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Abstract

Universally composable protocols provide security even in highly complex environments like
the Internet. Without setup assumptions, however, UC-secure realizations of cryptographic tasks
are impossible. Tamper-proof hardware tokens, e.g. smart cards and USB tokens, can be used
for this purpose. Apart from the fact that they are widely available, they are also cheap to
manufacture and well understood.

Currently considered protocols, however, suffer from two major drawbacks that impede their
practical realization:
• The functionality of the tokens is protocol-specific, i.e. each protocol requires a token

functionality tailored to its need.
• Different protocols cannot reuse the same token even if they require the same functionality

from the token, because this would render the protocols insecure in current models of
tamper-proof hardware.

In this paper we address these problems. First and foremost, we propose formalizations of
tamper-proof hardware as an untrusted and global setup assumption. Modeling the token as a
global setup naturally allows to reuse the tokens for arbitrary protocols. Concerning a versatile
token functionality we choose a simple signature functionality, i.e. the tokens can be instantiated
with currently available signature cards. Based on this we present solutions for a large class of
cryptographic tasks.

Keywords: universal composability, tamper-proof hardware, unique signatures, global setup

1 Introduction

In 2001, Canetti [Can01] proposed the Universal Composability (UC) framework. Protocols proven
secure in this framework have strong security guarantees for protocol composition, i.e. the parallel
or interleaved execution of protocols. Subsequently, it was shown that it is not possible to construct
protocols in this strict framework without additional assumptions [CF01]. Typical setup assumptions
like a common reference string or a public key infrastructure assume a trusted setup. Katz [Kat07] on
the other hand put forward the idea that protocol parties create and exchange untrusted tamper-proof
hardware tokens, i.e. the tokens may be programmed maliciously by the sending party.

Katz’ proposal spawned a line of research that focuses mainly on the feasibility of UC-secure
two-party computation. First, stateful tamper-proof hardware was considered [Kat07, MS08, GKR08,
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DNW09, GIS+10, DKMQ11], then weaker models of tamper-proof hardware, where the hardware
token cannot reliably keep a state, i.e. the receiver can reset the token [CGS08, Kol10, GIS+10,
GIMS10, DS13, DMMQN13, CKS+14, DKMN15, DKMQN15, HPV16, HPV17].

Common to all of the aforementioned results is the fact that each protocol requires a token
functionality that is tailored to the protocol. From a practical point of view it seems unlikely that
these tokens will ever be produced by hardware vendors, and software implementations on standard
smart cards are far too inefficient. Another negative side effect of protocol-specific tokens is that
users need to keep at least one token for each application, which is prohibitive in practice.

We would therefore like to be able to use widely available standard hardware for our protocols.
Examples are signature cards, where the token functionality is a simple signature functionality. The
signing key is securely stored inside the tamper-proof hardware, while the verification key can be
requested from the card. These cards are not required to keep an internal state (the keys can be
hardwired). As an alternative several works in the literature discuss bit-oblivious transfer (OT)
tokens as a very simple and cheap functionality [IPS08, GIS+10, AAG+14]. However, there are no
standardized implementations of such tokens, while signature tokens are standardized and already
deployed.

As it turns out, even if there were protocols that use a signature card as a setup assumption,
it would not be possible to use the same token in a different protocol. This is due to the current
definitions of tamper-proof hardware in the UC model. To the best of our knowledge, reusing
tamper-proof hardware was only considered by Hofheinz et al. [HMQU05], who introduce the concept
of catalysts. In their model, they show that the setup can be used for multiple protocols, unlike a
normal UC setup, but they assume a trusted setup.

A recent line of research, e.g. [CJS14, BOV15, CSV16], has focused on efficient protocols based
on a globally available setup. This stronger notion of UC security, called Generalized UC (GUC), was
introduced by Canetti et al. [CDPW07] and captures the fact that protocols are often more efficient if
they can use the same setup. Indeed, a globally available token in the sense of GUC would naturally
allow different protocols to use the same token. We note that the work of Chandran et al. [CGS08]
and subsequent works following the approach of requiring only black-box access to the token during
simulation (e.g. [GIS+10, CKS+14]) might in principle be suitable for reuse, however none of these
works consider this scenario and the problem of highly protocol-specific token functionalities is
prevalent in all of these works.

1.1 Our contribution.

We apply the GUC methodology to resettable tamper-proof hardware and define the first global setup
that is untrusted, in contrast to trusted and incorruptible setups like a global random oracle [CJS14],
key registration with knowledge [CDPW07] or trusted processors [PST17].

In a little more detail, we present two models for reusable tamper-proof hardware:
• The first model is inspired by the work of [HMQU05] and generalizes their approach from

trusted signature cards to generic and untrusted resettable tokens. It is also designed to model
real world restrictions regarding concurrent access to e.g. a smart card. A real world analogy
is an ATM that seizes the card for the duration of the cash withdrawal. During that time, the
card cannot be used to sign a document. We want to highlight that this only limits the access
to the tokens for a short time, it is still possible to run several protocols requiring the same
token in an interleaved manner.
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• The second model is a GUC definition of a resettable tamper-proof hardware token following
the approach of [CJS14], which is meant to give a GUC definition of reusable tamper-proof
hardware. In particular, this means that there are no restrictions at all regarding access to
the token.

We also consider a peculiarity of real world signature cards that is typically ignored in idealized
descriptions. Most signature cards outsource some of the hashing of the message, which is usually
needed in order to generate a signature, to the client. This is done to make the signature generation
more efficient. We formally capture this in a new definition of signatures where the signing process
is partitioned into a preprocessing and the actual signing. As we will show, cards that do outsource
the hashing—even if only in part—cannot be used in all scenarios. Nevertheless, we show that a
wide range of cryptographic functionalities can be realized, even if the card enforces preprocessing.
• UC-secure commitments in both models, even with outsourced hashing by the signature card.

This means that all currently available signature cards can in principle be used with our
protocols.
• UC-secure non-interactive secure computation (NISC) in the GUC model. Here it is essential

that the hashing is performed on the card, i.e. not all signature cards are suitable for these
protocols. This result establishes the minimal interaction required for (one-sided) two-party
computation.

We show that the number of tokens sent is optimal, and that stateful tokens do not yield any
advantage in the setting of globally available or reusable tokens.

1.2 Our techniques.

Modelling reusable hardware tokens. In the definition of the “realistic” model, a protocol is
allowed to send a seize command to the token functionality, which will block all requests by other
protocols to the token until it is released again via release. We have to make sure that messages
cannot be exchanged between different protocols, thus the receiving party (of the signature, i.e.
the sender of the signature card) has to choose a nonce. This nonce has to be included in the
signature, thereby binding the message to a protocol instance. This obviously requires interaction,
so non-interactive primitives cannot be realized in this model.

In order to explore the full feasibility of functionalities with reusable tokens and obtain more
round-efficient protocols, we therefore propose a more idealized model following [CJS14]. The
simulator is given access to all “illegitimate” queries that are made to the token, so that all queries
concerning a protocol (identified by a process ID PID), even from other protocols, can be observed.
Essentially, this turns the token into a full-blown GUC functionality and removes the additional
interaction from the protocols.

Commitments from signature cards. Concerning our protocols in the above described
models, one of the main difficulties when trying to achieve UC security with hardware tokens is to
make sure that the tokens cannot behave maliciously. In our case, this would mean that we have to
verify that the signature was created correctly. Usually, e.g. in [HMQU05, DMMQN13], this is done
via zero-knowledge proofs of knowledge, but the generic constructions that are available are highly
inefficient. Instead, similar to Choi et al. [CKS+14], we use unique signatures. Unique signatures
allow verification of the signature, but they also guarantee that the signature is subliminal-free, i.e.
a malicious token cannot tunnel messages through the signatures.

Based on tokens with this unique signature functionality, we construct a straight-line extractable
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commitment. The main idea is to send the message to the token and obtain a signature on it. The
simulator can observe this message and extract it. Due to the aforementioned partitioning of the
signature algorithm on current smart cards, however, the simulator might only learn a hash value,
which makes extraction impossible. We thus modify this approach and make it work in our setting.
Basically, we keep the intermediate values sent to the token in the execution and use them as a seed
for a PRG, which can in turn be used to mask the actual message. Since the simulator observes this
seed, it can extract the message. However, the token can still abort depending on the input, so we
also have to use randomness extraction on the seed, otherwise the sender of the token might learn
some bits of the seed.

Using the straight-line-extractable commitment as a building block, we modify the UC commit-
ment of [CJS14] so that it works with signature cards.

Non-interactive witness-extractable arguments. A witness-extractable argument is basi-
cally a witness-indistinguishable argument of knowledge (WIAoK) with a straight-line extraction
procedure. We construct such a non-interactive witness-extractable argument for later use in
non-interactive secure computation (NISC). Our approach follows roughly the construction of
Pass [Pas03], albeit not in the random oracle model. [Pas03] modify a traditional WIAoK by
replacing the commitments with straight-line extractable ones. Further, they replace the application
of a hash function to the transcript (i.e. the Fiat-Shamir heuristic) with queries to a random oracle.
For our construction, we can basically use our previously constructed straight-line extractable
commitments, but we also replace the queries to the random oracle by calls to the signature token,
i.e. we can use the EUF-CMA security of the signature to ensure the soundness of the proof.

As hinted at above, this protocol requires the ideal model, since using a nonce would already
require interaction. Also, there is a subtle technical issue when one tries to use signatures with
preprocessing instead of the random oracle. In the reduction to the EUF-CMA security (where the
reduction uses the signing oracle to simulate the token), it is essential that the commitments contain
an (encoded) valid signature before they are sent to the token. However, if we use preprocessing, the
preprocessed value does not provide the reduction with the commitments, which could in turn be
extracted to reveal the valid signature and break the EUF-CMA security. Instead, it only obtains
a useless preprocessed value, and once the reduction obtains the complete commitments via the
non-interactive proof from the adversary, a valid call to the signature card on these commitments
means that the adversary has a valid way to obtain a signature and the reduction does not go
through. If the protocol were interactive, this would not be an issue, because we could force the
adversary to first send the commitments and then provide a signature in a next step. But since the
protocol is non-interactive, this does not work and we cannot use signature cards with preprocessing
for this protocol. We believe this to be an interesting insight, since it highlights one of the differences
in feasibility between idealized and practically available hardware.
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# Tokens Rounds Assumption Token Func.

[CGS08] 2 (bidir.) Θ(κ) eTDP specific for com.

[GIS+10] Θ(κ) (bidir.) Θ(1) CRHF1 specific for OT

[CKS+14] 2 (bidir.) Θ(1) VRF2 specific for OT

[HPV16] Θ(κ2) (bidir.) Θ(1) OWF specific for OT

Ours (Section 3) 2 (bidir.) Θ(1) Unique Sign.3 generic

Ours (Section 4) 2 (bidir.) Θ(1) Unique Sign./DDH4 generic

Table 1: Comparison of our result with existing solutions based on resettable hardware that
technically allow reusing the tokens. All results mentioned above allow UC-secure 2PC, either
directly or via generic completeness results.

