
Faster Malicious 2-party Secure Computation

with Online/O�ine Dual Execution
∗

Peter Rindal
†

Mike Rosulek
†

June 17, 2016

Abstract

We describe a highly optimized protocol for general-purpose secure two-party computation (2PC)

in the presence of malicious adversaries. Our starting point is a protocol of Kolesnikov et al. (TCC 2015).

We adapt that protocol to the online/o�ine se�ing, where two parties repeatedly evaluate the same

function (on possibly di�erent inputs each time) and perform as much of the computation as possible

in an o�ine preprocessing phase before their inputs are known. Along the way we develop several

signi�cant simpli�cations and optimizations to the protocol.

We have implemented a prototype of our protocol and report on its performance. When two parties

on Amazon servers in the same region use our implementation to securely evaluate the AES circuit 1024

times, the amortized cost per evaluation is 5.1ms o�ine + 1.3ms online. �e total o�ine+online cost of

our protocol is in fact less than the online cost of any reported protocol with malicious security. For

comparison, our protocol’s closest competitor (Lindell & Riva, CCS 2015) uses 74ms o�ine + 7ms online

in an identical setup.

Our protocol can be further tuned to trade performance for leakage. As an example, the perfor-

mance in the above scenario improves to 2.4ms o�ine + 1.0ms online if we allow an adversary to learn

a single bit about the honest party’s input with probability 2−20 (but not violate any other security

property, e.g. correctness).

1 Introduction

Secure two-party computation (2PC) allows mutually distrusting parties to perform a computation on their

combined inputs, while revealing only the result. 2PC was conceived in a seminal paper by Yao [Yao82] and

shown to be feasible in principle using a construction now known as garbled circuits. Later, the Fairplay

project [MNPS04] was the �rst implementation of Yao’s protocol, which inspired interest in the practical

performance of 2PC.

1.1 Cut & Choose, Online/O�line Setting

�e leading technique to secure Yao’s protocol against malicious adversaries is known as cut-and-choose.
�e idea is to have the sender generate many garbled circuits. �e receiver will choose a random subset

of these to be checked for correctness. If all checked circuits are found to be correct, then the receiver has

some con�dence about the unopened circuits, which can be evaluated.

∗

�is is the full version of a paper appearing in USENIX 2016.

†

Oregon State University, {rindalp,rosulekm}@eecs.oregonstate.edu. Supported by NSF award 1149647. �e �rst author is

also supported by an ARCS foundation fellowship.

1

�e cost of the cut-and-choose technique is therefore tied to the number of garbled circuits that

are generated. To restrict a malicious adversary to a 2−s chance of violating security, initial cut-and-

choose mechanisms required approximately 17s circuits [LP07]. �is overhead was later reduced to 3s
circuits [LP11, sS11, sS13] and then s circuits [Lin13].

Suppose two parties wish to perform N secure computations of the same function f (on possibly

di�erent inputs each time), and are willing to do o�ine pre-processing (which does not depend on the

inputs). In this online/o�ine se�ing, far fewer garbled circuits are needed per execution. �e idea, due to

[HKK
+

14, LR14], is to generate many garbled circuits (enough for all N executions) and perform a single

cut-and-choose on them all. �en each execution of f will evaluate a random subset (typically called a

bucket) of the unopened circuits. Because the unopened circuits are randomly assigned to executions, only

O(s/ logN) circuits are needed per bucket to achieve security 2−s. Concretely, 4 circuits per bucket su�ce

for security 2−40 and N = 1024.

1.2 Dual-execution Paradigm

An alternative to cut-and-choose for malicious-secure 2PC is the dual-execution protocol of Mohassel &

Franklin [MF06], which requires only two garbled circuits. �e idea is that two parties run two instances

of Yao’s protocol, with each party acting as sender in one instance and receiver in the other. �ey then

perform a reconciliation step in which their garbled outputs are securely compared for equality. Intuitively,

one of the garbled outputs is guaranteed to be correct, so the reconciliation step allows the honest party

to check whether its garbled output agrees with the correct one held by the adversary.

Unfortunately, the dual execution protocol allows an adversary to learn an arbitrary bit about the

honest party’s input. Consider an adversary who instead of garbling the function f , garbles a di�erent

function f ′. �en the output of the reconciliation step (secure equality test) reveals whether f(x1, x2) =
f ′(x1, x2). However, it can be shown that the adversary can learn only a single bit, and, importantly,

cannot violate output correctness for the honest party.

1.3 Reducing Leakage in Dual-execution

Kolesnikov et al. [KMRR15] proposed a combination of dual-execution and cut-and-choose that reduces

the probability of a leaked bit. �e idea is for each party to garble and send s circuits instead of 1, and

perform a cut-and-choose to check each circuit with probability 1/2. Each circuit should have the same

garbled encoding for its outputs, so if both parties are honest, both should receive just one candidate

output.

However, a malicious party could cause the honest party to obtain several candidate outputs. �e

approach taken in [KMRR15] is to have the parties use private set intersection (PSI) to �nd a common value

among their sets of reconciliation values. �is allows the honest party to identify which of its candidate

outputs is the correct one.

In Section 4 we discuss in more detail the security o�ered by this protocol. Brie�y, an adversary cannot

violate output correctness for the honest party, and learns only a single bit about the honest party’s input

with probability at most 1/2s (which happens only when the honest part doesn’t evaluate any correct

garbled circuit).

2 Overview of Our Results

We adapt the dual-execution protocol of [KMRR15] to the online/o�ine se�ing. �e result is the fastest

protocol to date for 2PC in the presence of malicious adversaries. At a very high level, both parties exchange

many garbled circuits in the o�ine phase and perform a cut-and-choose. In the online phase, each party

2

evaluates a random bucket of its counterpart’s circuits. �e parties then use the PSI-based reconciliation

to check the outputs.

