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Abstract. Masking requires splitting sensitive variables into at least
d + 1 shares to provide security against DPA attacks at order d. To this
date, this minimal number has only been deployed in software imple-
mentations of cryptographic algorithms and in the linear parts of their
hardware counterparts. So far there is no hardware construction that
achieves this lower bound if the function is nonlinear and the underlying
logic gates can glitch. In this paper, we give practical implementations
of the AES using d + 1 shares aiming at first- and second-order security
even in the presence of glitches. To achieve this, we follow the condi-
tions presented by Reparaz et al. at CRYPTO 2015 to allow hardware
masking schemes, like Threshold Implementations, to provide theoreti-
cal higher-order security with d + 1 shares. The decrease in number of
shares has a direct impact in the area requirements: our second-order
DPA resistant core is the smallest in area so far, and its S-box is 50%
smaller than the current smallest Threshold Implementation of the AES
S-box with similar security and attacker model. We assess the security
of our masked cores by practical side-channel evaluations. The security
guarantees are met with 100 million traces.
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1 Introduction

When cryptography is naively deployed in embedded devices, secrets can leak
through side-channel information such as instantaneous power consumption,
electromagnetic emanations or timing of the device. Ever since attacks based
on side-channels were discovered and investigated [3,17,18], several studies have
been performed to counter the exploitation of these vulnerabilities.

A popular way to strengthen cryptographic implementations against such
physical cryptographic attacks is masking [10]. It randomizes the internal compu-
tation and hence detaches the side-channel information from the secret-dependent
intermediate values. Masking is both provable secure [10,23] and practical. Mask-
ing has been shown to increase the difficulty of mounting side-channel attacks
on a wide range of cryptographic algorithms.

The basic principle of masking is to split each sensitive intermediate variable
of the cryptographic algorithm into multiple shares using secret sharing, and to
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perform computations on these shares. From the moment that the input is split
until the shared output of the cryptographic algorithm is released, shares of the
sensitive intermediate variables are never combined in a way that these variables
are unmasked, i.e. the unshared sensitive variables are never revealed. Only after
the calculation has finished, the shared output is reconstructed to disclose its
unmasked value.

Masking is not unconditionally secure. A dth-order masked implementation
can be broken by a (d+1)th-order DPA attack. However, attacks of higher orders
are more difficult to carry out in practice due to the exponential increase in
number of measurements needed, so one typically guarantees only security up to
a certain order. We use the standard convention that a dth-order attack exploits
the dth-order statistical moment. This covers both univariate and multivariate
attacks.

Although provable secure, masking is in practice often not straightforward to
implement securely. In hardware, masking is delicate to implement since many
assumptions on the leakage behavior of logic gates are not fully met in practice.
In standard CMOS technology, glitches can diminish the security of a straight-
forward masked implementation [19]. There are masking schemes that cope with
this non-ideal behavior and can provide security under more realistic and easier
to meet assumptions. One example is Threshold Implementations.

1.1 Related work

The Threshold Implementation (TI) technique which is based on Boolean mask-
ing has minimal assumptions on the underlying hardware platform [21]. More
precisely, it assumes that logic gates will glitch, and provides security even if
this happens. Due to its cost effectiveness, it has been applied to many cryp-
tographic algorithms including Keccak [7] and the standardized AES [14, 20]
and PRESENT [22] symmetric-key algorithms. Recently, the security level of
TI has been extended to resist univariate attacks at any order [5]. To further
increase the security of TI against multivariate attacks, the use of remasking was
suggested in [26].

The authors of [26] also proposed a consolidation of TI with a provable higher-
order masking scheme (the so called ISW [16]) and the Trichina masked AND
gate [29]. This consolidated masking scheme, hereon CMS, inherits all desirable
properties of TI designs. Thus, we treat here CMS as an extension of TI.

