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Abstract. Simon is a lightweight block cipher designed by NSA in 2013. NSA presented the specifi-
cation and the implementation efficiency, but they did not provide detailed security analysis nor the
design rationale. The original Simon has rotation constants of (1, 8, 2), and Kölbl et al. regarded the
constants as a parameter (a, b, c), and analyzed the security of Simon block cipher variants against
differential and linear attacks for all the choices of (a, b, c). This paper complements the result of
Kölbl et al. by considering integral and impossible differential attacks. First, we search the number
of rounds of integral distinguishers by using a supercomputer. Our search algorithm follows the pre-
vious approach by Wang et al., however, we introduce a new choice of the set of plaintexts satisfying
the integral property. We show that the new choice indeed extends the number of rounds for several
parameters. We also search the number of rounds of impossible differential characteristics based on
the miss-in-the-middle approach. Finally, we make a comparison of all parameters from our results
and the observations by Kölbl et al. Interesting observations are obtained, for instance we find that
the optimal parameters with respect to the resistance against differential attacks are not stronger
than the original parameter with respect to integral and impossible differential attacks. We also
obtain a parameter that is better than the original parameter with respect to security against these
four attacks.

Keywords: Simon · Lightweight block cipher · Integral attack · Impossible differential attack ·
Design rationale · Rotation constant.

1 Introduction

Lightweight cryptography has been discussed actively to provide secure communication for various com-
munication devices with constraint resources, such as RFID tags and sensor network. In fact, quite a
few lightweight ciphers, hash functions, message authentication codes (MACs) etc have been designed
recently.

Among a large variety of lightweight block ciphers, Simon and Speck [6], which were designed by
NSA in 2013, achieve overwhelming performance and thus attract a lot of attention. Meanwhile, the
designers of Simon and Speck do not provide any security discussion and design rationale. Thus it is
necessary to carry out security analysis and to study design rationale so that the community can have
more confidence on those designs.

Yang et al. investigated a performance aspect of Simon, and proposed another block cipher Simeck
which optimizes the performance of Simon by slightly modifying its round function and key schedule
[30]. As a drawback, security of Simeck is known to be weaker than Simon, thus evaluating security of
Simeck is also important.

In general, security of block ciphers is evaluated by deriving lowerbounds and upperbounds of the ci-
pher’s security against particular cryptanalysis. Here, lowerbounds are derived by applying cryptanalysis.
Regarding Simon, a large number of attacks have been applied since its proposal including differential
cryptanalysis [2,8,26,28,25,19], linear cryptanalysis [4,1,25,23,5,10,11], algebraic analysis [3,21], integral
attack [29,27], impossible differential attack [9,29,12], zero-correlation attack [29], known-key attack [14]
and so on.

⋆ A preliminary version of this paper appears in the proceedings of the 14th International Conference on Applied
Cryptography and Network Security, ACNS 2016 [18]. The final publication is available at Springer via http:

//dx.doi.org/10.1007/978-3-319-39555-5 28. This is the full version.
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Design rationale of block cipher is often provided by the designers. If it is not the case, there still exists
an approach for the third party to study the design rationale. For example, an evaluator parameterizes
some part of the target cipher, e.g. rotation constants, and evaluates the security for all parameter
choices. If the original parameter shows the highest security, it can be said that the original parameters
have been chosen in good rationale. For example, Pramstaller et al. evaluated the design rationale of SHA-
1 by evaluating all the rotation constants [20]. Regarding Simon, Kölbl et al. regarded three rotation
constants (1, 8, 2) of Simon as a parameter (a, b, c), and evaluated security of Simon variants denoted by
Simona,b,c against differential and linear cryptanalysis for all choices of (a, b, c) [17]. As a result, it turned
out that the original rotation constants in Simon are not one of the strongest. Kölbl et al. concluded that
considering only differential and linear cryptanalysis is not sufficient to explain the design rationale, and
further security evaluation with other cryptanalysis approach were left open.

Our Contributions. In this paper, we study design rationale of Simon32; a member of the Simon
family whose block size is 32 bits. We extend the analysis by Kölbl et al. [17] to integral attack and
impossible differential attack. Namely, we apply those attacks to Simona,b,c for all the choices of rotation
constants (a, b, c).