2.1 Technical Contributions

While the high-level idea is straight-forward, some non-trivial technical changes are necessary to adapt

[KMRR15] to the online/o�ine se�ing while ensuring high performance in practice.

In particular, an important part of any malicious-secure protocol is to ensure that parties use the

same inputs in all garbled circuits. �e method suggested in [KMRR15] is incompatible with o�ine pre-

processing, whereas the method from [LR15] does not ensure consistency between circuits generated by

di�erent parties, which is the case for dual-execution (both parties generate garbled circuits). We develop

a new method for input consistency that is tailored speci�cally to the dual-execution paradigm and that

incurs less overhead than any existing technique.

In [KMRR15], the parties evaluate garbled circuits and then use active-secure private set intersection

(PSI) to reconcile their outputs. We improve the analysis of [KMRR15] and show that it su�ces to use

PSI that gives a somewhat weaker level of security. Taking advantage of this, we describe an extremely

lightweight PSI protocol (a variant of one in [PSZ14]) that satis�es this weak level of security while being

round-optimal.

2.2 Implementation, Performance

We implemented a C++ prototype of our protocol using state-of-the-art optimizations, including the garbled-

circuit construction of [ZRE15]; the OT-extension protocol of [KOS15] instantiated with the base OTs of

[CO15]. �e prototype is heavily parallelized within both phases. Work is divided amongst threads that

concurrently generate & evaluate circuits, allowing network throughput to be the primary bo�leneck. �e

result is an extremely fast 2PC system. When securely evaluating the AES circuit on co-located Amazon

AWS instances, we achieve the lowest amortized cost to date of 5.1ms o�ine + 1.3ms online per execution.

2.3 Comparison to GC-based Protocols

�ere have been several implementations of garbled-circuit-based 2PC protocols that achieve malicious

security [AMPR14, FJN14, KSS12, LR15, PSSW09, sS11, sS13]. Except for [LR15], none of these protocols

are in the online/o�ine se�ings so their performance is naturally much lower (100-1000× slower than

online/o�ine protocols). Among them, the fastest reported secure evaluation of AES is that of [FJN14],

which was 0.46s exploiting consumer GPUs. Other protocols have been described (but not implemented)

that combine cut-and-choose with the dual-execution paradigm to achieve malicious security [HKE13,

MR13]. �e protocol of [HKE13] leaks more than one bit when the adversary successfully cheats during

cut-and-choose.

Our protocol is most closely related to that of [LR15], which also achieves fast, active-secure 2PC in the

online/o�ine se�ing. [LR15] is an implementation of the protocol of [LR14], and we refer to the protocol

and its implementation as “LR” in this section. Both the LR protocol and ours are based on garbled circuits

but use fundamentally di�erent approaches to achieveing malicious security. For clarity, we now provide

a list of major di�erences between the two protocols.

(1) LR uses a more traditional cut-and-choose mechanism where one party acts as sender and the other

as receiver & evaluator. Our protocol on the other hand uses a dual-execution paradigm in which both

parties play symmetric roles, so their costs are identical.

Since parties act as both sender and receiver, each party performs more work than in the traditional cut-

and-choose paradigm. However, the symmetry of dual-execution means that both parties are performing

3

Input Labels Reconciliation

LR [LR15] |x|(B +B′)κc |x|B′κc
Us (Async PSI) |x|Bκc

B2κsκc
Us (Sync PSI) Bκs +B2κc

Figure 1: Asymptotic communication costs of the LR protocol vs. ours (comparing online phases). B is the

number of circuits in a bucket; B′ ≈ 3B is the number of auxiliary cheating-recovery circuits in [LR15];

|x| is length of sender’s inputs; κs is the statistical security parameter; κc is the computational security

parameter.

computational work simultaneously, rather than idle waiting. �e increase in combined work does not

signi�cantly a�ect latency or throughput if the communication channel is full-duplex.

(2) Our protocol can provide more �exible security guarantees; in particular, it may be used with

smaller parameter choices. In more detail, let κs denote a statistical security parameter, meaning that the

protocol allows the adversary to completely break security with probability 1/2κs . In the LR protocol, a

failure of the cut-and-choose step can violate all security properties, so the number of garbled circuits is

proportional to κs.
Our protocol has an additional parameter κb, where the protocol leaks (only) a single bit to the ad-

versary with probability 1/2κb . In our protocol (as in [KMRR15]), the number of garbled circuits is pro-

portional to κb. When instantiated with κb = κs = 40, our protocol gives an equivalent guarantee to

the LR protocol with κs = 40. From this baseline, our protocol allows either κs to be increased (strictly

improving the security guarantee without involving more garbled circuits) or κb to be decreased (trading

performance for a small chance of a single bit leaking).
1

(3) Our online phase has superior asymptotic cost, stemming from the di�erences in protocol paradigm

— see a summary in Figure 1. LR uses a cheating-recovery phase, introduced in [Lin13]: a�er evaluating

the main circuits, the parties evaluate auxiliary circuits that allow the receiver to learn the sender’s input

if the receiver can “prove” that the sender was cheating. Our protocol uses the PSI-based dual-execution

reconciliation phase.

�e important di�erence is that in the LR protocol, the sender’s input is provided to both the main

circuits and auxiliary circuits. If there are B main garbled circuits in a bucket, then there are B′ ≈ 3B
auxiliary circuits, and garbled inputs must be sent for all of them in the online phase. Each individual

garbled input is sent by decommi�ing to an o�ine commitment, so it contributes to communication as

well as a call to a hash function. Furthermore, the cheating-recovery phase involves decommitments to

garbled outputs for the auxiliary circuits, which are again proprotional to the sender’s input length.