It has been shown in [26] that dth-order security of any function can be
achieved by only d + 1 input shares which is the theoretical lower bound in
masking schemes. Until then, it was believed that dth-order security on a non-
ideal circuit can only be achieved by using more than d+1 shares if the function
is nonlinear [5, 24]. For example, so far all first-order TIs use three input shares
for nonlinear functions. The bound on the number of input shares sin was given
as sin ≥ td + 1 for a function of algebraic degree t in TI and sin ≥ 2d + 1 for
a field multiplication in a complementary scheme [24] which provides the same
level of security using Shamir’s secret sharing.
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There exist plenty masked AES implementations, hence we limit our intro-
duction to TIs. The first TI of AES presented in [20] requires 11.1 kGE. Later,
the hardware footprint of TI-AES is reduced to 8.1 kGE in a sequence of pub-
lications [4, 6]. All these first-order TIs use functions with at least three input
shares, with the exception of the smallest TI-AES which uses two shares for
linear operations. A second-order TI of the AES S-box using six input shares
is presented in [14] and is shown to require 7.8 kGE. We emphasize that in all
these TIs, the number of input shares of the nonlinear operations are chosen to
be sin ≥ td+ 1.

1.2 Contribution

We present the first Threshold Implementations in the form of the Consolidated
Masking Scheme using d+1 input shares. We present both a first-order (6.6 kGE)
and a second-order (10.4 kGE) secure implementation of AES. Our construction
is generic and can be extended to higher orders. The area reduction of our new
TIs compared to the smallest TIs of AES presented so far is shown to be 18%
for first-order and approximately 45% for second-order security at the cost of an
increase in the amount of required internal randomness. We observe negligible
(first-order) or no (second-order) difference in throughput compared to prior TIs.
We show the results of leakage detection tests with 100 million traces collected
from an FPGA implementation to back up the security claims.

Organization. In Section 2, we provide the notation and the theory of CMS. In
Section 3, we unfold the steps taken to mask AES using d+1 shares. We present
the results of the side-channel analysis in Section 4. In Section 5, we discuss
the implementation cost of our designs. We conclude the paper and propose
directions for future work in Section 6.

2 Preliminaries

2.1 Notation

We use small and bold letters to describe elements of GF(2n) and their sharing
respectively. We assume that any possibly sensitive variable a ∈ GF(2n) is split
into s shares (a1, . . . , as) = a, where ai ∈ GF(2n), in the initialization phase
of the cryptographic algorithm. A possible way of performing this initialization,
which we inherit, is as follows: the shares a1, . . . , as−1 are selected randomly
from a uniform distribution and as is calculated such that a =

∑
i∈{1,...,s} ai.

We refer to the jth bit of a as aj unless a ∈ GF(2). We use the same notation
to share a function f to s shares f = (f1, . . . , fs).

The number of input and output shares of f are denoted by sin and sout
respectively. We refer to field multiplication, addition and concatenation as ⊗,
⊕ and || respectively.
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2.2 Consolidated Masking Scheme

We now give an overview of the construction of CMS. Figure 1 illustrates the
construction steps for the second-order sharing of a two input AND gate (ab =∑sin

i=1

∑sin
j=1 aibj) using td+ 1 = 5 shares on the left, with a = (a1, a2, a3, a4, a5)

and b = (b1, b2, b3, b4, b5), and using d + 1 = 3 shares on the right, where we
have a = (a1, a2, a3) and b = (b1, b2, b3). The CMS construction is divided in
several layers that we detail in the sequel.

Nonlinear layer N . This layer is composed of all the linear and nonlinear terms
(aibj for the AND-gate example) of the shared function, and hence responsi-
ble for the correctness of the sharing. A requirement is that this layer must
see uniformly shared inputs.

Linear layer L. This layer inherits non-completeness, the essence of TI. It en-
sures that no more than d shares of a variable are used within each group
of terms to be XORed. If the number of input shares is limited to d+ 1, the
non-completeness implies the use of only one share per unmasked value in
each group. We refer to [26] for more details.