Regarding integral attacks on Simon, Wang et al. experimentally evaluated the number of rounds
covered by integral distinguishers [29]. In more details, Wang et al. choose 231 plaintexts and encrypt
them with several keys to check if the sum of the corresponding internal states after some rounds is always
zero in some bits. In this paper, we use the same approach to evaluate all the choices of rotation constants.
Here, the difficulty is expensive computational cost of this experiment. To overcome this problem, we
introduce equivalence classes for rotation constants and sets of 231 plaintexts, which make the experiment
feasible for a supercomputer. Moreover, we point out that the method of choosing 231 plaintexts by Wang
et al. [29] does not cover all the cases, thus may miss an optimal attack. In this paper, we enlarge the
search space so that wider classes of 231 plaintext sets are examined. The obtained results contain many
interesting features. Several parameters can be distinguished even after 32 rounds, which is the default
number of rounds for Simon32. We show that original rotation constants in Simon have reasonably good
resistance against the integral attack, while several other choices have stronger resistance.

Regarding impossible differential attacks, we derive the number of rounds for impossible differential
characteristics with the miss-in-the-middle approach. Many round constant choices lead to impossible
differential characteristics of length between 9 rounds to 17 rounds, while the original Simon parameter
allows 11-round distinguishers.

At the last part of this paper, we compare strength of rotation constants by considering integral attacks
and impossible differential attacks from our paper and differential cryptanalysis and linear cryptanalysis
by Kölbl et al. [17]. We classify strength of each parameter with respect to the number of rounds covered
by distinguishers. This identifies several interesting properties, for example, any rotation constant having
better resistance against integral and impossible differential attacks than original Simon is not as strong
as original Simon with respect to differential and linear cryptanalysis. It turns out that original rotation
constants in Simon are fairly well by taking into account four kinds of cryptanalysis, yet we find that
rotation constant (5, 12, 3) is better than original Simon, and thus interesting to investigate more details
in future.

Paper Outline. The rest of this paper is organized as follows. We describe notations used in this paper,
specification of Simon and basic concepts of integral and impossible differential attacks in Sect. 2. Integral
attacks on Simona,b,c are shown in Sect. 3. Impossible differential attacks on Simona,b,c are shown in
Sect. 4. We then compare strength of parameters to study the design rationale of Simon in Sect. 5.
Finally, we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Notation

The set {0, 1, . . . , n− 1} is written as Zn, and the set {n′ | 1 ≤ n′ ≤ n, gcd(n′, n) = 1} is written as Z∗
n.

The d-bit circular rotation of a bit string x to the left is written as Sd(x).
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Fig. 1. The (i− 1)-st round function of Simon

2.2 Specification of Simon

Simon is a lightweight block cipher suitable for hardware implementation that was designed by NSA in
2013 [6]. The Simon block cipher with a 2n-bit block is denoted Simon2n, where n ∈ {16, 24, 32, 48, 64}.
Simon2n with an m-word key (mn bits) is denoted Simon2n/mn. In this paper, we are only concerned
with the case n = 16 and m = 4.

The round function of Simon is composed of three operations: AND (∧), rotation (S) and XOR (⊕).
Let v denote the n-bit input word of the round function F , where F is defined as

F (v) = (S1(v) ∧ S8(v))⊕ S2(v).

Let (Li−1, Ri−1) denote the 2n-bit input state of the (i−1)-st round, which is encrypted into (Li, Ri) as:

Li = F (Li−1)⊕Ri−1 ⊕ ki−1,

Ri = Li−1,

where ki−1 is the subkey of the (i− 1)-st round. The plaintext is (L0, R0), and if the number of rounds is
r, then (Lr, Rr) is the ciphertext. We note that the index of the round starts with 0 and the last round
is the (r − 1)-st round. Fig. 1 shows the round function of Simon. The key schedule is irrelevant in our
analysis and we omit the details, which can be found in [6].

2.3 Simon Block Cipher Variants

In [17], Kölbl et al. introduced Simon block cipher variants by regarding the three rotation constants
(1, 8, 2) of Simon as a parameter (a, b, c). Then they proved a structural equivalence among the round
functions with different parameters. Furthermore, they showed the detailed security analysis of Simon
block cipher variants against differential attacks for a large set of parameters.

The round function of Simon block cipher variants is defined as:

Fa,b,c(v) = (Sa(v) ∧ Sb(v))⊕ Sc(v),

where a, b, c ∈ Zn. We exclude the case a = b since the encryption algorithm becomes a linear transfor-
mation. We also assume that a < b from the symmetry of AND operation. The size of parameter space
is
(
16
2

)
× 16 = 1920, where

(
16
2

)
is the number of combinations of a and b, and 16 is the number of choices

of c.

