Equational Security Proofs of Oblivious Transfer Protocols*

Baiyu Lif Daniele Micciancio*

June 15, 2016

Abstract

We exemplify and evaluate the use of the equational framework of Micciancio and Tessaro (ITCS
2013) by analyzeing a number of concrete Oblivious Transfer protocols: a classic OT transformation to
increase the message size, and the recent (so called “simplest”) OT protocol in the random oracle model
of Chou and Orlandi (Latincrypt 2015), together with some simple variants. Our analysis uncovers subtle
timing bugs or shortcomings in both protocols, or the OT definition typically employed when using them.
In the case of the OT length extension transformation, we show that the protocol can be formally proved
secure using a revised OT definition and a simple protocol modification. In the case of the “simplest”
OT protocol, we show that it cannot be proved secure according to either the original or revised OT
definition, in the sense that for any candidate simulator (expressible in the equational framework) there
is an environment that distinguishes the real from the ideal system.

Keywords Oblivious transfer, secure multiparty computation, universal composability, equational
security, asynchronous, simulation-based

1 Introduction

Cryptographic design and analysis is a notoriously hard problem, arguably even harder than standard soft-
ware design because it requires to build systems that behave robustly in the presence of a malicious adversary
that actively tries to subvert their execution. The desirability of precise formalisms to describe and ana-
lyze cryptographic constructions is well exemplified by the code-based game-playing framework of [BR06] to
present security definitions and proofs of standard cryptographic functions. But even the detailed framework
of [BROG6] offers little help when formalizing more complex cryptographic protocols, due to their interactive
nature and underlying distributed execution model. At the semantic level, the gold standard in secure com-
putation protocol design and analysis is the universally composable (UC) security model of [Can01] (or one
of its many technical variants [CLOS02, BCNP04, Kiis06, BPW07, CDPW07, HUM13, HS15],) which offers
strong compositionality guarantees in fully asynchronous execution environments like the Internet. Unfortu-
nately, the relative lack of structure/abstraction in the traditional formulation of this model' makes it rather
hard to use in practice, when specifying and analyzing concrete protocols.? These limitations are widely
recognized, and have prompted researchers to explore several variants, simplifications and specialization of
the general UC security model [KT13, KMTZ13, CCL15, Wik16]. In this perspective, a very interesting line
of work is represented by the “abstract cryptography” framework of [MR11], which calls for an axiomatic
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1Rooted in computational complexity, the model is usually described as an arbitrary network of (dynamically generated)
Turing machines that communicate by means of shared tapes, possibly under the direction of some scheduling process, also
modeled as an interactive Turing machine.

2This is analogous to the Turing machine, an excellent model to study computation in general but a rather inconvenient one
when it comes to specifying actual algorithms.



approach to the description and analysis of cryptographic primitives/protocols, and the “constructive cryp-
tography” [Maul2] and “equational security” [MT13] frameworks, which can be thought of as logical models
of the axioms put forward in [MR11].

In this work we examine the equational security framework of [MT13], which provides both a concrete
mathematical model of computation/communication, and a concise syntax to formally describe distributed
systems by means of a set of mathematical equations. We believe that progress in our ability to describe and
analyze cryptographic protocols cannot be achieved simply by formulating frameworks and proving theorems
in definitional papers, but it requires putting the frameworks to work on actual example protocols. To this
end, we present a detailed case-study where we evaluate the expressiveness and usability of this framework
by analyzing a number of concrete oblivious transfer protocols, a simple but representative type of security
protocols of interest to cryptographers.

Oblivious transfer (OT), in its most commonly used 1l-out-of-2 formulation [EGL85], is a two party
protocol involving a sender transmitting two messages mg, m; and a receiver obtaining only one of them
my, in such a way that the sender does not learn which message b € {0,1} was delivered and the receiver
does not learn anything about the other message mi_;. OT is a classic example of secure computation
[Rab81, EGLS85], and an important (in fact, complete) building block for the construction of arbitrary
security protocols [Yao86, GMWS87, Kil88, CGT95, IPS08, LP11]. In Sections 3 and 4 we investigate a
well known transformation often used to increase the message length of OT protocols with the help of a
pseudorandom generator. In Section 5, we investigate a very efficient OT protocol in the random oracle
model recently proposed in [CO15].

We remark that the primary goal of our work is to exemplify and evaluate the usability of the equational
security framework of [MT13], rather than finding and fixing bugs in specific protocol instances. Still,
our findings about the OT protocols under study may be of independent interest, and well illustrate how
equational security modeling can offer a convenient and valuable tool for cryptographic protocol specification
and analysis. The main findings about the OT protocols are the following;:

e The security of the OT protocol transformation, often considered a folklore result in cryptography, does
not hold with respect to the naive OT definition typically used (often implicitly) in the cryptographic
literature. However, if the OT ideal functionality definition is suitably modified, then the transforma-
tion becomes provably secure, and can be readily analyzed using simple equational reasoning.

e The protocol of [CO15] can be proved secure according to neither the classic nor the revised OT
definitions considered above. We also consider a weaker OT definition with the hope to prove security,
but as we will show the protocol is still not secure in that model.

Technical details about our findings, and general comments/conclusions are provided in the next paragraphs.

1.1 Oblivious Transfer Extension.

The standard definition of OT is given by a functionality OT((mq,m1),b) = my that takes a pair of messages
(mg,my) from the sender, a selection bit b from the receiver, gives my, to the receiver, and gives nothing
to the sender. The two messages are assumed to have the same length |mg| = |m1| = &, which is usually
tied to the security parameter of the scheme and the mathematical structures used to implement it. (E.g.,
k = log |H| where H is the domain/range of some group-theoretic cryptographic function.) A natural and
well known method to adapt such OT protocol to one allowing the transmission of longer messages is the
following:

1. Use an underlying OT protocol to send two random seeds (s, s1) of length &,

2. Use these seeds as keys to encrypt the two messages using a private-key encryption scheme,® and
send both ciphertexts to the receiver over a standard (authenticated, but insecure to eavesdropping)
communication channel.

3Since each seed s; is used only once, the secret key encryption scheme can be as simple as stretching s; using a pseudorandom
generator G, and use the resulting string G(s;) as a one-time pad to mask the message m;.



The intuition is that since the receiver gets only one of the two keys, the other message is protected by the
encryption scheme. Indeed, the intuition is correct, in the sense that encryption does its job and protects
the other message, but the protocol is nevertheless not secure (at least, according to the simulation-based
fully asynchronous security definition implied by the OT functionality described above.) Our formal analysis
shows that, while the protocol is correct, and secure against corrupted senders, it is not secure against
corrupted receivers, and for a very simple reason: it contains a subtle timing bug! In a real execution, the
sender transmits the encryption of its two messages as soon as the two messages are made available by the
environment. However, the simulator can produce the corresponding simulated ciphertexts only after the
receiver has chosen its selection bit b. In order to prove security, the sender should delay the transmission of
the ciphertexts until after the receiver has provided b to the underlying OT protocol. The problem is that
the above OT ideal functionality does not disclose any information to the sender, not even if and when the
receiver has selected the bit b.

