof system (i.e. NIZK
where both communication complexity and work of both parties is smaller than the circuit size).

1.4 Our techniques: semi-honest case

Our MPC protocol takes a different approach than either of [GP14, DKR14, CGP15]. We present and
motivate the approach.

First attempt. A natural idea for building MPC protocols is to use an obfuscated program to emulate a
trusted party. That is, the CRS contains an obfuscated program which collects all inputs, does the computa-
tion, and outputs the result.

More precisely, the CRS should contain an encryption program Enc, which takes an input xi and outputs its
encryption ci, and a decryption/evaluation program Eval, which takes c1, . . . , cn, decrypts them, computes
y = f(x1, . . . , xn) and outputs y. The parties can compute f(x1, . . . , xn) by encrypting ci = Enc(xi),
broadcasting ci, and computing y ← Eval(c1, . . . , cn). However, such a protocol is clearly insecure: each
party (say, P1) can compute many different y′ = f(x′1, x2, . . . , xn) for any desired x′1 by generating c′1 =
Enc(x′1) and running Eval(c′1, c2, . . . , cn).

A natural way to mitigate such an attack is to make the parties commit to their input first, and only then
exchange ciphertexts and do the computation. Therefore we now have two rounds: in the first round parties
exchange their commitments ai, and in the second round they exchange ciphertexts ci. To make sure that
no party can run Eval on a different input than the one he committed to, Eval should check that xi in ci is
consistent with the commitment ai in the previous round. To achieve this, we need to put into ci not only
xi, but also ai together with its opening. Note however that this still allows a curious party to generate a
different c′i encrypting a different x′i and a different, but valid commitment a′i to x′i, and then run Eval; thus
we have to include all first-round commitments a1, . . . , an within each ci (together with an opening for ai),
so that a curious party couldn’t modify its own ai without being noticed.

At this point the protocol looks like this:

1. The CRS: Programs Enc and Eval, a CRS for a commitment scheme µbind

2. Round 1: Each party broadcasts ai ← Commit(xi), and keeps decommitment information ri;

3. Round 2: Each party broadcasts ci ← Enc(xi; ri; a1, . . . , an)

4. Evaluation: Each party computes y ← Eval(c1, . . . , cn)

Here Eval decrypts each ci and performs two checks: first, it checks that the set of (a1, . . . , an) is the same
in each ci. Second, it checks that for all i ri is a correct opening of ai to xi. If all checks pass, it outputs
f(x1, . . . , xn).

7

While this idea works in general, the exact implementation becomes a challenge. Our goal is to show that
a real execution is indistinguishable from a simulated one, where the simulated execution (and in particular,
programs and communication) is generated by a simulator who doesn’t know inputs of parties. One difficulty
is to be able to switch the ciphertext from real (encrypting xi) to simulated, and at the same time be able
to generate Eval with the secret key of encryption inside. Several ways to accomplish this are known. One
approach is to use a “double encryption + NIZK” paradigm ([NY90]); this method is chosen by [GP14] and
it leads to a protocol secure against malicious adversaries. However, one disadvantage of this approach is
that the CRS is necessarily local, even in the semi honest case.

The approach we take in order to switch ci from real to simulated in the presence of the secret key is the
“punctured key” technique, which guarantees that real and dummy ciphertexts are indistinguishable, even
in the presence of “almost all” key - i.e. the key which decrypts everything except for this ciphertext. This
allows us to first indistinguishably modify Eval such that it needs only a punctured key, and then switch a
ciphertext (which the punctured secret key cannot decrypt) to a dummy ciphertext.

However, this approach has two shortcomings, which are not obvious from this discussion, but which would
appear if we went deeper into the simulation and proofs. First, the technique requires hardwiring input-
dependent values (such as xi and ci) into the program in the proof. This means that the inputs have to be
fixed before the adversary sees Eval (and therefore the whole CRS), giving only selective security. Second,
with this approach the programs in the simulated CRS have to contain simulated ciphertexts, and therefore
we can only hope to get local, or programmable, CRS.

Second attempt. To solve both issues, we exploit an indirection technique similar to the one used in
[KSW14, CPR16]: namely, we generate Enc and Eval during the runtime instead of fixing them in the CRS.
Note that Enc is needed only in round 2 (and Eval is needed even later). Therefore we can let parties agree
on generation randomness rGen in round 1, and then, after round 1 is complete, each party can run a special
generation program Gen (which is now in the CRS instead of Enc and Eval) to produce a fresh pair of Enc
and Eval, which are then used as before. In addition, we add to the CRS a special program Explain, which
inverts Gen, i.e. for any given output it produces consistent randomness rGen; this is used by the simulator
only.

Therefore the protocol now looks like this:

• The global CRS: programs Gen,Explain, a CRS for a commitment scheme µbind

• Round 1: parties broadcast commitments ai = Commit(xi; ri) together with randomness rGen,i;

• After round 1: each party sets generation randomness rGen ←
⊕
rGen,i and obtains Enc,Eval ←

Gen(rGen);

• Round 2: each party broadcasts ci ← Enc(xi; ri; a1, . . . , an);

• Evaluation: each party computes y ← Eval(c1, . . . , cn).

The simulator works as follows. First it generates programs Enc′,Eval′ (which, as we said earlier, are
different from real world programs). Next it uses Explain to generate randomness rGen on which Gen
outputs these simulated Enc′,Eval′. It generates all rGen,i such that they xor to rGen, and sets ai and ci to
be a dummy commitment and a dummy ciphertext. (rGen,i, ai, ci) constitute simulated communications. To
handle corruption of a party, the simulator equivocates the commitment; also the simulator needs to show the

8

randomness for encryption, which it can do as long as underlying encryption is non-committing or deniable.
Note that the the only reason why the simulator needs to generate the CRS is a commitment scheme.

Third attempt. So far our CRS is still local due to a commitment scheme. However, it turns out that
we don’t need the full power of the commitments; for the proof of security our commitment scheme should
be statistically binding only at round-1 commitments, not everywhere. Since we are in the semi-honest
setting, it is enough to have a commitment scheme that is statistically binding only on honestly generated
commitments. We call this primitive honest-but-curious (HBC) commitments.

Such a primitive can be easily constructed from one way functions: consider a length-doubling prg mapping
{0, 1}l to {0, 1}2l. For random s ∈ {0, 1}l, r ∈ {0, 1}2l, let (prg(s), r) be a commitment to 0 and (r, prg(s))
be a commitment to 1. To open the commitment, show s. As long as a commitment was generated honestly,
i.e. r was truly random, it doesn’t have a valid prg preimage and therefore this commitment is statistically
binding. The simulator can simulate the commitment by generating prg(s0), prg(s1) and later open it to any
bit. (Note that dishonest sender could cheat in the same way, and therefore binding holds only for honestly
generated commitments. But it suffices for our MPC protocol, since we need a statistical binding property
only for round 1 commitments ai, which are generated by honest parties.)

Note that HBC commitments don’t require a CRS, and therefore the CRS of the overall scheme is now
global.

The choice of encryption scheme for the MPC protocol. As we said earlier, perhaps the most challeng-
ing part of the proof is to switch ciphertexts from real to simulated, while keeping the decryption key inside
Eval. For this we take a punctured programming approach, and therefore we need an encryption scheme
where it is possible to give a partial key, called a punctured key, which doesn’t reveal anything about the
challenge ciphertext. Our goal is the following: first we want to modify Eval so that it uses a punctured
key instead of a real one; this should be done without changing the functionality of Eval, since we want to
base security on iO. Importantly, modified Eval should not contain xi, or any input-dependent values, since
Eval should be generated by a simulator during the protocol execution, when the simulator might not know
inputs of the parties yet. Next we want to use security of the punctured key and switch the ciphertext from
real to simulated.

The puncturable deterministic encryption ([Wat15]), which is commonly used in this scenario, doesn’t help
us: if we were using this scheme, the punctured program would depend on inputs, making the simulation
impossible. We therefore use a different encryption scheme, which we call a puncturable randomized en-
cryption (PRE)10. In addition, this primitive may be viewed as a simulation-secure variant of PDE, and
might be of independent interest.

Puncturable randomized encryption (PRE). In a definition of a semantically secure encryption scheme
a real ciphertext is indistinguishable from a simulated one, even in the presence of a public key. A much
stronger CCA security requires that ciphertexts are still indistinguishable even given access to a decryption
oracle, i.e. to the functionality of a secret key everywhere except the challenge ciphertext. One can consider
an ultimate version of CCA security and require that ciphertexts are indistinguishable even when the secret

10Note that merely randomizing the PDE plaintext doesn’t yield a PRE.

9

key itself is given in the clear (of course, for this to be meaningful, the secret key shouldn’t be able to decrypt
the challenge ciphertext, just like in case of standard definition of CCA-security). This is exactly what our
puncturable randomized encryption achieves. In other words, a PRE scheme is a symmetric key encryption
scheme secure under simulation security definition, where the simulator needs to simulate a punctured key
as well: that is, we require that a real-world punctured key and a ciphertext (k{c}, c) are indistinguishable
from simulated (k{c}, c).

We build a secret key version of this primitive using puncturable PRFs and an injective public key encryp-
tion scheme (injective means that there doesn’t exist a tuple (x, r, x′, r′) such that (x, r) 6= (x′, r′) and
Encpk(x; r) = Encpk(x

′; r′)). The secret key of a PRE consists of a public key of encryption scheme pk and
a PRF key k. To encrypt a messagemwith randomness r, compute T ← Encpk(m; r),C ← Fk(T)⊕(m, r),
and set the ciphertext to be (T,C). To decrypt (T,C), compute (m, r) ← C ⊕ Fk(T) and verify that
T = Encpk(m; r).

To puncture a key at a ciphertext (T ∗, C∗) = PRE.Enc(m; r), output (pk, k{T ∗}), i.e. puncture PRF key
k at T ∗. This punctured PRE key doesn’t give any information about plaintext of the ciphertext (T ∗, C∗):
intuitively, C∗ looks uniformly random since k is punctured at T ∗, and T ∗ itself doesn’t reveal m since it
is a ciphertext of a public key encryption. On the other hand, the punctured key still allows to encrypt all
other plaintexts-randomness pairs and decrypt all other ciphertexts: note that for a given T there is only a
single C which makes (T,C) a valid encryption; therefore puncturing out k{T ∗} affects exactly one valid
ciphertext, i.e. (T ∗, C∗).

The simulator can generate a dummy ciphertext (T ∗, C∗) by setting T ∗ ← Encpk(0; r) and choosing C∗

at random. It can also generate a corresponding punctured key as (pk, k{T ∗}). This simulated ciphertext
and punctured key (T ∗, C∗), (pk, k{T ∗}) can be shown to be indistinguishable from real ones by invoking
security of a punctured PRF and an encryption scheme.

Computing randomness-hiding functionalities. So far we described a protocol for deterministic func-
tionalities. Here we describe how we handle randomized functionalities in a randomness-hiding way, i.e. the
actual randomness used to compute the function should remain hidden even when all parties are corrupted
and all their randomness is learned by the adversary.

It might seem first that to achieve randomness hiding we can use ideas of [SW14] and let the encryption
program internally choose randomness by applying an extractor to the random input provided by a party
- the technique used in both [CGP15, DKR14] to achieve randomness hiding. Namely, let the encryption
program B generate a ciphertext containing not only input xi of a party, but also randomness ri derived
internally by the program without help of the party. Later Eval can decrypt ciphertexts, learn all xi and ri
and compute the function as f(x1, . . . , xn;

⊕
ri). However, this approach is bound to fail in our case: for

our proof of security to go through, we crucially need the fact that round-1 messages (i.e. commitments)
completely determine the computation, and therefore parties would have to commit to ri in round 1. This
means that parties have to know ri themselves, and therefore the randomness of the computation will be
revealed upon corruption.