The structural equivalence is formalized as follows.

Proposition 1 ([17]). Let T be a permutation of the bits of an n-bit word that corresponds to an affine
transformation of the bit-indices. Thus there are s ∈ Zn and t ∈ Zn such that bit i is translated to s · i+ t.
Then

T (Fa,b,c(v)) = Fsa,sb,sc(T (v)).
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Table 1. Computation environment

Computation node Fujitsu PRIMEHPC FX100
- processor - Fujitsu SPARC64 XIfx (2.2 GHz) 32 cores
- the memory capacity - 32 GiB

The total number of nodes (cores) 2880 nodes (92160 cores)

The total computing performance 3.2 PFlop/s

The total memory capacity 90 TiB

Programming language C

MPI library Fujitsu MPI

The equivalence relation of Proposition 1 is written with⇔, and the set of all distinct equivalence classes
is written as SV. In Sect. 3.3 and Sect. 4.1, we will point out that if the round functions are equivalent,
attack characteristics we consider are also equivalent. Therefore we can reduce the size of parameter space
that we must search by computers. The size of parameter space after the reduction is 509 (= |SV|).

As the results of the analyses by Kölbl et al., the following 20 parameters are optimal with respect to
10 rounds differential characteristics.

(0, 1, 2) (0, 1, 3) (1, 2, 3) (3, 4, 5) (0, 5, 10)
(0, 5, 15) (4, 5, 3) (0, 7, 14) (6, 7, 5) (1, 8, 3)
(3, 8, 14) (7, 8, 5) (5, 10, 15) (6, 11, 1) (1, 12, 7)
(5, 12, 3) (7, 12, 1) (0, 13, 10) (0, 13, 7) (8, 13, 2)

Among these parameters, (0, 1, 2) and (5, 12, 3) are also optimal with respect to linear characteristics for
10 rounds. Simeck, a variant of Simon block cipher proposed by Yang et al. [30], has the equivalent
structure as Simon and its parameter corresponds to (a, b, c) = (0, 5, 1). As a result, Kölbl et al. found
that Simon and Simeck are not optimal with respect to differential characteristics.

2.4 Basic Consepts of Integral and Impossible Differential Attacks

The integral attack [16] is a chosen-plaintext attack against block ciphers. It is composed of integral
distinguishers and the key recovery step. Suppose that a set of plaintexts are encrypted. An integral
distinguisher refers to an event where certain bits of the XOR of all ciphertexts is always 0. Integral
distinguishers are often constructed by evaluating the propagation characteristic of the integral property,
which is the property for a multiset of the internal state. The integral property is classified as follows:

– All (A): Every value appears the same number of times in the multiset.
– Balance (B): The XOR of all texts in the multiset is 0.
– Const (C): The value is fixed to a constant for all texts in the multiset.
– Unknown (*): The multiset is indistinguishable from one of random values.

In this paper, we focus on the search of integral distinguishers for all the Simon block cipher variants.
The impossible differential attack [7] is a chosen-plaintext attack against block ciphers. An adversary

attempts to recover the right key by using impossible differential characteristics, which are the differential
characteristics where an input difference can never result in an output difference. In this paper, we focus
on the search of impossible differential characteristics for all the Simon block cipher variants.

3 Integral Attacks

In general, the propagation of integral properties cannot be evaluated efficiently in Simon because of its
computational structure in which the round function is computed without S-box. Wang et al. [29] ad-
dressed the issue by experimentally searching the number of rounds of integral distinguishers of Simon32.
The algorithm they used is shown in Sect. 3.1. However, it is computationally difficult to apply it to all
parameters (Sect. 3.2). Therefore we introduce equivalence classes for rotation constants and sets of 231

plaintexts (Sect. 3.3). The search result is shown in Sect. 3.4.
In Table 1, we show the computing environment we used to carry out the experiments in this section.
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3.1 Integral Distinguisher Searching Algorithm

We use the following algorithm byWang et al. [29] to search the number of rounds of integral distinguishers
of a Simon block cipher variant.

1. Generate 2t plaintexts (t ≥ 16) by setting all (16) bits of the right half and (t − 16) bits of the left
half of the input in round 1 to be property A (each bit is called active), while keeping the remaining
bits as constant.