We also consider a revised OT definition OT((mg,m1),b) = (f(b),ms), that includes an additional
output f(b) € {L, T} disclosing to the sender if b has been chosen yet, without providing the actual value
of b € {0,1}. We modify the protocol accordingly (by letting the sender delay the transmission of the
ciphertexts until b > 1), and show that the modified protocol can be formally proved secure according to
the revised OT definition.

1.2 OT in the Random Oracle Model.

In [CO15], Chou and Orlandi propose a new OT protocol achieving UC security in the random oracle model
[BR93]. The protocol is very elegant and can be efficiently implemented based on elliptic curve groups.
We provide a formal analysis of the protocol using the equational framework. We show that if the naive
OT definition is used, then the protocol is secure against corrupted receivers, but it is not secure against
corrupted senders. The failure of the simulator is due to the fact that in a real protocol execution the
sender learns if and when the receiver provides its selection bit b. As in the analysis of the OT length
extension transformation, this problem can be addressed by switching to the revised OT definition given
above, and modifying the sender program in the obvious way. However, this time, changing the definition
breaks the proof of security against corrupted receivers. In fact, we formally show that (with respect to the
revised OT definition) when the receiver is corrupted, for every candidate simulator there exists an (efficient)
environment that distinguishes the real system from the ideal system with non-negligible advantage.

1.3 Discussion/Conclusions

Before jumping to conclusions, some remarks about the significance of our results are in order. As already
noted, it should be understood that the aim of our work was to illustrate the use of the equational framework,
rather than criticizing any specific protocol or definition. In particular, we are not arguing that the revised
OT definition given in Section 4 is the “correct” one, and everybody should use it. In fact, other alternative
definitions are possible. Our main point is that the equational model is a convenient framework to precisely
formulate and investigate alternative definitions.

The OT message length transformation studied in Section 3 is folklore. We are not aware of any work
analyzing its security, and our study is, to the best of our knowledge, the first work even making a formal
security claim about it. This is perhaps because doing this using the traditional framework based on the
informal use of interactive Turing machines already seemed cumbersome and error prone enough not be
worth the effort. In fact, the transformation is simple enough that at first it is natural to wondered if a
formal proof of security is required at all. Our analysis shows that a formal security proof is indeed useful, at
very least to unambiguously identify the security property (ideal functionality) for which the transformation
is (proved or claimed to be) correct. We remark that when we set to analyze the OT protocol transformation,
we were giving for granted that the transformation was secure, and the analysis was meant primarily as a
simple example to illustrate the use of the equational framework. Finding that the protocol does not emulate
the traditional OT definition came to us as a surprise, even if in hindsight the timing bug is rather obvious.



In this respect, the equational framework proved to be a very convenient tool to carry out a precise formal
analysis with relatively modest effort.

As for the protocol of [CO15], we are not claiming it should or should not be used as it is. We are
certainly not concerned about whether the protocol is making a “morally correct” use of the random oracle,
or if “global” random oracle definition [CJS14] should be used instead. We simply use the equational
framework to model and analyze the protocol as described in the original paper [CO15]. We had noticed
that this work appeared to use the traditional OT definition, and our original goal was to show that the
protocol does not satisfy it, but it can be proved secure if the OT ideal functionality is revised as in the OT
transformation case. We still find it rather surprising that the protocol cannot be proved secure according
to either definition. We remark that what we mean by “cannot be proved secure” is that for any candidate
simulator (within the model) there exists a distinguishing environment that can tell the real system and
ideal system apart. We do not have a direct attack to the protocol. So, by no means our results should be
interpreted as a cryptanalysis of [CO15], and, in fact, we believe that the protocol provides some meaningful
form of security. Also, our results do not point to any specific bug in the (informal) proof in the original
paper [CO15], which, most likely, can be properly interpreted as a proof of security in some kind of semi-
synchronous model where the environment is required to provide inputs to all parties at the same time.
However, we do not consider this a satisfactory answer because the semi-synchronous interpretation does
not provide a truly composable notion of security,* as one would normally expect in the UC model.

We believe our analysis highlights the importance of a more rigorous proof style when analyzing secure
computation protocols than currently feasible using traditional formulations of the UC framework and its
variants. This is especially important when it comes to formally specifying the security properties satisfied
(or claimed) by a protocol. Without an unambiguous formal security specification/claim, even the most
detailed proof is of little value, as it is not clear what is being proved or claimed. Withing the context
of our work, the equational framework of [MT13] proved to be a very convenient and useful formalism to
express security definitions (in the form of ideal functionalities) and cryptographic protocols in a concise,
yet mathematically precise way. It allowed to easily explore different definitional variants and put them
to good use to spot potential bugs in cryptographic protocols. While the equational framework proved
to be more than adequate to describe concrete cryptographic protocols and the security definitions they
achieve, it is less clear if it powerful enough to express any conceivable simulation strategy. In particular,
an intriguing interpretation of our negative security results about the protocol of [CO15] is that perhaps the
protocol is secure, but the simulator (demonstrating its security) cannot be expressed within the framework
of [MT13]. If this is the case, it would be very interesting to identify a suitable extension of the model
of [MT13] that allows to formally analyze the protocol of [CO15] with respect to an appropriate security
definition. Exploring the applicability of abstract frameworks along the lines of [MR11, Maul2, MT13] to the
specification and analysis of a wider range of cryptographic protocols is likely to be mutually beneficial, both
to further develop and refine the models, and to gain useful insight on the security of concrete cryptographic
protocols.

2 Background and Notations

In this section we review the equational framework of [MT13], and define the notation used in this paper. We
recall that the execution model of [MT13] consists of a network, with nodes representing computational units,
and (directed) edges modeling communication channels. (See below for details.) Each channel is associated
with a partially ordered set of channel “histories” or “behaviors”, representing all possible messages or
sequences of messages that may be transmitted on the channel over time. The partial order relation represents
temporal evolution, so for any two histories h; < hs means that hs is a possible extension (or future) of
hi. The standard example is that of finite sequences M* = {(mq,...,mg) : k > 0,Vi.m; € M} of messages
from a ground set M, ordered according to the prefix partial ordering relation. Another common example,

4The problem is that, when the OT protocol is used within part of a larger protocol, even if the users provide all their inputs
at the same time, different parties may still engage in the execution of sub-protocols at different times, depending on message
scheduling and interleaving with other protocols, possibly under the influence of an adversary.



modeling a channel capable of delivering only a single message, is the flat partial order M , consisting of all
messages in M and a special element | denoting the fact that no message has been transmitted yet. Different
incoming and outgoing channels (incident to a single node) are combined taking Cartesian products, so that
each node can be thought as having just one input and one output. The computational units at the nodes
are modeled as functions f: C; — C5 from the incoming channels to the outgoing channels, satisfying the
natural monotonicity requirement that for any h; < hg in Ci, we have f(h1) < f(hs) in Cs. Informally,
monotonicity captures the intuition that once a party transmits a message, it cannot go back in time and
take it back. The main advantage of the equational framework is that it has a mathematically clean and well
defined semantics, where processes (nodes) can be described by simple mathematical equations (specifying
the relation between the input and the output of the node), and composition simply combines equations
together. In particular, composition is independent of the composition order, and the behavior of a network
is fully specified by the equations of each node, and the edges connecting the nodes. Using equations to
describe systems also provides a simple and precise way to reason about transformations as well. For example,
equivalent components (in the sense of having equivalent equations) can be replaced by each other, and when
considering probabilistic behaviors, if a component is indistinguishable from another component, then they
can be used interchangeably with negligible impact on the behavior of the entire system.