Another idea to let our protocol compute randomized functionalities while hiding the randomness is to
randomize program Eval in a natural way, i.e. let Eval apply a PRF on its inputs, and use the resulting
randomness for computing the function. Hopefully, security of a PRF will guarantee that this randomness
remains hidden. However, this idea still doesn’t work in of itself: it again violates our crucial property

10

that round-1 messages should determine the computation. Namely, if randomness was derived as a PRF of
inputs to Eval (recall that Eval takes round-2 ciphertexts as inputs), this property would be violated, since
for a given set of round-1 messages there may be many corresponding round-2 ciphertexts, and thus many
possible randomness of the computation.

Our actual solution modifies the previous attempt so that the crucial computation-fixing property is not vi-
olated. For this, we let program Eval decrypt ciphertexts, compute a PRF on round-1 commitments and
evaluate a randomized functionality with resulting randomness. Intuitively, security of a PRF (and obfusca-
tion on top of it) guarantees that this value remains hidden. The simulator can generate simulated Eval where
this PRF is punctured and the result of the computation is hardcoded. For this idea to work it is important
that Eval is generated during the runtime; if it was fixed in the CRS, we would have to hardwire outputs for
every execution and therefore the CRS would have to grow with the number of executions.

Achieving RAM efficiency. There are two ways to use our construction in order to achieve an effi-
cient protocol. One way is to use iO for RAM in all programs involved. However, iO for RAM requires
sub-exponential security of underlying iO for circuits. The other way, which only needs polynomially-
secure iO for circuits, is to use the protocol to evaluate a functionality which takes parties’ inputs and a
function and outputs garbled function and garbled inputs; then parties can evaluate garbling themselves
locally. If a RAM-efficient garbling scheme is used ([CH16]), then the whole protocol becomes RAM-
efficient. Note that it is enough to use statically secure garbling scheme, since our base protocol supports
randomness-hiding functionalities, i.e. doesn’t reveal randomness of the computation even when every-
body is corrupted11. The composed scheme also supports randomized randomness-hiding functionalities:
to evaluate such a functionality f(x1, . . . , xn; r), parties should use basic protocol to evaluate a randomized
function F (x1, . . . , xn; (r1, r2)) which uses r1 as randomness to garble function f and inputs x1, . . . , xn, r2
(r2 being random input of f).

1.5 Our techniques: malicious case

To obtain a two-round RAM efficient protocol in a malicious setting, we observe that the protocol of [GP14]
becomes RAM-efficient, as long as statistically-sound NIZK they use is RAM-efficient. Let us briefly
describe their protocol. Very roughly, in their protocol parties exchange commitments in round 1, and
in round 2 they broadcast their input encrypted twice together with a NIZK proof that plaintexts are the
same (the actual statement for the proof is more complicated, as discussed below). The CRS contains an
obfuscated program which expects to see commitments from round 1, together with ciphertexts from round
2 and corresponding proofs. This program checks NIZKs and uses a hardwired decryption key of a double
encryption to decrypt the ciphertexts and evaluate the function. Each party can feed its transcript to this
program and obtain the output.

So far the protocol seems to work in any model of computation: indeed, if we use iO for RAM to obfuscate
the evaluation program in the CRS, then the work of each party becomes proportional to RAM complexity

11If the protocol revealed randomness of the computation, then the garbling scheme would have to be adaptively secure , i.e.
the simulator of the garbling scheme would have to first simulate it and then, once it learned inputs, provide consistent generation
randomness of the garbling scheme (note that the term “adaptive security” is ambiguous: in the context of garbling it usually
denotes a different property, saying that simulation is possible even if inputs or functions are chosen adaptively after seeing some
garbled values. Here by adaptive security we mean that random coins can be generated by the simulator).

11

of a function. However, the problem is that the NIZK statement is more complicated than described above:
it also requires proving that y = f(x1, . . . , xn), which is needed for the security proof to go through. As
usual in “iO + NIZK” techniques, the NIZK has to be statistically sound. For all known NIZKs, this means
that the verifier (in our case, the obfuscated evaluation program) has to do work proportional to the circuit
complexity of f , even if the program is obfuscated with iO for RAM.

Therefore to make this protocol RAM-efficient, it suffices to build RAM-efficient statistically sound NIZK.

RAM-efficient statistically sound NIZK for NP. Let a language L be specified by a relation R(x,w).
We build a statistically sound NIZK where, roughly, the work of the prover and NIZK length depends on
|R|RAM, and the work of the verifier depends on worst-case RAM complexity of R.

Our main idea is the following: to prove that x∗ ∈ L, the prover should send to a verifier a garbled program
GProg(R(x,w)), a garbled input GInp(x∗, w∗), and a NIZK proof (for circuits) that the garbling was done
correctly: i.e. that the prover followed the garbling algorithm, and that it garbled correct function R and
input x. The verifier should accept the proof if the NIZK proof verifies, and if the evaluation of a garbled
program on a garbled input results in 1.

However, there are two issues. First, since we assume that we only have a NIZK for circuits, we need to
make sure that the statement which we prove (i.e. that garbling was done correctly) is independent of the
circuit complexity of R (in particular, we need a garbling scheme where the size of circuits which generate
garbling, i.e the size of GInp,GProg, only depend on a size of RAM description of a program to be garbled).

Second, note that this scheme guarantees that the garbler follows the garbling instructions (because of the
NIZK), but there is no way to guarantee that the prover uses truly random coins to garble. This might
introduce problems. Consider a garbling scheme which is not perfectly correct: say, for some choice of
parameters the garbled program always outputs 1, no matter what the underlying program does12. In this case
a malicious and unbounded prover could choose these bad parameters and therefore convince the verifier in
wrong statements, since the evaluation of a garbled program results in 1 no matter whether R(x,w) holds or
not. Thus, we need a garbling scheme where the evaluation can never result in the wrong answer, i.e. where
the computation always results in either a correct result or ⊥. We call this property perfect correctness with
abort.

We observe that the garbling scheme of Canetti and Holmgren ([CH16]) already has both properties; see
appendix A for details. Thus, our scheme yeilds a NIZK system when instantiated with the garbling scheme
by [CH16].

2 Building blocks

In this section we define and build puncturable randomized encryption (PRE) and an honest-but-curious
commitment - primitives used in our MPC protocol (section 3).

12Note that the proof of garbling done correctly doesn’t save us, since the garbler followed the garbling algorithm; it’s just the
scheme itself allows for wrong garbling.

12

2.1 Puncturable randomized encryption

Puncturable randomized encryption (PRE) is a randomized, symmetric key encryption. Besides standard
algorithms Gen,Enc,Dec, there is additional procedure Puncture(k, c∗) which takes as input a key k and a
ciphertext c∗ = Enc(m∗; r∗) and outputs a partial, or punctured, key k{c∗}. Such a key has two properties.
First, it doesn’t reveal any information about the plaintext of c∗; this is captured by requiring that a simulator
should simulate a ciphertext and a punctured key without knowing a plaintext. Second, the key should still
have the same functionality in all other points: namely, it should correctly decrypt all other c 6= c∗, and it
should correctly encrypt all other (m, r) 6= (m∗, r∗).

PRE can be viewed as a randomized, simulation-secure analog of a puncturable deterministic encryption
(PDE) [SW14].

Definition 1. Puncturable randomized encryption (PRE) is a tuple of algorithms (Gen,Enc,Dec,Puncture, Sim),
which satisfy the following properties:

• Statistical correctness: With overwhelming probability over the choice of the key k ← Gen(1λ), for
any message m and randomness r Deck(Enck(m; r)) = m.

• Statistical correctness of the punctured key: With overwhelming probability over the choice of the
key k ← Gen(1λ), for any message m∗ and randomness r∗, let c∗ ← Enck(m

∗; r∗), and k{c∗} ←
Puncture(k, c∗). Then:

– for any (m, r) such that (m, r) 6= (m∗, r∗), Enck(m; r) = Enck{c∗}(m; r);

– for any c 6= c∗ Deck(c) = Deck{c∗}(c) (in particular, both decryptions should output ⊥ on the
same set of ciphertexts, except c∗).

• Simulation security with the punctured key: For any PPT adversary A and for any message m∗,
consider the following experiment: k ← Gen(1λ), r∗ is chosen at random, c∗ ← Enck(m

∗; r∗),
k{c∗} ← Puncture(k, c∗), and (cSim, k{cSim})← Sim(). Then

Pr[A(k{c∗},m∗, c∗) = 1]− Pr[A(k{cSim},m∗, cSim) = 1] < negl(λ).

Simulation security says that even if an adversary has almost all key, it cannot tell whether it sees an en-
cryption of a known message m∗ or a simulated encryption (as long as randomness of encryption remains
hidden). Note that simulation security with the punctured key implies normal security of PRE as a secret-key
encryption, since with k{c∗} the adversary can answer encryption-decryption queries itself.

Our construction in a nutshell. The key of a PRE consists of a keyK of a puncturable PRF and a public
key pk of an injective encryption scheme. To encrypt message m under randomness r, the sender computes
T ← Encpk(m; r), C ← FK(T) ⊕ (m, r), and sets its ciphertext to be (T,C). To decrypt, the receiver
computes (m, r)← FK(T)⊕ C and checks whether T = Encpk(m; r). To puncture the key at a ciphertext
(T,C), output (pk,K{T}), where K{T} is a PRF key punctured at T .

In this construction the encryption scheme should be injective for both message and randomness. We observe
that the encryption scheme by [SW14], where the ciphertext is (prg(r), Fk(prg(r)) ⊕ m), satisfies this
property, as long as the underlying prg is injective. In turn, (the family of) injective prgs exists assuming iO

13

and injective OWFs: indeed, the fact that iO(PRF) is a hardcore function [BST14] immediately implies that
this is also a prg family; this prg can be made injective by putting an injective PRF [SW14] inside. Note that
injective PRF doesn’t require injective OWFs; instead, the existence of injective OFWs is required for the
proof of [BST14] (that iO(PRF) is a hardcore function) to go through.

Therefore we obtain PRE assuming iO and injective OWFs.

More detailed description. We construct PRE from puncturable PRFs and a public key encryption
which is injective with respect to both message and randomness (i.e. it should hold that Encpk(m1; r1) =
Encpk(m2; r2) implies (m1, r1) = (m2, r2)).

Lemma 1. [SW14, BST14] Assuming indistinguishability obfuscation for circuits and injective one way
functions, there exists a public key encryption which is statistically injective with respect to both message
and randomness.

Proof. In short, the work of [BST14] essentially builds an injective prg, which can be plugged into encryp-
tion scheme of [SW14] to obtain injective PKE. We briefly present all constructions here for completeness.

Overall encryption scheme. Recall that in the PKE scheme of [SW14] the public key is an obfuscated
program which takes (m, r) as input, computes t = prg(r), and outputs (t, Fk(t)⊕m) as a ciphertext. Note
that this scheme is only injective for messages, but not for randomness, since underlying prg could map two
different randomness to the same output. Thus for this encryption to be injective, we need an injective prg. In
addition, note that for this construction it is enough to have a family of prgs (which is statistically injective):
the prg could be chosen from the family during the process of the key generation for the encryption scheme.

Injective prg family. We note that the work of Bellare et al.[BST14], which proves that iO(PRF) is a
hardcore function for any injective OWF13, also implies that iO(PRF) is a prg family, as long as there exist
injective OWFs. Indeed, in their work they show that H = iO(PRF) is a hardcore function for any injective
OWF f , i.e. that for random r (f,H, f(r), H(r)) ≈c (f,H, f(r), U|H(r)|). This implies the following:
as long as there exists an injective OWF f , it holds that (f,H, f(r), H(r)) ≈c (f,H, f(r), U|H(r)|) and
therefore it also holds that (H,H(r)) ≈c (H,U|H(r)|), which means that this is a prg family.