2. (a) Choose the private key randomly. Encrypt 2t plaintexts by r rounds and check whether certain
bits of the output are balanced (i.e., for each of these bits, the XOR sum of the bit over 2t output
states is 0). If yes, keep this as an integral candidate.

(b) Repeat (a) for K times and verify if the integral candidate always holds. If not, discard it. Here,
K is the number of random keys.

3. If there is an integral candidate for all the structures with the same pattern (i.e., with the same t
active bits), regard this as an r-round integral distinguisher of Simon32.

Straightforward implementation of the above algorithm executes Step 3 after iterating Steps 2 (a) and (b)
for K times. However, we see that Steps 2 (b) and 3 can be merged into a single step by fixing the constant
bit of round 1 to an arbitrary value and randomly choosing the private key, and our implementation takes
this approach. We note that K = 213 was used in [29], and it is argued that if the 231 plaintexts yield
the same balanced bits for all the K random keys, then with a high probability, we obtain an integral
distinguisher. From the results, we observe that for large t (i.e., if the number of active bits is large), the
number of rounds of integral distinguishers becomes large.

This is also the case for Simon block cipher variants. Therefore we use this algorithm in which t is
fixed to 31 because we are interested in maximizing the number of rounds of integral distinguishers.

In [15], the same experimental search was performed for Simon48/96 withK = 96, where the rationale
here is that it is sufficient if K is at least the key length of the block cipher. In this paper, we follow the
approach in [15] and use K = 64. An example of an integral distinguisher against Simon5,12,3 that we
obtain by applying this algorithm with r = 15 is shown in Fig. 2. In Step 1, we prepare plaintexts that
have the integral property of (C,A, . . . ,A) as the input of round 1, and this means that the number of
rounds can be extended by one round compared to the case where we use (C,A, . . . ,A) as the integral
property of round 0.

3.2 Necessity for Reducing the Search Space

We first estimate the time complexity for the search of all parameters by using the algorithm in Sect. 3.1.
We first observe that even if the round functions Fa,b,c are equivalent, this may not guarantee that we
have the equivalence between the corresponding integral distinguishers, and we thus need to consider
1920 parameters. From Sect. 3.1, there are 16 choices for the sets of chosen plaintexts. Then the time
complexity of the algorithm is 64×231 r-round Simona,b,c encryptions, implying that the time complexity
for the search of all parameters and plaintext sets is estimated as 1920× 16× 64× 231 ≃ 251.91 r-round
Simona,b,c encryptions.

We implement the algorithm in Sect. 3.1 on a computer system shown in Table 1, and we estimate the
number of necessary cores to search over all parameter choices, assuming that one core carries out the
algorithm in Sect. 3.1. Then one node has 32 cores under our environment. Now we observe that we need
to consider 1920 parameters and 16 choices for the sets of chosen plaintexts. Thus naive implementation
requires 1920× 16 = 30,720 cores, and this corresponds to 960 nodes.

3.3 Finding Equivalent Parameters

We present the following property regarding the equivalence.

Property 1. Let T be a permutation of the bits of an n-bit word that corresponds to an affine transfor-
mation of the bit-indices. Thus there are s ∈ Zn and t ∈ Zn such that bit i is translated to s · i + t.
Let

(L0,R0)→ (Lr,Rr)
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k0

L0 = XR R0 = F (XR)⊕XL

L1 = XL R1 = XR

L15 R15

F5,12,13

(C,A,A,A, A,A,A,A,

A,A,A,A, A,A,A,A)
(A,A,A,A, A,A,A,A,

A,A,A,A, A,A,A,A)

(∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,

∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)
(B,B,B,B, B,B,B,B,

B,B,B,B, B,B,B,B)

14 rounds

Fig. 2. 15-round integral distinguisher of Simon5,12,3

L0 = XR R0 = F (XR)⊕XL

(A,A,A,A, A,A,A,A,

A,A,A,A, A,A,A,A)
(X1,A,X2,A, A,A,A,A,

A,A,A,A, A,A,A,A)

Fa,b,c

k 0

L0 = XR R0 = F (XR)⊕XL

L1 R1

(A,A,A,A, A,A,A,A,

A,A,A,A, A,A,A,A)
(X1,A,X2,A, A,A,A,A,

A,A,A,A, A,A,A,A)

L
1
= XL R

1
= XR

Step 1

Step 2  (a)

(X1,X2) ∈ {(x1, x2), (x̄1, x̄2)}

(X1,X2) ∈ {(x1, x2), (x̄1, x̄2)}
or {(x1, x̄2), (x̄1, x2)}

Fa,b,c

Fig. 3. Applying the algorithm in Sect. 3.1 to the new
set with 231 plaintexts

be an r-round integral distinguisher against Simona,b,c. Then

(T (L0), T (R0))→ (T (Lr), T (Rr))

is an r-round integral distinguisher against Simonsa,sb,sc.