1.3 Related work.

In an independent and concurrent work, using an analogous approach based on [CJS14], Hazay et
al. [HPV16] recently introduced a GUC-variant of tamper-proof hardware to deal with the problem
of adversarial token transfers in the multi-party case. This problem is equivalent to the problem of
allowing the parties to reuse the token in different protocols without compromising security. Apart
from using completely different techniques, however, [HPV16] are only interested in the general
feasibility of round-efficient protocols. In contrast, we would like to minimize the number of tokens
that are sent. Additionally, [HPV16] only consider the somewhat idealized GUC token functionality,
and do not investigate a more realistic approach (cf. Section 3). This is an important aspect, in
particular since our results indicate that some of the protocols in the idealized model cannot be
realized in our more natural token model that is compatible with existing signature cards. Thus,
from a more practical point of view, even the feasibility of generic 2PC is not conclusively resolved
from existing results.

Table 1 gives a concise overview of our result compared with previous solutions based on
resettable hardware that make black-box use of the token program in the UC security proof. Other
approaches as shown in e.g. [DKMQ11, DMMQN13, DKMQN15] are more efficient, but require the
token code and therefore cannot be reused without losing security.

Generally, physically uncloneable functions (PUFs) also provide a fixed functionality, which
has (assumed) statistical security. One could thus imagine using PUFs to realize reusable tokens.
However, in the context of transferable setups (i.e. setups that do not disclose whether they have
been passed on), Boureanu et al. [BOV15] show that neither OT nor key exchange can be realized,
and PUFs fall into the category of transferable setups. Tamper-proof hardware as defined in
this paper on the other hand is not a transferable setup according to their definitions, so their
impossibilities do not apply.

1
A protocol based on OWF is also shown, but the round complexity increases to Θ(κ/ log(κ)). Additionally, it was

shown by Hazay et al. [HPV16] that there is a subtle error in the proof of the protocol.
2
Verifiable random functions (VRFs) are only known from specific number-theoretic assumptions [MRV99, Lys02,

Jag15]. They also present a protocol with similar properties based on a CRHF, but the number of OTs is bounded in
this case.

3
Unique signatures are only known from specific number-theoretic assumptions and closely related to VRFs. These

are required for our protocols.
4
DDH is necessary for the NISC protocol.
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2 Preliminaries

In this section, we introduce the security model and the basic primitives used throughout the paper.

2.1 UC framework

We show our results in the generalized UC framework (GUC) of Canetti et al. [CDPW07]. Let us
first briefly describe the basic UC framework [Can01], and then highlight the changes required for
GUC. In UC, the security of a real protocol π is shown by comparing it to an ideal functionality F .
The ideal functionality is incorruptible and secure by definition. The protocol π is said to realize
F , if for any adversary A in the real protocol, there exists a simulator S in the ideal model that
mimics the behavior of A in such a way that any environment Z, which is plugged either to the
ideal or the real model, cannot distinguish both.

In UC, the environment Z cannot run several protocols that share a state, e.g. via the same
setup. In GUC, this restriction is removed. In particular, Z can query the setup independently of
the current protocol execution, i.e. the simulator will not observe this query.

We will realize a UC-secure commitment. The ideal functionality FCOM is defined in Figure 1.

Functionality FCOM

Implicitly parametrized by a domain of secrets S.

Commit phase:
1. Await an input (commit, s) with s ∈ S from the sender. Store s, send (committed) to the adversary

and ignore any further commit-messages.
2. Await a message (notify) from the adversary. Then send (committed) to the receiver.

Unveil phase:
3. Await an input (unveil, ŝ) with ŝ ∈ S from the sender. Then, store ŝ and send (opened) to the

adversary.
4. Await a message (output) from the adversary. Then, if ŝ = s, send (opened, ŝ) to the receiver;

otherwise, send a special reject message ⊥.

Figure 1: Ideal functionality for commitments.

2.2 Pseudorandom Functions

Definition 1. An efficiently computable function PRF : {0, 1}n × {0, 1}κ → {0, 1}m is called a
pseudorandom function if for every PPT algorithm A

| Pr
s←Uκ

[APRF(·,s) = 1]− Pr
h←H

[Ah = 1]| ≤ negl(κ),

where H is the uniform function family {h : {0, 1}n → {0, 1}m}.

2.3 Commitments

We need several types of commitment schemes. A commitment is a (possibly interactive) protocol
between two parties and consists of two phases. In the commit phase, the sender commits to a value
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and sends the commitment to the receiver. The receiver must not learn the underlying value before
the unveil phase, where the sender sends the unveil information to the receiver. The receiver can
check the correctness of the commitment. A commitment must thus provide two security properties:
a hiding property that prevents the receiver from extracting the input of the sender out of the
commitment value, and a binding property that ensures that the sender cannot unveil a value other
than the one he committed to.

Definition 2. A commitment scheme COM between a sender S and a receiver R consists of two
PPT algorithms Commit and Open with the following functionality.
• Commit takes as input a message s and computes a commitment c and unveil information d.
• Open takes as input a commitment c, unveil information d and a message s and outputs a bit
b ∈ {0, 1}.

We require the commitment scheme to be correct, i.e. for all s:

Open(Commit(s), d, s) = 1

The binding and hiding properties are defined as follows:

Definition 3. We say that COM = (Commit,Open) is computationally hiding if for every PPT
algorithm AR:

Pr[(s0, s1)← AR(1κ); b← {0, 1}; (c, d)← Commit(sb); b
′ ← AR(c) ∧ b = b′] ≤ 1

2 + negl(κ).

Definition 4. We say that COM = (Commit,Open) is statistically binding if for every algorithm
AS:

Pr[(c, d, d′, s, s′)← AS(1κ) s.t. d 6= d′ ∧ s 6= s′ ∧ Open(c, d, s) = Open(c, d′, s′) = 1] ≤ negl(κ).

Further, we need extractable commitments. Extractabilty is a stronger form of the binding
property which states that the sender is not only bound to one input, but that there also exists an
(efficient) extraction algorithm that extracts this value. Our definition of extractable commitments
is derived from Pass and Wee [PW09].

Definition 5. We say that COM = (Commit,Open) is extractable, if there exists an (expected)
PPT algorithm Ext that, given black-box access to any malicious PPT algorithm AS, outputs a pair
(ŝ, τ) such that
• (simulation) τ is identically distributed to the view of AS at the end of interacting with an

honest receiver R in the commit phase,
• (extraction) the probability that τ is accepting and ŝ = ⊥ is negligible, and
• (binding) if ŝ 6= ⊥, then it is infeasible to open τ to any value other than ŝ.

Extractable commitments can be constructed from any commitment scheme via additional
interaction, see e.g. [Gol01, PW09]. The definition of extractable commitments implicitly allows the
extractor to rewind the adversarial sender to extract the input. In some scenarios, especially in the
context of concurrently secure protocols, it is necessary that the extractor can extract the input
without rewinding. This is obviously impossible in the plain model, as a malicious receiver could
employ the same strategy to extract the sender’s input. Thus, some form of setup (e.g. tamper-proof
hardware) is necessary to obtain straight-line extractable commitments.
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Definition 6. We say that COM = (Commit,Open) is straight-line extractable if in addition
to Definition 5, the extractor does not use rewinding.

Another tool that we need is a trapdoor commitment scheme, where the sender can equivocate a
commitment if he knows a trapdoor. We adapt a definition from Canetti et al. [CJS14].

Definition 7. A trapdoor commitment scheme TCOM between a sender S and a receiver R consists
of five PPT algorithms KeyGen, TVer, Commit, Equiv and Open with the following functionality.
• KeyGen takes as input the security parameter and creates a key pair (pk, sk), where sk serves

as the trapdoor.
• TVer takes as input pk and sk and outputs 1 iff sk is a valid trapdoor for pk.
• Commit takes as input a message s and computes a commitment c and unveil information d.
• Equiv takes as input the trapdoor sk, message s′, commitment c, unveil information d and

outputs an unveil information d′ for s′.
• Open takes as input a commitment c, unveil information d and a message s and outputs a bit
b ∈ {0, 1}.

The algorithm Equiv has to satisfy the following condition. For every PPT algorithm AR, the
following distributions are computationally indistinguishable.
• (pk, c, d, s), where (pk, sk)← AR(1κ) such that TVer(pk, sk) = 1 and (c, d)← Commit(pk, s)
• (pk, c′, d′, s), where (pk, sk)← AR(1κ) such that TVer(pk, sk) = 1, (c′, z)← Commit(pk, ·) and
d′ ← Equiv(sk, s, c′, z)

For example, the commitment scheme by Pedersen [Ped92] satisfies the above definition.

2.4 Witness-Indistinguishability

We construct a witness-indistiguishable argument of knowledge in this paper.

Definition 8. A witness-indistinguishable argument of knowledge system for a language L ∈ NP
with witness relation RL consists of a pair of PPT algorithms (P,V) such that the following conditions
hold.
• Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1.

• Soundness: For every x /∈ L and every malicious PPT prover P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(|x|).

• Witness-indistinguishability: For every w1 6= w2 such that (x,w1) ∈ RL, (x,w2) ∈ RL and
every PPT verifier V∗, the distributions {〈P(w1),V∗〉(x)} and {〈P(w2),V∗〉(x)} are computa-
tionally indistinguishable.
• Proof of Knowledge: There exists an (expected) PPT algorithm Ext such that for every x ∈ L

and every PPT algorithm P∗, there exists a negligible function ν(κ) such that Pr[Ext(x,P∗) ∈
wL(x)] > Pr[〈P∗,V〉(x) = 1]− ν(κ).

Witness-indistinguishable arguments/proofs of knowledge are also sometimes referred to as witness-
extractable. Similar to the case of extractable commitments, one can also require the extractor to be
straight-line, i.e. the extractor may not rewind the prover. Again, this requires an additional setup
assumption and is not possible in the plain model.

8



Definition 9. We say that a witness-indistinguishable argument/proof system is straight-line
witness-extractable if in addition to Definition 8, the extractor does not use rewinding.

2.5 Digital Signatures

Digital signatures allow to compute an unforgeable message digest. The signer has a signing key sgk,
and he can publish the verification key vk such that anyone can verify the correctness of a signature,
given message and signature.

Definition 10. A digital signature scheme SIG consists of three PPT algorithms KeyGen, Sign and
Verify.
• KeyGen(1κ) takes as input the security parameter κ and generates a key pair consisting of a

verification key vk and a signature key sgk.
• Sign(sgk,m) takes as input a signature key sgk and a message m, and outputs a signature σ

on m.
• Verify(vk,m, σ) takes as input a verification key vk, a message m and a presumed signature σ

on this message. It outputs 1 if the signature is correct and 0 otherwise.
We require correctness, i.e. for all m and (vk, sgk)← KeyGen(1κ):

Verify(vk,m,Sign(sgk,m)) = 1.