In contrast, our protocol uses no auxiliary circuits so has less garbled inputs to send (and less asso-

ciated decommitments to check). Our reconciliation phase scales only with B and is independent of the

parties’ input size. �e overall e�ect is that our online phase involves signi�cantly less communication

and computation, with the di�erence growing as the computations involve longer inputs. With typical

parameters B = 4 and κs = 40, our reconciliation phase is cheaper whenever |x| ≥ 54 bits. Even for the

relatively small AES circuit, our protocol sends roughly 10× less data in the online phase.

(4) LR’s online phase uses 4 rounds of interaction
2

and delivers output only to one party. If both parties

1

For example, two parties might want to securely evaluate AES a million times on the same secret-shared key each time,

where the key is not used for anything else. In that case, a 1/220 or 1/230 chance of leaking a single bit about this key might be

permissible.

2

For our purposes, a round refers to both parties sending a message. In other words, messages in the same round are allowed to

be sent simultaneously, and our implementation takes advantage of full-duplex communication to reduce latency. We emphasize

that synchronicity is not required for our security analysis. �e protocol is secure against an adversary who waits to obtain the

honest party’s message in round i before sending its own round i message.

4

require output, their protocol must be modi�ed to include an additional round. Our online phase also

delivers outputs to both parties using either 5 or 6 rounds (depending on the choice of PSI subprotocols).

We conjecture that our protocol can be modi�ed to use only 4 rounds, but leave that question to follow-up

work.

(5) Our implementation is more e�cient than LR. �e o�ine phase more e�ectively exploits parallelism

and LR is implemented using a mix of Java & C++. �e architecture of LR has a serial control �ow with

computationally heavy tasks performed in parallel using low level C++ code. In contrast, our protocol

implementation is in C++ and fully parallelized with low level synchronization primitives.

2.4 Comparison to Non-GC Protocols

Another paradigm for malicious security in the online/o�ine se�ing is based not on garbled circuits but

arithmetic circuits and secret sharing. Notable protocols and implementations falling into this paradigm

include [DLT14, DPSZ12, DZ15, DZ13, NNOB12]. �ese protocols indeed have lightweight online phases,

and many instances can be batched in parallel to achieve throughput comparable to our protocol. However,

all of these protocols have an online phase whose number of rounds depends on the depth of the circuit

being evaluated. As a result, they su�er from signi�cantly higher latency than the constant-round protocols

in the garbled circuit paradigm like ours. �e latest implementations of [DPSZ12] can securely evaluate

AES with online latency 20ms [Sma15]. Of special note is the implementation of the [DZ13] protocol

reported in [DZ15], which achieves latency of only 6ms to evaluate AES. However, the implementation is

heavily optimized for the special case of computing AES, and it is not clear how applicable their techniques

are for general-purpose MPC. In any case, no protocol has reported online latency for AES that is less than

our protocol’s total o�ine+online cost.

�e above protocols based on secret-sharing also have signi�cantly more expensive o�ine phases. Not

all implementations report the cost of their o�ine phases, but the latest implementations of the [DPSZ12]

protocol require 156 seconds of o�ine time for securely computing AES [Sma15]; many orders of mag-

nitude more than ours. We note that the protocols in the secret-sharing paradigm have an o�ine phase

which does not depend on the function that will be evalauted, whereas ours does.

3 Preliminaries

Secure computation. We use the standard notion of universally composable (UC) security [Can01] for

2-party computation. Brie�y, the protocol is secure if for every adversary a�acking the protocol, there is

a straight-line simulator a�acking the ideal functionality that achieves the same e�ect. We assume the

reader is familiar with the details.

We de�ne the ideal functionality Fmulti-sfe that we achieve in Figure 2. �e functionality allows parties

to evaluate the function f ,N times. Adversaries have the power to delay (perhaps inde�nitely) the honest

party’s output, which is typical in the se�ing of malicious security. In other words, the functionality does

not provide output fairness.

Furthermore, the functionality occasionally allows the adversary to learn an arbitrary additional bit

about the inputs. �is leakage happens according to the distribution L chosen by the adversary at setup

time. �e probability of a leaked bit in any particular evaluation of f is guaranteed to be at most ε. Further,

the leakage is “risky” in the sense that the honest party detects cheating when the leaked bit is zero.

Building blocks. In Figures 3 & 4 we de�ne oblivious transfer (OT) and commitment functionalities that

are used in the protocol. In the random oracle model, where H is the random oracle, a party can commit

to v by choosing random r ← {0, 1}κc and sending c = H(r‖v).

5

Setup stage: On common input (setup, f,N, ε) from both parties, where f is a boolean circuit:

• If neither party is corrupt, set L = 0N . Otherwise, wait for input (cheat,L) where L is a

distribution over {0, 1}N ∪ {⊥} with the property that for every i, PrL←L[Li = 1] ≤ ε.
Sample L ← L using random coins χ and give (cheatresult, χ) to the adversary. If L = ⊥
then give output (cheating!) to the honest party and stop responding.

• Send output (ready) to both parties. Initialize counter ctr = 1. Proceed to the execution stage.

Execution stage: Upon receiving inputs (input, x1) from P1 and (input, x2) from P2:

• Compute z = f(x1, x2). If both parties are honest, give (output, ctr, z) to both parties.

• If any party is corrupt, give (output, ctr, z) to the adversary.

• If Lctr = 1, wait for a command (leak, P) from the adversary, where P is a boolean predicate.

Compute p = P (x1, x2) and give (leakresult, p) to the adversary.

• If any party is corrupt, then on input (deliver) from the adversary, if p = 0 above, then give

output (cheating!) to the honest party, else give output (output, ctr, z) to the honest party.

• If ctr = N then stop responding; otherwise set ctr = ctr + 1 and repeat the execution stage.

Figure 2: �e (ε-leaking) secure function evaluation functionality Fmulti-sfe.

We use and adapt the Garbled Circuit notation and terminology of [BHR12b]; for a formal treatment,

consult that paper. In Appendix A we de�ne the syntax and security requirements, highlighting the dif-

ferences we adopt compared to [BHR12b].