The proof is not obvious but elementary and omitted. From Property 1, the number of parameters to
consider is reduced to 509. By letting s = 1 in Property 1, we observe that we only have to consider an
integral distinguisher with the input of round 1 of the form

(CAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAA).

This means that we only have to consider one set of plaintexts, and hence the time complexity is estimated
509 × 1 × 64 × 231 ≃ 245.99 r-round Simona,b,c encryptions. Then the number of necessary cores in the
implementation is 509, which amounts to 16 nodes.

3.4 Experiments and Search Results

We searched the number of rounds of integral distinguishers of Simona,b,c for all (a, b, c) ∈ SV, where we
consider two types of the sets of the input of round 1 in the algorithm in Sect. 3.1. In what follows, we
show the two types of the sets. The first type is the set

(CAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAA), (1)

mentioned in Sect. 3.1, which was searched by Wang et al.
The second type is the new sets we introduce in this paper, which are defined as 15 sets of the form:

(X1AX2AAAAAAAAAAAAA,AAAAAAAAAAAAAAAA)
(X1AAAX2AAAAAAAAAAA,AAAAAAAAAAAAAAAA)

...

(X1AAAAAAAAAAAAAAA,AAAAAAAAAAAAAAX2A)

(2)
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each of which contains 231 states, which will be used as the input of round 1. Here each set contains one
bit X1, one bit X2, and 30 active bits. We first fix the two bits indicated with X1 and X2 to any value
(x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, and this yields 230 states from the 30 active bits. We then consider
another set of 230 states by fixing the two bits to (x̄1, x̄2), and the actual set of 231 states consists of the
whole above mentioned states. Here, we let x̄ = x⊕ 1 for a bit x. In Fig. 3, we show how the algorithm
in Sect. 3.1 is applied to (2). In Step 1, we obtain 231 plaintexts by decrypting the set of the input of
round 1 satisfying property (2) without the subkey (or equivalently, by assuming that the subkey is zero).
In Step 2 (a), we encrypt the obtained plaintexts in Step 1. Here, if the corresponding bits of subkey in
round 0 have value (0, 0) or (1, 1), the corresponding bits of the input of round 1 have values of the form
(x1, x2) and (x̄1, x̄2). If the corresponding bits of subkey in round 0 have value (0, 1) or (1, 0), they have
the value of the form (x1, x̄2) and (x̄1, x2). However, we observe that both cases still have the property
indicated in (2).

Since we consider two types, namely the 16 sets in total with 231 chosen plaintexts, the time complexity
is estimated as 509× 16× 64× 231 ≃ 249.99 r-round Simona,b,c encryptions from Sect. 3.3.

We show the number of rounds of integral distinguishers and the number of corresponding parameters
as the result of the experiment in Table 2 and Fig. 4. Note that small number of rounds implies the
stronger resistance against integral attack.

In our implementation of this experiments, we set r to rmax which is a sufficiently large number in
the algorithm in Sect 3.1. In Step 2 (a) we check if certain bits are balanced for rmax rounds, and save all
the intermediate states so that we obtain the number of rounds of integral distinguishers. With respect
to the running time, when the number of cores is 509, rmax = 26, and with (1), it took 18h 8m 31s. When
the number of cores is 345 and rmax = 36, each of (2) took about a day, and for instance the first case
of (2) took 25h 5m 52s.

We also note that “≥ 53” means that the maximum value of rmax was set to 53, as we stopped the
program due to the time constraint. Thus parameters in this class have integral distinguishers with the
number of rounds that is larger than 53, but the precise value is unknown at this moment. Moreover, we
observe that when a, b, and c are all odd or all even, then the cipher has integral distinguisher of infinite
number of rounds.

A detailed result shows an interesting fact. Most of the results are obtained by using (1). However, it
turns out that there are cases where (2) outperforms (1). In more detail, for parameters (1, 6, 4), (1, 14, 12),
(2, 3, 12) and (2, 7, 4), we obtain larger number of rounds with (2) than (1), and this was obtained when
both X1 and X2 belong to the left half of the input of round 1.