This prg family is statistically injective, as long as the underlying PRF is statistically injective.

Injective PRF family. Sahai and Waters [SW14] build a statistically injective puncturable PRF family
from a PRF family {Fk(x)} (which in turn can be built from OWFs) and a 2-universal hash function h(x)
(which exists unconditionally) as Fk(x) ⊕ h(x), as long as the output of a PRF is large enough. Namely,
they show that as long as m(λ) > 2n(λ) + e(λ), there exists such a statistically injective PRF family which
maps n(λ) bits to m(λ) bits and has a failure probability 2−e(λ) (i.e. with probability 2−e(λ) over the choice
of the PRF key the PRF is not injective).

13In fact, for them it is enough that OWF is poly-to-one. Thus we can relax our assumptions for MPC protocol from injective
OWF to poly-to-one OWF.

14

This concludes the proof that a statistically injective PKE exists assuming iO and injective OWFs. We
underline that this PKE is only statistically injective, since underlying PRFs might be non-injective with
some negligible probability.

From injective PKE to PRE. Our PRE is constructed as follows (see fig. 1 for a more concise descrip-
tion):

• Key generation: PRE.Gen(1λ, rGen) uses rGen to sample a PRF key K and generate (pk, sk)-pair of
a public key encryption scheme which is statistically injective for messages and randomness. It sets
PRE.k ← (K, pk).

• Encryption: PRE.EncPRE.k(m; r) sets T ← Encpk(m; r) and C ← FK(T) ⊕ (m, r) (if the key K
is punctured at point T , encryption outputs ⊥). It outputs the ciphertext c = (T,C).

• Decryption: PRE.DecPRE.k(c) parses c as (T,C) and sets (m, r) ← FK(T) ⊕ C (if the key K
is punctured at point T , decryption outputs ⊥). Next it verifies that Encpk(m; r) = T ; if this check
passes, it outputs m, otherwise it outptus ⊥.

• Puncture: PRE.Puncture(PRE.k, c) parses c as (T,C) and punctures the PRF key at T ; it outputs
the PRE punctured key (pk,K{T}).

• Simulation: PRE.Sim() first chooses the key PRE.k by sampling a PRF key K and generating
(pk, sk)-pair of a public key encryption scheme. Next it generates T = Encpk(0; r) for random r and
sets C to be a random string. It sets the simulated ciphertext cSim to be (T,C) and outputs it. Next, it
punctures the PRF key K at T and sets the simulated punctured key k{cSim} to be (pk,K{T}).

Theorem 4. Assuming that PKE is a public key encryption scheme, injective for both messages and ran-
domness, and assuming one way functions, the construction presented on fig. 1 is a puncturable randomized
encryption.

Proof. Before showing correctness and security, we note the following useful property of our encryption:

First part of a ciphertext determines the second. For a given T ∗, there exists at most one C∗ such that
(T ∗, C∗) is a valid (i.e. decrypted to non-⊥) ciphertext. Indeed, due to injectivity of underlying PKE, there
exists at most one (m∗, r∗) pair such that T ∗ = PKE.Encpk(m

∗; r∗). Therefore the check in the decryption
algorithm will only pass for C∗ = FK(T ∗)⊕ (m∗, r∗).

Correctness. This scheme is statistically correct, as immediately follows from correctness of encryption
C = FK(T)⊕ (m, r) and the fact that the check T = Encpk(m; r) passes for honestly generated ciphertext.

Next, correctness of the punctured key also holds, as long as underlying PKE is injective: indeed, there
is only a single (m, r)-pair which results in T = T ∗, and therefore puncturing out T ∗ in k only affects
encryption of m∗ with r∗. On a decryption side, since only (T ∗, C∗) is a valid ciphertext with T = T ∗,
puncturing k only affects the decryption of (T ∗, C∗). Indeed, ciphertexts of the form (T 6= T ∗, C) are
decrypted in the same way regardless of which key is used, the full key or the punctured one. On the
other hand, ciphertexts of the form (T ∗, C 6= C∗) are rejected by decryption with both real and punctured
keys: indeed, decryption with the full key rejects it since the ciphertext is invalid, and decryption with the

15

Construction of a PRE
PRE.Gen(1λ, rGen):

1. Sample PRF.K and (PKE.pk,PKE.sk);
2. Output (PRF.K, PKE.pk)

PRE.EncPRE.k(m; r):
1. T ← Encpk(m; r)
2. If K is punctured at T , output ⊥ and halt;
3. C ← FK(T)⊕ (m, r).
4. outputs (T,C).

PRE.DecPRE.k(T,C):
1. If K is punctured at T , output ⊥ and halt;
2. (m, r)← FK(T)⊕ C
3. If Encpk(m; r) = T then output m, else ⊥.

PRE.Puncture(PRE.k, c = (T,C)):
1. Output PRE.k{c} = (pk,K{T})

PRE.Sim():
1. PRE.k ← PRE.Gen(rGen) for random rGen;
2. T = Encpk(0; r) for random r;
3. C ← random ;
4. output c = (T,C), PRE.k{c} = (pk,K{T});

Figure 1: Construction of a PRE from a puncturable PRF and injective PKE.

punctured key rejects it since decryption tries to evaluate the PRF at the punctured point T ∗, so the check in
line 1 of decryption fails.

Security. To show security, we need to show that the punctured key, the message, and the ciphertext,
i.e. ((K{T ∗}, pk),m∗, (T ∗, C∗)), is indistinguishable in the two cases: in one case T ∗ = Encpk(m

∗; r∗),
C∗ = FK(T ∗) ⊕ (m∗, r∗), and in the other case T ∗ = Encpk(0) and C∗ is randomly chosen. We do this
by considering a middle distribution where T ∗ is real, i.e. T ∗ = Encpk(m

∗; r∗), but C∗ is random. The
middle and the real distribution are indistinguishable due to the property of a punctured PRF: FK(T ∗) is
indistinguishable from random, therefore so is FK(T ∗)⊕ (m∗, r∗). Middle and simulated distributions are
indistinguishable by security of a PKE.

2.2 Honest-but-curious Equivocal Commitments

Motivated by the fact that standard non-interactive commitments are unnecessary strong for our protocol
(i.e. support malicious behavior of the sender) and at the same time make the CRS local, we consider a
weaker semi-honest commitment which doesn’t have this disadvantage.

Namely, an honest-but-curious commitment scheme (HBCCommit,Verify) can be used to commit to a value

16

x with randomness r using c← HBCCommit(x; r), which later can be opened to convince the verifier that
it was x that was committed to. The difference between this primitive and the standard commitment is
in the security guarantee. Here we only require that an honestly generated commitment cannot be opened
in a different way, even by an unbounded adversary. The other way to state this property is to say that
for overwhelming fraction of randomness, commitments are statistically binding; this means that a semi-
honest sender will generate a statistically binding commitment. (Still, there can be a negligible fraction of
commitments which can be easily opened in both ways).

In addition, we require the commitment scheme to be equivocal, or adaptively secure, i.e. the simulator
should be able to provide randomness consistent with the simulated commitment.

Unlike its stronger counterpart, honest-but-curious commitment can be constructed in a plain model, in a
fairly simple way.

Definition 2. An honest-but-curious commitment scheme for a message spaceM is a pair of PPT algorithms
(HBCCommit(x; r),Verify(x, r, c)), such that the following properties hold:

• Correctness: For any x, r Verify(x, r,HBCCommit(x; r)) = 1;

• Most commitments are statistically binding: For any x ∈M

Pr
r

[∃r′, x′ s.t. x′ 6= x ∧ Verify(x′, r′,HBCCommit(x; r)) = 1] < negl(λ).

• Computational hiding and equivocation: There exist a PPT simulator Sim such that for any x ∈M
it holds that

{(r, x, c) : c← HBCCommit(x; r), r ← {0, 1}|r|} ≈c
{(r, x, c) : (c, state)← Sim(), r ← Sim(x, state)}.

Construction. We build a semi-honest commitment scheme for message space M = {0, 1}. Consider
a prg with exponentially sparse range (say, length-doubling prg, mapping λ bits to 2λ bits). To commit to
0, output (prg(s), r), and to commit to 1, output (r, prg(s)), where s is a random value of size λ, and r is a
random value of size 2λ. To open the commitment, show (s, r).

Since honestly generated (i.e. random) r is outside the image of the prg with overwhelming probability,
there is no s such that prg(s) = r, and therefore for honestly generated commitment there doesn’t exist the
wrong opening. On the other hand, the simulator can generate its commitment as (prg(s0), prg(s1)) and
later open it to any bit b, showing sb and claiming that the other value is randomly chosen. Thus we proved
the following statement:

Theorem 5. Assuming the existence of one way functions, the above scheme is an honest-but-curious com-
mitment scheme for the message space M = {0, 1}.

3 Our MPC protocol against semi-honest adversaries

In this section we present our two-round, RAM-efficient, semi-honest protocol with global CRS.

17

Our protocol is described in Fig. 2 and corresponding programs are given in Fig. 3, Fig. 4. The CRS consists
of two programs, Gen and ExplainGen. Gen is a generation algorithm which produces “encryption” program
B, “decryption-and-evaluation” program Eval and program ExplainB. Both ExplainGen and ExplainB are
not used in the protocol execution; they are used in the simulation only in order to provide consistent
randomness for Gen and B.

In the first round everybody uses the semi-honest commitment scheme (defined and constructed in section
2.2) to “commit” to (i, xi) with randomness rcom,i. In addition, parties exchange randomness rGen,i and
everybody sets (the same) rGen ←

⊕
rGen,i. Everybody runs Gen(rGen) to obtain the same programs

B,Eval,ExplainB.

In round 2 everybody runs bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i) (which essentially encrypts all round 1
messages together with a party’s own opening of a commitment, under some randomness rB,i) and sends
out bi. Then everybody computes y ← Eval(b1, . . . , bn). Eval decrypts every ciphertext, validates each
commitment using opening provided in corresponding ciphertext, and in addition checks that all ciphertexts
agree on the set of round-one commitments. If these checks pass, Eval does the computation (computing
randomness as a PRF of commitments, if the function is randomized) and outputs y.

The central encryption scheme used by program B to encrypt and by Eval to decrypt is a puncturable ran-
domized encryption (PRE), which we built in section 2.1) from iO and injective OWFs. In addition, both
Gen and B have a trapdoor branch which helps the simulator to generate consistent randomness with the
help of programs ExplainGen,ExplainB. Essentially helper programs ExplainGen,ExplainB use a special
encryption scheme (puncturable deterministic encryption, PDE, [Wat15]), in order to encode an instruction
“output output∗ and halt” into a random-looking value, which pretends to be true randomness of a party.
Gen and B try to decrypt this value in a trapdoor branch and follow the instruction encoded. In addition, this
technique requires to use a special PRF, called extracting PRF, FExt ([SW14]) We don’t elaborate on this
mechanism further since it closely follows the original idea of [SW14], [DKR14].

Theorem 6. Assuming injective one way functions14 and indistinguishability obfuscation for circuits, the
presented protocol is a two-round multiparty protocol with global CRS adaptively secure against honest-but-
curious corruptions of possibly all parties. The protocol allows to compute any randomized functionalities,
even randomness-hiding ones. Its communication complexity depends on λ, {|xi|}ni=1, y, |f |RAM (logarith-
mic parameters omitted), and time and space of every party depends on λ, {|xi|}ni=1, y, |f |RAM, and time or
space needed to evaluate RAM f(x1, . . . , xn) in the worst case.