Refreshing layer R. The multivariate security of a dth-order masking scheme
depends on the proper insertion of additional randomness to break depen-
dency between intermediates potentially appearing in different clock cycles.
One way of remasking is using sout bits of randomness for sout shares at the
end of L in a circular manner. The restriction of this layer can be relaxed
when first-order or univariate security is satisfactory.

Synchronization layer S. In a circuit with non-ideal gates, this layer ensures that
non-completeness is satisfied in between nonlinear operations. It is depicted
with a bold line in Figure 1 and is typically implemented as a set of registers
in hardware. The lack of this layer causes leakage in subsequent nonlinear
operations.

Compression layer C. This layer is used to reduce the number of shares syn-
chronized in S. It is especially required when the number of shares after S
is different from the number of input shares of N .

For further clarification, we also describe the concept of uniformity, the dif-
ference between using d+ 1 shares or more and the limitations brought by using
d+ 1 shares in the rest of this section.

Uniformity. Uniformity plays a role in the composition of sharings in the first-
order scenario. If the output of a shared function f is used as an input to a
nonlinear function g, the fact that f is a uniform sharing means that the input of
g is uniform without remasking. Thus, in this case, R is not required. Note that
satisfying uniformity when the outputs of multiple possibly uniformly shared
functions are combined has shown to be a difficult task [4].

The situation is very different in the higher-order scenario, and security issues
with composition can arise [26]. In this paper, we resort to R instead of focusing
on the gains of satisfying uniformity, even in the first-order case.
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Fig. 1: Second-order masking of a two-input AND gate with td + 1 = 5 shares
(left) and d+ 1 = 3 shares (right)

Number of input shares. Using td+1 input shares originates from the rule-of-
thumb “combinations of up to d component functions fi should be independent
of at least one input share”. However, this is an overly strict requirement to
fulfill non-completeness. One can construct a sharing such that combinations of
up to d component functions are independent of at least one input share of each
variable, without imposing any condition on the index i. The resulting sharing
f is clearly secure since no combinations of up to d component functions reveals
all shares of a variable.

In this paper, we benefit from this observation and use d + 1 shares. This
incurs a significantly smaller area footprint, as will be shown later on. It is
however not obvious at first sight whether a construction with d + 1 shares is
necessarily smaller. As a matter of fact, there are many factors that work in
the opposite direction, i.e. the number of component functions fk is increased,
and there is a need for additional circuitry for the refreshing and compression
of the output shares. On the other hand, the shares fk are significantly smaller,
since they depend on fewer input bits. A classic result from Shannon [28] states
that almost all Boolean functions with d input bits require a circuit of size
Θ(2d/d). One can assume that the size of the component functions fk follows
this exponential dependency regarding the number of input shares. Thus, it may
pay off to have more component functions fk and additional circuitry to obtain
a smaller overall sharing.

Independent input sharing. Going from td + 1 to d + 1 shares imposes
slightly stronger conditions on the input shares. The most important additional
requirement compared to td+1 sharings is that the shared variables at the input
of a nonlinear function should be independent. The following extreme example
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illustrates the problem: assume a first-order sharing of an AND gate with shared
inputs (a1, a2) and (b1, b2) which necessarily calculates the terms a1b2 and a2b1.
If these sharings are dependent, for the sake of the example say a = b, the term
a1b2 = a1a2 obviously leaks a. This example clearly breaks the joint uniformity
rule for a and b. Note that this does not necessarily imply the requirement of
unshared values to be independent.

3 Masking AES with d + 1 Shares

In what follows, we first describe in detail how the AES is masked with 3
shares using TI to achieve second-order security. The same principle applies to
higher orders, but care is required when applying the refreshing and compression
layer [26]. Then, we scale this construction down to achieve a first-order secure
implementation, and detail some further optimizations we can apply specifically
to the first-order secure case. As the following paragraph suggests, masking of
linear operations is straightforward and therefore, our discussion will focus on
the AES S-box.