4 �e Dual Execution Paradigm

We now give a high-level outline of the (non-online/o�ine) 2PC protocol paradigm of [KMRR15], which is

the starting point for our protocol. �e protocol makes use of a two-phase PSI subprotocol. In the �rst

phase, both parties become commi�ed to their PSI inputs; in the second phase, the PSI output is revealed.

�is component is modeled in terms of the Fn,`psi functionality in Figure 5.

Assume the parties agree on a function f to be evaluated on their inputs. �e protocol is symmetric

with respect to Alice and Bob, and for simplicity we describe only Alice’s behavior.

1. Alice generates κb garbled circuits computing f , using a common garbled output encoding for all of

them.

2. Alice announces a random subset of Bob’s circuits to open. However, the actual checking of the

circuits is delayed until later in the protocol.

3. Alice uses OT to receive garbled inputs for the circuits generated by Bob, as in Yao’s protocol. Alice

sends the garbled circuits she generated, along with her own garbled input for these circuits.

4. Alice evaluates the garbled circuits received from Bob. If Bob is honest, then all of his circuits use

the same garbled output encoding and Alice will receive the same garbled output from each one.

But in the general case, Alice might obtain several inconsistent garbled outputs.

6

Parameters: A sender P1 and receiver P2.

Setup: On common input S from both parties, for every s ∈ S choose randomm0,m1 ← {0, 1}κc
and random c← {0, 1}. Internally store a tuple (s,m0,m1, c).

P1 output: On input (get, s) from P1, if there is a tuple (s,m0,m1, c) for some m0,m1, c then

give (output, s,m0,m1) to P1.

P2 output: On input (get, s) from P2, if there is a tuple (s,m0,m1, c) for some m0,m1, c then

give (output, s, c,mc) to P2.

Figure 3: Random OT functionality Fot.

Parameters: A sender P1 and receiver P2.

Commit: On input (commit, sid, v) from P1: If a tuple of the form (sid, ·, ·) is stored, then abort.

If P1 is corrupt, then obtain value r from the adversary; otherwise choose r ← {0, 1}κc and give

r to P1. Internally store a tuple (sid, r, v) and give (committed, sid) to P2.

Reveal: On input (open, sid, r′) from P2: if a tuple (sid, r′, v) is stored for some v, then give

(opened, sid, v) to P2. Otherwise, give (error, sid) to P2.

Figure 4: Non-interactive commitment functionality Fcom.

Parameters: Two parties: a sender P1 and receiver P2; ` = length of items; n = size of parties’

sets.

First phase (input commitment): On input (input, Ai) from party Pi (i ∈ {1, 2}), with Ai ⊆
{0, 1}` and |Ai| = n: If this is the �rst such command from Pi then internally record Ai and send

message (input, Pi) to both parties.

Second phase (output): On input (output) from Pi, deliver (output, A1 ∩ A2) to the other

party.

Figure 5: Two-phase private set intersection (PSI) functionality Fn,`psi .

5. Assume that Alice can decode the garbled outputs to obtain the logical circuit output. For each

candidate circuit output y with garbled encoding Y b
y (b for a garbled output under Bob’s encoding),

let Y a
y denote the encoding of y under Alice’s garbled output encoding (which Alice can compute).

Interpreting Y a
y and Y b

y as sets of individual wire labels, let Ry be the XOR of all items in Y a
y ∪ Y b

y ,

which we write as Ry =
⊕

[Y a
y ∪ Y b

y] and which we call the reconciliation value for y. Alice sends

the set of all {Ry} values as input to a PSI instance.

6. With the PSI inputs commi�ed, the parties open and check the circuits chosen in the cut-and-choose

step. �ey abort if any circuit is not correctly garbled, or the circuits do not have consistent garbled

output encodings.

7. �e parties release the PSI output. Alice aborts if the PSI output is not a singleton set. Otherwise, if

the output is {R∗} then Alice outputs the value y such that R∗ = Ry .

7

4.1 Security Analysis and Other Details

Suppose Alice is corrupt and Bob is honest. We will argue that Alice learns nothing beyond the function

output, except that with probability 2−κb she learns a single bit about Bob’s input.

Suppose Alice uses input x1 as input to the OTs, and Bob has input x2. Since Bob’s circuits are honestly

generated and use the same garbled output encoding, every circuit evaluated by Alice leads to the same

garbled output Y b
y∗ that encodes logical value y∗ = f(x1, x2). Note that by the authenticity property of

the garbled circuits, this is the only valid garbled output that Alice can predict.

Since Alice may generate malicious garbled circuits, honest Bob may obtain several candidate outputs

from these circuits. Bob’s input to the PSI computation will be a collection of reconciliation values, each

of the form Ry =
⊕

[Y a
y ∪ Y b

y].
At the time of PSI input, none of Bob’s (honestly) garbled circuits have been opened, so they retain

their authenticity property. �en Alice cannot predict any valid reconciliation value except for this Ry∗ .
�is implies that the PSI output will be either {Ry∗} or ∅. In particular, Bob will either abort or output

the correct output y∗. Furthermore, the output of the PSI computation can be simulated knowing only

whether honest Bob has included Ry∗ in his PSI input.

�e protocol includes a mechanism to ensure that Alice uses the same x1 input for all of the garbled

circuits. Hence, if Bob evaluates at least one correctly generated garbled circuit, it will give output y∗ and

Bob will surely include the Ry∗ reconciliation value in his PSI input. In that case, the PSI output can be

simulated as usual.

�e probability the Alice manages to make Bob evaluate no correctly generated garbled circuits is

2−κb — she would have to completely predict Bob’s cut-and-choose challenge to make all opened circuits

correct and all evaluated circuits incorrect. But even in this event, the simulator only needs to know

whether f ′(x1, x2) = y∗ for any of the f ′ computed by Alice’s malicious garbled circuits. �is is only one

bit of information about x2 which the simulator can request from the ideal functionality.