14In fact, this requirement can be relaxed down to one way functions with at most polynomial-size preimage, since such OWF
suffices to prove that the construction of [BST14] is secure; and therefore the PRE scheme (section 2.1) exists under this assumption
and iO.

The protocol
CRS: programs Gen and ExplainGen
inputs: xi; randomness: rcom,i, rB,i, rGen,i

1. Round 1: Each party Pi computes ai ← HBCCommit(i, xi; rcom,i) and broadcasts (ai, rGen,i);
2. Each party sets rGen ←

⊕
rGen,i and runs {B,Eval,ExplainB} ← Gen(rGen);

3. Round 2: Each party broadcasts bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i);
4. Each party sets its output to be y ← Eval(b1, . . . , bn).

Figure 2: MPC protocol.

18

Programs in the CRS:
Program Gen(rGen)
Constants: an extracting PRF key ExtGen, faking PDE key fGen
• Trapdoor branch:

1. set (Prog1,Prog2,Prog3, ρ̃) ← PDE.DecfGen(rGen). If decryption returns ⊥ then goto normal
branch;

2. output Prog1,Prog2,Prog3 and halt;
• Normal branch:

1. uGen ← FExtGen(rGen);
2. use uGen to sample extracting PRF key ExtB, PRE key K, PRF key k, faking PDE key fB and

obfuscation randomness for B,Eval,ExplainB;
3. output obfuscated programs B[ExtB, fB,K],Eval[K, k],ExplainB[fB].

Program ExplainGen(Prog1,Prog2,Prog3; ρ)
Constants: faking PDE key fGen

1. Set M = ((Prog1,Prog2,Prog3), prg(ρ));
2. Set rGen ← PDE.EncfGen(M);
3. output rGen.

Figure 3: Programs in the CRS of our protocol. Program Gen chooses keys and outputs obfuscated programs
B,Eval,ExplainB, defined in figure 4. Program ExplainGen is only used by the simulator in order to generate
consistent random coins for Gen.

Programs produced by the CRS:
Program B(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, PRE key K
• Trapdoor branch:

1. set (i′, x′, r′com,i, a
′
1, . . . , a

′
n, b
′, ρ̃) ← PDE.DecfB(rB,i). If decryption returns ⊥ then goto nor-

mal branch;
2. if (i′, x′, r′com,i, a

′
1, . . . , a

′
n) 6= (i, xi, rcom,i, a1, . . . , an) then goto normal branch;

3. output b′ and halt;
• Normal branch:

1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b← PRE.EncK(M ; prg(uB,i))
4. Output b

Program Eval(b1, . . . , bn)
Constants: PRE key K, key k of a PRF G

1. For every i decrypt:
(a) Set Mi ← PRE.DecK(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an). If the format is wrong (in particular, if i is wrong), output
⊥.

2. For every i check consistency:
(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . ,Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. Set R← Gk(a1, . . . , an).
4. Output y ← f(x1, . . . , xn;R). (If f is deterministic, ignore R).

Program ExplainB(i, x, rcom,i, a1, . . . , an; b; ρ)
Constants: PDE key fB

1. Set M = ((i, x, rcom,i, a1, . . . , an), b, prg(ρ))
2. Set rB,i ← PDE.EncfB(M)
3. output rB,i

Figure 4: Programs used in the protocol.

19

4 The Proof of the Main Theorem

On achieving RAM efficiency. There are two ways to use our construction in order to achieve an ef-
ficient protocol. One way is to use iO for RAM in all programs involved (in particular, the program Gen,
which obfuscates three programs, should use an obfuscator for RAM). The other way is to use the protocol to
evaluate a functionality which takes parties’ inputs and a function and outputs garbled function and garbled
inputs; then parties can evaluate garbling themselves locally. If a RAM-efficient garbling scheme is used
([CH16]), then it suffices to use iO for circuits to make the whole protocol RAM-efficient. Note that it is
enough to use statically secure garbling scheme, since our base protocol supports randomness-hiding func-
tionalities, i.e. doesn’t reveal randomness of the computation even when everybody is corrupted15. The com-
posed scheme also supports randomized randomness-hiding functionalities: to evaluate such a functionality
f(x1, . . . , xn; r), parties should use basic protocol to evaluate a randomized functionF (x1, . . . , xn; (r1, r2))
which uses r1 as randomness to garble function f and inputs x1, . . . , xn, r2 (r2 being random part of input).

Unlike the first approach, the second approach doesn’t require subexponentially-secure iO (which is an
assumption currently required for iO for RAM).

In both cases, we assume that the simulator gets all necessary information about the computation (such as
worst-case running time, space, etc) from the ideal functionality. As discussed in the introduction, setting a
lower (than the worst-case) bound on the running time/space of the computation might be useful if parties
agree to sacrifice some security for efficiency.

Correctness. Correctness of the scheme can be immediately verified. Note that in case of randomized
functionalities the randomness for the computation is obtained via a PRF G, and therefore the distribution
of the output is only computationally close to the ideal distribution.

Simulation. The simulator works as follows:

CRS: The simulator generates the CRS honestly.

Round 1: Each a∗i is simulated by a simulator of a semi-honest commitment scheme. Each b∗i is simulated
by PRE.Sim, together with a punctured key K{{b∗i }ni=1}. Eval1,B1 are generated as in fig. 5 (using punc-
tured keys K{{b∗i }ni=1} and k{(a∗1, . . . , a∗n)}), and ExplainB is generated as in fig. 3. r∗Gen is set to explain
these B1,Eval1,ExplainB (i.e. it is generated as r∗Gen ← ExplainGen(Eval1,B1,ExplainB; ρ) for random
ρ). Each r∗Gen,i is set to sum up to r∗Gen. (a∗i , r

∗
Gen,i) is a simulated first message of each party.

Round 2: b∗i (generated in round 1) is a simulated second message of each party.

Simulating internal state: r∗com,i ← HBCCommit.Sim(a∗i , xi) is generated, and r∗B,i is set to explain b∗i on
input (i, x∗i , r

∗
com,i, a

∗
1, . . . , a

∗
n) (i.e. it is generated as r∗B,i ← ExplainB((i, x∗i , r

∗
com,i, a

∗
1, . . . , a

∗
n), b∗i ; ρi))

for some random ρi. (r∗com,i, r
∗
B,i) is internal state of each party.

15If the protocol revealed randomness of the computation, then the garbling scheme would have to be adaptively secure , i.e.
the simulator of the garbling scheme would have to first simulate it and then, once it learned inputs, provide consistent generation
randomness of the garbling scheme (note that the term “adaptive security” is ambiguous: in the context of garbling it usually
denotes a different property, saying that simulation is possible even if inputs or functions are chosen adaptively after seeing some
garbled values. Here by adaptive security we mean that random coins can be generated by the simulator).

20

Simulator’s knowledge of the output. Note that the simulator is required to hardwire the output y∗

into Eval1 (fig. 5); Eval1 has to be generated at the end of round 1, since r∗Gen (which is determined right
after round 1 ends) depends on it. It could be that at that moment nobody is corrupted, and the simulator,
formally speaking, doesn’t know the output y∗.

However, we can always assume that it knows y∗ as soon as the simulation starts. The idea is sim-
ilar to the idea allowing parties to compute different outputs: they should evaluate a different function
f ′((x1, r1), . . . , (xn, rn)) = f1(x1, . . . , xn) ⊕ r1|| . . . ||fn(x1, . . . , xn) ⊕ rn, where ri is randomness cho-
sen by party i. In this new protocol the simulator can set the output to be a random value z (which can be
chosen even before the protocol starts), and as soon as party i is corrupted and the simulator learns yi, it can
set ri ← zi ⊕ yi (where zi is the i-th block of z corresponding to the output of party i).

Leakage Resilience. For an adaptively secure protocol to be leakage resilient, the simulator has to be
corruption oblivious, i.e. when simulating leakage from a party, the simulator can only use ideal-world
leakage from this party; even if some information was leaked from other parties before (and therefore the
simulator knows the information and simulated leakage), it cannot be used in simulation of leakage of the
current party.

A convenient way to think about this is to imagine that the simulator S should have special subroutines
S1, . . . , Sn (each Si handles leakage from party i), such that the only possible information flow between
them all is S → Si. In other words, Si gets as input ideal leakage together with necessary information from
S (e.g. trapdoors, but not leakage from other parties, since S doesn’t know it) and simulates leakage based
on this information. S itself doesn’t see anything Si learns from the ideal functionality or simulates. For a
more formal treatment, see [BCH12].

Our simulation is corruption oblivious. Each internal state of the party (i.e. r∗com,i, r
∗
B,i) can be simulated

by a subroutine Si which gets from S a trapdoor to open HBC commitment, the program ExplainB, and
communication a∗1, . . . , a

∗
n, b∗i . Si can first set r∗com,i by opening the commitment appropriately, and then it

can generate r∗B,i ← ExplainB((i, xi, rcom,i, a
∗
1, . . . , a

∗
n); b∗i ; ρ) for random ρ.

4.1 An Overview of the Hybrids

Here we present an overview of the hybrids. The full proof with security reductions is in section 4.2.

We start with a real execution, where r∗com,i, r
∗
B,i, r

∗
Gen are randomly chosen, each a∗i is set to HBCCommit(i, x∗i ; r

∗
com,i),

(B,Eval)← Gen(r∗Gen), b∗i ← B(i, x∗i , r
∗
com,i, a

∗
1 . . . , a

∗
n; r∗B,i), y∗ ← Gk(a

∗
1, . . . , a

∗
n).

Hybrid 1: We make challenge programs B, Eval, and ExplainB independent of Gen: Namely, we choose
internal keys of B,Eval,ExplainB, as well as their obfuscation randomness, at random (instead of generating
these values by running Gen). In addition, r∗Gen is now a simulated randomness such that Gen(r∗Gen) outputs
B,Eval via the trapdoor branch (instead of r∗Gen being randomly chosen). Indistinguishability holds by
selective indistinguishability of source and explanation for program Gen (sec. B).

Hybrid 2: We make randomness for challenge ciphertexts b∗i independent of B: Namely, we use random-
ness prg(u∗i), where u∗i is chosen at random (instead of u∗i being computed according to B). In addition,
r∗B,i is now a simulated randomness such that B(i, x∗i , r

∗
com,i, a

∗
1, . . . , a

∗
n; r∗B,i) outputs b∗i via the trapdoor

21

branch (instead of r∗B,i being randomly chosen). Indistinguishability holds by selective indistinguishability
of source and explanation for program B (sec. B).

This modification is done for every party.

Hybrid 3: For every party i we switch randomness used to generate challenge b∗i from prg(u∗B,i) to truly
random ũ∗B,i, by security of a prg.

Hybrid 4: We modify programs B, Eval so that they only use a punctured version of a PRE keyK{{b∗i }ni=1}
and a PRF key k{(a∗1, . . . , a∗n)} (see fig. 6. Note that K is punctured at several points, while k is punctured
at a single point (a∗1, . . . , a

∗
n)). We don’t change functionality of these programs and rely on security of iO.

In program B we can puncture the key K directly (since challenge ciphertexts use truly random ũ∗B,i as
randomness for encryption, and since B always computes randomness as prg(u∗i), the program never tries
to compute a ciphertext with challenge randomness ũ∗B,i; by correctness of a punctured PRE key, this key
correctly computes ciphertexts with randomness different from randomness used for puncturing, i.e. ũ∗B,i).

Eval is modified as follows: if it gets as input the challenge set (b∗1, . . . , b
∗
n), then it just outputs hardwired y∗.