Linear components. The masking of the linear components of AES such as
ShiftRows, MixColumns and AddRoundKey are achieved by instantiating d+ 1
state and key arrays. Each pair of state and key array is responsible for one
single share of the plaintext and key. Such a d+ 1 sharing for linear operations
has already been used in prior masked AES implementations and hence we do
not provide further detail.

3.1 Second-Order TI of the AES S-box with 3 Shares

As in all previous TIs of the AES S-box [4,6,14,20], our masked implementation is
based on Canright’s Very Compact S-box [9]. This allows for a fairer comparison
of the area reduction that comes from our masking strategy.

Figure 2 depicts the unmasked S-box with the specific subfield decomposi-
tions we adopt. Although it is possible to reduce the number of pipeline stages
of one S-box by merging Stage 3 and Stage 4 into an inversion in GF(24) [4, 6],
we choose to rely on multiplications alone, since the number of component func-
tions equals (d+ 1)t, i.e. we can achieve a lower area and a reduced randomness
consumption by using multiplications (t = 2) instead of inversions (t = 3). We
now go over the masked design in a stage by stage manner, where the stages
are separated by pipeline registers. The complete masked S-box is depicted in
Figure 3.

First Stage. The first operation occurring in the decomposed S-box performs
a change of basis through a linear map. Its masking requires instantiating this
linear map once for each share i. This mapping is implemented in combinational
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logic and it maps the 8-bit input (a1i , . . . , a
8
i ) to the 8-bit output (y1i , . . . , y

8
i ) for

each share i as follows:

y1i = a8i ⊕ a7i ⊕ a6i ⊕ a3i ⊕ a2i ⊕ a1i
y2i = a7i ⊕ a6i ⊕ a5i ⊕ a1i
y3i = a7i ⊕ a6i ⊕ a2i ⊕ a1i
y4i = a8i ⊕ a7i ⊕ a6i ⊕ a1i

y5i = a8i ⊕ a5i ⊕ a4i ⊕ a2i ⊕ a1i
y6i = a1i

y7i = a7i ⊕ a6i ⊕ a1i
y8i = a7i ⊕ a4i ⊕ a3i ⊕ a2i ⊕ a1i

Note that synchronizing the output values of the first stage with registers
is required for security. For simplicity, we explain what can go wrong in the
absence of these registers for the first-order case, but the same can be expressed
for any order d. Let’s consider the y2 and y6 bits of the output of the linear map.
The shares corresponding to those bits are then given by (y21 , y

2
2) and (y61 , y

6
2)

respectively. These two bits will go through the AND gates of the subsequent
GF(24) multiplier, which leads to the following term being computed at one
point:

y21y
6
2 = (a71 + a61 + a51 + a11)a12

If there is no register between the linear map and the GF(24) multiplier, the
above expression is realized by combinational logic, which deals with a11 and a12
in a nonlinear way and causes leakage on a1 = (a11, a

1
2). Note that the problem

mentioned above does not happen in TIs with sin = td+ 1 shares, since the con-
servative non-completeness condition makes sure that each component function
is independent of at least one share (for d = 1). Hence, linear functions before
and after nonlinear component functions can be used without synchronization.
No remasking is required after this stage since the computed function is linear.

Second Stage. We consider the parallel application of nonlinear multiplication
and affine Square Scaling (Sq. Sc.) as one single function d = b⊗c⊕SqSc(b⊕c).
For the second order, the resulting equations are given by:

d1 = b1 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)

d2 = b1 ⊗ c2

d3 = b1 ⊗ c3

d4 = b2 ⊗ c1

d5 = b2 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)

d6 = b2 ⊗ c3

d7 = b3 ⊗ c1

d8 = b3 ⊗ c2

d9 = b3 ⊗ c3 ⊕ SqSc(b3 ⊕ c3)

GF(24)
Mult.