For completeness, in the next paragraph we will give some background on the (standard) theory that gives
a precise meaning to systems of equations as used in [MT13] and in this paper. This material is important
to give a solid mathematical foundation to the equational framework, but is not essential to follow the rest
of the paper, and the reader may want to skip directly to the following paragraph describing our notational
conventions.

Complete Partial Orders (CPOs) The mathematical foundation of the equational framework is pro-
vided by domain theory, which is the standard tool used in functional programming language design for
giving precise mathematical meanings to expressions. Here we give just enough background to describe the
systems studied in this paper, and refer the reader to [Sco82, GS90, SHLG94] for a detailed treatment. Recall
that a partially ordered set (or poset) is a set X equipped with a reflexive, transitive and antisymmetric
relation <. All posets considered in this paper are complete partial orders (CPOs), i.e., any (possibly empty)
chain z1 < 3 < ... has a least upper bound sup, x;. These posets are endowed with the Scott topology,
where a subset C' C X is closed if for all z € C, y < x implies y € C, and any chain in C has a least
upper bound in C. Open sets are defined in the usual way as the complement of closed sets. The standard
topological definition of continuous function still applies here, and continuous functions (with respect to the
Scott topology) are exactly the functions that preserve limits f(sup, ;) = sup; f(z;). The set of all con-
tinuous functions from CPOs X to Y is denoted by [X — Y. Notice that any (Scott) continuous function
is necessarily monotone, i.e., for all z,y € X, if x < y then f(z) < f(y). All CPOs X have a minimal
element | = sup @, which satisfies 1. < x for all z € X. For any set A, we can always construct a flat CPO
by extending A with a unique bottom element L, and we write such CPO as A, = AU {L}. The partial
ordering in this flat CPO consists of 1 < z for all x € A. It should be easy to see that all nonempty closed
sets in A contain |, and open sets in A are exactly the subsets of A and the whole A .

Unless otherwise noted, all CPOs we consider are flat partial orderings X | for some finite set X, and
functions f: X — Y between sets are lifted to strict functions f: X | — Y, between the corresponding flat
CPOs by setting f(L) = L. The bottom element usually designates the situation where no (real) input or
output is given yet. The Cartesian product X X Y of two CPOs is a CPO with the component-wise partial
order (z1,y1) < (z2,y2) <= z1 < z2 Ay1 < yo.

For any CPO X, every continuous functions f: X — X admits a least fized point, which is the minimal
x € X such that f(z) = x. The least fixed point can be obtained by taking the limit of the sequence
L, f(L), f2(L),.... We can use least fixed points to find the solution to a system of mutually recursive
equations. Such solution describes the final outputs of interactive computations between nodes in a network.
The least fixed points can also be used to simplify combined systems. For example, if in a system we have
an equation f(z) = g(z,z) for continuous f and g, and in another system we have x = h(z, x) for continuous
h, then to combine these two systems we can find the least fixed point z, to the function h,(z) = h(z,x)



and then simplify the combined system as f(z) = g(z,z.).

To study cryptographic protocols we must be able to specify and analyze their probabilistic behaviors.
In the equational framework, probabilistic functions are simply (continuous) functions between sets of dis-
tributions with the appropriate ordering relation. A probability distribution on a CPO X is a function
p: X — [0,1] such that® p(A) + p(B) = p(A U B) for all disjoint A, B C X and p(X) = 1. As usual, we say
that a probability p is negligible if for all z € X, p(x) < n~¢ for any constant ¢ > 1, where n is a security
parameter.’ Similarly, p is overwhelming if 1 — p is negligible. If X is a CPO, then the set of probability
distributions over X, denoted by D(X), is also a CPO, where for any two distributions p < ¢ (in D(X)) if
and only if p(A) < q(A) for any open subset A C X.

Notation In this paper we mostly use flat CPOs, i.e., partially ordered sets X with a bottom element
1 € X such that 1 < x5 iff 1y = L or 21 = z2. These are used to model simple communication channels
that can transmit a single message from X \ { L}, with L representing the state of the channel before the
transmission of the message. For any CPO X, we write X*2 = {(z,y): 7,y € X, # L,y # L}, for the
set of strict pairs over X. The elements of a pair z € X*? are denoted z[0] and z[1], with z[i{] = L when
z = 1 or i = L. The operation of combining two elements into a strict pair is written (z,y). Notice that
(x, L) = (L,y) = L, and therefore (x, L)[0] = (L,y)[1] = L even when z,y # L. For any set A, we write
x < A, for the operation of selecting an element x # 1 uniformly at random from A.

Tt is easily verified that for any pairs z, (xg, 21), (Yo, ¥1), strict function f and strict binary operation ©®,

z = (2[0], 2[1]) (1)
fzo,x1)[i]) = (f(z0), f(21))[i] (2)
(o, 21)[I] © (yo,y1)[i] = (w0 © Yo, 21 ® y1)]i] (3)

We use the following abbreviations for common CPOs and operations:

e The CPO T = {T},, representing signals, i.e., messages with no information content.

e The CPO B = {0,1}, of single bit messages, often used to select an element from a pair.
e The CPO M,, = {0,1}" of bit-strings of length n.

e zly = (z,y)[1], the operation of guarding an expression y by some other expression x. Notice that
xly =y, except when x = L, and can be used to “delay” the transmission of y until after x is received.

e z! =z!T, testing that z > 1.

As an example, using the notations introduced so far, we can describe the ideal (1-out-of-2 Oblivious
Transfer) OT functionality by the equations in Figure 1. (Notice that this functionality is parameterized
by a message space M.) The first line specifies the names of the functionality (OT), input channels (ms, )
and output channel(s) m. This is followed by a specification of the type of each channel: the input interface
includes a message pair mo = (mg, m1) € M*? from a sender and a selection bit b € B from a receiver. The
output interface is a single message m € M sent to the receiver while the sender does not get any information
from the functionality. The last line m = ms[b] is an equation specifying the value of the output channel(s)
as a function of the input channels. The functionality is illustrated by a diagram showing the names of the
function and the input/output channels.

In the rest of this paper, equational variables usually belong to unique domains (e.g., mso : M¥2.) So from
now on, we will omit such type specifications when defining functions using equations, and we will follow
the convention listed in Table 1 for naming variables.

5In general we should consider the Borel algebra on X when defining probability distributions on X. Here we simply use X
instead since we work on finite sets and discrete probabilities.

6In the asymptotic setting, cryptographic protocols are parameterized by a security parameter n. For notational simplicity,
we consider this security parameter n as fixed throughout the paper.



OTm(me,b) = m
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Figure 1: A naive Oblivious Transfer functionality: the receiver gets the selected message m = ms[b], and
the sender does not get anything at all.