4.2 Outline for Online/O�line Dual-Execution

Our high-level approach is to adapt the [KMRR15] protocol to the online/o�ine se�ing. �e idea is that

the two parties plan to securely evaluate the same function f , N times, on possibly di�erent inputs each

time. In preparation they perform an o�ine pre-processing phase that depends only on f and N , but not

on the inputs. �ey generate many garbled circuits and perform a cut-and-choose on all of them. �en

the remaining circuits are assigned randomly to buckets. Later, once inputs are known in the online phase,

one bucket’s worth of garbled circuits are consumed for each evaluation of f .

Our protocol will leak a single bit about the honest party’s input only when a bucket contains no

“good” circuit from the adversary (where “good” is the condition that is veri�ed for opened circuits during

cut-and-choose). Following the lead of [LR15], we focus on choosing the number of circuits so that the

probability of such an event in any particular bucket is 2−κb . We note that the analysis of parameters in

[HKK
+

14, LR14] considers an overall cheating condition, i.e., that there exists a bucket that has no “good”

circuits, which leads to slightly di�erent numbers.

Lemma 1 ([LR15]). If the parties plan to performN executions, using a bucket ofB circuits for each execution
and a total of N̂ ≥ NB garbled circuits generated for the overall cut-and-choose, then the probability that a
speci�c bucket contains no good circuit is at most:

max
t∈{B,...,NB}

(
N̂−t
NB−t

)(
N̂
NB

) · (tB)(
NB
B

)
 .

8

Suppose the parties will performN executions, using buckets of sizeB in the online phase, and wish for

2−κb probability of leakage. We can use the formula to determine the smallest compatible N̂ . In Figure 17

we show all reasonable parameter se�ings for κb ∈ {20, 40, 80} and N ∈ {8, 16, 32, . . . , 32768}.
By adapting [KMRR15] to the online/o�ine se�ing, we obtain the generic protocol outlined in Figure

6. Even with pre-processing, an online OT requires 2 rounds, one of which can be combined with the direct

sending of garbled inputs. �e protocol therefore requires 3 rounds plus the number of rounds needed for

the PSI subprotocol (at least 2).

O�line phase:

1. Parties perform o�ine preprocessing for the OTs that will be needed, and for the PSI subprotocol,

if appropriate.

2. Based onN and κb, the parties determine appropriate parameters N̂ ,B according to the discus-

sion in Section 4.2. Each party generates and sends N̂ garbled circuits, and chooses a random

subset of N̂ −NB of their counterpart’s circuits to be opened. �e chosen circuits are opened

and parties abort if circuits are found to be generated incorrectly.

3. Each party randomly assigns their counterpart’s circuits to buckets of size B. Each online exe-

cution will consume one bucket’s worth of circuits.

Online phase:

1. Parties exchange garbled inputs: For one’s own garbled circuits in the bucket, a party directly

sends the appropriate garbled inputs; for the counterpart’s garbled circuits, a party uses OT as

a receiver to obtain garbled inputs as in Yao’s protocol.

2. Parties evaluate the garbled circuits and compute the corresponding set of reconciliation values.

�ey commit their sets of reconciliation values as inputs to a PSI computation.

3. With the PSI inputs commi�ed, the parties open some checking information (see text in Section

4.3) and abort if it is found to be invalid.

4. �e parties release the PSI output and abort if the output is ∅. Otherwise, they output the plain-

text value whose reconciliation value is in the PSI output.

Figure 6: High-level outline of the online/o�ine, dual-execution protocol paradigm.

4.3 Technicalities

We highlight which parts of the [KMRR15] protocol break down in the online/o�ine se�ing and require

technical modi�cation:

Same garbled output encoding. In [KMRR15] each party is required to generate garbled circuits that have a

common output encoding. �eir protocol includes a mechanism to enforce this property. In our se�ing, we

require each bucket of circuits to have the same garbled output encoding. But this is problematic because

in our se�ing a garbled circuit is generated before the parties know which bucket it will be assigned to.

Our solution is to have the garbler provide for each bucket a translation of the following form. �e

garbler chooses a bucket-wide garbled output encoding; e.g., for the �rst output wire, he chooses wire

labels W ∗0 ,W
∗
1 encoding false and true, respectively. �en if W j

0 ,W
j
1 are the output wire labels already

chosen for the jth circuit in this bucket, the garbler is supposed to provide translation values W j
v ⊕W ∗v

9

for v ∈ {0, 1}. A�er evaluating, the receiver will use these values to translate the garbled input to this

bucket-wide encoding that is used for PSI reconciliation.

Of course, a cheating party can provide invalid translation values. So we use step 3 of the online phase

(Figure 6) to check them. In more detail, a sender must commit in the o�ine phase to the output wire

labels of every garbled circuit. �ese will be checked if the circuit is chosen in the cut-and-choose. In step

3 of the online phase, these commitments are opened so that the receiver can check the consistency of the

translation values (i.e., whether they map to a hash of the common bucket-wide encoding provided during

bucketing.). �is step reveals all of the bucket-wide encoding values, making it now easy for an adversary

to compute any reconciliation value. �is is why we employ a 2-phase PSI protocol, so that PSI inputs are

commi�ed before these translation values are checked.

Adaptive garbling. Standard security de�nitions for garbled circuits require the evaluator to choose the

input before the garbled circuit is given. However, the entire purpose of o�ine pre-processing is to gen-

erate & send the garbled circuits before the inputs are known. �is requires the garbling scheme to sat-

isfy an appropriate adaptive security property, which is common to all works in the online/o�ine set-

ting [HKK
+

14, LR14]. See Appendix A for details.