If none of the input ciphertext is a challenge ciphertext, then it just uses a punctured key K{{b∗i }ni=1} to do
its normal computation (by correctness of a PRE punctured key, these ciphertexts are decrypted correctly).
The only difference is that it uses punctured PRF key k{(a∗1, . . . , a∗n)} to compute randomness R for the
computation. (If it happened that b’s decrypted to the challenge set a∗1, . . . , a

∗
n, then the program outputs

hardwired y∗, if consistency checks pass. Recall that honestly generated {a∗i }ni=1 completely define all
inputs and randomness of the computation, therefore y∗ is the only non-⊥ output in this case). Thus the
evaluation of both punctured keys on punctured inputs is avoided.

The question is what to do in Eval when some inputs are challenge ciphertexts and some are not. We
claim that in this case the program should output either y∗ or ⊥ (but cannot output a different y′ 6= y∗):
indeed, since at least one of the ciphertexts is a challenge ciphertext, it contains challenge a∗1, . . . , a

∗
n, and by

statistical binding of an honest-but-curious commitment, each a∗i can be verified only for x∗i . R is completely
determined by (a1, . . . , an) too; thus Eval can only output y∗ = f(x∗1, . . . , x

∗
n;R∗) or ⊥. Therefore we

modify the program as follows: we decrypt only non-challenge ciphertexts, and compare their a1, . . . , an
with challenge a∗1, . . . , a

∗
n. In addition, we check that their openings of commitments are correct. If these

checks pass, we output hardwired y∗, otherwise ⊥.

Hybrid 5: We switch each ciphertext b∗i from a real ciphertext encrypting (i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n) to a

simulated one. At the same time we switch the PRE key from the real punctured key to the simulated
punctured key. Indistinguishability holds by the simulation security of a PRE with the punctured key.

Hybrid 6: We exploit the computational hiding property of an equivocal honest-but-curious commitment
scheme and switch commitments a∗i to simulated, together with commitment randomness r∗com,i, for each
party.

Hybrid 7: Finally, using security of a PRF G with punctured key k{(a∗1, . . . , a∗n)}, we switch randomness
R∗ fromGk(a

∗
1, . . . , a

∗
n) to truly random value, thus making the output y∗ = f(x∗1, . . . , x

∗
n;R∗) independent

of our programs.

At this point the transcript can be simulated by a simulator who might not know inputs during the execution
of the protocol (and only gets them upon corruption of a party), but knows the output, as explained in the
beginning of the proof. Namely, commitments a∗i and ciphertexts b∗i are simulated; Eval,B,ExplainB are

22

Programs used in the proof and the simulation
Program B1(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, punctured PRE key K{{b∗i }ni=1}
• Trapdoor branch:

1. set (i′, x′, r′com,i, a
′
1, . . . , a

′
n, b
′, ρ̃) ← PDE.DecfB(rB,i). If decryption returns ⊥ then goto nor-

mal branch;
2. if (i′, x′, r′com,i, a

′
1, . . . , a

′
n) 6= (i, xi, rcom,i, a1, . . . , an) then goto normal branch;

3. output b′ and halt;
• Normal branch:

1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b← PRE.EncK{{b∗i }ni=1}(M ; prg(uB,i))
4. Output b

Program Eval1(b1, . . . , bn)
Constants: punctured PRE key K{{b∗i }ni=1}, punctured PRF key k{(a∗1, . . . , a∗n)} , a∗1, . . . , a

∗
n,

b∗1, . . . , b
∗
n, y
∗

Case 0: If there is i 6= j such that bi = b∗j , output ⊥.
Case 1: If for all i bi = b∗i , then output y∗ and halt.
Case 2: If for some i bi = b∗i (denote such set as I), then:

1. For every i 6∈ I decrypt:
(a) Set Mi ← PRE.DecK{{b∗i }ni=1}(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)

2. For every i 6∈ I check consistency:
(a) Verify that the set (a1, . . . , an) is the same as (a∗1, . . . , a

∗
n)

(b) Verify that ai = HBCCommit(i, xi; rcom,i)
3. Output y∗.

Case 3: If for all i bi 6= b∗i , then:
1. For every i decrypt:

(a) Set Mi ← PRE.DecK{{b∗i }ni=1}(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)

2. For every i check consistency:
(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . ,Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. If (a1, . . . , an) = (a∗1, . . . , a
∗
n) then output y∗

4. Set R← Gk{(a∗1,...,a∗n)}(a1, . . . , an).
5. Output y ← f(x1, . . . , xn;R).

Figure 5: Programs used in the proof and the simulation.

23

programs generated by the simulator using the PRE keyK{{b∗i }ni=1}, PRF key k{(a∗1, . . . , a∗n)}. Hardwired
variables inside programs B,Eval are {a∗i }ni=1, {b∗i }ni=1, y

∗, which are all known to the simulator at the end
of round 1; thus, Eval,B,ExplainB, and therefore r∗Gen and each r∗Gen,i, can be simulated. Internal state of the
party can be generated by opening the commitment and by running ExplainB to get randomness consistent
with simulated Eval,B,ExplainB.

4.2 The Full Descrition of Hybrids.

Next we present the full description of hybrids and security reductions.

Real execution

Here all variables are generated as in a real execution of the protocol, i.e.:

• CRS generation:

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from Fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

• Generation of communication in the protocol:

1. For all i r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. For all i r∗Gen,i is chosen at random;

3. r∗Gen ←
⊕
r∗Gen,i and B[ExtB, fB,K],Eval[K, k],ExplainB[fB]← Gen(r∗Gen);

4. For all i r∗B,i is chosen at random and b∗i ← B(i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n; r∗B,i);

5. For every party i (a∗i , r
∗
Gen,i) is set to be the first message and b∗i to be the second message of

this party.

• Internal state

1. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

In addition, y∗ is computed as f(x∗1, . . . , x
∗
n;Gk(a

∗
1, . . . , a

∗
n)) (in case of f being deterministic, PRF-

generated randomness is ignored).

Hybrid 1

In this hybrid (B,Eval,ExplainB) are real-world programs generated using freshly sampled keys (as opposed
to using keys produced by an extractor inside Gen). In addition, r∗Gen, instead of being chosen at random, is
fake randomness explaining these (B,Eval,ExplainB). Each r∗Gen,i are set to sum up to r∗Gen, i.e. first n− 1
r∗Gen,i are chosen at random and the last one is set such that r∗Gen =

⊕
r∗Gen,i.

Indistinguishability holds because of selective indistinguishability of explanations and source (sec. B) for
program Gen, i.e. (Gen,ExplainGen, output← Gen(ρ), ρ) ∼ (Gen, ExplainGen, output← Gen′(u), rGen ←
ExplainGen(output)) for some random u, where Gen′ is a program which takes randomness u, uses it to
sample keys and obfuscation randomness and outputs obfuscated programs. Note that all variables here can

24

be generated at a CRS generation stage (in particular, nothing depends on inputs) and therefore it is enough
to use selective explainability.

• CRS generation:

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. u∗Gen is generated at random and used to sample keys ExtB,K, k, fB and obfuscation randomness
for B,Eval,ExplainB

4. B[ExtB, fB,K],Eval[K, k],ExplainB[fB] are generated and obfuscated using keys from previ-
ous step (see the code in fig. 3).

5. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B,Eval,ExplainB; ρ∗2) ;

6. (Gen,ExplainGen) is set to be the CRS.

• Generation of communication in the protocol:

1. For all i r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. For all i r∗Gen,i is chosen at random, except chronologically the last one which is set so that
r∗Gen =

⊕
r∗Gen,i.

3. For all i r∗B,i is chosen at random and b∗i ← B(i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n; r∗B,i);

4. For every party i (a∗i , r
∗
Gen,i) is set to be the first message and b∗i to be the second message of

this party.

• Internal state

1. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

Hybrid 2

In this hybrid for every party i u∗B,i is chosen at random, instead of applying FExtB to the input of pro-
gram B, and b∗i is set to be PRE.EncK(M∗i ; prg(u∗B,i)) (where M∗i is non-random input to program B,
i.e.(i, x∗i , r

∗
com,i, a

∗
1, . . . , a

∗
n)). In addition, r∗B,i, instead of being chosen at random, is fake randomness

explaining these b∗i on input M∗i .

Indistinguishability is proven by invoking, one by one for each party i, selective indistinguishability of expla-
nations and source (sec. B) for program B, i.e. (B,ExplainB, bi ← B(M ; rB,i), rB,i) ∼ (B,ExplainB, bi ←
PRE.Enc(Mi; prg(uB,i)), rB,i ← ExplainB(M, b)), for random uB,i. Note that programs B,Eval,ExplainB
need to be determined only with the last message in round 1 (i.e. when rGen becomes defined), but by this
point all inputs are already chosen by the environment. Therefore it is enough to use selective explainability.

• CRS generation:

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

25

• Generation of chronologically first n− 1 messages in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. r∗Gen,i is chosen at random;

3. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of the last message in round 1:

1. u∗Gen is generated at random and used to sample keys ExtB,K, k, fB and obfuscation randomness
for B,Eval,ExplainB;

2. B[ExtB, fB,K],Eval[K, k],ExplainB[fB] are obfuscated programs defined in fig. 3.

3. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B,Eval,ExplainB; ρ∗2);

4. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

5. r∗Gen,i is set to be
⊕
i 6=j

r∗Gen,j ⊕ r∗Gen.

6. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of round 2 messages:

1. Set M∗i ← (i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n);

2. For all i u∗B,i is chosen at random and b∗i ← PRE.EncK(M∗i ; prg(u∗B,i));

3. For every party i b∗i is set to be the second message of this party.

• Internal state

1. r∗B,i ← ExplainB(M∗i ; b∗i ; ρ3) for random ρ3;

2. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

Hybrid 3

In this hybrid instead of using prg(u∗B,i) as randomness when computing b∗i , we use a random value ũ∗B,i.

Indistinguishability holds by an invocation of security of prg for every i.

• CRS generation:

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

• Generation of chronologically first n− 1 messages in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. r∗Gen,i is chosen at random;

3. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

26

• Generation of the last message in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. u∗Gen is generated at random and used to sample keys ExtB,K, k, fB and obfuscation randomness
for B,Eval,ExplainB;

3. B[ExtB, fB,K],Eval[K, k],ExplainB[fB] are obfuscated programs defined in fig. 3.

4. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B,Eval,ExplainB; ρ∗2);

5. r∗Gen,i is set to be
⊕
i 6=j

r∗Gen,j ⊕ r∗Gen.

6. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of round 2 messages:

1. Set M∗i ← (i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n);

2. For all i ũ∗B,i is chosen at random and b∗i ← PRE.EncK(M∗i ; ũ∗B,i);

3. For every party i b∗i is set to be the second message of this party.

• Internal state

1. r∗B,i ← ExplainB(M∗i ; b∗i ; ρ3) for random ρ3;

2. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

Hybrid 4

In this hybrid we generate different programs Eval1,B1, defined in fig. 6. The goal of this hybrid is to
use a punctured PRE key K{{b∗i }ni=1} (punctured at n points) and a punctured PRF key k{(a∗1, . . . , a∗n)}
(punctured at a single point) while preserving the functionality of both programs.

In program B1 the key is punctured without any other modifications: note that ũ∗B,i is random, thus it doesn’t
have a prg preimage and no input to the program B requires computing PRE with randomness ũ∗B,i.

In program Eval1 significant modifications are made.

First, there is a check (case 0 on the figure), which says that if any b∗j appears in the wrong place of the input,
i.e. if any bi in the input is equal to b∗j for j 6= i, the program immediately outputs ⊥. Note that the original
program does the same, since b∗j would decrypt to an index j, not i, and the format of i-th plaintext would
be wrong. Thus after this check is made we can assume that if b∗i is a part of the input, it is at position i.