In Sect. 5, we use the result to make a comparison of the strength of Simon block cipher variants.

4 Impossible Differential Attacks

4.1 Impossible Differential Characteristic (IDC) of Simona,b,c

In this paper, we use the miss-in-the-middle approach [29] to search impossible differential characteristics
(IDCs) of Simon block cipher variants. First, we extend two differential paths forward/backward from
fixed input/output difference by using differential propagation through one round repeatedly. Next, we
check if the corresponding bits are different in the outputs of these paths. If this is the case, we obtain
IDC by connecting these paths.

Differential Propagation through One Round. Let Lr[i] and Rr[i] denote the i-th bit of Lr and
Rr, and ∆Lr and ∆Rr denote the difference of Lr and Rr, respectively. From the definition of the round
function, we obtain the following bitwise equation.

∆Lr+1[i] =(∆Lr[i+ a] ∧ Lr[i+ b])⊕ (Lr[i+ a] ∧∆Lr[i+ b])

⊕ (∆Lr[i+ a] ∧∆Lr[i+ b])⊕∆Lr[i+ c]⊕∆Rr[i] (3)

Table 2. Search result of integral distinguishers

The number of rounds 14 15 16 18 19 20 22 33 ≥ 53 ∞ Sum

The number of parameters 97 112 62 4 15 18 16 6 15 164 509
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Fig. 4. Search result of integral distinguishers and comparison with parameter in [17]. The listed parameters are
20 parameters from [17] and the parameters for Simon and Simeck, and the 20 parameters are optimal with
respect to 10 rounds differential characteristics.

Therefore the one round differential propagation can be described without any information of subkeys as
follows:

∆Lr+1[i] =

{
∆Lr[i+ c]⊕∆Rr[i] if (∆Lr[i+ a],∆Lr[i+ b]) = (0, 0)

? (Unknown) otherwise

∆Rr+1[i] = ∆Lr[i]

(4)

We extend the differential path by using (4) along the encryption direction. We call it a forward differential
path.

As to the decryption direction, we use the following equation.

∆Lr−1[i] = ∆Rr[i]

∆Rr−1[i] =

{
∆Rr[i+ c]⊕∆Lr[i] if (∆Rr[i+ a],∆Rr[i+ b]) = (0, 0)

? (Unknown) otherwise

(5)

We call paths extended by using (5) backward differential paths.
Furthermore, it is obvious that if the round functions have equivalent parameters, there is a corre-

sponding equivalent differential path, and hence we also have the IDC.

IDC Search Algorithm. We use the following algorithm to search the number of rounds of IDCs of a
Simon block cipher variant. We denote a 2n-bit input difference to the input/output differential paths by
∆input0/∆output0. Then, 2n-bit difference after r rounds of input/output differential paths are denoted
by ∆inputr/∆outputr. In the following algorithm, we obtain the number of rounds of IDCs by updating
a temporal variable rmax, which is initialized to 0.

1. Extend a forward differential path for given ∆input0 by using (4) until all the bits of the state become
unknown. Let rin be the number obtained by subtracting 1 from the number of extended rounds. The
subtraction is to consider a path whose bits are not all unknown.

2. Extend a backward differential path for given ∆output0 by using (5) until all the bits of the state
become unknown. Let rout be the number obtained by subtracting 1 from the number of extended
rounds. Let rtmp ← rin + rout.

8



R Left Right

0 0000, 0000, 0000,0000 1000, 0000, 0000, 0000
1 1000, 0000, 0000, 0000 0000, 0000, 0000, 0000
2 0000, ?000, 000?, 0100 1000, 0000, 0000, 0000
3 1?00, 00?0, ?010, 000? 0000, ?000, 000?, 0100
4 0?0?, ??01, 00??, ?0?0 1?00, 00?0, ?010, 000?
5 ???0, 1???, ??1?, ?0?? 0?0?, ??01, 00??, ?0?0
6 ????, ????, ????, ???? ???0,1???, ??1?, ?0??