For our constructions, the signature schemes have to fulfill the security property existential
unforgeability under chosen message attack (EUF-CMA), i.e. an adversary is not supposed to be
able to forge a signature for any message of his choosing. In the EUF-CMA-security experiment,
the experiment first executes the KeyGen algorithm to create a key pair (vk, sgk). The adversary A
is given the verification key vk and access to a signature oracle OSIG.Sign(sgk,·) that signs arbitrary
messages. A wins the experiment if he manages to forge a valid signature σ∗ for a message m∗

without having queried the signature oracle with m∗.
A signature scheme SIG is called EUF-CMA-secure if no PPT adversary A wins the EUF-CMA-

experiment with non-negligible probability. For the sake of simplicity, we require signature schemes
with a deterministic verification procedure and succinct signature length (i.e. the length of σ does
not depend on m). A property of some digital signature schemes is the uniqueness of the signatures.
Our definition is taken from Lysyanskaya [Lys02]. Such schemes are known only from specific
number theoretic assumptions.

Definition 11. Let SIG be a digital signature scheme. A signature scheme is called unique if
additionally to the properties of Definition 10 the following property holds. There exists no tuple
(vk,m, σ1, σ2) such that SIG.Verify(vk,m, σ1) = 1 and SIG.Verify(vk,m, σ2) = 1 with σ1 6= σ2.

We point out that in the above definition, vk, σ1, and σ2 need not be created honestly by the
respective algorithms, but may be arbitrary strings.

3 Real Signature Tokens

It is our objective to instantiate the token functionality with a signature scheme. In order to allow
currently available signature tokens to be used with our protocol, our formalization of a generalized
signature scheme must take the peculiarities of real tokens into account.
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One of the most important aspects regarding signature tokens is the fact that most tokens split
the actual signing process into two parts: the first step is a (deterministic) preprocessing that usually
computes a digest of the message. To improve efficiency, some tokens require this step to be done
on the host system, at least in part. In a second step, this digest is signed on the token using the
encapsulated signing key. In our case, this means that the adversary contributes to computing the
signature. This has severe implications regarding the extraction in UC-secure protocols, because it
is usually assumed that the simulator can extract the input from observing the query to the token.

To illustrate the problem, imagine a signature token that executes textbook RSA, and requires
the host to compute the hash. A malicious host can blind his real input due to the homomorphic
properties of RSA. Let (e,N) be the verification key and d the signature key for the RSA function.
The adversary chooses a message m and computes the hash value h(m) under the hash function
h. Instead of sending h(m) directly to the signature token, he chooses a random r, computes
h(m)′ = h(m) · re mod N and sends h(m)′ to the token. The signature token computes σ′ =

(h(m) · re)d = h(m)d · r mod N and sends it to the adversary, who can multiply σ′ by r−1 and
obtain a valid signature σ on m. Obviously, demanding EUF-CMA for the signature scheme is not
enough, because the signature is valid and the simulator is not able to extract m.

The protocols of [HMQU05] will be rendered insecure if the tokens perform any kind of prepro-
cessing outside of the token, so the protocols cannot be realized with most of the currently available
signature tokens (even if they are trusted). We aim to find an exact definition of the requirements,
so that tokens which outsource part of the preprocessing can still be used in protocols. The following
definition of a signature scheme with preprocessing thus covers a large class of currently available
signature tokens and corresponding standards.

Definition 12. (Digital signatures with preprocessing) A signature scheme SIG with preprocessing
consists of five PPT algorithms KeyGen, PreSg, Sign, Vfy and Verify.
• KeyGen(1κ) takes as input the security parameter κ and generates a key pair consisting of a

verification key vk and a signature key sgk.
• PreSg(vk,m) takes as input the verification key vk, the message m and outputs a deterministi-

cally preprocessed message p with |p| = n.
• Sign(sgk, p) takes as input a signing key sgk and a preprocessed message p of fixed length n. It

outputs a signature σ on the preprocessed message p.
• Vfy(vk, p, σ) takes as input a verification key vk, a preprocessed message p and a presumed

signature σ on this message. It outputs 1 if the signature is correct and 0 otherwise.
• Verify(vk,m, σ) takes as input a verification key vk, a message m and a presumed signature σ

on this message. It computes p← PreSg(vk,m) and then checks if Vfy(vk, p, σ) = 1. It outputs
1 if the check is passed and 0 otherwise.

We assume that the scheme is correct, i.e. it must hold for all messages m that

∀κ ∈ N ∀(vk, sgk)← KeyGen(1κ) : Verify(vk,m,Sign(sgk,PreSg(vk,m))) = 1.

Additionally, we require uniqueness according to Definition 11.

Existential unforgeability can be defined analogously to the definition for normal signature
schemes. However, the EUF-CMA property has to hold for both KeyGen, Sign and Vfy and
KeyGen, Sign and Verify. The PreSg algorithm is typically realized as a collision-resistant hash
function.
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All protocols in the following sections can be instantiated with currently available signature
tokens that adhere the definition above. Tokens that completely outsource the computation of the
message digest to the host do not satisfy this definition (because KeyGen, Sign and Vfy are not
EUF-CMA secure).

Commonly used algorithms for message signing make are based on cryptographic assumptions
such as the Discrete Logarithm Problem or the RSA problem. For reasons of efficiency and security,
the signature is usually not computed directly on the message. Most algorithms have the following
structure:

1. Compute a hash value h(m) on the message m, where h is a cryptographic hash function. This
is done for two reasons: first, it allows the signing of messages of arbitrary length. Second, it
prevents an attacker from performing homomorphic operations on the message which could
possibly render the signature scheme insecure.

2. (Optional) Apply a padding pad to h(m). This can either be done to store some information
such as the algorithm used for message hashing (such as with the ASN.1 padding used in
RSASSA-PKCS1-v1 5) or for improved security as with RSASSA-PSS. Care has to be taken
not to introduce a subliminal channel into the signature.

3. Perform the actual cryptographic operation on the last step’s result.
The preprocessing, i.e. hashing and padding, does not require the signing key. To increase

performance, these steps are sometimes (in part) performed on the host before sending the result
to the signature token. For the RSASSA-PKCS1-v1 5 signature scheme, PKCS#1 does not
mandate where each step is performed. In contrast, RSASSA-PSS was specifically designed to allow
computation of the message’s hash on the host. As a consequence, signature tokens may support a
variety of operation modes with different input data:

1. The whole message m is supplied to the token.
2. Hashing algorithms based on the Merkle-Damg̊ard construction [Dam90, Mer79] allow for the

the message to be processed block-wise. Thus all hashing steps but the last one are performed
by the host, and the result is processed with the last block on the token.

3. The (optionally padded) hash is supplied to the token.
The supported operation modes depend on the token and are in some cases negotiable. While

some signature cards support all aforementioned modes, others only supports Mode 2. If the client
application does not interface with the token directly but e.g. uses a PKCS#11 library, mode
selection is done by the library’s token driver according to the token’s capabilities and the requested
signature scheme. In particular, it cannot be ruled out that some tokens can be forced to operate in
a maliciously specified mode.

Independent of the actual implementation of the preprocessing, the requirement that the signature
scheme is EUF-CMA secure both with preprocessing and without implies that the preprocessing
needs to be (at the very least) collision resistant. We will now argue that this property guarantees a
certain pseudo min-entropy of this preprocessed value, which is nessary for the security analysis of
our protocols.

Lemma 13. Let s be a statistical security parameter, κ ≥ s a computational security parameter
normalized to s and (sgk, vk)← SIG.KeyGen(κ). Then

H̃∞(SIG.PreSg(vk, U3κ)) ≥ s

2
.

Proof. Assume that H̃∞(SIG.PreSg(U3κ)) = t < s
2 . Then a simple brute force search finds a collision
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in 22t < 2s steps. This contradicts the assumption that the probability of finding a collision is
2−s.

We thus get that if the collision probability is (statistically) lower bounded by 2−s, the output
of PreSg on random inputs of sufficient length has at least an (average) min-entropy of s

2 bits. In
order to achieve a meaningful guarantee in our protocols, we have to choose s (and therefore the
output length of PreSg) appropriately. Assuming a typical cryptographic hash function is used for
PreSg, the min-entropy is therefore at least n

4 , where n is the output length of PreSg.

3.1 Model

Our definition of reusable resettable tamper-proof hardware is defined analogously to normal
resettable tamper-proof hardware tokens as in [GIS+10, DMMQN13], but we add a mechanism
that allows a protocol party to seize the hardware token. This approach is inspired by the work of
Hofheinz et al. [HMQU05], with the difference that we consider untrusted tokens instead of a trusted
signature token. While the token is seized, no other (sub-)protocol can use it. An adversarial sender
can still store a malicious functionality in the wrapper, and an adversarial receiver is allowed to
reset the program. The formal description of the wrapper F ru-strict

wrap is given in Figure 2.

Functionality F ru-strict
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic Turing machine and

t ∈ N. Store (M, t) and send (created) to the adversary. Ignore all further create-messages.
2. Await a message (delivery) from the adversary. Then, send (ready) to the token receiver.

Execution:
3. Await an input (run, w, sid) from the receiver. If no create-message has been sent, return a special

symbol ⊥. Otherwise, if seized = sid, run M on w from its most recent state. When M halts without
generating output or t steps have passed, send ⊥ to the receiver; otherwise store the current state of
M and send the output of M to the receiver.

4. Await an input (seize, sid) from the receiver. If seized = ⊥, set seized = sid.
5. Await an input (release) from the receiver. Set seized = ⊥.

Reset (adversarial receiver only):
6. Upon receiving a message (reset) from a corrupted token receiver, reset M to its initial state.

Figure 2: The wrapper functionality by which we model reusable resettable tamper-proof hardware.
The runtime bound t is merely needed to prevent malicious token senders from providing a perpetually
running program code M; it will be omitted throughout the rest of the paper.

We assume that the token receiver can verify that it obtained the correct token, e.g. by requesting
some token identifier from the sender.

For completeness, we add the definition of a catalyst introduced by Hofheinz et al. [HMQU05].
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Definition 14. Let Π be a protocol realising the functionalities F and C in the C-hybrid model. We
say that C is used as a catalyst if Π realises C by simply relaying all requests and the respective
answers directly to the ideal functionality C.

In other words, the environment (and therefore other protocols) have access to the catalyst C
while it is used in the protocol Π. In particular, this implies that the catalyst C cannot be simulated
for a protocol. All in all, this notion is very similar to Definition 17.

3.2 UC-Secure Commitments

In this section, we present the building blocks that are necessary for UC-secure two-party computation.
First, we present a straight-line extractable commitment scheme in Section 3.2.1. We then use
this commitment in an adaption of a UC-secure commitment by Canetti et al. [CJS14], as shown
in Section 3.2.2.

3.2.1 Straight-line Extractable Commitment

We need a straight-line extractable commitment scheme in the F ru-strict
wrap -hybrid model to achieve

two-party computation. We enhance a protocol due to Hofheinz et al. [HMQU05] which assumes
trusted signature tokens as a setup such that it remains secure even with maliciously created
signature tokens. Towards this goal, we adapt the idea of Choi et al. [CKS+14] to use unique
signatures to our scenario. This is necessary, because verifying the functionality of an untrusted
token is difficult. A unique signature scheme allows this verification very efficiently (compared to
other measures such as typically inefficient ZK proofs). Additionally, it prevents the token from
channeling information to the receiver of the signatures via subliminal channels.