Second, on input b∗1, . . . , b
∗
n Eval1 outputs y∗ (note that original Eval does the same).

Third, on a mixed input (when some bi = b∗i , but not all) Eval1 does the following: it decrypts bi 6= b∗i ,
but doesn’t decrypt b∗i . Then it runs the code of original Eval by doing consistency checks, but only for
bi 6= b∗i : it checks if the sets of (a1, . . . , an) are the same in all b’s (since some of bi are b∗i , each ai
should be equal to a∗i inside each decrypted b), and it checks the commitment (note that there is no need in
commitment check for hardcoded values since they are generated honestly and thus always pass the check).
If consistency checks pass, it outputs hardcoded y∗. To see why it doesn’t change the functionality of Eval,
note two things. First, in this case Eval and Eval1 output ⊥ simultaneously. Second, if they output non-⊥,

27

their output could be only y∗: this is because as long as there is at least one b∗i in the input, all input b’s
has to encrypt a∗1, . . . , a

∗
n, and, due to statistical binding property of the honest-but-curious commitment,

verification could pass only if the set of inputs in b’s is x∗1, . . . , x
∗
n. In addition, a∗1, . . . , a

∗
n completely

determine randomness for the computation. Thus the result will always be f(x∗1, . . . , x
∗
n;Gk(a

∗
1, . . . , a

∗
n))

(or ⊥).

Finally, in the last case (when all bi 6= b∗i), the program just executes original Eval (with punctured PRE
keys), with the difference that if each ai = a∗i , then the output should be y∗ (again, this is because a∗1, . . . , a

∗
n

completely fix inputs and randomness and therefore determine the computation). After this “if”, k can be
safely punctured at (a∗1, . . . , a

∗
n).

It is easy to see that PRE decryption is never invoked on any b∗i , and PRF G is never called on (a∗1, . . . , a
∗
n),

and therefore both keys can be punctured.

Indistinguishability holds by iO.

• CRS generation:

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

• Generation of chronologically first n− 1 messages in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. r∗Gen,i is chosen at random;

3. ũ∗B,i is chosen at random;

4. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of the last message in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. ũ∗B,i is chosen at random;

3. Set M∗i ← (i, x∗i , r
∗
com,i, a

∗
1, . . . , a

∗
n);

4. For all i b∗i ← PRE.EncK(M∗i ; ũ∗B,i);

5. u∗Gen is generated at random and used to sample keys ExtB,K, k, fB and obfuscation randomness
for B,Eval,ExplainB;

6. R∗ is set to be Gk(a∗1, . . . , a
∗
n);

7. y∗ is set to be f(x∗1, . . . , x
∗
n;R∗);

8. B1[ExtB, fB,K{{b∗i }ni=1}],Eval1[K{{b∗i }ni=1}, k{(a∗1, . . . , a∗n)}, y∗],ExplainB[fB] are obfuscated
programs defined in fig. 6.

9. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B1,Eval1,ExplainB; ρ∗2);

28

10. r∗Gen,i is set to be
⊕
i 6=j

r∗Gen,j ⊕ r∗Gen.

11. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of round 2 messages:

1. For every party i b∗i is set to be the second message of this party.

• Internal state

1. r∗B,i ← ExplainB(M∗i ; b∗i ; ρ3) for random ρ3;

2. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

29

Programs used in the proof and the simulation
Program B1(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, punctured PRE key K{{b∗i }ni=1}
• Trapdoor branch:

1. set (i′, x′, r′com,i, a
′
1, . . . , a

′
n, b
′, ρ̃) ← PDE.DecfB(rB,i). If decryption returns ⊥ then goto nor-

mal branch;
2. if (i′, x′, r′com,i, a

′
1, . . . , a

′
n) 6= (i, xi, rcom,i, a1, . . . , an) then goto normal branch;

3. output b′ and halt;
• Normal branch:

1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b← PRE.EncK{{b∗i }ni=1}(M ; prg(uB,i))
4. Output b

Program Eval1(b1, . . . , bn)
Constants: punctured PRE key K{{b∗i }ni=1}, punctured PRF key k{(a∗1, . . . , a∗n)} , a∗1, . . . , a

∗
n,

b∗1, . . . , b
∗
n, y
∗

Case 0: If there is i 6= j such that bi = b∗j , output ⊥.
Case 1: If for all i bi = b∗i , then output y∗ and halt.
Case 2: If for some i bi = b∗i (denote such set as I), then:

1. For every i 6∈ I decrypt:
(a) Set Mi ← PRE.DecK{{b∗i }ni=1}(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)

2. For every i 6∈ I check consistency:
(a) Verify that the set (a1, . . . , an) is the same as (a∗1, . . . , a

∗
n)

(b) Verify that ai = HBCCommit(i, xi; rcom,i)
3. Output y∗.

Case 3: If for all i bi 6= b∗i , then:
1. For every i decrypt:

(a) Set Mi ← PRE.DecK{{b∗i }ni=1}(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)

2. For every i check consistency:
(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . ,Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. If (a1, . . . , an) = (a∗1, . . . , a
∗
n) then output y∗

4. Set R← Gk{(a∗1,...,a∗n)}(a1, . . . , an).
5. Output y ← f(x1, . . . , xn;R).

Figure 6: Programs used in the proof and the simulation.

Hybrid 5

In this hybrid we switch each b∗i from a real PRE ciphertext to a simulated ciphertext. In addition, we switch
the punctured PRE key K{{b∗i }ni=1} to simulated.

Indistinguishability holds by security of PRE (def. 1).

30

• CRS generation:

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

• Generation of chronologically first n− 1 messages in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. r∗Gen,i is chosen at random;

3. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of the last message in round 1:

1. r∗com,i is chosen at random and a∗i is set to HBCCommit(i, x∗i ; r
∗
com,i);

2. u∗Gen is generated at random and used to sample keys ExtB, k, fB and obfuscation randomness
for B,Eval,ExplainB;

3. R∗ is set to be Gk(a∗1, . . . , a
∗
n);

4. y∗ is set to be f(x∗1, . . . , x
∗
n;R∗);

5. K{{b∗i }ni=1}, b∗1, . . . , b∗n are generated by a simulator for the PRE.

6. B1[ExtB, fB,K{{b∗i }ni=1}],Eval1[K{{b∗i }ni=1}, k{(a∗1, . . . , a∗n)}y∗],ExplainB[fB] are obfuscated
programs defined in fig. 6.

7. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B1,Eval1,ExplainB; ρ∗2);

8. r∗Gen,i is set to be
⊕
i 6=j

r∗Gen,j ⊕ r∗Gen.

9. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of round 2 messages:

1. For every party i b∗i is set to be the second message of this party.

• Internal state

1. r∗B,i ← ExplainB(M∗i ; b∗i ; ρ3) for random ρ3;

2. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

Hybrid 6

In this hybrid we switch each a∗i from a real honest-but-curious commitment to a simulated commitment. In
addition, we switch its randomness r∗com,i to simulated.

Security holds by computational hiding of the equivocal honest-but-curious commitment (def. 2).

• CRS generation:

31

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

• Generation of chronologically first n− 1 messages in round 1:

1. a∗i is a simulated commitment of an honest-but-curious commitment

2. r∗Gen,i is chosen at random;

3. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of the last message in round 1:

1. a∗i is a simulated commitment of an honest-but-curious commitment

2. u∗Gen is generated at random and used to sample keys ExtB, k, fB and obfuscation randomness
for B,Eval,ExplainB;

3. R∗ is set to be Gk(a∗1, . . . , a
∗
n);

4. y∗ is set to be f(x∗1, . . . , x
∗
n;R∗);

5. K{{b∗i }ni=1}, b∗1, . . . , b∗n are generated by a simulator for the PRE.

6. B1[ExtB, fB,K{{b∗i }ni=1}],Eval1[K{{b∗i }ni=1}, k{(a∗1, . . . , a∗n)}],ExplainB[fB] are obfuscated
programs defined in fig. 6.

7. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B1,Eval1,ExplainB; ρ∗2);

8. r∗Gen,i is set to be
⊕
i 6=j

r∗Gen,j ⊕ r∗Gen.

9. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of round 2 messages:

1. For every party i b∗i is set to be the second message of this party.

• Internal state

1. r∗B,i ← ExplainB(M∗i ; b∗i ; ρ3) for random ρ3;

2. r∗com,i is a simulated opening of a∗i to (i, x∗i);

3. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

Hybrid 7

In this hybrid we switch R∗ from Gk(a
∗
1, . . . , a

∗
n) to a truly random value. Therefore the result of the

computation is switched from y∗ = f(x∗1, . . . , x
∗
n;Gk(a

∗
1, . . . , a

∗
n)) to y∗ = f(x∗1, . . . , x

∗
n;R∗) for random

R∗.

Security holds by security of a punctured PRF G.

• CRS generation:

32

1. Keys fGen, ExtGen are sampled;

2. Programs Gen[ExtGen, fGen],ExplainGen[fGen] are obfuscated programs from fig. 3.

3. (Gen,ExplainGen) is set to be the CRS.

• Generation of chronologically first n− 1 messages in round 1:

1. a∗i is a simulated commitment of an honest-but-curious commitment

2. r∗Gen,i is chosen at random;

3. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of the last message in round 1:

1. a∗i is a simulated commitment of an honest-but-curious commitment

2. R∗ is set to be random;

3. y∗ is set to be f(x∗1, . . . , x
∗
n;R∗);

4. u∗Gen is generated at random and used to sample keys ExtB, k, fB and obfuscation randomness
for B,Eval,ExplainB;

5. K{{b∗i }ni=1}, b∗1, . . . , b∗n are generated by a simulator for the PRE.

6. B1[ExtB, fB,K{{b∗i }ni=1}],Eval1[K{{b∗i }ni=1}, k{(a∗1, . . . , a∗n)}, y∗],ExplainB[fB] are obfuscated
programs defined in fig. 6.

7. ρ∗2 is chosen at random and r∗Gen ← ExplainGen[fGen](B1,Eval1,ExplainB; ρ∗2);

8. r∗Gen,i is set to be
⊕
i 6=j

r∗Gen,j ⊕ r∗Gen.

9. (a∗i , r
∗
Gen,i) is set to be the first message of a party i.

• Generation of round 2 messages:

1. For every party i b∗i is set to be the second message of this party.

• Internal state

1. r∗B,i ← ExplainB(M∗i ; b∗i ; ρ3) for random ρ3;

2. r∗com,i is a simulated opening of a∗i to (i, x∗i);

3. For every i (r∗com,i, r
∗
B,i) is secret randomness of party i.

This hybrid corresponds to the simulation described in the beginning of the proof.

5 RAM-efficient MPC Protocol Against Malicious Adversaries

In order to obtain 2-round RAM-efficient protocol secure against malicious corruption of possibly all parties,
we plug a RAM-efficient NIZK into the protocol of Garg and Polychroniadou [GP14]. We stress that the

33

actual protocol (and the proof) remains exactly the same, and the only modification we do is a switch from
statistically-sound NIZK to its RAM-efficient version.

Theorem 7 ([GP14]). Assuming the existence of RAM-efficient statistically sound NIZK, subexponentially
secure iO for circuits, and one way functions, there exists a two-round multiparty protocol with local CRS
adaptively secure against malicious corruptions of possibly all parties. Its communication complexity de-
pends on λ, {|xi|}ni=1, y, |f |RAM (logarithmic parameters omitted), and time and space of every party de-
pends on λ, {|xi|}ni=1, y, |f |RAM, and time or space needed to evaluate RAM f(x1, . . . , xn) in the worst
case.

In the next section we describe how to build RAM-efficient NIZK with statistical soundness.