GF(24)
Sq. Sc.

GF(22)
Mult.

GF(22)
Sc.

GF(22)
Inv.

GF(24)
Mult.

GF(22)
Mult.
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Mult.
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Mult.

Inv.
Linear
Map

S-box
Output

Linear
Map

S-box
Input

8-bit
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Fig. 2: Operations in the unmasked AES Sbox
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Fig. 3: Structure of the second-order TI of the AES S-box
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It is important to add the affine contribution from the Square Scaling to the mul-
tiplier output in such a way that the non-completeness property is not broken,
which leaves only one possibility for the construction. In previous works [4,6,20],
these two functions are treated separately, leading to more outputs at this stage.
By approaching the operations in the second stage in parallel, we obtain two
advantages. Firstly, we omit the extra registers for storing the outputs of both
sub-functions separately. Secondly, less randomness is required to achieve uni-
formity for the inputs of the next stage.

Before the new values are clocked in the register, we need to perform a mask
refreshing. This serves two purposes for higher-order TI. Firstly, it is required
to make the next stage’s inputs uniform and secondly, we require new masks
for the next stage’s inputs to provide multivariate security. The mask refreshing
uses a ring structure and has the advantage that the sum of fresh masks does
not need to be saved in an extra register. In addition, we use an equal number
of shares and fresh masks, which leads to a randomness consumption of 36 bits
for this stage. After the mask refreshing, a compression is applied to reduce the
number of output shares back to d+ 1.

Third Stage. This stage is similar to the second stage. Here, the received
nibbles are split in 2-bit couples for further operation. The Scaling operation
(Sc) replaces the similar affine Square Scaling and is executed alongside the
multiplication in GF(22). By combining both operations, we can share the total
function by taking again the non-completeness into account. Since a nonlinear
multiplication is performed on the 2-bit shares, remasking is required on its 9
outputs, consuming a total of 18 bits of randomness.

Fourth Stage. The fourth stage is composed of an inversion and two parallel
multiplications in GF(22). The inversion in GF(22) is linear and is implemented
by swapping the bits using wires and comes at no additional cost. The outputs
of the multiplications are concatenated, denoted by || in Figure 3, to form 4-
bit values in GF(24). The concatenated 4-bit values of the 9 outputs of the
multipliers are remasked with a total of 36 fresh random bits.

Fifth Stage. Stage 5 is similar to Stage 4. The difference of the two stages lies in
the absence of the inversion operation and the multiplications being performed
in GF(24) instead of GF(22). The concatenation of its outputs results in byte
values, which are remasked with 72 fresh random bits.

Sixth Stage. In the final stage of the S-box, the inverse linear map is performed.
By using a register between Stage 5 and Stage 6, we can remask the shares and
perform a compression before the inverse linear map is performed resulting in
only three instead of nine instances of inverse linear maps. As with the linear
map, no uniform sharing of its inputs is required for security. However, in the full
AES, this output will at some point reappear at the input of the S-box, where
it undergoes nonlinear operations again. This is why we insert the remasking.
Note that this register and the register right after the linear map can be merged
with the AES state registers.
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3.2 First-Order TI of the AES S-box with 2 Shares

To achieve a very compact first-order TI, we can scale down the general struc-
ture from Section 3.1. We can apply some optimizations to reduce the amount
of randomness consumed for the first-order implementation, since multivariate
security is not required anymore.

We start with the previous construction with the number of shares reduced
from sin = 3 to sin = 2. We now highlight the particular optimizations: parallel
operations in Stage 2 and 3 and modified refreshing.