Our protocol proceeds as follows. As a global setup, we assume that the commitment receiver
has created a token containing a digital signature functionality, i.e. basically serving as a signature
oracle. In a first step, the commitment receiver sends a nonce N to the sender such that the sender
cannot use messages from other protocols involving the hardware token. The sender then draws
a random value x. It ignores the precomputation step and sets the result px of this step to be
x concatenated with the nonce N . The value px is sent to the token, which returns a signature.
From the value px the sender derives the randomness for a one-time pad otp and randomness r
for a commitment. Using r the sender commits to x, which will allow the extractor to verify if
he correctly extracted the commitment. The sender also commits to the signature, x and N in a
separate extractable commitment. To commit to the actual input s, the sender uses otp. Care has
to be taken because a maliciously programmed signature card might leak some information about
px to the receiver. Thus, the sender applies a 2-universal hash function before using it and sends all
commitments and the blinded message to the receiver. To unveil, the sender has to send its inputs
and random coins to the receiver, who can then validate the correctness of the commitments. A
formal description of the protocol is shown in Figure 3. We abuse the notation in that we define
(c, d)← COM.Commit(x) to denote that the commitment c was created with randomness d.

Theorem 1. The protocol Πse
COM in Figure 3 is a straight-line extractable commitment scheme as

per Definition 6 in the F ru-strict
wrap -hybrid model, given that unique signatures exist, using F ru-strict

wrap as
a catalyst.
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Protocol Πse
COM

Let T be an instance of F ru-strict
wrap and PRG be a pseudorandom generator. Further let COM be a computa-

tionally hiding and extractable commitment scheme. Let SIG be a unique signature scheme according to
Definition 12.

Global setup phase:
• Receiver: Compute (vk, sgk) ← SIG.KeyGen(1κ). Program a stateless token T with the following

functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and output σm.

Send (create,T) to T .
• Sender: Query T with (vk) to obtain the verification key vk and check if it is a valid verification key

for SIG.

Commit phase:
1. Receiver: Choose a nonce N ← {0, 1}κ uniformly at random and send it to the sender.
2. Sender: Let s be the sender’s input.

• Draw x← {0, 1}3κ uniformly at random and choose a linear 2-universal hash function f from
the family of linear 2-universal hash functions {fh : {0, 1}4κ → {0, 1}κ}h←H.

• Send (seize) to T . Set px = x||N and send (sign, px) to T to obtain σx. Abort if
SIG.Vfy(vk, px, σx) 6= 1.

• Derive (otp, r) ← PRG(f(px)) with |otp| = |s| and compute cs = s ⊕ otp, (cx, r) ←
COM.Commit(px) and (cσ, dσ)← COM.Commit(σx, x,N).

• Send (cs, cx, cσ, f) to the receiver. Release T by sending (release).

Unveil phase:
3. Sender: Send (s, x, σx, dσ) to the receiver.
4. Receiver: Set px = x||N and compute (otp, r) ← PRG(f(px)). Check if SIG.Vfy(vk, px, σx) = 1,

COM.Open(cx, r, x) = 1, COM.Open(cσ, dσ, (σx, x,N)) = 1 and cs = s⊕ otp. If not, abort; otherwise
accept.

Figure 3: Computationally secure straight-line extractable commitment scheme in the F ru-strict
wrap -

hybrid model.

Very briefly, extractability follows from the fact that the extractor can see all messages that were
sent to the token, including the seed for the PRG that allows to extract the commitments cs and cx.
Therefore, the extractor can just search through all messages that were sent until it finds the input
that matches the commitment values. Hiding follows from the hiding property of the commitments
and the pseudorandomness of the PRG. The randomness extraction with the 2-universal hash
function prevents the token from leaking any information that might allow a receiver to learn some
parts of the randomness of the commitments.

We split the proof into two lemmata, showing the computational hiding property of Πse
COM

in Lemma 15 and the straight-line extraction in Lemma 16.

Lemma 15. The protocol Πse
COM in Figure 3 is computationally hiding, given that COM is an

extractable computationally hiding commitment scheme, f is a linear 2-universal hash function, PRG
is a pseudorandom generator and SIG is an EUF-CMA-secure unique signature scheme.
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Proof. Let us consider a modified commit phase of the protocol Πse
COM: instead of committing to the

values s, x,N, σx, the sender S inputs random values in the commitments and replaces the generated
pseudorandom string by a completely random string. Thus no information about the actual input
remains. In the following, we will show that from the receiver’s point of view, the real protocol and
the modified protocol as described above are computationally indistinguishable. This implies that
the commit phase of the protocol Πse

COM is computationally hiding. Consider the following series of
hybrid experiments.

Experiment 0: The real protocol Πse
COM.

Experiment 1: Identical to Experiment 0, except that instead of computing (otp, r)← PRG(f(px)),
draw a uniformly at random and compute (otp, r)← PRG(a).

Experiment 2: Identical to Experiment 1, except that instead of using PRG(a) to obtain otp and
r, S draws otp and r uniformly at random.

Experiment 3: Identical to Experiment 2, except that instead of using COM to commit to
(σx, x,N), S commits to a random string of the same length.

Experiment 4: Identical to Experiment 3, except that instead of using COM to commit to px with
randomness r, S commits to a random string of the same length. This is the ideal protocol.

Experiments 0 and 1 are statistically close, given that f is a linear 2-universal hash function
and SIG is unique. A malicious receiver AR provides a maliciously programmed token T ∗ which
might help distinguish the two experiments. In particular, the token might hold a state and it could
try to communicate with AR via two communication channels:

1. T ∗ can try to hide messages in the signatures.

2. T ∗ can abort depending on the input of S.

The first case is prevented by using a unique signature scheme. The sender S asks T ∗ for a verification
key vk∗ and can verify that this key has the correct form for the assumed signature scheme. Then
the uniqueness property of the signature scheme states that each message has a unique signature.
Furthermore, there exist no other verification keys such that a message has two different signatures.
It was shown in [BVS06] that unique signatures imply subliminal-free signatures. Summarized, given
an adversary AR that can hide messages in the signatures, we can use this adversary to construct
another adversary that can break the uniqueness property of the signature scheme.

The second case is a bit more involved. The main idea is to show that applying a 2-universal
hash function to px generates a uniformly distributed value, even if R has some information about px.
Since x is drawn uniformly at random from {0, 1}3κ, T ∗ can only abort depending on a logarithmic
part of the input. Otherwise, the probability for the event that T ∗ aborts becomes negligible in
κ (because the leakage function is fixed once the token is sent). Let X be the random variable
describing inputs into the signature token and let Y describe the random variable representing
the leakage. In the protocol, we apply f ∈ {fh : {0, 1}4κ → {0, 1}κ}h←H to X, which has at least
min-entropy 3κ, ignoring the nonce N . Y has at most 2 possible outcomes, abort or proceed. Thus,
[DORS08] gives a lower bound for the average min-entropy of X given Y , namely
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H̃∞(X|Y ) ≥ H∞(X)−H∞(Y ) = 3κ− 1.

Note that f is chosen after R∗ sent the token. This means that we can apply the Generalized
Leftover Hash Lemma (cf. [DORS08]):

∆((fH(X), H, Y ); (Uk, H, Y )) ≤ 1

2

√
2H̃∞(X|Y )2κ ≤ 1

2

√
2−(3κ−1)+κ ≤ 2−κ

We conclude that from AR’s view, f(x) is distributed uniformly over {0, 1}κ and thus Experi-
ment 0 and Experiment 1 are statistically indistinguishable. We will only sketch the rest of the
proof.

Computational indistinguishability of Experiments 1 and 2 follows directly from the pseudoran-
domness of PRG, i.e. given a receiver R∗ that distinguishes both experiments, we can use this receiver
to construct an adversary that distinguishes random from pseudorandom values. Experiment 2
and Experiment 3 are computationally indistinguishable given that COM is computationally hiding.
From a distinguishing receiver R∗ we can directly construct an adversary that breaks the hiding
property of the commitment scheme. And by the exact same argumentation, Experiments 3 and 4
are computationally indistinguishable.

We now show the straight-line extractability of Πse
COM.

Lemma 16. The protocol Πse
COM in Figure 3 is straight-line extractable, given that COM is an

extractable computationally hiding commitment scheme and SIG is an EUF-CMA-secure unique
signature scheme.

Proof. Consider the extraction algorithm in Figure 4. It searches the inputs of AS into the hybrid
functionality F ru-strict

wrap for the combination of input and randomness for the commitment that is to
be extracted.

Extractor ExtSEC

Upon input c∗ =
(
(c∗s, c

∗
x, c
∗
σ, f
∗), Q

)
, where Q is the set of all queries that AS sent to F ru-strict

wrap , start the
following algorithm.

1. For all α ∈ Q, compute ( ˆotp, r̂)← PRG(f∗(α)) and test if COM.Open(c∗x, r̂, α) = 1. Otherwise, abort.
2. Let ( ˆotp, r̂) be the values obtained in the previous step. Output ŝ = c∗s ⊕ ˆotp.

Figure 4: The extraction algorithm for the straight-line extractable commitment protocol Πse
COM.

Let Q denote the set of inputs that AS sent to F ru-strict
wrap . Extraction will fail only in the event

that a value x∗ is unveiled that has never been sent to T , i.e. p∗x /∈ Q. We have to show that ExtSEC
extracts c∗s with overwhelming probability, i.e. if the receiver accepts the commitment, an abort in
Step 1 happens only with negligible probability.

Assume for the sake of contradiction that AS causes this event with non-negligible probability
ε(κ). We will use AS to construct an adversary B that breaks the EUF-CMA security of the
signature scheme SIG with non-negligible probability. Let vk be the verification key that B receives
from the EUF-CMA experiment. B simulates F ru-strict

wrap for AS by returning vk upon receiving a
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query (vk); further let Q be the set of queries that AS sends to F ru-strict
wrap . For each query (sign,m),

B forwards the message to the signature oracle of the EUF-CMA game and returns the resulting
signature σ to AS.
B now simulates the interaction between AS and R up to the point when AS sends the message

c∗σ. The next messages between AS and R represent the interaction between an honest receiver and a
malicious commitment sender A′S for the extractable commitment scheme COM. Thus, B constructs
a malicious A′S from the state of AS, which interacts with an external commitment receiver.

Due to the extractability of COM, there exists an extractor Ext that on input (c∗σ,A
′
S) outputs a

message (σ̂x, x̂, N̂) except with negligible probability ν(κ). B runs Ext, sets p̂x = x̂||N̂ and outputs
(σ̂x, p̂x) to the EUF-CMA experiment and terminates.