The definition of security in the equational framework follows the well-accepted simulation-based security
paradigm. In this paper we consider only oblivious transfer protocols, which are two-party protocols between
a sender program and a receiver program. So, the ideal functionality F is usually a function from X, x X3 to
Yy x Y7, where X, Y; are external input and output channels of party ¢ in the protocol. The protocol consists
of a pair of programs (functions) Py, Py, which, when combined with a communication network N, result in a
system (Py|N|Py): Xo x X1 — Yy x Y] equivalent to the ideal functionality F. When a party P; is corrupted,
the adversary plays the role of P;, and the resulting real system consists of just the remaining honest party
and the network. A protocol is secure against the corruption of Py if there is an efficient simulator Sy such
that the systems (N|P;) and (Sp|F') are computationally indistinguishable. Security against corruption of
P is defined similarly.

A distinctive feature of the equational framework is the ability to specify fully asynchronous systems. An
adversary /environment might not provide all the input to a real system at the same time. So when analyzing
the security of a protocol we must consider such asynchronous environments.

3 Oblivious Transfer Length Extension: a first attempt

As an abbreviation, when the message space M = {0,1}"} is the set of all bitstrings of length n, we write
OT,, instead of OTy;. Consider the following Oblivious Transfer length extension problem: given an OT,,
channel for messages of some (sufficiently large) length n, build an oblivious transfer functionality OT, for
messages of length £ > n. The goal is to implement OT, making a single use of the basic OT,, functionality,
possibly with the help of an auxiliary (unidirectional, one-time) communication channel for the transmission
of messages from the sender to the receiver. For simplicity,” we model the communication channel as a
functionality Nety; that copies its input to the output

"This corresponds to a perfectly secure communication channel. More complex/realistic communication channels are dis-
cussed at the end of this section.

Variable name Domain Variable name Domain
m M, m’ M,
ma M2 mb M2
Co,C1 Mg Co M;;Q
a,a’ T b,b’ B
’L',O Mn i2,02 M;Q
k K, ko K2
q (G % G)1 ® (G xG)F°
XY G,

Table 1: Frequently used variables and their domains.
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where the set M is an arbitrary message space. As before, when M = {0,1}"}, we simply write Net,, instead
of Nety;. The OT length extension protocol is specified by a pair of Sender and Receiver programs, which
are interconnected (using the OT,, and Nety, functionalities) as shown in Figure 2. Notice how the external
input/output interface of the system corresponding to a real execution of the protocol in Figure 2 is the
same as that of the ideal functionality OT,(mj,b’") = m/ the protocol is trying to implement.

~zzo

A
=<

oT,

me > .
— Sender Receiver

!’
. m
7 02
2 Nety,

’

Real(m},b') = m

Figure 2: A real execution of a candidate OT length extension protocol. The protocol consists of a Sender
and a Receiver programs that communicate using OT,, and Nety, functionalities.

A natural approach to design an OT length extension protocol is to make use of a pseudorandom generator
G : M,, — M, that stretches a short random seed of length n into a long pseudorandom string of length ¢.
Using such pseudorandom generator, one may define candidate Sender and Receiver programs as follows:

Sender(m}) = (ma,is)
mo < M, ma
m; <+ M, mi
Sender .
mz = (mo,m1> i
co = myl0] & G(mo)
a = my[l]®G(m)
iz = {co,c1)
v \
Receiver(m,09,b") = (b,m') m _
b = —_— Receiver
m = oa]b]®G(m) 02 L m

In words, these programs work as follows:

e The sender picks two random seeds mq,m1, and passes (one of) them to the receiver using the OT,,
functionality. It then stretches the two seeds using the pseudorandom generator G, and uses the



generator’s output as a one-time pad to “mask” the actual messages before they are transmitted to
the receiver over the communication channel Netoy.

e The receiver selects one of the two seeds from the OT,, functionality, expands it using the pseudorandom
generator, and uses the result to “unmask” the corresponding message from Netyy.

It is easy to show that the protocol is correct, in the sense that combining the equations of OT,,, Netay,
Sender and Receiver as shown in Figure 2 results in a system Real(m},d’) = m’ that is perfectly equivalent
to the defining equation m’ = m,[b'] of the ideal functionality OT,. Intuitively, the protocol also seems
secure because only one of the two seeds can be recovered by the receiver, and the unselected message is
protected by an unpredictable pseudorandom pad. But security of cryptographic protocols is a notoriously
tricky business, and deserves a closer look.

We first consider the security of the protocol when the sender is corrupted. The attack scenario corre-
sponds to the real system obtained by removing the Sender program from the protocol execution in Figure 2.
Following the simulation paradigm, security requires exhibiting an efficient simulator program SimS (inter-
acting, as a sender, with the ideal functionality OT,) such that the following real and ideal systems are
computationally indistinguishable:

Yl )
mo < <l . ,
T oT, m__ 72 ! <L
> . .
Receiver , iy SimS oT, i
. m >
- = \ )
- etoy

IdealS(myg,i2,b') = m/

ReaIS(mz,ig, bl> = m’

Security is easily proved by defining the following simulator:

SimS(ma,is) = m) — ,
mo = ’LQ[O]EBQ(’ITLQ[OD ; SimS e
mi = i2[l] ® G(moa[1]) —

ml2 = <m03 m1>

We observe that RealS and IdealS are perfectly equivalent because they both simplify to m’ = io[b/]BG(m2[b']).
So, the protocol is perfectly secure against corrupted senders.

We now turn to analyzing security against a corrupted receiver. This time we need to come up with a
simulator SimR such that the following real and ideal executions are equivalent:

A Vgl b
m « <
2 OT, m
. m
Sender SimR L
. > 02

) —
RealR(mb, b) = (m, 02) IdealR(my, ) = (m, 02)

Of course, this time we can only aim at proving computational security, i.e., coming up with a simulator
such that RealR and IdealR are computationally indistinguishable. We begin by writing down explicitly the
equations that define the real system execution. Combining the equations for Sender, OT,, and Nety,, we
obtain the following system:



RealR(mj5,b) = (m,o09)
mgo < M,,
my <+ M,
co = mh{0] ® G(myo)
= my[l]dG(m)
02 = <Co, Cl>
m = (mg, my)[b]

So, the simulator may proceed by picking mg,m; at random on its own, and set m = (mg, m1)[b] just as in
the real execution. However, the simulator cannot compute ¢y and ¢; as in RealR because it does not know
m4. This is addressed by using the same message m’ twice, counting on the pseudorandom masking to hide
this deviation from a real protocol execution. Formally, the simulator SimR is defined as follows:

SimR(m/,b) = (b, m,02)
v =1 . b
mo < Mn
m; <+ M, . m
SImR ——

m = (mg,m)[b] o

co = m dG(mg) — | e
g = magG(m) \—j

0y = {co,c1)

Combining the simulator with OT, results in the following ideal system:

IdealR(mb,b) = (m,o02)
mo < M,
my Mn
co = myb] ®G(mo)
e = mbhlb]dG(mq)
02 = <Co7 Cl>
m = (mg,mi)[b]

As expected, the two systems IdealR, RealR are indistinguishable for both b = 0 and b = 1. For example,
RealR(m}, 0) and IdealR(m), 0) are equivalent because they are both computationally indistinguishable from
the process that chooses m <+ M, and ¢ < M, at random and sets 0, = (m45[0] & G(m), c). The case when
b =1 is similar. At this point it would be very tempting to conclude that RealR and IdealR are equivalent,
but they are not: they can be easily distinguished by an adversary that sets m) # L and b = L. In fact,
IdealR(mf, L) = (L, 1), but RealR(m}, L) = ({co,c1), L), where (cp,c1) # L. So, IdealR and RealR are
not equivalent, and the simulator SimR is not valid. This discrepancy between the ideal and real systems
highlights a subtle timing bug in the protocol: in order to carry out the simulation, the transmission of
(co,c1) should be delayed until after the receiver has selected its bit b. However, this information is not
available to the sender, and fixing the protocol requires revising the definition of OT, as we will do in the
next section.