5.1 RAM-efficient Statistically-Sound Non-interactive Zero Knowledge

We describe a statistically-sound NIZK scheme where the work of each party, as well as the communication
complexity, only depend on corresponding parameters of a relation represented as a RAM program, and not
as a circuit.

Our scheme is described on figure 7. It uses a non-succinct statistically sound NIZK and a succinct garbling
scheme for RAM with an additional property, which we call perfect correctness with abort: it says that for
any choice of keys and randomness for garbling by a possibly malicious garbler, the evaluation by an honest
evaluator results in either the correct value f(x) or in ⊥16.

To prove that there exist w for whichR(x,w) = 1, the prover sends to the verifier a garbled relationR and a
garbled input (x,w), together with the proof that both garbled values were generated correctly. The verifier
checks the proof and accepts if evaluation of the garbled program results in 1.

Definition 3. A garbling scheme (KeyGen,GProg,GInp) has perfect correctness with abort, if for any
randomness r1, r2, r3 the following holds: let K ← KeyGen(1λ; r1), let f̃ ← GProg(K; f ; r2) and
x̃← GInp(K;x; r3). Then either f̃(x̃) = f(x) or f̃(x̃) = ⊥.

Lemma 2. The succinct garbling scheme for RAM by Canetti and Holmgren ([CH16]) satisfies correctness
with abort, as defined in def. 3.

In appendix A we outline the construction of [CH16] and explain why perfect correctness with abort holds.

Theorem 8. Let (GenCRS, P, V) be a statistically sound non-interactive zero-knowledge proof system. Let
(KeyGen,GProg,GInp) be a succinct garbling scheme which is perfectly correct with abort (def. 3), i.e.:

• The circuit complexity of KeyGen,GProg, and GInp, and therefore the sizes of a garbled input and a
garbled program, only depend on λ, |x|, |f |RAM, logTime(f, x), log Space(f, x),

• The time to evaluate a garbled program f̃ on a garbled input x̃ only depends on λ, Time(f, x),
log Space(f, x).

16Note that the evaluation is not allowed to always output ⊥, since there is still a normal correctness of the garbling scheme,
which says that with overwhelming probability over the choice of the key the result of the computation is correct. This of course
doesn’t rule out the possibility that for negligible fraction of bad keys the evaluation always outputs ⊥.

34

Then the scheme on figure 7 is a succinct statistically sound non-interactive zero-knowledge proof system,
i.e. let T, S be time and space upperbounds of R(x,w) for all possible w. Then:

1. The running time of the prover (and therefore the size of the proof) only depends on λ, |x|, |w|,
|R|RAM, logS, log T ;

2. The running time of the verifier only depends on λ, |x|, |w|, |f |RAM, T , logS.

Succinct statistically sound NIZK:
CRS generation generates the CRS of underlying NIZK as µ← GenCRS(1λ) and sets µ to be a CRS.
The prover on input (µ, x,w) does the following:

1. It chooses randomness r and runs K ← KeyGen(1λ; r) of a garbling scheme.
2. It garbles R̃← GProg(K;R(·, ·); ρ1) and x̃w ← GInp(K; (x,w); ρ2) using randomness ρ1, ρ2.
3. It generates a proof π ← P (µ; (x, R̃, x̃w,KeyGen,GProg,GInp); (r, ρ1, ρ2, w)) for the statement

“There exist (r, ρ1, ρ2,K,w) such that K = KeyGen(1λ; r) and R̃ = GProg(K;R(·, ·); ρ1) and
x̃w = GInp(K; (x,w); ρ2)”.

4. It outputs (R̃, x̃w, π) as a proof.
The verifier on input (µ, x, (R̃, x̃w, π)) does the following:

1. It checks that R̃(x̃w) = 1;
2. It checks that the proof π is correct by running V (µ; (x, R̃, x̃w,KeyGen,GProg,GInp);π).
3. If both checks pass, it accepts. Otherwise, it rejects.

Figure 7: The description of succinct statistically sound NIZK. The scheme uses a succinct garbling scheme
(KeyGen,GProg,GInp) with perfect correctness with abort, as well as a (non-succinct) statistically sound
NIZK (GenCRS, P, V). To prove that there exist w such that R(x,w) holds, the prover garbles a program
R(·, ·), garbles an input (x,w), and generates a proof that garbling was done correctly (i.e. according to
programs GProg,GInp, and that correct x and R were garbled). The verifier accepts if and only proofs
verify and the evaluation of a garbled program on a garbled input gives 1.

Now we give a proof of the theorem:

Proof. Completeness of the scheme directly follows from completeness of underlying NIZK and correctness
of a garbling scheme.

Statistical soundness. By statistical soundness of the underlying NIZK, and by perfect correctness with
abort of the garbling scheme, if the verifier accepts the proof π of underlying NIZK (check 2 on fig. 7),
then R̃(x̃w) = R(x,w) or ⊥. Thus, if the verifier accepts the proof (R̃, x̃w, π) of the succinct NIZK, then
R̃(x̃w) = R(x,w) = 1, i.e. x ∈ L.

Computational zero-knowledge. We simulate the proof using the simulators SimG of the garbling
scheme and SimNIZK of underlying NIZK.

First the simulator runs SimNIZK to generate a simulated CRS µ. On input x the simulator simulates the
proof by running SimG(1, |x|, |w|, |R|, T, S) to generate simulated garbled values R̃, x̃w. Then it runs
SimNIZK(x, R̃, x̃w,KeyGen, GProg,GInp) to generate a simulated proof for the false statement that R̃, x̃w

35

were generated properly. Indistinguishability of a real and simulated proof holds by invocation of security
of a garbling scheme and zero-knowledge of underlying NIZK.

Succinctness. It can be immediately verified that the running time of the prover and the verifier satisfies
the statement of the theorem.

Acknowledgments

We thank Justin Holmgren for pointing out that our MPC protocol can be used to compute a garbling scheme
in [IK02] manner, which allows us to avoid the use of subexponentially-secure iO even in the RAM setting.

References

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing
polynomials and their applications. Computational Complexity, 15(2):115–162, 2006. 3, 6

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In Theory
of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy,
March 19-21, 2012. Proceedings, pages 266–284, 2012. 1, 2, 21

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party
computation for (parallel) RAM programs. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 742–762, 2015. 6

[BST14] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many hardcore bits for any one-
way function and a framework for differing-inputs obfuscation. In Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part
II, pages 102–121, 2014. 14, 18

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable secu-
rity with global setup. In Theory of Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, pages 61–85,
2007. 2

[CGP15] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure two-party com-
putation from indistinguishability obfuscation. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II, pages 557–585, 2015. 1, 5, 7, 10

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, Jan-
uary 14-16, 2016, pages 169–178, 2016. 3, 5, 6, 11, 12, 20, 34, 38

36

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling
and indistinguishability obfuscation for RAM programs. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 429–437, 2015. 3, 6

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In Proceedings on 34th Annual ACM Symposium on
Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 494–503, 2002. 4,
40

[CP13] Kai-Min Chung and Rafael Pass. A simple ORAM. IACR Cryptology ePrint Archive, 2013:243,
2013. 39

[CPR16] Ran Canetti, Oxana Poburinnaya, and Mariana Raykova. Optimal-rate non-committing encryp-
tion in a CRS model. IACR Cryptology ePrint Archive, 2016:511, 2016. 8

[DKR14] Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, universally
composable, multi-party computation in constant rounds. IACR Cryptology ePrint Archive,
2014:858, 2014. 1, 4, 5, 6, 7, 10, 18, 40

[DMN11] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM
without random oracles. In Theory of Cryptography - 8th Theory of Cryptography Conference,
TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings, pages 144–163, 2011. 5, 6

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA, USA,
2009. AAI3382729. 7

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from
indistinguishability obfuscation. In Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages 74–
94, 2014. 5

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP.
In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June
1, 2006, Proceedings, pages 339–358, 2006. 40

[GP14] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from indistin-
guishability obfuscation. IACR Cryptology ePrint Archive, 2014:844, 2014. 1, 3, 4, 5, 6, 7, 8,
11, 33, 34

[Gro11] Jens Groth. Minimizing non-interactive zero-knowledge proofs using fully homomorphic en-
cryption. IACR Cryptology ePrint Archive, 2011:12, 2011. 7

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In Automata, Languages and Programming, 29th International Collo-
quium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages 244–256, 2002. 3, 6,
36

[IKOS10] Yuval Ishai, Abishek Kumarasubramanian, Claudio Orlandi, and Amit Sahai. On invertible
sampling and adaptive security. In Advances in Cryptology - ASIACRYPT 2010 - 16th Inter-

37

national Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings, pages 466–482, 2010. 2

[KSW14] Dakshita Khurana, Amit Sahai, and Brent Waters. How to generate and use universal parame-
ters. IACR Cryptology ePrint Archive, 2014:507, 2014. 8

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 427–437, 1990. 8

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 475–484, 2014. 6, 10, 13, 14, 18, 39

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryption.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 678–697, 2015. 9, 18

A An Overview of The Garbling Scheme by Canetti and Holmgren

In this section we explain why the garbling scheme from [CH16] has perfect correctness with abort, i.e. that
for any choice of the key and randomness an honest evaluation results in either correct f(x) or ⊥. This
property is needed for our construction of a succinct NIZK, as explained in the introduction and in section
5.1.

Definition 4. A garbling scheme (KeyGen,GProg,GInp) has a perfect correctness with abort, if for any
randomness r1, r2, r3 the following holds: let K ← KeyGen(1λ; r1), let f̃ ← GProg(K; f ; r2) and x̃ ←
GInp(K;x; r3). Then either f̃(x̃) = f(x) or f̃(x̃) = ⊥.

This definition can be thought of correctness with semi-malicious garbler, i.e. the garbler who follows the
garbling instructions but chooses all randomness maliciously.

The construction of [CH16] proceeds in four steps. We briefly outline each step (omitting many details
unnecessary for correctness with abort) and explain why perfect correctness with abort holds.

Step 1. Their first step is to build a garbling scheme which guarantees indistinguishability of M̃0, x̃ and
M̃1, x̃ but only as long as the trace of the computation ofM0(x) andM1(x) (i.e. the sequence of CPU states
and memory operations) is exactly the same.

This is done by obfuscating a CPU step function C, which takes as input a CPU state q, a memory symbol v,
and outputs (q′, op′)← C(q, v), which are the next state and the next memory operation. This construction
is augmented with a number of mechanisms (such as signatures) to make sure that a malicious evaluator
cannot feed a wrong state or wrong memory symbol to the program.

We claim that this scheme has perfect correctness with abort. First, note that an honest verifier initiates the
computation with the correct memory symbol (we can assume that the initial memory symbol the program
expects to see is always ⊥) and state qstart. Next, if the computation at steps 1, . . . , i − 1 was correct (i.e.

38

resulting in the same state and memory operation which one would get by executing non-garbled f(x)),
then the output at step i also results in the correct new state and memory operation, since the honest verifier
feeds in correct values at step i. Therefore by induction the result is the correct f(x). Note that all additional
checks in the program (possibly chosen with bad parameters) can only reject the input (and therefore halt
the execution), but cannot alter q, v, and op, and therefore cannot alter an honest execution and its result.

Step 2. In this step the state becomes hidden. Instead of getting a state q in the clear and outputting it in the
clear, the program outputs it encrypted. Since this encryption they use is perfectly correct, this encryption-
decryption procedure cannot alter the state to make it incorrect, and therefore the perfect correctness with
abort still holds.