From AS’s view, the above simulation is distributed identically to the real protocol conditioned
on the event that the unveil of the commitment cσ succeeds. By assumption, AS succeeds in
committing to a signature with non-negligible probability ε(κ) in this case. It follows that the
extractor Ext of COM will output a message (σ̂x, x̂, N̂) with non-negligible probability ε(κ)− ν(κ).
Thus B will output a valid signature σ̂x for a value p̂x with non-negligible probability. However, it
did not query the signature oracle on this value, which implies breaking the EUF-CMA security of
the signature scheme SIG.

Thus, the extractor ExtSEC will correctly output the value s with overwhelming probability.

3.2.2 Obtaining UC-Secure Commitments

In order to achieve computationally secure two-party computation, we want to transform the
straight-line extractable commitment from Section 3.2.1 into a UC-secure commitment. A UC-secure
commitment can be used to create a UC-secure CRS via a coin-toss (e.g. [DMMQN13]). General
feasibility results, e.g. [CLOS02], then imply two-party computation from this CRS.

One possibility to obtain a UC-secure commitment from our straight-line extractable commitment
is to use the compiler of Damg̊ard and Scafuro [DS13], which transforms any straight-line extractable
commitment into a UC-secure commitment. The compiler provides an information-theoretic
transformation, but this comes at the cost of requiring O(κ) straight-line extractable commitments
to commit to one bit only. If we use a signature token, this translates to many calls to the signature
token and makes the protocol rather inefficient.

Instead, we adapt the UC commitment protocol of [CJS14] to our model. The key insight in their
protocol is that trapdoor extraction is sufficient to realize a UC-secure commitment. They propose
to use a trapdoor commitment in conjunction with straight-line extractable commitments via a
global random oracle to realize a UC-secure commitment. If we wanted to replace their commitments
with our construction, we would encounter a subtle problem that we want to discuss here. In their
compiler, the commitment sender first commits to his input via the trapdoor commitment scheme.
Then, he queries the random oracle with his input (which is more or less equivalent to a straight-line
extractable commitment) and the unveil information for the trapdoor commitment. In the security
proof against a corrupted sender, the simulator has to extract the trapdoor commitment. Thus,
in their case, the simulator just searches all queries to the random oracle for the correct unveil
information. In our very strict model, if we replace the oracle call with our straight-line extractable
commitments, this approach fails. At first sight, it seems possible to just use the extractor for the
straight-line extractable commitment to learn the value. However, it is crucial for the proof of
security against a corrupted receiver that the commitment value is never published. Without this
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value, however, the extraction procedure will not work. Further, while we can still see all queries
that are made to the hardware token, the simulator does not (necessarily) learn the complete input,
but rather a precomputed value for the signature. Therefore, a little more work is necessary in order
to realize a UC-secure commitment in our model.

In essence, we can use the techniques of the straight-line extractable commitment from the
previous section, although we have to enhance it at several points. First, we need to query the
signature token twice, for both x and r, instead of deriving r from x via a PRG. This is necessary
because all protocol steps have to be invertible in order to equivocate the commitment, and finding
a preimage for a PRG is not efficiently possible. Second, we have to replace the extractable
commitments by extractable trapdoor commitments1.

The protocol proceeds as follows: First, the receiver chooses a trapdoor for the trapdoor
commitment TCOMext and commits to it via a straight-line extractable commitment. This ensures
that the simulator against a corrupted receiver can extract the trapdoor and then equivocate the
commitments of TCOMext. The sender then commits with TCOMext to his input (in a similar fashion
as in the straight-line extractable commitment) and uses the token to sign the unveil information.
Against a corrupted sender, the simulator can thus extract the unveil information and thereby
extract the commitment. The commitment is sent to the receiver, which concludes the commit
phase. To unveil, the sender first commits to the unveil information of TCOMext such that he cannot
change his commitment when the receiver unveils the trapdoor in the next step. From there, the
commitments are checked for validity and if everything checks out, the commitment is accepted.
The formal description of our protocol is given in Figure 5.

Theorem 2. The protocol ΠCOM in Figure 5 computationally UC-realizes FCOM (cf. Section 2.1) in
the F ru-strict

wrap -hybrid model, using F ru-strict
wrap as a catalyst, given that TCOMext is an extractable trapdoor

commitment, SECOM is a straight-line extractable commitment and SIG is an EUF-CMA-secure
unique signature scheme.

Proof. Corrupted sender. Consider the simulator in Figure 6. It is basically a modified version of
the extraction algorithm for the straight-line extractable commitment. Against a corrupted sender,
we only have to extract the input of the sender and input it into the ideal functionality.

The only possibility for an environment Z to distinguish Real
ΠCOM
AS

and Ideal
FCOM
SS is the case of

an abort by the simulator. However, we can adapt Lemma 16 to this scenario.
It follows that the extraction is successful with overwhelming probability and the simulation is

thus indistinguishable from a real protocol run.
Corrupted receiver. The case of a corrupted receiver is more complicated. The simulator

proceeds as follows. In the commit phase, he just commits to the all zero string and sends the rest of
the messages according to the protocol. To equivocate the commitment, the simulator first extracts
the trapdoor ŝk from the commitment that the receiver sent in the commit phase. He computes the
image t under the 2-universal hash function f that equivocates cs to the value ŝ obtained from the
ideal functionality. Then, he samples a preimage p̂x of t, and uses the trapdoor ŝk to equivocate the
commitment cx to p̂x. Let p̂r be the new unveil information. The simulator sends both p̂x and p̂r to
the token TR to obtain σx and σr. Now, the second commitment cσ has to be equivocated to the
new signatures and inputs. From there, the simulator just executes a normal protocol run with the
newly generated values.

1
Note that any commitment scheme can be made extractable (with rewinding) via an interactive protocol,

e.g. [Gol01, PW09].
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Protocol ΠCOM

Let TCOMext be an extractable trapdoor commitment scheme and let SECOM be the straight-line extractable
commitment from Section 3.2.1.

Global Setup phase:
• Sender and receiver: Compute (vk, sgk) ← SIG.KeyGen(1κ). Program a stateless token TS and TR,

respectively, with the following functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and output σm.

Send (create,TS) to TS and (create,TR) to TR, respectively.
• Sender and receiver: Query TS and TR, respectively, with (vk) to obtain the verification key vk and

check if it is a valid verification key for SIG.

Commit phase:
1. Receiver: Compute (pk, sk)← TCOMext.KeyGen(1κ) and draw a nonce N ← {0, 1}κ. Further compute

(csk, dsk)← SECOM.Commit(sk) and send (pk, csk, N) to the sender.
2. Sender: Let s be the sender’s input.

• Draw x, r ← {0, 1}3κ uniformly at random and choose a linear 2-universal hash function f from
the family of linear 2-universal hash functions {fh : {0, 1}4κ → {0, 1}κ}h←H.

• Send (seize) to TS. Compute px = x||N and send (sign, px) to TS to obtain σx. Then,
compute pr = r||N and send (sign, pr) to TS to obtain σr. Abort if SIG.Vfy(vk, px, σx) 6= 1 or
SIG.Vfy(vk, pr, σr) 6= 1.

• Compute cs = f(px) ⊕ s, (cx, f(pr)) ← TCOMext.Commit(px) and (cσ, dσ) ←
TCOMext.Commit(σx, σr, px, pr, N).

• Send (cs, cx, cσ, f) to the receiver. Release TS by sending (release).

Unveil phase:
3. Sender: Compute (cd, dd)← SECOM.Commit(f(pr), dσ) and send cd to the receiver.
4. Receiver: Send (sk, dsk) to the sender.
5. Sender: Check if TCOMext.TVer(pk, sk) = 1 and SECOM.Open(csk, dsk, sk) = 1. Send

(s, px, pr, σx, σr, dσ) to the receiver.
6. Receiver: Check if SIG.Vfy(vk, ps, σs) = SIG.Vfy(vk, pr, σr) = 1. Additionally, check if

TCOMext.Open(cx, f(pr), px) = 1, TCOMext.Open(cσ, dσ, (σs, σr, px, pr, N)) = 1 and cs ⊕ f(px) = s.
If not, abort; otherwise accept.

Figure 5: Computationally UC-secure protocol realizing FCOM in the F ru-strict
wrap -hybrid model.

Let AR be the dummy adversary. The formal description of the simulator is given in Figure 7.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 aborts if the extraction of ŝk from c∗sk
fails, although SECOM.Open(c∗sk, d

∗
sk, sk

∗) = 1.

Experiment 2: Identical to Experiment 1, except that S2 uses a uniformly random value tx instead
of applying f to px, and computes a preimage p̂x of tx under the linear 2-universal hash
function f .
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Simulator SS

• Upon receiving a message (sign,m) from AS, relay this message to TS and store m in a list Q.
Forward the reply from TS to AS.

• Upon receiving a message (vk), relay this message to TS and forward the reply to AS.
• (Commit) Simulate Step 1 of ΠCOM and let (c∗s, c

∗
σ, f
∗) be the answer from AS. Test for all αi, αj ∈ Q

if TCOMext.Open(c∗x, f
∗(αj), αi) = 1, otherwise abort. Let (p̂x, p̂r) = (αi, αj) be the values obtained

in the previous step. Compute ŝ = c∗s ⊕ f
∗(p̂x) and send (commit, ŝ) to FCOM.

• (Unveil) Simulate the behavior of an honest receiver and obtain s∗. If s∗ = ŝ, send (unveil) to
FCOM, otherwise abort.

Figure 6: Simulator against a corrupted sender in the protocol ΠCOM

Simulator SR

• Upon receiving a message (sign,m) from AR, relay this message to TR and store m in a list Q.
Forward the reply from TR to AR.

• Upon receiving a message (vk), relay this message to TR and forward the reply to AR.
• (Commit) Upon receiving a message (committed) from FCOM and a message (pk∗, c∗sk, N) from AR,

simulate Step 2 of ΠCOM with input s = 0.
• (Unveil) Upon receiving a message (opened, ŝ), proceed as follows:

– Start the straight-line extractor ExtSEC from SECOM to extract the commitment c∗sk to obtain
ŝk and check if TCOMext.TVer(pk

∗, ŝk) = 1, if not abort.
– Compute t = ĉs ⊕ ŝ and choose a preimage p̂x ∈ {x | f(x) = t} of this value under f .

– Compute p̂r ← TCOMext.Equiv(ŝk, p̂x, ĉx, d̂x), send (sign, p̂x) and (sign, p̂r) to TR and obtain
σ̂x and σ̂r, respectively.

– Compute d̂′σ ← TCOMext.Equiv(ŝk, (σ̂x, σ̂r, p̂x, p̂r, N), ĉσ, d̂σ).

– Execute the unveil phase according to ΠCOM: Commit to d̂′σ and f(p̂r) in Step 3, and abort if

sk∗ 6= ŝk in Step 5. Otherwise, send (ŝ, p̂x, p̂r, σ̂x, σ̂r, d̂
′
σ, N) to AR.

Figure 7: Simulator against a corrupted receiver in the protocol ΠCOM

Experiment 3: Identical to Experiment 2, except that S3 computes (cσ, dσ)← TCOMext.Commit(0)
in the commit phase. In the unveil phase, he sends (sign, p̂x), (sign, p̂r) to TR. As an unveil
information, he computes d̂σ ← TCOMext.Equiv(ŝk, (σ̂x, σ̂r, p̂x, p̂r, N), cσ, dσ).