Other communication channels We conclude this section with a discussion of other possible com-
munication channels and weaker OT variants that leak some information to the environment. For ex-
ample, one may replace the perfectly secure communication channel Nety; with an authenticated channel
AuthNety (i, e;) = (0, e,) that also takes an input e; : {L, T} and provides an output e, : M to the envi-
ronment. The environment output e, = 7 is used to leak the transmitted message as well as the timing
information about when the message is transmitted. The environment input e; is used to allow the environ-
ment to delay the transmission of the message o = e;!i to the receiver.

Similarly, one may consider weaker versions of the OT functionality that leak the input timing information
eo = (ma!T,blT) to the environment, and allow the environment to delay the OT output m = e;!ms[b].

10



We remark that none of these modifications affect the analysis presented in this section. In particular,
considering a perfectly secure communication channel Net only makes our insecurity result stronger. Also,
leaking the signal b!'T to the environment does not solve the timing bug in the protocol: in order to fix the
bug, the sender needs to delay the transmission of i5 = {(cg, 1) until b > L. So, it is not enough to provide
this information to the environment. The timing signal b! T needs to be provided as an output to the honest
sender.

4 OT Length Extension

We have seen that the “standard” definition of Oblivious Transfer is inadequate even to model and analyze
a simple OT length-extension protocol. In Figure 3 we provide a revised definition of oblivious transfer that
includes an acknowledgment informing the sender of when the receiver has provided her selection bit.

ma 'SR b

OTy(ma,b) = (a,m)
m = malb] " OTy, .
a = (b>1) —

Figure 3: A revised Oblivious Transfer functionality.

We use this revised definition to build and analyze a secure OT length-extension protocol, similar to the
one described in the previous section. The OT length extension uses the same Receiver program as defined
in Section 3, but modifies the Sender program by using the signal a to delay the transmission of the message
io. The new sender also forwards the signal a to the environment to match the new OT’ specification:

f \ ma
mh
Sender' (mh,a) = (a’',ma,is) .
(ma,i,) < Sender(mj) Sender = fe——
ad = a a .
: ) - i
is = ali >

, ma -l
Mo - -~ « - I
> oT, -«
a m
- -
-« > .
Sender’ - J Receiver
, ——— "
a "o 0 m
> Neta, >
N — N

Real(m}, b') = (a’,m’)

Figure 4: A normal execution of the OT Length Extension protocol.

The Sender and Receiver programs are interconnected using OT/, and Nety, as shown in Figure 4. As in
the previous section, it is easy to check that the protocol is correct, i.e., combining and simplifying all the
equations from the real system in Figure 4 produces a set of equations identical to the revised definition of
the ideal functionality OT'(m}, ") = (a’,m’). Security when the sender is corrupted is also similar to before.
The real and ideal systems in this case are given by

11



my [ 3\ b \
> < / ma (
oT < b > mh o <l
a n m_o a - 1 -
\ ) " | Receiver SimS’ , oT,
- etap >
IdealS(ma,i2,b') = (m',a)

RealS(mag, iz, b") = (m/, a)

We see that this time SimS’ has an additional input a’ and output a. We adapt the simulator from
the previous section simply by adding an equation that forwards the a’ signal from OT’ to the external
environment:

ma i
> mhy
e
SimS'(ma,iz,a’) = (a,m}) — 1 Simg
mh = SimS(ma,iz) " !
a = ad io -

RealS(ms, is,b’) and ldeal(ms, i, b’) are equivalent because they both output m’ = 02[b'] ® G(m2[b']) and
a = (b > 1). So, the protocol is still perfectly secure against corrupted senders according to the revised

OT’ definition.
We now go back to the analysis of security against corrupted receivers. The real and ideal systems are:

me ( )

| —> <L N b
> oT Mo o <l <
o a n m - , h m
Sender’ | I 0T, SimR
o X q m o
7, 02 > 2
Netsy -

! _— ’
RealR(m}.b) — (a',m,0) IdealR(mb, b) = (a’,m, 02)

No change to the simulator are required: we use exactly the same “candidate” simulator SimR as defined
in Section 3. Combining and simplifying the equations, gives the following real and ideal systems:

RealR(mb,b) = (a’,m,02) IdealR(m4,b) = (a’,m,02)
mgo < Mn mo < Mn
my Mn my Mn
co = mhl0] & G(mo) co = mylb] ®G(mo)
ca = mh[l]®G(my) aa = mylb]®G(m)
0y = b!<Co, Cl> 0y = <CO7 Cl>
m = (mg, my)[b] m = (mg, mq)[b]
a = (b>1) ad = (b>1)

Now, when b = L, we have RealR(m/, L) = IdealR(m}, L) = (L, L, 1). So, no adversary can distinguish
the two systems by not setting b. On the other hand, when b # 1, RealR and IdealR are identical to the real
and ideal systems from the previous section, augmented with the auxiliary output o’ = (b > 1) =T. As we
already observed in Section 3, these two distributions are computationally indistinguishable, proving that
the length extension protocol is secure against corrupted receivers.

5 The OT protocol of Chou and Orlandi

In this section we consider the OT protocol proposed by Chou and Orlandi in [CO15]. In the original paper,
this is described as a protocol to execute [ instances of 1-out-of-m OT, in parallel, i.e., the sender provides
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an [-dimensional vector of m-tuples of messages, and the receiver (non-adaptively) selects one message from
each tuple. For simplicity, we consider the most basic case where [ = 1 and m = 2, i.e., a single OT execution
of a basic OT protocol as defined in the previous sections. This is without loss of generality because our
results are ultimately negative. So, fixing [ = 1 and m = 2 only makes our results stronger. Our goal is to
show that this protocol is not provably secure in equational framework according to a fully asynchronous
simulation-based security definition. In order to formally analyze security, we begin by giving a mathematical
description of the protocol and model of [CO15] using the equational framework.