Step 3. In this step the memory (but not the access pattern) becomes hidden: the program works with
encrypted memory (instead of memory in the clear), and in particular outputs encrypted memory operations
and gets as input encrypted symbols. Since this encryption is perfectly correct, this encryption-decryption
procedure cannot alter the memory content, input symbols and output operations and make them incorrect;
therefore the perfect correctness with abort still holds.

Step 4. The last step is to hide the access pattern. This is done by implementing a Chung-Pass ORAM
([CP13]). This ORAM itself is perfectly correct with abort, i.e. at each step either the memory operation is
implemented correctly, or the overflow (⊥) occurs. Thus the whole construction of the garbling scheme is
perfectly correct with abort.

B Explainability Compiler

The original construction of a deniable encryption by Sahai and Waters [SW14] gives a way to make a
single algorithm “adaptively secure”: i.e. it transforms a randomized program Alg(x; r) into a different one
Ãlg(x; r) (by adding a trapdoor branch and rerandomizing the program) so that is possible to generate fake
randomness consistent with a given input and output.

The important property which we use in our proofs is indistinguishability of source and explanation. Roughly
speaking, indistinguishability of source says that for random r Alg(x; r) and Ãlg(x; r) are indistinguishable.
Indistinguishability of explanations says that real randomness r is indistinguishable from fake randomness
r which results in the same output a = Ãlg(x; r). These properties combined together state that random r

and the output a = Ãlg(x; r) are indistinguishable from the output of original program a = Alg(x;u) on
some random u, together with fake randomness r which makes compiled Ãlg(x; r) output a. This holds
even when the program to generate fake randomness is publicly available.

The way to think about indistinguishability of source and explanation is the following: it is possible to move
from “a real world” (random r, a ← Ãlg(x; r)) to a “hybrid” where a ← Alg(x;u), and r is fake, but
pretending to be real randomness. Essentially this step allows to “detach” a from a complicated Ãlg and
make it the result of a simpler Alg. Because of this detaching, in the next hybrid we could use security of
the primitive realized by Alg while still being able to generate internal state r: say, if Alg is an encryption
scheme, then in the next hybrid we could switch it to encryption of a different value.

39

We also note that this indistinguishability is only selective, i.e. the input x has to be known before the
indistinguishability game can be played. This imposes some restrictions on the constructions and proofs (in
particular, this is one of the reasons why we need nested programs).

Since this technique became standard in the world of adaptive security, we only briefly outlined it here.
For formal definitions, constructions, and proofs, we refer the reader to the paper of Dachman-Soled et al
([DKR14]) who formalized the technique under the name of explainability compiler.

C Three Round MPC against Malicious Adversaries

In this section we present our three-round, RAM-efficient, maliciously secure protocol with local CRS.

Our protocol is described in Fig. 8. The CRS consists of two programs, Gen and ExplainGen. The CRS
will also contain a CRS σCLOS corresponding to the adaptively secure commitment scheme of [CLOS02]
and a CRS σNIZK corresponding to a NIZK argument system that is simulation sound and secure against
adaptive adversaries [GOS06].17 We will denote by adComx(msg; r) the procedure to commit using the
commitment scheme of [CLOS02] where x is the common reference string for the commitment, msg is the
message and r is the randomness required. We briefly recall this commitment at the end of the section. We
will rely exactly on the same programs for Gen and ExplainGen from the semi-honest protocols described
in Figures 3 and 4. Recall that Gen is a generation algorithm which produces “encryption” program B,
“decryption-and-evaluation” program Eval and program ExplainB.

The protocol
CRS: σCLOS, σNIZK and programs Gen and ExplainGen,
inputs: xi; randomness: r1com,i, r

2
com,i, r

3
com,i, {rB,i,j}j=1,...,n , rGen,i

1. Round 1: Each party Pi computes ai ← adComσCLOS
(i, xi; r

1
com,i), r̃Gen,i ←

adComσCLOS
(rGen,i; r

2
com,i), r̃B,i,j ← adComσCLOS

(rB,i,j ; r
3
com,i) and broadcasts (ai, r̃Gen,i, r̃B,i,j);

2. Round 2: Each party Pi broadcasts rGen,i, {rB,i,j}j 6=i and proof Πi of the statement Si using an
NIZK proof with CRS σNIZK;

3. Each party sets rGen ←
⊕
rGen,i and runs {B,Eval,ExplainB} ← Gen(rGen);

4. Round 3: Each party broadcasts bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i) where rB,i =
⊕

j rB,j,i;
5. Each party sets its output to be y ← Eval(b1, . . . , bn).

Language Si used in the protocol:
Si := ((r̃Gen,i, rGen,i, r̃B,i,j , rB,i,j) : ∃r2com,i, r3com,i, such that
r̃Gen,i = adComσCLOS

(rGen,i; r
2
com,i) and r̃B,i,j = adComσCLOS

(rB,i,j ; r
3
com,i))

Figure 8: Malicious MPC protocol.

In the first round everybody uses the commitment scheme of [CLOS02] to separately commit to (i, xi),
{rB,i,j}j=1,...,n (to be used as a coin toss for encryption randomness) and rGen,i (to be used as a coin toss
for generation randomness).

17We remark that the [GOS06] do not explicitly claim simulation soundness. It is easy to obtain a simulation-sound argument by
sampling an independent CRS for every (ordered) pair of parties.

40

In the second round, all parties reveal rGen,i and {rB,i,j}j 6=iand prove using an NIZK proof that this is indeed
the string committed to in the first round. More formally, party Pi proves the following NP-statement:

Si := ((r̃Gen,i, rGen,i, r̃B,i,j , rB,i,j) : ∃r2com,i, r3com,i, such that

r̃Gen,i = adComσCLOS
(rGen,i; r

2
com,i) and r̃B,i,j = adComσCLOS

(rB,i,j ; r
3
com,i)),

where r̃Gen,i is defined in round 1 of the protocol and rGen,i is the message revealed by party Pi in round 2.
Then everybody sets (the same) rGen ←

⊕
rGen,i. Everybody runs Gen(rGen) to obtain the same programs

B,Eval,ExplainB.

In the third round, all parties perform exactly the same instructions as they executed in round 2 of the semi-
honest protocol. Namely, everybody runs the program B as: bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i) (using
randomness rB,i =

⊕
j rB,j,i) and broadcasts bi. Then everybody computes y ← Eval(b1, . . . , bn).

Theorem 9. The protocol described above UC-securely implements Fmulti−f for any functionality f in the
presence of malicious adaptive adversaries.

Proof Sketch: We provide high-level description of our simulation and proof of correctness.

Description of simulator: The simulator will generate a CRS for both the NIZK and commitment scheme
adCom with the trapdoors. It will however continue to generate the programs Gen and ExplainGen honestly
as in the semi-honest protocol. Next, it will proceed as follows:

In Round 1, the simulator will equivocate the commitments made by the honest parties and extract the
commitments made by the corrupted parties. Let (a∗1, . . . , a

∗
n) be the first set of commitments made in

Round 1 (namely the commitement made to xi).

In Round 2, it will proceed as follows:

• It constructs b∗i for every party Pi, together with a punctured key K{{b∗i }ni=1}, using PRE.Sim. Then
it computes r∗B,i ← ExplainB((i, x∗i , r

∗
com,i, a

∗
1, . . . , a

∗
n), b∗i ; ρi). Finally, it generates a punctured key

k{(a∗1, . . . , a∗n)}).

• It generates Eval1,B1,ExplainB as in the semi-honest protocol using the output y∗, a∗i from round 1
and b∗i generated in previous step.

• The simulator then equivocates rB,j,i for every corrupted party i and honest party j so that r∗B,i =⊕
j rB,j,i (In fact, it suffices to equivocate only one honest party’s randomn string rB,j,i).

• Next, it computes r∗Gen so as to explain B1,Eval1,ExplainB. More precisely, it computes r∗Gen ←
ExplainGen(Eval1,B1,ExplainB; ρ) for random ρ. rGen,i are equivocated for honest parties so that
r∗Gen,i sum up to r∗Gen.

• Finally, it simulates the NIZK proofs for statements Si on behalf of honest parties Pi.

In Round 3, the simulator first checks that the values decommitted to by the adversary in Round 2 are the
ones it extracted in Round 1. If they are not, then the simulator aborts. Otherwise, the simulator simply
feeds b∗i that is chose for all honest parties.

41

Proof of security: We provide a high-level sketch of the hybrids.

We start with a real execution.

Hybrid 1: We extract all the values committed to by the corrupted adversary. We also check if the values
decommitted to in the second round are equal to the values to extracted and abort if this does not hold.
Indistinguishability of Hybrid 1 from the real world follows from the soundness of the NIZK argument
system.

Hybrid 2: We replace the σNIZK to be distributed according to the simulation and we replace all proofs
made by the honest parties to simulated ones in Round 2. Indistinguishability of Hybrid 2 from Hybrid 1
follows from the security of the NIZK argument system against adaptive adversaries.

Hybrid 3: We make challenge programs B, Eval, and ExplainB independent of Gen: Namely, we choose
internal keys of B,Eval,ExplainB, as well as their obfuscation randomness, at random (instead of generating
these values by running Gen). In addition, we compute r∗Gen so that Gen(r∗Gen) outputs B,Eval. Furthermore,
we equivocate rGen,i so that the XOR of all the rGen,i equals the chosen r∗Gen. Indistinguishability of Hybrid
2 and Hybrid 3 holds by selective indistinguishability of source and explanation for program Gen.

Hybrid 4: We make randomness u∗B,i, used for challenge ciphertexts b∗i , chosen at random and therefore in-
dependent of B according to the simulation. Then we can compute r∗B,i using the program ExplainB((i, x∗i ,
r∗com,i, a

∗
1, . . . , a

∗
n), b∗i ; ρi). Furthermore, we equivocate rB,j,i for every corrupted party i and honest party j

so that r∗B,i =
⊕

j rB,j,i. Indistinguishability holds by selective indistinguishability of source and explana-
tion for program B. We remark here that we do not equivocate the commitment and we rely on the security
of the NIZK against adaptive adversaries.

Hybrid 5: We use a truly random value instead of prg(u∗B,i) to encrypt b∗i , for every i. Indistinguishability
holds by pseudorandomness of a prg.

Hybrid 6: Just as in the semi-honest case, we modify programs B, Eval so that they only use a punctured
version of a PRE keyK{{b∗i }ni=1} and a PRF key k{(a∗1, . . . , a∗n)}. Since the functionality of these programs
is identical, indistinguishability follows from the security of iO.

Hybrid 7: We generate {b∗i } together with a punctured key K{{b∗i }ni=1}, using PRE.Sim. Indistinguisha-
bility holds by security of a PRE scheme.

Hybrid 8: We exploit the computational hiding property of the commitment scheme adCom and switch
commitments a∗i to simulated, together with commitment randomness r∗com,i, for each party.

Hybrid 9: Finally, using security of a PRF G with punctured key k{(a∗1, . . . , a∗n)}, we switch randomness
R∗ fromGk(a

∗
1, . . . , a

∗
n) to truly random value, thus making the output y∗ = f(x∗1, . . . , x

∗
n;R∗) independent

of our programs.

42

	Introduction
	Our results: semi-honest setting
	Our results: malicious setting
	Related work
	Our techniques: semi-honest case
	Our techniques: malicious case

	Building blocks
	Puncturable randomized encryption
	Honest-but-curious Equivocal Commitments

	Our MPC protocol against semi-honest adversaries
	The Proof of the Main Theorem
	An Overview of the Hybrids
	The Full Descrition of Hybrids.

	RAM-efficient MPC Protocol Against Malicious Adversaries
	RAM-efficient Statistically-Sound Non-interactive Zero Knowledge

	An Overview of The Garbling Scheme by Canetti and Holmgren
	Explainability Compiler
	Three Round MPC against Malicious Adversaries