Experiment 4: Identical to Experiment 3, except that S4 computes (cx, dx)← TCOMext.Commit(0)
in the commit phase and then computes the unveil information p̂r ← TCOMext.Equiv(ŝk, p̂x, cx, dx).
This is the ideal model.

Experiment 0 and Experiment 1 are computationally indistinguishable given that SECOM is a
straight-line extractable commitment. A distinguishing environment can directly be transformed
into an adversary that breaks the straight-line extraction property. Experiments 1 and 2 are
statistically indistinguishable, given that f is a 2-universal hash function (the same argumentation
as in Lemma 15 applies). Additionally, it is obvious that a preimage is efficiently sampleable due to
the linearity of f . Experiment 2 and Experiment 3 are computationally indistinguishable, given that
TCOMext is a trapdoor commitment scheme. A distinguishing environment Z can straightforwardly
be used to break the equivocation property of the commitment scheme. The same argumentation
holds for Experiment 3 and Experiment 4.

20



Remark. The commitment length of our protocol is bounded by the length of the input into the
token. For longer messages, the protocol has to be applied piecewise for each part of the message.

4 Ideal Signature Tokens

The model considered in the previous section allows a broad class of signature algorithms that
can be placed on the token. This comes with the drawback that some UC functionalities cannot
be realized. In particular, non-interactive protocols are directly ruled out by the model. In this
section, we want to explore what is theoretically feasible with reusable hardware tokens, at the cost
of limiting the types of signature tokens that are suitable for our scenario. Therefore, we require
that the complete message that is to be signed is given to the signature token. Nevertheless, there
are currently available signature cards that can be used for the protocols that are presented in this
section.

4.1 Model

In contrast to F ru-strict
wrap , we now adapt the simulation trapdoor of Canetti et al. [CJS14] from a

global random oracle to the scenario of reusable tamper-proof hardware. To overcome the problem
that the simulator cannot read queries to the setup functionality outside of the current protocol, the
authors require parties that query the setup to include the current session id SID of the protocol. If
a malicious party queries the setup in another protocol, using the SID of the first protocol, the setup
will store this query in a list and give the simulator access to this list (via the ideal functionality
with which the simulator communicates). This mechanism ensures that the simulator only learns
illegitimate queries, since honest parties will always use the correct SID.

We thus enhance the standard resettable wrapper functionality F resettable
wrap by the query list, and

parse inputs as a concatenation of actual input and the session id (cf. Figure 8).
Compared to our previous reusable token specification F ru-strict

wrap , it is no longer necessary to use
a nonce to bind the messages to one specific protocol instance. Thus, the inherent interaction of
the F ru-strict

wrap -hybrid model is removed in the F ru
wrap-hybrid model. This will allow a much broader

class of functionalities to be realized. For our purposes, however, we have to assume that the token
learns the complete input, in contrast to the strict model. This is similar to the model assumed
in [HMQU05], but in contrast to their work, we focus on untrusted tokens.

Let us briefly state why we believe that this model is still useful. On the one hand, there are
signature tokens that support that the user inputs the complete message without any preprocessing.
On the other hand, the messages that we input are typically rather short (linear in the security
parameter), implying that the efficiency of the token is not reduced by much. Even to the contrary,
this allows us to construct more round- and communication-efficient protocols, such that the overall
efficiency increases.

Our security notion is as follows.

Definition 17. Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F in the global tamper-proof hardware model if for any real PPT adversary A, there exists an ideal
PPT adversary S such that for every PPT enviroment Z, it holds that

Ideal
Fru

wrap

F ,S (Z) ≈ Real
Fru

wrap

Π,A (Z)
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Functionality F ru
wrap

Implicitly parametrized by a security parameter κ and a list F̄ of ideal functionality programs.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic Turing machine and

t ∈ N. Store (M, t) and send (created) to the adversary. Ignore all further create-messages.
2. Await a message (delivery) from the adversary. Then, send (ready) to the token receiver.

Execution:
3. Await an input (run, w) from the receiver with party id PID and session id SID. Parse w as (w′, sid).

If no create-message has been sent, return a special symbol ⊥. Otherwise, run M on w′ from its
most recent state and add (sid, w′,M(w′)) to the list of illegitimate queries Qsid if SID 6= sid . When
M halts without generating output or t steps have passed, send ⊥ to the receiver; otherwise store the
current state of M and send the output of M to the receiver.

Reset (adversarial receiver only):
4. Upon receiving a message (reset) from a corrupted token receiver, reset M to its initial state.
5. Upon receiving a message (list) from an ideal functionality in the list F̄ with SID sid, return Qsid.

Figure 8: The wrapper functionality by which we model reusable resettable tamper-proof hardware.
The runtime bound t is merely needed to prevent malicious token senders from providing a perpetually
running program code M; it will be omitted throughout the rest of the chapter.

Compared to the standard UC security, the setup is now available both in the real and the ideal
settings.

4.2 UC-Secure Non-Interactive Two-Party Computation

In this section, we show how to realize UC-secure non-interactive computation and the required tools.
First, we construct a non-interactive straight-line extractable commitment scheme in Section 4.2.1,
which is a straight-forward modification of our construction of the straight-line extractable com-
mitment from Section 3.2.1 to the weaker model F ru

wrap. Since the idealized model takes care of
illegitimate queries to the setup, a nonce is no longer required and the construction becomes non-
interactive. We use this commitment in the following construction of a non-interactive straight-line
witness-extractable argument in Section 4.2.2. Then we sketch how this non-interactive straight-line
witness-extractable argument can be used to realize UC-secure non-interactive computation in the
F ru

wrap-hybrid model in Section 4.2.3.

4.2.1 Non-Interactive Straight-Line Extractable Commitment

Since the ideal token functionality takes care of messages from other protocols that might maliciously
be used in this protocol, it is no longer necessary to send a nonce from the receiver to the sender
during the commitment. Additionally, the simulator now learns the actual inputs into the signature
functionality, which enables us to extract messages directly without having to work with preprocessed
values. We slightly modify the commitment from Section 3.2.1 to fit into the F ru

wrap-hybrid model.
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Protocol Πni-se
COM

Let T be an instance of F ru
wrap and PRG be a pseudorandom generator. Further let COM be a computationally

hiding and extractable commitment scheme. Let SIG be a unique signature scheme according to Definition 12.

Global setup phase:
• Receiver: Compute (vk, sgk) ← SIG.KeyGen(1κ). Program a stateless token T with the following

functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and output σm.

Send (create,T) to T .
• Sender: Query T with (vk) to obtain the verification key vk and check if it is a valid verification key

for SIG.

Commit phase:
1. Sender: Let s be the sender’s input.

• Draw r ← {0, 1}3κ uniformly at random and choose a linear 2-universal hash function f from
the family of linear 2-universal hash functions {fh : {0, 1}3κ → {0, 1}κ}h←H.

• Send (sign, s) and (sign, r) to T and obtain σs and σr. Abort if SIG.Verify(vk, s, σs) 6= 1 or
SIG.Verify(vk, r, σr) 6= 1.

• Compute both (cσ, dσ)← COM.Commit(σs, σr, s, r) and (cs, f(r))← COM.Commit(s).
• Send (cs, cσ, f) to the receiver.

Unveil phase:
2. Sender: Send (s, r, σs, σr, dσ) to the receiver.
3. Receiver: Check if SIG.Verify(vk, s, σs) = SIG.Verify(vk, r, σr) = 1. Additionally, check if

COM.Open(cs, f(r), s) = 1 and COM.Open(cσ, dσ, (σs, σr, s, r)) = 1. If not, abort; otherweise accept.

Figure 9: Computationally secure non-interactive straight-line extractable commitment scheme in
the F ru

wrap-hybrid model.

Lemma 18. The protocol Πni-se
COM in Figure 9 is a straight-line extractable commitment scheme as

per Definition 6 in the F ru
wrap-hybrid model, given that COM is an extractable computationally hiding

commitment scheme and SIG is an EUF-CMA-secure unique signature scheme.

Proof. We show that Πni-se
COM satisfies Definition 5. The security proof essentially follows the proof

of Theorem 1 with some minor modifications. The proof for the hiding property can be adopted
completely, except that the PRG is not necessary in the protocol and therefore the hybrid step can
be omitted.

The extraction step is technically the same, but the analysis is even simpler than in the proof
of Theorem 1. Consider the extraction algorithm in Figure 10. It searches the inputs into the hybrid
functionality F ru

wrap for the combination of input and randomness for the commitment that is to be
extracted. The only difference to the extractor of Πse

COM is that the input is directly extracted from
the queries to the token.

The rest of the proof is identical to the extractability proof of Theorem 1.
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Extractor ExtNIC

Upon input
(
(c∗s, c

∗
σ, f
∗), Q

)
, where Q is the set of all query/answer pairs that AS sent to and received from

F ru
wrap, start the following algorithm.

1. Test for all αi, αj ∈ Q if COM.Open(c∗s, f
∗(αj), αi) = 1. Otherwise, abort.

2. Let (ŝ, r̂) = (αi, αj) be the values obtained in the previous step. Output ŝ.

Figure 10: The extraction algorithm for the non-interactive straight-line extractable commitment
protocol Πni-se

COM.

4.2.2 Non-Interactive Straight-line Witness-Extractable Arguments

Our protocol is based on the construction of Pass [Pas03], who presented a protocol for a non-
interactive straight-line witness-extractable proof (NIWIAoK) in the random oracle model. Let
Π = (α, β, γ) be a Σ-protocol, i.e. a three message zero-knowledge proof system. We also assume
that Π has special soundness, i.e. from answers γ1, γ2 to two distinct challenges β1, β2, it is possible
to reconstruct the witness that the prover used.

The main idea of his construction is as follows. Instead of performing a Σ-protocol interactively,
a Fiat-Shamir transformation [FS87] is used to make the protocol non-interactive. The prover
computes the first message α of the Σ-protocol, selects two possible challenges β1 and β2, computes
the resulting answers γ1 and γ2 based on the witness w according to the Σ-protocol for both
challenges and computes commitments ci to the challenge/response pairs. Instead of having the
verifier choose one challenge, in [FS87], a hash function is applied to the commitment to determine
which challenge is to be used. The prover then sends (α, c) and the unveil information of the ci to
the verifier. The verifier only has to check if the unveil is correct under the hash function and if
the resulting Σ-protocol transcript (α, βi, γi) is correct. The resulting protocol only has soundness
1
2 and thus has to be executed several times in parallel. [Pas03] replaces the hash function by
a random oracle and thus obtains a proof system. Further, if the commitments to (βi, γi) are
straight-line extractable, the resulting argument system will be witness-extractable, i.e. an argument
of knowledge.