Input consistency. To achieve security against active adversaries, GC-based protocols must ensure that

parties provide the same inputs to all circuits that are evaluated. �is is known as the problem of input
consistency. �e protocol of [KMRR15] uses the input consistency mechanism of shelat & Shen [sS13]

which is unfortunately not compatible with the online/o�ine se�ing. More details follow in the next

section.

5 Input Consistency

In this section we describe a new, extremely lightweight input-consistency technique that is tailored for

the dual-execution paradigm.

5.1 Consistency Between Alice’s & Bob’s Circuits

We start with the “classical” dual-execution scenario, where Alice and Bob each generate one garbled

circuit. We describe how to force Alice to use the same input in both of these garbled circuits (of course,

the symmetric steps are performed for Bob). �e high-level idea is to bind her behavior as OT receiver

(when obtaining garbled inputs for Bob’s circuits) to the commitments of her garbled inputs in her own

circuits.

It is well-known [Bea95] that oblivious transfers on random inputs can be performed o�ine, and later

“derandomized” to OTs of chosen inputs. Suppose two parties perform a random string OT o�ine, where

Alice receives c,mc and Bob receives m0,m1, for random c ∈ {0, 1} and m0,m1 ∈ {0, 1}k. Later when

the parties wish to perform an OT of chosen inputs c∗ and (m∗0,m
∗
1), Alice can send d = c ⊕ c∗ and Bob

can reply with m∗0 ⊕md and m∗1 ⊕m1⊕d.

In the o�ine phase of our protocol, the parties perform a random OT for each Alice-input wire of each

circuit, where Alice acts as the receiver. �ese will be later used for Alice to pick up her garbled input for

Bob’s circuit. Let c denote the string denoting Alice’s random choice bits for this collection of OTs.

Also in the o�ine phase, we will have Alice commit to all of the possible garbled input labels for the

circuits that she generated. Suppose she commits to them in an order determined by the bits of c; that is,

the wire label commitments for the �rst input wire are in the order (false,true) if the �rst bit of c is 0 and

(true,false) otherwise.

In the online phase with input x, Alice sends the OT “derandomized” message d = x⊕c. She also sends

her garbled inputs for the circuits she generated by opening the commitments indexed by d; that is, she

10

opens the �rst or second wire label of the ith pair, depending on whether di = 0 or di = 1, respectively.

Bob will abort if Alice does not open the correct commitments.

Alice’s e�ective OT input is x = d ⊕ c, so she picks up garbled input corresponding to x. If Alice

did indeed commit to her garbled inputs arranged according to c, then she opens the commitments whose

truth values are also x = d⊕ c. More formally,

O�line: Alice garbles the labels A0, A1 and Bob garbles B0, B1 for Alice’s input. Alice receives OT

message mc and Bob holds m0,m1. Alice sends (commit, (sid, i), Ai⊕c) to Fcom for i ∈ {0, 1}.

Online: Alice send d = c⊕ x to Bob and (open, (sid, d)) to Fcom. Bob receives (open, (sid, d), Ax)
from Fcom and sends (B0 ⊕md, B1 ⊕m1⊕d) to Alice who computes Bx = mc ⊕ (Bc⊕d ⊕mc).

Figure 7: Input consistency on a single bit of Alice’s input for “classic” dual-execution.

Looking ahead, we will use cut-and-choose to guarantee that there is at least one circuit for which

Alice’s garbled input commitments are correct in this way.

5.2 Aggregating Several OTs

In our protocol, both parties evaluate a bucket of several circuits. Within the bucket, each of Alice’s circuits

is paired with one of Bob’s, as above. However, this implies that Alice uses separate OTs to pick up her

garbled inputs in each of Bob’s circuits. To address this, we aggregating several OTs together to form a

single OT.

Suppose Alice & Bob have performed two random string OTs, with Alice receiving c, c′,mc,m
′
c′ and

Bob receiving m0,m1,m
′
0,m

′
1, for random c, c′ ∈ {0, 1}. Suppose further that Alice sends δ = c ⊕ c′ to

Bob in an o�ine phase. To aggregate these two random OTs into a single chosen-input OT with inputs

c∗,m∗0,m
∗
1, Alice can send d = c ⊕ c∗, and Bob can reply with m∗0 ⊕ (md ⊕m′d⊕δ) and m∗1 ⊕ (m1⊕d ⊕

m′1⊕d⊕δ).

�e idea extends to aggregate any number B of di�erent random OTs into a single one, with Alice

sendingB−1 di�erent δ di�erence values. In our protocol, we aggregate in this way the OTs for the same

wire across di�erent circuits. Intuitively, Alice either receives wire labels for the same value on each of

these wires (by reporting correct δ values), or else she receives nothing for this wire on any circuit.

5.3 Combining Everything with Cut-and-Choose

Now consider a bucket of B circuits. In the o�ine phase Alice acts as receiver in many random OTs, one

collection of them for each of Bob’s circuits. Let cj be her (string of) choice bits for the OTs associated

with the jth circuit. Alice is then supposed to commit to the garbled inputs of her jth circuit arranged

according to cj . Bob will check this property for all circuits that are opened during the cut-and-choose

phase by Alice showing the corresponding OT messages.
3

Hence with probability at least 1−2−κb , at least

one circuit in any given bucket has this property. Alice also reports aggregation values δj = c1 ⊕ cj for

these OTs.

In the online phase Alice chooses her input x and sends d1 = c1 ⊕ x as the OT-derandomization

message. �is is equivalent to Alice sending dj = δj ⊕ d1 as the message to derandomize the jth OTs. To

send her garbled input for the jth circuit, Alice is required to open her commitments indexed by dj .
If Alice lies in any of the aggregation strings, then she will be missing at least one of the B-out-of-

B secret shares which mask her possible inputs. Intuitively, Alice’s two strategies are either to provide

3

In fact, since the OT messages are long random strings, Alice can prove that she had particular choice bits in many OTs by

simply reporting the xor of all of the corresponding OT messages.