Parallel operations. The parallel linear and nonlinear operations from Stage 2
and 3 are altered in the following way:

d1 = b1 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)

d2 = b1 ⊗ c2

d3 = b2 ⊗ c1

d4 = b2 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)

Again, the ith output of both SqSc and Sc operations are combined with
output bi ⊗ ci of the multiplier in order to preserve non-completeness. While
this structure is similar to our second-order design, we consider this parallel
operation an optimization compared to other first-order TIs [4, 6, 20].

Modified refreshing. The ring structure of the refreshing in the general, higher-
order case can be substituted with a less costly structure for first-order security.
This structure of the refreshing is shown in Figure 4. This modification lowers
the randomness requirements from 4 to 3 units of randomness.3

4 Side-Channel Analysis Evaluation

In this section, we report on the practical side-channel analysis evaluation we
performed on our two designs: one core aiming at first-order security and the
other aiming at second-order security.

Preliminary tests. A preliminary evaluation was carried out with the tool from [25]
in a simulated environment, allowing to refine our design. We then proceed with
the side-channel evaluation based on actual measurements.

4.1 Experimental setup

Platform. We use a SASEBO-G board [2]. The SASEBO-G features two Xilinx
Virtex-II Pro FPGAs: an XC2VP7 to hold our cryptographic implementations
and an XC2VP30 for handling the communication between the board and the
measurement PC.
3 A unit of randomness is defined as a set of independent and uniformely distributed

bits with the field size of the wire as its cardinality.
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Fig. 4: Ring versus Additive Refreshing

Low noise. We did our best to keep the measurement noise to the lowest possible
level. The platform itself is very low noise (DPA on an unprotected AES succeeds
with few tens of traces). We clock our designs at 3 MHz with a very stable
clock and sample at 1 GS/s with a Tektronix DPO 7254C oscilloscope. The
measurements cover 1.5 rounds of AES.

Synthesis. We used standard design flow tools (Xilinx ISE) to synthetize our
designs. We selected the KEEP HIERARCHY option during synthesis to prevent
optimizations over module boundaries that would destroy our (security critical)
design partitioning.

Randomness. The randomness required by our design is supplied by a PRNG
that runs on the crypto FPGA. The PRNG consists of a fully unrolled round-
reduced PRINCE [8] in OFB mode with a fresh key each masked AES execution.
Since our second-order implementation requires 162 fresh mask bits per clock
cycle, three parallel instantiations of the PRNG are used to supply the random-
ness. In the first-order case, one instance suffices. We interleave the execution of
the PRNG (in a single cycle) with every clock cycle of the masked AES in order
to decrease the impact of noise induced by the PRNG.

4.2 Methodology

We use leakage detection tests [11–13,15,27] to test for any power leakage of our
masked implementations. The fix class of the leakage detection is chosen as the
zero plaintext in all our evaluations.

Procedure. We follow the standard practice when testing a masked design.
Namely, we first turn off the PRNG to switch off the masking countermeasure.
The design is expected to show leakage in this setting, and this serves to confirm
that the experimental setup is sound (we can detect leakage). We then proceed
by turning on the PRNG. If we do not detect leakage in this setting, the masking
countermeasure is deemed to be effective.
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(a) Power trace of the first-order imple-
mentation, PRNG inactive

(b) Power trace of the second-order im-
plementation, PRNG inactive

(c) Power trace of the first-order imple-
mentation, PRNG active

(d) Power trace of the second-order im-
plementation, PRNG active

Fig. 5: Average Power Traces

4.3 First-Order TI of AES

We first evaluate the first-order secure masked AES. Figures 5a and 5c show an
example of power traces when the PRNG is inactive and active respectively for
the first-order implementations. It is clear that the interleaved PRNG does not
overlap with AES. We now apply the leakage detection test.

PRNG off. Figure 6a shows the result of the t-test on the implementation with-
out randomness. First- (top) and second-order (bottom) results clearly show
leaks that surpass the confidence threshold of ±4.5. Thus, as expected, this set-
ting is not secure.