The Random Oracle model The protocol of [CO15] is designed and analyzed in the random oracle
model [BR93]. So, both parties have access to an ideal functionality RO implementing a random function
with appropriately chosen domain ) and range K. Queries from the sender and receiver are answered
consistently, and, in general, RO can receive multiple (adaptively chosen) queries from both parties. Formally,
the random oracle is modeled by the following functionality, where f*(x1,zo,...,) = (f(x1), f(22),...) is
the standard extension of f to sequences:

ROqg,kx(gs,qr) = (ks kr) 45 fE— o
qs,qr :  QF > ——————
ks, kr  : K* RO
f <_ [Q N K] ks kr
ks = f*(qs) —
kr = f*(qr)

The random oracle starts by picking a function f: @ — K uniformly at random, and then it uses
f to answer any sequence of queries gs,qr € @Q* from each party. We give separate channels to access
RO to the sender (gs) and receiver (gr) to model the fact that random oracle queries are implemented as
local computations, and each party is not aware of if/when other players access the oracle. The Sender
and Receiver programs from the protocol of [CO15] only make a small number of queries (two and one
respectively.) Moreover, the two sender queries are chosen simultaneously, non-adaptively. So, for simplicity,
we restrict RO(qa,q) = (ko, k) to an oracle that receives just a pair of queries g2 = {(qo,¢q1) € QIQ from the
sender and one query ¢ € @) from the receiver. We remark that in order to prove security, one should
consider an arbitrary (still polynomial) number of (sequential, adaptively chosen) queries to model the
adversary/environment ability to compute the RO function locally an arbitrary number of times.® However,
since our results are negative, fixing the number of queries only makes our result stronger: we show that
the protocol is not provably secure even against the restricted class of adversaries that make only this very
limited number of random oracle queries.

It has been observed, for example in [CJS14], that a protocol analyzed stand-alone in the traditional
random oracle model might lose its security when composed with other instances of protocols in the same
random oracle model: either each instance uses an independent random oracle such that the real composed
system cannot assume a single hash function, or the composed system suffers from transferability attack. A
modified notion called global random oracle was proposed in [CJS14] to allow a composed system achieving
UC security when all protocols can access a single global random oracle. With respect to this issue, the OT
protocol of [CO15] cannot be claimed UC secure and it should be re-defined in the global random oracle
model or an equivalent notion. However, such issue is independent of the negative result we are going to
present. Since our motivation is to illustrate the use of equational framework in analyzing protocols, for
simplicity, we still consider the traditional random oracle model as used in [CO15].

The protocol In order to facilitate a comparison with the original paper, we use as far as possible the
same notation as [CO15]. Let G = (B) be a group generated by an element B of prime order p. Following
[CO15], we use additive group notation, so that the group elements are written as 2B for z = 0,...,p—1.% In

8This can be modeled by letting ¢s and gr range over the set of sequences of queries Q*, partially ordered according to the
prefix ordering relation.

9Chou and Orlandi use additive notation to match their efficient implementation based on elliptical curve groups. Here
we are not concerned with any specific implementation, but retain the additive notation to match [CO15] and facilitate the
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[CO15] it is assumed that group elements have unique, canonical representations (which allows for equality
testing), and group membership can be efficiently checked. Here, for simplicity, we assume that all messages
representing group elements are syntactically valid, i.e., whenever a program expects a group element from
G as input, it will always receive the valid representation of a such a group element (or L if the no message
has been sent), even when this value is adversarially chosen. This is easily enforced by testing for group
membership, and mapping invalid strings to some standard element, e.g., the group generator B.

The protocol uses a random oracle RO k(q2,q) = (ka, k) for functions with domain @ = G? x G and
range K = {0,1}", which receives two (parallel) queries go = {qo,q1) € Q@*? from the sender and one query
q € Q1 from the receiver.

The protocol also uses a symmetric encryption scheme (E,D), with the same message space M, as the
OT functionality, and key and ciphertext space K,, = {0,1}" equal to the range of the random oracle. The
scheme is assumed to satisfy the following properties:

1. Non-committing: There exist PPT algorithms S1,S; such that, for all m € M,,, the distributions

{(e,;k) : k<+ K,e<+ E(k,m)}
{(e,k) : e+ S1,k+ Sa(e,m)}

are identical.l?

2. Robustness: Let S be a set of keys chosen independently and uniformly at random from K,,. For any
PPT algorithms A, if e + A(S), then the set Vs, = {k € S| D(k,e) # L} of keys under which e can
be successfully decrypted has size at most 1 with overwhelming probability (over the choice of S and
the randomness of A.)

A simple encryption scheme satisfying these property is given by E(m, k) = (m,0") @ k, i.e., padding the
message with a string of zeros for redundancy, and masking the result with a one-time pad.

Using this notation, the protocol of [CO15] is described by the following equations, and its execution is
depicted in Figure 6.

Sender(mg, k2,Y) = (g2, X, c2)
y <« Z; Receiver(k, X, c2,b) = (g, Y,m)
X = yB T — I,
0] = ((X,Y),yY) Y = bX+zB
QQ[l] = ((va)va*yX) q = ((X7Y)7IX)
e2[0] <= E(k2[0], m2[0]) m = D(k,ca[b])
CQ[].] — E(kg[l], mg[l])

Figure 5: The OT protocol of Chau and Orlandi.

Here we briefly explain the normal protocol execution: Sender first samples a random group element X
and sends it to Receiver; once it receives Y from Receiver, it submits a pair of queries g2 to RO; and once it
receives random keys ko from RO, it encrypts messages ms under the keys ks, and it sends the ciphertexts
pair ¢y to Receiver. On the other hand, Receiver firsts samples a random group element xB, and upon
receiving X from Sender it computes ¥ = bX + B and sends it to Sender; it then submits a query ¢ to
RO, and once the random key k and the ciphertexts co are all received, it decrypts ca[b] using k to get the
desired message m.

In the following subsections, we show that this protocol cannot be proved secure, neither according to the
classic OT definition given in Figure 1, nor according to our revised OT’ definition of Figure 3 that includes

comparison with the original protocol description.
101n fact, computational indistinguishability is enough, but it is easy to achieve perfect security.
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g2 = (q0,q1) [ ‘ q

RO b

52 = (]co7 k1> k o e ——
—
m
_2> Sender X > Receiver

< Y m

—
Co = (Cm C1> g

Figure 6: A normal execution of the OT protocol of Chou and Orlandi.

the a = (b > 1) signal to the sender. Specifically, first, in subsection 5.1 we show that if the definition from
Figure 1 is used, then the protocol cannot be proved secure against corrupted senders. This is for reasons
very similar to those leading to the failure simulation in Section 3. This suggests that one may fix the
problem by considering our revised OT’ definition, and suitably modifying the sender program. However,
in subsection 5.2 we show that when the revised OT’ definition is used, then the protocol cannot be proved
secure against corrupted receivers. In addition, in subsection 5.3 we consider a weaker OT” definition in
which the signal a = (b > 1) is leaked to the environment, instead of being sent to the sender, and we show
that the protocol is still not secure in this model when the receiver is corrupted.