The straight-line extractable commitment Πse
COM from Section 3.2.1 requires interaction, so we

cannot directly plug this into the protocol without losing the non-interactive nature of the argument
system. But note that the first message of Πse

COM is simply sending a nonce, which is no longer
necessary in the F ru

wrap-hybrid model. Thus, by omitting this message, Πse
COM becomes a valid

non-interactive straight-line extractable commitment.
A formal description of the protocol complete NIWIAoK is given in Figure 11.

Theorem 3. The protocol ΠNIWI in Figure 11 is a straight-line witness-extractable argument
as per Definition 9 in the F ru

wrap-hybrid model, given that NICOM is a straight-line extractable
commitment scheme and SIG is an EUF-CMA-secure unique signature scheme.

Proof. Let Π be a public-coin special-sound honest-verifier zero-knowledge (SHVZK) protocol.

Completeness: Completeness of ΠNIWI follows directly from the completeness of the Σ-protocol
Π.

Witness-Indistinguishability: Cramer et al. [CDS94, Pas03] show that a SHVZK protocol di-
rectly implies a public-coin witness-indistinguishable protocol. Since witness-indistinguishable
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Protocol ΠNIWI

Let (α, β, γ) denote the three messages of a Σ-protocol Π for a language L. Further let NICOM be an
instance of Πse

COM from Section 3.2.1 without the first message. Let SIG be a unique signature scheme
according to Definition 12.

Global setup phase:
• Verifier: Compute (vk, sgk) ← SIG.KeyGen(1κ). Program a stateless token T with the following

functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and output σm.

Send (create,T) to T .
• Sender: Query T with (vk) to obtain the verification key vk and check if it is a valid verification key

for SIG.

Proof phase:
1. Prover: Let a statement x and a witness w be the prover’s input, such that (x,w) ∈ RL. Let

l = poly(κ) be the length of the signature.

• Compute l first messages α = (α(1), . . . , α(l)) of the Σ-protocol. Pick 2l random challenges

(β
(1)
0 , β

(1)
1 ), . . . , (β

(l)
0 , β

(l)
1 ) for the Σ-protocol with β

(i)
0 6= β

(i)
1 ∀i ∈ {1, . . . , l}. Compute the

corresponding answers (γ
(1)
0 , γ

(1)
1 ), . . . , (γ

(l)
0 , γ

(l)
1 ) for the Σ-protocol from w.

• Commit to the challenge/response pairs (β
(i)
b , γ

(i)
b ) via (c

(i)
b , d

(i)
b )← NICOM.Commit(β

(i)
b , γ

(i)
b )

for all i ∈ {1, . . . , l} and b ∈ {0, 1}. Let c =
(
(c

(1)
0 , c

(1)
1 ), . . . , (c

(l)
0 , c

(l)
1 )
)
.

• Send (sign, (α, c)) to T and let σ denote the result. Abort if SIG.Verify(vk, (α, c), σ) 6= 1.

Send π = (α, c, σ, (d(1)σ1
, . . . , d(l)σl

), (β(1)
σ1
, γ(1)σ1

), . . . , (β(l)
σl
, γ(l)σl

)) to the verifier where σi signifies the i-th
bit of σ.

2. Verifier: First, check if SIG.Verify(vk, (a, c), σ) = 1. If that is not the case, abort; otherwise check for all

i that (α(i), β(i)
σi
, γ(i)σi

) is an accepting transcript for x ∈ L and NICOM.Open(c(i)σi
, d(i)σi

, (β(i)
σi
, γ(i)σi

)) = 1.
If that check is passed, accept; otherwise abort.

Figure 11: Computationally secure non-interactive straight-line witness-extractable argument in the
F ru

wrap-hybdrid model.

protocols are closed under parallel composition as shown be Feige et al. [FS90], ΠNIWI is
witness-indistinguishable.

Extractablility: Let ExtNIC be the straight-line extractor of NICOM. We will construct a straight-
line extractor for ΠNIWI (cf. Figure 12).

It remains to show that if the verifier accepts, ExtNIWI outputs a correct witness with over-
whelming probability. First, note that ExtNIC extracts the inputs of c∗ with overwhelming
probability, and by the special soundness of Π, we know that if both challenges in the commit-
ment are extracted, ExtNIWI will obtain a witness. Thus, the only possibility for ExtNIWI to fail
with the extraction is if a malicious PPT prover AP manages to convince the verifier with a
witness w∗ such that (x,w∗) /∈ RL.

Each of the l instances of Π has soundness 1
2 , since a malicious AP can only answer at most
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Extractor ExtNIWI

Let ExtSEC be the extraction algorithm for SECOM. Upon input
(
π∗ = (α∗, c∗, σ∗, (d∗(1)σ1

, . . . , d∗(l)σl
)), Q

)
,

where Q is the set of queries to F ru
wrap, start the following algorithm.

1. Run the verifier algorithm on π∗, if it aborts, abort. Run ExtNIC with input
(
c∗, Q

)
to extract all

commitments and obtain (β̂
(i)
b , γ̂

(i)
b )∀i ∈ {1, . . . , l}.

2. Select the first correct witness ŵ derived from (γ̂
(i)
0 , γ̂

(i)
1 ) and output ŵ.

Figure 12: The extraction algorithm for the non-interactive straight-line witness-extractable argument
ΠNIWI.

one challenge correctly, and otherwise a witness is obtained. Thus, AP has to make sure
that in all l instances, the correctly answered challenge is selected. Assume for the sake of
contradiction that AP manages to convince the verifier with some non-negligible probability
ε(κ) of a witness w∗ such that (x,w∗) /∈ RL. We will construct an adversary B from AP that
breaks the EUF-CMA property of SIG with probability ε(κ).

Let B be the adversary for the EUF-CMA game. Let vk be the verification key that B receives
from the EUF-CMA game. B simulates F ru

wrap to AP by returning vk upon receiving a query
(vk); further let Q be the set of queries that AP sends to F ru

wrap. For each query (sign,m), B
forwards the message to the signature oracle of the EUF-CMA game and returns the resulting
signature σ to AP.

If B receives a signature query of the form (sign,m∗) with m∗ = (α∗, c∗), start the extractor
ExtNIC with input (c∗, Q) to extract the commitments c∗ using Q. Create a signature σ∗ by
selecting σ∗i as the index of the correctly evaluating challenge. The verifier will only accept
if that is the case. If SIG.Verify(vk, (α∗, c∗), σ∗) = 1, send (m∗, σ∗) to the EUF-CMA game,
otherwise abort. We thus have that AP wins the EUF-CMA game with probability ε(κ),
which contradicts the EUF-CMA security of SIG.

4.2.3 UC-secure NISC

One-Sided Simulatable OT We recap the construction of one-sided simulated oblivious transfer
from Canetti et al. [CJS14] for completeness. Their construction is based on the efficient plain
model cut-and-choose OT protocol of Lindell and Pinkas [LP11], which in turn is based on the
protocol of Peikert et al. [PVW08]. The main difference in [CJS14] is to eliminate one message from
the original protocol by replacing a zero-knowledge proof of the correctness of selected parameters
with a witness-indistinguishable proof, because this step is only needed for the simulation, i.e. the
extraction, of the OT against a corrupted sender. The protocol thus retains its sender privacy,
while it is still simulatable against a corrupted receiver. Since we can achieve a non-interactive
witness-indistinguishable argument of knowledge in the F ru

wrap-hybrid model, the complete protocol
only requires 2 rounds.

For more details we refer the interested reader to [CJS14].
We will not provide a formal security proof for this protocol, because the proof of [CJS14]

uses the NIWI in a black-box fashion and we simply replace the NIWI in their protocol by our
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Protocol Πos-s
OT

Let NIWI be the non-interactive argument of knowledge from Section 4.2.2. RAND is the following
randomization algorithm of [PVW08] that outputs two uniformly and independently distributed group
elements: Upon input (g, h, g′, h′), choose s, t ∈ Zq uniformly at random and output (u = gsht, v = g′s, h′s).

Common Parameters: (G, q, g0,0, g0,1)

Setup Phase:

1. Receiver: (Input a bit c)

• Choose y0, y1, α0,0, α0,1 ∈ G uniformly at random and set α1,0 = α0,0 + 1 and α1,1 = α0,1 + 1.
Compute g1,b = (g0,b)

yb ,h0,b = (g0)α0,b and h1,b = (g1)α1,b for b ∈ {0, 1}.

• Run NIWI for the language L = {({gi,j}
1
i,j=0, {hi,j}}

1
i,j=0)|∃α : h0,0 = (g0,0)α ∧ h1,0g

−1
1,0 =

(g1,0)α OR h0,1 = (g0,1)α ∧ h1,1g
−1
1,1 = (g1,1)α} with witness α0,b for a randomly chosen b and

let π be the result.

• Choose r0, r1 ∈ Zq uniformly at random and compute g0 = (gc,0)r0 ,g1 = (gc,1)r1 ,h0 =

(hc,0)r0 ,h1 = (hc,1)r1 and set pk0 = (g0, h0) and pk1 = (g1, h1).

• Send par0 = (g0, h0,0, g1,0, h1,0), par1 = (g1, h0,1, g1,1, h1,1), π and pk0, pk1 to the sender.

Transfer

2. Sender: (Input two strings s0, s1)

• Check that the proof π is correct, if not abort.

• Choose s0,0, s0,1 uniformly at random and set s1,0 = s0,0 + s0 and s1,1 = s0,1 + s1.

• Compute (ub,0, vb,0) ← RAND(gb,0, hb,0, pk0) for b ∈ {0, 1} and w0,0 = v0,0s0,0,w1,0 = v1,0s1,0.
Compute (ub,1, vb,1)← RAND(gb,1, hb,1, pk1) for b ∈ {0, 1} and w0,1 = v0,1s0,1,w1,1 = v1,1s1,1.

• Send (u0,0, w0,0), (u1,0, w1,0) and (u0,1, w0,1), (u1,1, w1,1) to the receiver.

3. Receiver: Obtain sc,0 = wc,0(uc,0)−r0 and sc,1 = wc,1(uc,1)−r1 , and output sc = sc,0 + sc,1.

Figure 13: One-sided simulatable OT in the F ru
wrap-hybrid model.

non-interactive witness-indistinguishable argument from Section 4.2.2.

Universally Composable NISC Given the one-sided simulateable OT from the previous section,
we show how to UC-realize the non-interactive secure computation protocol from [CJS14] based on
reusable resettable hardware. We move on to briefly describe how UC-secure non-interactive secure
computation (NISC) can be achieved in the F ru

wrap-hybrid model. Our solution is very similar to
the one of Canetti et al. [CJS14], hence we start with a description of their solution and highlight
our changes. Due to the complexity of the protocol, we will not give a formal security proof of the
protocol and refer the interested reader to [CJS14]. A detailed description of the protocol is given
in Figures 14 and 15

Canetti et al. [CJS14] modify a UC-secure NISC protocol in the CRS-hybrid model by Ashfar et
al. [AMPR14] such that it can be used with a global random oracle. In the following, we provide
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a very high-level description of their protocol. The basic approach is to squash a cut-and-choose
garbled circuit protocol down to two messages, i.e. the sender provides many garbled circuits and
the receiver can then verify that the sender garbled the correct circuit by examining approximately
half of them. The rest of the circuits can be used to execute the actual computation.