PRNG On. When we turn on the random number generator, our design shows
no first-order leakage with up to 100 million traces. The t-test statistic for the
first and second orders are plotted in Figure 6b. In agreement with the security
claim of the design, the first-order trace does not show leakage. The second-order
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does. This is expected since the design does not provide second-order security
(note that sensitive variables are split among two shares).
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(a) 600k traces, PRNG off (b) 100M traces, PRNG on

Fig. 6: First- (top) and second-order (bottom) leakage detection test results for
the first-order implementation

(a) 600k traces, PRNG off (b) 100M traces, PRNG on

Fig. 7: First- (top), second- (middle) and third-order (bottom) leakage detection
test results for the second-order implementation
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4.4 Second-Order TI of AES

Figure 5b and Figure 5d show an average power consumption trace of the second-
order implementation for an inactive PRNG and for an active PRNG respec-
tively. We proceed with the evaluation using the leakage detection test.

PRNG off. The evaluation results of the implementation without randomness
are given in Figure 7a. As expected, first- (top), second- (middle) and third-order
(bottom) leaks are present.

PRNG On. When the masking is turned on by enabling the PRNG, we expect
our design to show no leakage in the first and second order.

The results of the t-test with 100 million traces are shown in Figure 7b. As
expected, we only observe leakage in the third order. The t-values of the first-
and second-order tests never exceed the confidence threshold of ±4.5.

Bivariate analysis. We also performed a second-order bivariate leakage detec-
tion test with centered product pre-processing. To alleviate the computational
complexity of this analysis, measurements span only one full S-box execution
and the sampling rate is lowered to 200 MS/s.

PRNG Off. The lower left corner of Figure 8 shows the absolute t values for
the bivariate analysis of the unmasked implementation. As expected, leakages
of considerable magnitude (t values exceeding 100) are present and we conclude
that the measurement setup for the bivariate analysis is sound.

PRNG On. When the PRNG is switched on, the outcome of the test is different.
The absolute value of the resulting bivariate leakage when the masks are switched
on with 100 million traces is depicted in the upper right corner of Figure 8. No
excursions of the t-values beyond ±4.5 occur and thus the test is passed.

One might ask if 100 million traces are enough. To gain some insight that this
(arbitrary) number is indeed enough, we refer back to the performed third-order
tests of Figure 7b. We can see that third-order leakage is detectable, and thus
we can assert that bivariate second-order attacks are not the cheapest strategy
for an adversary. Therefore, the masking is deemed effective.

5 Implementation Cost

Table 1 lists the area costs of the individual components of our designs. Table 2
gives the full implementation costs of our designs and of related TIs. The area
estimations are obtained with Synopsys 2010.03 and the NanGate 45nm Open
Cell Library [1].
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Fig. 8: Bivariate analysis of second-order implementation, 100k traces, PRNG
off (bottom left), 100M traces, PRNG on (top right)

Discussion We now discuss the increase in implementation costs when going
from first- to second-order security and compare the results with similar designs
w.r.t. the area, the speed and the required randomness for an AES encryption.
Note that this discussion does not necessarily apply to other ciphers or imple-
mentations, e.g. lightweight block ciphers with small S-boxes might benefit from
keeping sin ≥ td + 1 in nonlinear functions. For future comparisons, Table 3
gives the implementation cost per S-box stage in function of the security order
d.

Area Both the first- and the second-order masked AES cores are the smallest
available to this date. Moving from first-order to second-order security requires
an increase of 50% in GE for linear functions and an increase of around 100% for
nonlinear functions. The larger increase for nonlinear functions stems from the
quadratic increase of output shares as function of an increment in input shares,
resulting in more registers per stage.

Speed The number of clock cycles for an AES encryption is equal for our first-
and second-order implementations. All previous first-order TIs have a faster
encryption because they have less pipeline stages in the S-box.