5.1 Corrupted sender

We analyze the security of the OT protocol with respect to the standard OT functionality, and consider the
case when the sender is corrupted. The corresponding real and ideal systems are shown in the following
diagrams:

g2 o o ‘ g2 o
ko RO Ly «— ke <«
e > Receiver Lyl sims f—= oT
- V4 m - X m
f— f—
Co o C2 o
RealS(q2, X, ¢2,b) = (k2, Y, m) IdealS(g2, X, co,b) = (ka2,Y,m)

For the protocol to be secure, the two systems should be computationally indistinguishable (for some
simulator program SimS.) We will describe the attacks/environments Envy and Envy, and show that for any
simulator SimS, at least one of them distinguishes the real and ideal systems with nonnegligible advantage.
We recall that a distinguishing environment connects to all input and output channels of the system, and
produces one external output ¢ € {1, T}. The distinguishing advantage of the environment Env,, is given by

Adv(Env,) = |Pr{Env,[RealS] = T} — Pr{Env,[ldealS] = T}|.
The two distinguishers work as follows:
e Envg(ks,Y,m) = (g2, X,co,b,t) sets g =1L, X =B, co =L and b= L, and outputs t = (Y > 1).
e Envy(ko,Y,m) = (g2, X, co,b,t) sets o = L, X = B, ¢co = L and b =0, and outputs t = (Y > 1).
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Notice that the only difference between the two environments is in the value of . Using the equations
for the Receiver, we see that in the real system Y > 1 if and only if b > 1. In particular, we have
Pr{Envg[RealS] = T} = 0 and Pr{Env;[RealS] = T} = 1. On the other hand, we have

Pr{Envg[ldealS] = T} = Pr{Env;[ldealS] = T} (4)

because when interacting with ldealS, the output value ¢ is independent of b. So, if we let p be the probability
in (4), the two environments have advantage Adv(Envg) = p and Adv(Env;) = 1 — p. It follows that either
Envg or Envy has distinguishing advantage at least 1/2.

Intuitively, the protocol is not secure because a corrupted sender (interacting with the real system RealS),
learns when the receiver sets b > | by observing the incoming message Y > 1. In fact, as we will see, this is
the only weakness against corrupted senders, and it can be fixed by augmenting the OT functionality with
an output signal a = (b > L), similarly to what we did in Section 4.

We remark that securing against corrupted senders with respect to the revised OT’ can be proved for
adversaries that make an arbitrary number of random oracle queries. Security is demonstrated by the
following simulator, which takes the signal ¢ = (b > 1) as an additional input:

SimS(gs, X,a,¢c0) = (ks,Y,m2)
f + [(G*xG)— K]
ks = [*(gs)
x — 7,
Y = XladzB
mo[0] = sup{D(ks[i], c2[0]) | gs[i] = ((X,Y),...)}
mao[l] = sup{D(ks[i], c2[1]) [ gs[i] = (X,Y),...)}

A few explanations about the simulator program are in order. In the definition of the simulator, we have
extended the output domain of the decryption function D with a top element T, greater than any other
element, so that we can take the supremum sup{xi,...,z,} of any set of values. This top element should
be interpreted as an error condition that should not occur during any execution (except with negligible
probability.) In fact, it follows from the robustness of the encryption scheme that (with overwhelming
probability) for any ciphertext ca[j] there is at most one key ks[i] such that D(ksli], c2[j]) > L and taking
the sup does not result in T.

We leave the verification that the simulator is indeed correct to the reader, and move on to the analysis
of security against corrupted receivers.

5.2 Corrupted receiver

We have seen that when using the standard OT definition, the protocol is not secure against corrupted
senders. Here we consider security against the revised OT’ definition used to fix the OT length extension
protocol in Section 4. Clearly, changing the definition requires also modifying the sender program to output
a signal @ in order to match the OT’ functionality. Since the sender receives only one message (Y') from the
receiver, there is only one sensible way to modify the protocol to produce this additional output: setting
a = (Y > 1). Formally, we consider the following modified sender program:

Sender’ (ma, ko, Y) = (a,q2,X,c2)
(g2, X,co) <« Sender(ma,ko,Y)
a = (Y>1)

We leave it to the reader to verify that a real protocol execution (Sender’ | RO | Receiver): (maz,b) — (a,m)
is equivalent to the ideal functionality OT’: (mag,b) — (a,m). As we will show in a later section, the protocol
is also secure against corrupted senders. So, in order to analyze security we only need to consider the setting
where the receiver is corrupted. The real and ideal system in this case are shown in the following diagrams:
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’ g2 > < q ’ ‘ < q
> < RO L e -« ; :
Sender’ RY I oT’ SimR
. < L det moo -«
. al — =
RealR(mg,q,Y) = (a,k, X, c2) IdealR(mz2,q,Y) = (a,k, X, c2)

Security requires that the above two systems are indistinguishable for some simulator program SimR.
Unfortunately, as we are about to show, no such simulator exists.

Proposition 1. For any simulator SimR, there is an environment Env(a,k, X, co) = (me,q,Y,t) (with
external output t € {1, T}) such that the distinguishing advantage

Adv[Env] = | Pr{Env[RealR] = T} — Pr{Env[ldealR] = T}|
is not negligible.

Proof. Assume there exists a simulator SimR for a corrupted receiver. We build two environments Envy and
Env; as follows, and we will show that (OT’ | SimR) can be distinguished from the real system by one of
Envg and Envy:

Envo(a, k, X, c2) = (ma,q,Y,t)
sets d < {0,1}, ¥ <~ Zp, ma = 1, q= 1, Y =dX + 2B,
outputs t = (X > L Aa> 1),
Envy(a, k, X, ca) = (ma,q,Y,t)
sets d < {0,1}, x + Z5, mg < M)?, ¢ = ((X,Y),2X),Y = dX + zB,
outputs ¢ = (X > L Ameg[d] = D(k, c2[d])).

The Sender program always sets X > 1; so the simulator SimR must also set X > 1| on any input with
overwhelming probability. Since both Envg and Env; can distinguish real and ideal systems when SimR sets
X = 1, we assume in the following that SimR always sets X > 1, and we show that even such conditional
simulator implies a contradiction.

Let u; be the input distribution of SimR when interacting with Env; for ¢ = 0, 1. For any input distribution
u = (m,q,Y) with components m, g, Y, denote using u™ the distribution of m. Similarly we have u?, uY,
SimR(u)?, etc. When interacting with Envgy the real system sets a = T, so for the ideal system to be
indistinguishable from the real system, SimR must output b € {0,1} with overwhelming probability. Let
po = Pr(SimR(up)® > L) and p; = Pr(SimR(u1)” > L); then 1 — pg is negligible. Notice that uf = L and
ug' = L with probability 1, and Envy and Envy set Y according to the same distribution; so ug < u;. Since
SimR is monotone, we have pg < p; and thus 1 — p; is also negligible.

For i = 0,1, let p = Pr(SimR(u;)? = 0) and p} = Pr(SimR(u;)® = 1). Then pY+p} = po and p{ +pi = p;.
Since both {0} and {1} are open sets in B, by monotonicity of SimR we also have p§ < p and p} < pi.