In more detail, the receiver first specifies via OT (we call this instance the circuit-OT) which
circuits he wants to check. Additionally, he creates another OT (called input-OT) to specify the
labels he needs for his input. Here, [CJS14] use a two message one-sided simulatable OT based on
their global random oracle (as compared to an OT in the CRS model as in [AMPR14]). Then, the
sender starts to garble t circuits. All randomness for the garbling of each circuit gci as well as for
the respective input-OT is derived from a separate seed seedi. In the original protocol of [AMPR14],
this seed is chosen by the sender, while [CJS14] require the sender to query the random oracle with
a message qi to obtain a seed. The seed can be extracted separately and a full-fledged OT protocol
is no longer necessary. The sender computes a set of commitments on his input, and then uses
a key ki to encrypt a message for each circuit that enables the receiver to check that the inputs
in each of the circuits is consistent with the previously sent commitment. If the receiver were to
learn both seedi and ki, he could reconstruct the input of the sender and thus break the security of
the protocol. Thus the sender inputs pairs (ki, seedi) into the circuit-OT and so that the receiver
can either learn the inputs for the corresponding circuit or check its correctness, but not both. In
addition, he inputs the input labels for the circuits into the input-OT. Once all this is done, he sends
all OT messages, the garbled circuits and the commitments to the receiver, who can then check for
correctness and evaluate the garbled circuit with his input. There are a lot of important details
that we omit here, our intention is to focus only on the parts that are relevant for the changes we
have to make to the protocol.

Our modifications to the above protocol are minor. First, we use our variant of one-sided
simulatable OT in the F ru

wrap-hybrid model. Then, since there is no global random oracle available,
we use a token programmed with a signature function to sign the query qi. However, the signature
σi is not necessarily uniformly random, hence we do not require the sender to use the signature
as a seed (as is done with the answer from the random oracle in [CJS14]). Instead, we apply a
2-universal hash function to qi and let this be the seed seedi. To ensure that the simulator can
extract the seed and the receiver can verify the correctness of the garbling, we require the sender to
input (ki, (qi, σi)) into the circuit-OT. The rest of the protocol is identical to [CJS14], and the proof
has to be modified only marginally: the simulator against a corrupted sender obtains the seed seedi
from F ru

wrap if the protocol succeeds. In the proof of [CJS14], in the hybrid game H1, it is no longer
necessary for a cheating sender to guess the answer of a random oracle to the query qi, but instead
he has to forge a signature on qi.

Let f : {0, 1}|x| × {0, 1}|y| → {0, 1}|z| and C be the circuit computing f . Let EGCom be an

ElGamal commitment (gr, hrgb) = msEGCom(h, b, r). Let Enc denote an encryption scheme, COM
a commitment scheme, h a collision-resistant hash function that is a suitable randomness extractor
and PRF a pseudorandom function. Further let t denote the number of circuits and sid the session
identifier.

We denote by OT0(b),OT1(k0, k1) the two messages from the OT protocol Πos-s
OT from Section 4.2.3.

Changes to the original protocol are highlighted in red.
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Protocol ΠNISC

1. P1 (Input x): Let INx denote the input wires for C.
• Pick a random t-bit string c1, . . . , ct. Let T be the set of i such that ci = 1.
• For each index i ∈ [t], publish OT0(ci).
• For each input wire j ∈ INx publish OT0(xj).

2. P2 (Input y): Let INy denote the input wires for C.
Commitments to input, output and trapdoor:

• Pick a uniformly random trapdoor w ∈ Zq and send h = gw.
• Send EGCom(h, yj , rj) for j ∈ INy, where yj is the input for wire j and rj uniformly random.

• Send hj,0 = gwj ,0 and hj,1 = gwj ,1 for each output wire j ∈ OUT, where wj,0 ∈ Zq and
wj,1 = w − wj,0.

. Choose a 2-universal hash function fh from the family of 2-universal hash functions
{fh : {0, 1}3κ → {0, 1}κ}h←H. Query T with (vk) and obtain vk.

Generate garbled circuits: For each circuit i ∈ [t]
. Randomly choose qi ∈ {0, 1}

3κ and send (sign, qi) to F ru
wrap to obtain σi. Abort if

SIG.Verify(vk, qi, σi) 6= 1. Set seedi = fh(qi).
• Compute ui,j,b = ECCom(h, b, ri,j,b) for all wires j ∈ INy, b ∈ {0, 1} and ri,j,b =

PRFseedi(“EGCom
′′ ◦ j ◦ b).

• Compute garbled circuit gci:
– For j ∈ INy and b ∈ {0, 1}, set label(gci, j, b) = h(P2 ◦ sid, ui,j,b).
– Any other label for wire j and b is constructed as usual using randomness generated

by seedi, i.e. PRFseedi(“label
′′ ◦ j ◦ b).

• Send commitments {ci,j,δ, ci,j,1−δ}j∈INy
, where δij is uniformly random and (ci,j,δ, di,j,δ)←

COM.Commit(ui,j,δ). The randomness for the commitments is derived from seedi via PRF.
Cheating recovery box: For j ∈ OUT send

(a) hj,0 · g
Ki,j,0 and hj,1 · g

Ki,j,1 , where Ki,j,b are uniformly random.
(b) Enc(label(gci, j, 0),Ki,j,0), Enc(label(gci, j, 1),Ki,j,1)

Proofs of input/output consistency:
• Let inputsi be the set {ui,j,yj , di,j,yj}j∈INy

. Let inputsEq be the set {r − j − ri,j,yj}j∈INy
.

• Let outputsDC be the set {wj,0 +Ki,j,0, wj,1 +Ki,j,1}j∈OUT.
• Pick a random ki and send Enc(ki, inputsi ◦ inputsEqi ◦ outputsDCi).

OT answers:
• (Input OT) Send {OT1(label(gci, j, 0), label(gci, j, 1))}j∈INy,i∈[t]. Derive the randomness

ri,j for wire j and circuit i via PRFseedi(“OT
′′ ◦ 1 ◦ “r′′ ◦ i ◦ j).

. (Circuit OT) Send {OT1((qi, σi), ki)}i∈[t].

Figure 14: UC-secure NISC protocol in the F ru
wrap-hybrid model.

5 Limitations

It is known that there exist limitations regarding the feasibility of UC-secure protocols based on
resettable tamper-proof hardware, both with computational and with statistical security. Concerning
statistical security, Goyal et al. [GIMS10] show that non-interactive commitments and OT cannot
be realized from resettable tamper-proof hardware tokens, even with standalone security. In the
computational setting, Döttling et al. [DMMQN13] and Choi et al. [CKS+14] show that if (any
number of) tokens are sent only in one direction, i.e. are not exchanged by both parties, it is
impossible to realize UC-secure protocols without using non-black-box techniques. Intuitively, this
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Protocol ΠNISC cont’d

3. P1:
Circuit consistency:

. For each i ∈ T , check if SIG.Verify(vk, qi, σi) = 1. Set seedi = fh(xi).
• Check that seedi correctly generated gci and the answers of the i-th execution of the input

OT, abort if not.
Input/output consistency: For all i ∈ [t] \ T :

• Verify that hj,0 · hj,1 = h for all j ∈ OUT.
• Check that outputDCi are correct discrete logs of the values in the set

{hj,bg
Ki,j,b}j∈OUT,b∈{0,1}.

• Check that inputsEqi are consistent with the input commitments: check if

ui,j,yj (g
rj−ri,j,yj , h

rj−ri,j,yj ) = EGCom(h, yj , rj), otherwise abort.

• Evaluate circuit gci: Let {li,j}j∈OUT be the set of labels that are obtained. Decrypt the
corresponding values Enc(li,j ,Ki,j,b) from the cheating recovery box. Check if the result

is a correct decommitment of the output recovery commitment hj,bg
Ki,j,b where b are the

inputs received from gci. If all steps pass, label gci as semi-trusted.
Compute output: If all semi-trusted gci output the same value, output that value. Otherwise:

• Let gci, gc
′
i be two semi-trusted circuits with different outputs in the j-th output wire,

and let li,j and l′i,j be the output labels. Learn wj,0 from one of the labels and wj,1 from
the other (since Ki,j,b and Ki,j,1−b can be obtained from the cheating recovery boxes, and

wj,b +Ki,j,b,wj,1−b +Ki,j,1−b from outputsDCi and outputsDC′i).
• Compute w = wj,0+wj,1 and decrypt the input commitments. Let y be the hereby obtained

value. Output f(x, y).

Figure 15: UC-secure NISC protocol in the F ru
wrap-hybrid model.

follows from the fact that the simulator does not have any additional leverage over a malicious
receiver of such a token. Thus, a successful simulator strategy could be applied by a malicious
receiver as well. The above mentioned results apply to our scenario as well.

Jumping ahead, the impossibilities stated next hold for both specifications of reusable tamper-
proof hardware that we present in the following. In particular, GUC and GUC-like frameworks
usually impose the restriction that the simulator only has black-box access to the reusable setup.
Thus, compared to the standard definition of resettable tamper-proof hardware, the model of
resettable reusable tamper-proof hardware has some limitations concerning non-interactive two-
party computation. The degree of non-interactivity that can be achieved with resettable hardware,
i.e. just sending tokens (and possibly an additional message) to the receiver, is impossible to obtain
in the model of resettable reusable hardware.

Corollary 19. There exists no protocol ΠPF using any number of reusable and resettable hardware
tokens T1, . . . , Tn issued from the sender to the receiver that computationally UC-realizes the ideal
point function FPF.

Sketch. This follows directly from the observation that the simulator for protocols based on reusable
hardware is only allowed to have black-box access to the token, i.e. the simulator does not have
access to the code of the token(s). Applying [DMMQN13] and [CKS+14] yields the claim.

The best we can hope for is a protocol for non-interactive two-party computation where the
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parties exchange two messages (including hardware tokens) to obtain a (somewhat) non-interactive
protocol. Maybe even more interesting, even stateful reusable hardware tokens will not yield any
advantage compared to resettable tokens, if the tokens are only sent in one direction.

Corollary 20. There exists no protocol ΠOT using any number of reusable and stateful hardware
tokens T1, . . . , Tn issued from the sender to the receiver that statistically UC-realizes FOT.

Sketch. First note, as above, that the simulator of a protocol against a token sender will not get
the token code because he only has black-box access to the token. Thus the simulator cannot use
rewinding during the simulation, which is the one advantage that he has over the adversary. The
simulator falls back to observing the input/output behavior of the token, exactly as in the case of
standard resettable hardware. Due to the impossibility of statistically secure OT based on resettable
hardware [GIMS10], the claim follows.
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Hong-Sheng Zhou. (Efficient) universally composable oblivious transfer using a
minimal number of stateless tokens. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 638–662. Springer, Heidelberg, February 2014.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authen-
tication and key-exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 265–296. Springer, Heidelberg, March 2016.

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer, Heidelberg, August 1990.
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