Randomness Our first-order AES requires 54 bits of randomness per S-box exe-
cution. For our second-order implementation, this number increases to 162 bits
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Table 1: Area of different functions of the masked AES

Area [GEs]
Compile Compile

Ultra

First-order TI

S-box 1977 1872
AES Key & State Array 4472 4238
AES Control 232 230
Total AES 6681 6340

Second-order TI

S-box 3796 3662
AES Key & State Array 6287 6258
AES Control 366 356
Total AES 10449 10276

of randomness. These numbers are higher than previous TIs for both the first-
and second-order implementations. For the first-order implementation, this in-
crease can be explained by noting that for a minimal sharing, no correction
terms can be applied to make the sharing uniform, hence explaining the need
for mask refreshing. For the second-order implementation, even more random-
ness is required per output share to achieve bivariate security. All shares of one
stage require randomness for both satisfying the uniformity and for statistical
independence of its following stage.

6 Conclusion

In this paper, two new hardware implementations of AES secure against dif-
ferential power analysis attacks were described. Both implementations use the
theoretical minimum number of shares in the linear and nonlinear operations by
following the conditions from Reparaz et al. [26]. The security of both designs
were validated by leakage detection tests in lab conditions.

In summary, our first-order implementation of AES requires 6340 GE, 54
bits of randomness per S-box and a total of 276 clock cycles. In comparison to
the previously smallest TI of AES by Bilgin et al. [6], an area reduction of 15%
is obtained. The number of clock cycles for an encryption is increased by 11%
and the required randomness is raised with 68%. The presented second-order
implementation of AES requires 10276 GE, 162 bits of randomness per S-box

4 The compile ultra option requires careful application. To avoid optimizing over
share boundaries, each submodule is compiled using compile ultra. The resulting
netlists are then given to a top module and synthesized with the regular compile

option. This way, the gates from the ASIC library are instantiated conform to the
KEEP HIERARCHY option.



Masking AES with d + 1 Shares in Hardware 17

Table 2: Implementation cost of different TIs of AES

AES Area [GE]* S-box S-box Randomness† Clock Cyles
Area [GE]* Stages [bit]

Unprotected
[20] 2601/2421 233 1 - 226

1st-order
[20] 11114/11031 - /4244 5 48 266
[4] 9102/8172 3708/3004 4 44 246
[6] 11221/10167 3653/2949 4 44 246
[6] 8119/7282 2835/2224 4 32 246

This Paper 6681/6340 1977/1872 6 54 276

2nd-order
[14]‡ 18602/14872 11174/7849 6 126 276

This Paper 10449/10276 3796/3662 6 162 276

*: Using compile / compile ultra4 option.

†: Per S-box lookup

‡: Area estimation of a non-tested AES with tested S-box

Table 3: Implementation cost per pipeline stage in function of the order d > 1

AES Number of Masked Bits Number of Register Bits

Stage 1 0 8(d + 1)
Stage 2 4(d + 1)2 4(d + 1)2 + 8(d + 1)
Stage 3 2(d + 1)2 2(d + 1)2 + 12(d + 1)
Stage 4 4(d + 1)2 4(d + 1)2 + 8(d + 1)
Stage 5 8(d + 1)2 8(d + 1)2

Stage 6 0 8(d + 1)

Total 18(d + 1)2 18(d + 1)2 + 44(d + 1)

and 276 clock cycles. Compared to the second-order TI-AES of [14], we obtain
a 53% reduction in area at the cost of a 28% increase in required randomness.
The number of clock cycles for an encryption stays the same.

While the area of these implementations are the smallest published for AES
to this date, the required randomness is substantially increased. Investigating
ways of reducing the randomness is essential for lightweight application. In future
work, paths leading to minimizing this cost will be researched. A second direction
for future work is to compare the security in terms of number of traces required
to perform a successful key retrieval between our implementations and the AES
in [6]. This can lead to better insights in the trade-off between security and
implementation costs for TIs with sin = d+ 1 and sin = td+ 1 shares.
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