Now let us consider the distinguishing advantage of Env;. It is easy to see that Pr(Envi[RealR] = T) = 1.
When interacting with the ideal system, let b = SimR(u;)? and then we have

Pr(Envy[ldealR] = T) =Pr(t =T |b= 1) Pr(b= L)+ Pr(t =T | b= d) Pr(b = d)
+Pr(t=T|b=1—-d)Pr(b=1-d),

where ¢ = (mo[d] = D(k, c2[d])). We claim that pj~* is negligible. To see this, fix d and consider the case
1—d.

when b = By definition of the OT’ functionality, u}* = my[b], and thus SimR does not learn ms|d].
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Since mgs[d] is randomly selected from M, SimR cannot do better than randomly guessing and outputting
a ciphertext ca[d] of it. Then Pr(t =T |b=1—d) < 27", and thus

Pr(Envy[ldealR] = T) < (1 —py) + Pr(t =T | b= d)p{ + 27

Since p(lj_d < p%_d = p1 — p¢, we have p{ < p; fp(l)_d. So for |1 — Pr(Envq[ldealR] = T)| to be negligible,

pcl)_d must be negligible.

However, if p(lfd is negligible, then with an overwhelming advantage pg — p(lfd = po — 2péf‘i we can
run SimR(L, 1,Y) to distinguish two identical distributions {zB | = <+ Z;} (when d = 0 in Envp) and
{X+2B| X € G,r < Z;} (when d = 1 in Envg) of Y, which is a contradiction. So Env; can distinguish

IdealR from RealR with nonnegligible advantage. O

5.3 A weaker OT definition

So far we have seen that neither the standard OT nor the revised OT’ is suitable for defining security of the
[CO15] protocol. To capture the security of [CO15] protocol, we attempted to use a weaker definition of the
ideal OT functionality, shown in Figure 7, in which the signal about receiving the selection bit b from the
sender is always leaked to the environment. Although the modification is insufficient to prove security, we
present the analysis as a more involved example of proofs using the equational framework.

b
mao .
oT” (m2,b) = (a,m) ot m
m = malb]
a = b

Figure 7: A weaker OT functionality that leaks a to the adversary.

We modify the protocol of Figure 5 by adding a Net functionality between Sender and Receiver to output
a to the environment. The Sender and Receiver programs are the same as Figure 5. Net is always corrupted
and so it can be thought as part of the adversary. We will show later that the modified protocol still is not
secure in this weak model; so as in the previous section, we consider the case where the corrupted receiver
can make at most one RO query and we will show that there does not exist a simulator for such corrupted
receiver. Such restriction only makes our conclusion stronger. This modified protocol can be described by
the equations in Figure 8.

Sender(ma, k2,Y) = (g0, X, c2) Receiver(lmX,cQ,bi : (ZQ*,Y,m)
AR Y = b%—FIB
X = yB
3[0] = ((X,Y),yY) ¢ = (X,Y),zX)
c2|0] < E(k2|0],m2|0 B .
eall] «—  E(ka[1], mol1]) Net(XY; - (Y)!(,Y,)

Figure 8: An OT” protocol that always leaks a.

Let us analyze the security of this protocol. When the sender is corrupted, we remove the Sender program
and Net functionality from the system, and so the real system is (RO | Receiver). Notice that the definition
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of Receiver in the current protocol is the same as in Figure 5, so the real system is secure when the sender
is corrupted.

When the receiver is corrupted, we remove the Receiver and Net from the system and so the real system
is (Sender | RO). It turns out that this protocol is not secure when the receiver is corrupted:

Proposition 2. For the OT" protocol in Figure 8, for any simulator SimR of a corrupted receiver, there is
an environment Env(k, X, co) = (ma, q,Y,t) such that the distinguishing advantage

Adv[Env] = | Pr{Env[RealR] = T} — Pr{Env]ldealR] = T}|
s not negligible.

Proof. We define three environments in the following and we will show that, for any SimR, at least one of
these environments can distinguish the real system from the ideal system:

Envl(k,X, Cg) = (mQ,q,Y,t)
sets d < {0,1}, ¥ <~ Zp, ma = L, Y =dX + 2B, q¢= 1,
outputs t = (X > L Ay > L);
Envy(k, X, c2) = (ma,q,Y,t)
sets d < {0,1}, x = Z%, mg <~ M)? Y =dX + 2B, q= 1,
outputs t = (X > L Ay > L);
Envs(k, X, o) = (ma,q,Y,t)
sets d + {0,1}, x < Z5, my « M)? Y =dX + 2B, ¢ = ((X,Y),zX),
outputs ¢ = (X > L Ams[d] = D(k, ca[d])).

Note that Envs is identical to the second environment used in the proof of Proposition 1. As before, the
Sender program always sets X > 1. So any simulator SimR must output some X > 1 with overwhelming
probability on any input. Similar to Proposition 1, we can assume SimR always output X > 1, and we will
show that such conditional simulator implies a contradiction.

Let p; be the probability that Env; outputs t = T when interacting with IdealR, for i = 1,2, 3. The Sender
program always sets X > 1. It is also easy to see that, when interacting with Envy, the Sender program sets
co = 1; so p; must be negligible. When interacting with Envy, the Sender program outputs some ¢ > L; so
1 — po must be negligible.

Any simulator SimR in IdealR takes an input tuple (m, ¢, Y, a) and outputs a tuple (X, b, k, c2). Let u; be
the input distribution to SimR when interacting with Env; for ¢ = 1,2,3. Then it is clear that u; < us < ug.

Let pp, = Pr(SimR(uz)? = 1). Observe that both Env; and Env, set ¢ = L and they set Y according
to the same distribution. If SimR(u2)? = L, then by monotonicity of SimR we have SimR(u;)? = L, and
thus " = u* = L, u¢ = u$ = 1, which implies u; = up. So Pr(SimR(u2)’® = 1) < Pr(u; = ua).
But notice that Pr(SimR(u1)®> = SimR(ug2)®?) = Pr(u; = ug); thus for py = Pr(SimR(u;)®> > 1) and
1 — py = Pr(SimR(u2)?? = 1) to be both negligible, p, must be negligible.

However, since uy < ug, by monotonicity we have 1 —p, = Pr(SimR(uz2)® > 1) < Pr(SimR(u3)? > 1). So
SimR outputs b € {0, 1} with overwhelming probability when interacting with Envs. Similar to Proposition 1,
we can run SimR(L, 1Y, T) to distinguish with overwhelming probability two identical distributions {zB}
and {X + 2B} for X € G and randomly chosen z € Zj, which is a contradiction. Therefore Envs can
distinguish two systems, and the proposition follows. O

6 Conclusion

We considered two OT protocols within the equational framework in this paper: The OT length extension
protocol and the “simplest” OT protocol by Chou and Orlandi [CO15]. Both examples demonstrated the
simplicity and expressive power of the equational framework in analyzing MPC protocols. We found that the
traditional formulation of the OT problem does not fit into a fully asynchronous simulation-based security
model, and we revised it accordingly to fix it for the OT length extension protocol. Still, the revised
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formulation does not provide a satisfying security measure for the OT protocol of Chou and Orlandi. As we
have shown, the equational framework is useful to carry out rigorous security analysis in a concise way.

For the protocol of [CO15], we would like to find an appropriate OT definition so that the protocol can
be proven secure. One possibility is to further modify the OT functionality of Section 5.3 such that it also
leaks a signal to the environment when the sender has provided her input messages mg, m;. We believe the
protocol of [CO15] is provably secure against such OT functionality. But in order to give a formal security
analysis we need to upgrade the equational framework to properly model input histories of functions. The
details of such development is left to future work.
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