5 00?0, ???0, 100?, ??0? ????,01??, ???1, ??0?
4 ?1?0, 000?, 0?01, 0000 00?0, ???0, 100?, ??0?
3 0000, 0?00, 0000, ?010 ?1?0, 000?, 0?01, 0000
2 0100, 0000, 0000, 0000 0000, 0?00, 0000, ?010
1 0000, 0000, 0000, 0000 0100, 0000, 0000, 0000
0 0100, 0000, 0000, 0000 0000, 0000, 0000, 0000

Fig. 5. 11-round IDC of Simon5,12,3 (R is the number of extended rounds)

3. Check if there are different values between the corresponding bits in ∆inputr′in and ∆outputr′out for

all (r′in, r
′
out) satisfying r′in + r′out = rtmp. If not, update rtmp to rtmp − 1 and iterate this step.

4. If rtmp > rmax, update rmax to rtmp.
5. Apply Steps 1 to 4 to all (∆input0,∆output0) = (Sl(0 . . . 01), Sm(0 . . . 01)) satisfying l,m ∈ Z2n.

We then obtain the number of rounds of IDC as rmax. We note the reason why it is sufficient to consider
the differences of the form (∆input0,∆output0) = (Sl(0 . . . 01), Sm(0 . . . 01)) only. Notice that if we have
more bits with 1 or unknown in a certain state, then we have more bits with unknown in the next state.
Thus the number of extended rounds of each differential path is reduced. Therefore it is sufficient that
we search paths starting with input and output differences of low Hamming weight. An example of IDC
that we obtain by applying this algorithm is shown in Fig. 5. Notice that bold bits are always different,
which indicates that the differential propagation is impossible.

4.2 Experiments and Search Results

We searched the number of rounds of IDCs of Simona,b,c for all (a, b, c) ∈ SV. We show the maximum
number of rounds of IDCs and the number of corresponding parameters in Table 3 and Fig. 6. Smaller
number of rounds that corresponds to the parameters in the left part of Fig. 6 implies the stronger
resistance against impossible differential attack. We note that the same observation as the integral dis-
tinguisher holds here, that is, when a, b, and c are all odd or all even, then the cipher has IDC of infinite
number of rounds. For completeness, we show a proof of this observation in Appendix A.

In this experiment, we use a computer of which CPU is Core i5-4210M, capacity of mounted memory
(RAM) is 8GB and OS is Windows 7.

In Sect. 5, we use the result to make a comparison of the strength of Simon block cipher variants.

5 Discussions

From the results presented in Fig. 4, Table 2, Fig. 6, and Table 3, in Table 4, we list all 345 parameters
that have integral distinguishers and IDCs of finite number rounds and write in boldface the parameters
that are optimal with respect to differential attacks. We classify the parameters into Groups A,B, . . . ,T
according to the number of rounds of integral distinguishers and IDCs, and they are summarized in Fig. 7.

We describe some observations and the notable parameters as follows:

– Note that there are many parameters in the lower left of Fig. 7.
– We observe that Group G that contains Simon and Simeck is not placed in the bottom left part of

the figure, implying that the resistance against integral and impossible differential attacks was not
given the highest priority when defining the rotation constants of these block ciphers.

– The number of parameters equivalent to original Simon and Simeck in resistance against these
attacks is larger than any other parameters of which distinguishers have finite round.
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Table 3. IDC search result

The number of rounds 9 10 11 12 13 17 ∞ Sum

The number of parameters 42 85 111 28 48 31 164 509
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Fig. 6. IDC search result

– The default number of rounds of Simon32 is 32, and we see that all Simon block cipher variants in
Groups M, S, and Q are distinguishable with the integral distinguishers even if they have the default
number of rounds. They are also less resistant against impossible differential attacks.

– Parameters in Groups N and R have the highest resistance against differential attacks but low resis-
tance against integral and impossible differential attacks.

Interestingly, we find that two parameters (1, 4, 7) and (5, 12, 3) ⇔ (1, 12, 7) (both in Group G) are
better than original Simon from the following reasons.

– (1, 4, 7) and (5, 12, 3) belong to the 20 parameters with optimal security against differential attack,
while Simon or Simeck are not optimal.

– (1, 4, 7) and (5, 12, 3) have the same level of security against integral and impossible differential attacks
as the original Simon.

Additionally, (5, 12, 3) is optimal with respect to linear attacks, and hence this can be an alternative
parameter to the original one. However, it should be noted that we only focus on the security aspect
against the four attacks only, and the implementation characteristic is not considered here.

Links between Impossible Differential and Integral Attacks. In 2015, Sun et al. [24] showed that
impossible differential characteristics lead to integral distinguishers for any Feistel cipher adopting an
SP -round function. Actually, for all parameters from Fig. 7, we observe that integral distinguishers cover
more rounds than impossible differential characteristics, which agrees with the observation by Sun et al.
Thus we are interested in if we can view our results with the context of the link.