11

honest aggregation strings or not obtain any garbled inputs in the position that she lied. In the la�er case,

the simulator can choose an arbitrary input for Alice in that position.

If we then consider the likely case where Bob’s jth circuit is “good” and Alice provided honest aggre-

gation strings, then Alice will have decommi�ed to inputs for the jth circuit that are consistent with her

e�ective OT input x∗1. From the discussion in Section 4.1, this is enough to guarantee that the reconciliation

phase leaks nothing.

Even if there are no “good” circuits in the bucket (which happens with probability 1/2κb), it is still the

case that Alice learns no more than if she had received consistent garbled input x∗1 for all of Bob’s circuits.

So the reconciliation phase can be simulated knowing only whether Bob evaluates any circuit resulting in

f(x∗1, x2). �is is a single bit of information about Bob’s input x2.

6 Selective Failure Attacks

In the garbled circuit paradigm, suppose Alice is acting as evaluator of some garbled circuits. She uses

OT to pick up the wire labels corresponding to her input. A corrupt Bob could provide incorrect inputs to

these OTs, so that (for instance) Alice picks up an invalid garbled input if and only if the �rst bit of her

input is 0. By observing whether the evaluator aborts (or produces otherwise unexpected behavior), Bob

can deduce the �rst bit of Alice’s input. �is kind of a�ack, where the adversary causes the honest party

to abort/fail with probability depending on its private input is called a selective failure attack.
A common way to prevent selective failure is to use what is called a k-probe-resistant input encoding:

De�nition 2 ([LP07, sS13]). MatrixM ∈ {0, 1}`×n is called k-probe resistant if for any L ⊆ {1, 2, ..., n},
the Hamming distance of

⊕
i∈LMi is at least k, whereMi denotes the ith row vector ofM .

�e idea is for Alice to choose a random encoding x̃1 of her logical input x1 satisfying Mx̃1 = x1.

�en the parties evaluate the function f ′(x̃1, x2) = f(Mx̃1, x2). �is additional computation of Mx̃1
involves only XOR operations, so it does not increase the garbled circuit size when using the Free-XOR

optimization [KS08] (it does increase the number OTs needed).

Alice will now use x̃1 as her choice bits to the OTs. �e adversary can probe any number of bits of x̃1,

by inserting invalid inputs to the OT in those positions, and seeing whether the other party aborts. For

each position probed, the adversary incurs a 1/2 probability of being caught.
4

�e property of k-probe-resistance implies that probing k bits of the physical input x̃1 leaks no in-

formation about the logical input Mx̃1. However, probing k bits incurs a 1 − 2−k probability of being

caught. Hence, our protocol requires a matrix that is κs-probe resistant, where κs is the statistical security

parameter. We refer the reader to [LR15] for the construction details of k-probe resistant matrices and

their parameters.

6.1 O�lining the k-probe computations

Using k-probe-resistant encodings, the encoded input x̃1 is signi�cantly longer than the logical input x1.

While the computation of Mx̃1 within the garbled circuit can involve no cryptographic operations (using

Free-XOR), it still involves a quadratic number of XOR operations.

Lindell & Riva [LR14] suggest a technique that moves these computations associated with k-probe-

resistant encodings to the o�ine phase. �e parties will compute the related function f ′(x̂1, c, x2) =
f(x̂1⊕Mc, x2). In the o�ine phase, Alice will use OT to obtain wire labels for a random string c. She can

also begin to partially evaluate the garbled circuit, computing wire labels for the value Mc.

4

Technically, the sender will commit to all garbled inputs, and then the OTs will be used to transfer the decommitment values.

�at way, the receiver can abort immediately if an incorrect decommitment value is received.

12

In the online phase, Alice announces x̂1 = x1 ⊕Mc where x1 is her logical input. �en Bob directly

sends the garbled inputs corresponding to x̂1. �is introduces an asymmetry into our input consistency

technique. �e most obvious solution to maintain compatibility is to always evaluate circuits of the form

f ′(x̂1, c1, x̂2, c2) = f(x̂1⊕Mc1, x̂2⊕Mc2), so that Alice uses the same physical input (c1, x̂1) in both hers

and Bob’s circuits. However, we would prefer to let Alice use logical input x1 rather than its (signi�cantly

longer) k-probe-encoded input, to reduce the concrete overhead. It turns out that we can accommodate

this by exploiting the Z2-linearity of the encoding/decoding operation.

Consider a bucket of circuits {1, . . . , B}. For the jth circuit, Alice acts as receiver in a set of random

OTs, and receives random choice bits cj . �e number of OTs per circuit is the number of bits in a k-probe-

resistant encoding of Alice’s input.

For Alice’s jth circuit, she must commit to her garbled inputs in the order given by the string Mcj
(rather than just cj as before). �is condition will be checked by Bob in the event that this circuit is

opened during cut-and-choose. To assemble a bucket, Alice reports aggregation values δj = c1 ⊕ cj as

before. Imagine Alice derandomizing these OTs by sending an all-zeroes derandomization message. �is

corresponds to her accepting the random c1 as her choice bits. (Of course, an all-zeroes message need not

be actually sent.) Bob responds and uses the aggregated OTs to send Alice the garbled inputs for c1 for all

of his garbled circuits (indeed, even in the jth circuit Alice receives garbled inputs corresponding to c1).

In the online phase, Alice decides her logical input x1, and she sends x̂1 = Mc1 ⊕ x1. �is value

derandomizes the o�ine k-probe-resistant encoding. �en in her own jth circuit, Alice must open the

garbled input commitments indexed by the (public) string x̂1 ⊕Mδj .
To see why this solution works, suppose that Alice’s jth circuit is “good” (i.e., garbled correctly and

input commitments arranged byMcj). As before, de�ne her e�ectiveOT input to the jth OTs as c∗ = cj⊕δj
(which should be c1 if Alice did not lie about δj). Even if Alice lied about the δ values she surely learns no

more than she would have learned by being truthful about the δ values and using e�ective input c∗ in all

OTs. Hence, we can imagine that she uses logical input x∗1 = x̂1 ⊕Mc∗ in all of Bob’s garbled circuit.