Sun et al. assumes that the domain and range sizes of the S-layer is a word size, n. To fit the round
function of Simona,b,c into this framework, we have to regard the entire round function as S and then P
is an identity transformation. Otherwise, concatenation of bit-wise AND is the only possible candidate as
S, leading to 2n-bit to n-bit S-layer which does not match the framework. By regarding the entire round
function as S, we can only examine a set of 2n plaintexts, in which n = 16 for Simon32. At this level, the
link in [24] can be applied to Simon. However, we carried out our experiments, considering the details of
Fa,b,c. At this level, any links between integral distinguishers and impossible differential characteristics
has not been discovered.
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Fig. 7. Comparison of the strength against impossible differential and integral distinguisher among all parameters

6 Conclusions

In this paper, we searched the number of rounds of integral distinguishers and impossible differential
characteristic for all parameters (a, b, c) ∈ SV. As a result, we clarified that original rotation constants
(1, 8, 2) are not chosen to optimize resistance against integral and impossible differential attacks. Fur-
thermore, from our experiments and investigations by Kölbl et al., we found that (a, b, c) = (5, 12, 3) is a
possible alternative parameter to the original parameter.
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Table 4. Comparison of the strength against impossible differential and integral distinguisher among all param-
eters
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A Parameters with Infinite Round IDC

We observe that when a, b, and c are all odd or all even, then the cipher has IDC of infinite number of
rounds. On the other hand, if a, b, and c do not have this property, then the cipher has IDC of finite
number of rounds. The next proposition states this observation.

Proposition 2. For all (a, b, c) ∈ SV satisfying a mod 2 = b mod 2 = c mod 2, Simona,b,c has IDC of
infinite number of rounds.

Proof. We consider the following cases.
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R Left Right

0 0?0?, 0?0?, 0?0?, 0?0? ?0?0, ?0?0, ?0?0, ?0?0
1 ?0?0, ?0?0, ?0?0, ?0?0 0?0?, 0?0?, 0?0?, 0?0?
2 0?0?, 0?0?, 0?0?, 0?0? ?0?0, ?0?0, ?0?0, ?0?0
...

...
...

2r − 1 ?0?0, ?0?0, ?0?0, ?0?0 0?0?, 0?0?, 0?0?, 0?0?,
2r 0?0?, 0?0?, 0?0?, 0?0? ?0?0, ?0?0, ?0?0, ?0?0

0 1???, ????, ????, ???? ????, ????, ????, ????

Fig. 8. Infinite round IDC of Simona,b,c for a mod 2 = b mod 2 = c mod 2 = 1 (r is an arbitrary natural number.)

Case a mod 2 = b mod 2 = c mod 2 = 0. Suppose that ∆inputr[2m] = 0 for all m ∈ Zn. Then
∆inputr+1[2m] = 0 for all m ∈ Zn from (4). Thus if ∆input0[2m] = 0 for all m ∈ Zn, this differen-
tial path can be extended by infinite round. Therefore, we obtain IDC of infinite number of rounds by
choosing the output difference that has the difference in the 2m-th bit for m ∈ Zn.

Case a mod 2 = b mod 2 = c mod 2 = 1. Let d̄ = d ⊕ 1 for a bit d. Suppose that ∆inputr[m] = 0
for all m ∈ Zn satisfying m mod 2 = d, and that ∆inputr[m

′] = 0 for all n < m′ < 2n − 1 satisfying
m′ mod 2 = d̄. Then ∆inputr+1[m] = 0 for all m ∈ Zn satisfying m mod 2 = d̄, and ∆inputr+1[m

′] = 0
for all n < m′ < 2n − 1 satisfying m′ mod 2 = d. Thus if ∆input0[m] = 0 for all m ∈ Zn satisfying
m mod 2 = d, and ∆input0[m

′] = 0 for all n < m′ < 2n−1 satisfying m′ mod 2 = d̄, then this differential
path can be extended by infinite round. Therefore we obtain infinite round IDC if we choose the output
difference accordingly. ⊓⊔

An example of infinite round IDC of the case a mod 2 = b mod 2 = c mod 2 = 1 is shown in Fig. 8. Notice
that bold bits are always different, which indicates that the differential propagation is impossible.

14