Alice is required to open garbled inputs indexed by x̂1⊕Mδj = x̂1⊕M(c∗⊕ cj) = x∗1⊕Mcj . �ese

are exactly the garbled inputs corresponding to logical input x∗1, since the commitments were arranged

according to Mcj . We see that Bob evaluates at least one correctly garbled circuit with Alice using input

x∗1, which is all that is required for weak input consistency.

7 Optimizing PSI Reconciliation

7.1 Weaker security.

Our main insight is that our PSI reconciliation step does not require a fully (UC) secure PSI protocol.

Instead, a weaker security property su�ces. Recall that the �nal steps of the [KMRR15] protocol proceed

as follows:

• Alice & Bob commit to their PSI inputs.

• �e garbled-output translations are opened and checked.

• �e parties either abort or release the PSI output.

For simplicity, assume for now that only one party receives the �nal PSI output. We will address two-sided

output later.

Suppose Alice is corrupt and Bob is honest. Following from the discussion of security in Section 4,

Bob will use as PSI input a collection of valid reconciliation values. At the time Alice provides her PSI

inputs, the authenticity property of the garling scheme is in e�ect. �is means that Alice can predict a

13

valid reconciliation value only for the “correct” output y∗. All other valid reconciliation values that might

be part of Bob’s PSI input are unpredictable.

Below we formalize a weak notion of security for input distributions of this form:

De�nition 3. Let Π be a two-phase protocol for set intersection (Fn,`psi , Figure 5). We say that Π is weakly
malicious-secure if it achieves UC-security with respect to environments that behave as follows:

1. �e adversary sends a value a∗ ∈ {0, 1}` to the environment along with the description of a distribution
D whose support is cardinality-(n− 1) subsets of {0, 1}`. We further require that D is unpredictable
in the sense that the procedure “A ← D; output a uniformly chosen element of A” yields the uniform
distribution over {0, 1}` (the joint distribution of all elements of A need not be uniform).

2. �e environment (privately) samples A← D and gives input A ∪ {a∗} to the honest party for the �rst
phase of PSI.

3. A�er the �rst phase �nishes (i.e., both parties’ inputs are commi�ed), the environment gives the coins
used to sample A to the adversary.

4. �e environment then instructs the honest party to perform the second phase of PSI to obtain output.

In this de�nition, the adversary knows only one value in the honest party’s set, while all other values

are essentially uniform. We claim that when ` is large, the simulator for this class of environments does not
need to fully extract the adversary’s PSI input! Rather, the following are enough to ensure weakly-malicious

security:

• �e adversary is indeed commi�ed to some (unknown to the simulator) e�ective input during the

commit phase.

• �e simulator can test whether the adversary’s e�ective PSI input contains the special value a∗.

With overwhelming probability, no e�ective input element other than a∗ can contribute to the PSI output.

Any other values in the adversary’s e�ective input can simply be ignored; they do not need to be extracted.

For technical reasons and convenience in the proof, we have the environment give the adversary the

coins used to sample A, but only a�er the PSI input phase.

7.2 PSZ protocol paradigm.

We now describe an inexpensive protocol paradigm for PSI, due to Pinkas et al. [PSZ14]. �eir protocol is

proven secure only against passive adversaries. We later discuss how to achieve weak malicous security.

�e basic building block is a protocol for private equality test (PEQT) based on OT. A bene�t of

using OT-based techniques is that the bulk of the e�ort in generating OTs can be done in the o�ine phase,

again leading to a lightweight online phase for the resulting PSI protocol.

Suppose a sender has input s and receiver has input r, with r, s ∈ {0, 1}n, where the receiver should

learn whether r = s (and nothing more). �e PEQT protocol requires n string OTs; in the ith one, the

receiver uses choice bit r[i] and the sender chooses random string inputs (mi
0,m

i
1). �e sender �nally

sends S =
⊕

im
i
s[i], and the receiver checks whether S =

⊕
im

i
r[i], which is the XOR of his OT outputs.

�e PEQT can be extended to a private set membership test (PSMT), in which the sender has a set

{s1, . . . , st} of strings, and receiver learns whether r ∈ {s1, . . . , st}. We simply have the sender randomly

permute the sj values, compute for each one Sj =
⊕

i F (mi
sj [i]

, j) and send {S1, . . . , St}, where F is a

PRF.
5

�e receiver can check whether

⊕
i F (mi

r[i], j) matches Sj for any j. Finally, we can achieve a PSI

5

Simply XORing the mi
b values would reveal some linear dependencies; applying a PRF renders all of the Sj

values indepen-

dently random except the ones for which r = sj .

14

where the receiver has strings {r1, . . . , rt} by running independent PSMTs of the form rj ∈ {s1, . . . , st}
for each rj (in random order).

�e overhead of this approach isO(t2), and [PSZ14] describe ways to combine hashing with this basic

PSI protocol to obtain asymptotically superior PSI protocols for large sets. However, we are dealing with

very small values of t (typically at most 5), so the concrete cost of this simple protocol is very low.

To make the PSI protocol two-phase, we run the OTs and commit to theS values in the input-commi�ing

phase. �en the output phase consists simply of the sender opening the commitments to S.

7.3 Achieving weakly-malicious security and double-sided output.

We use the [PSZ14] protocol but instantiate it with malicious-secure OTs. �is leads to the standard notion

of security against an active receiver since the simulator can extract the receiver’s input from its choice

bits to the OTs.

However, the protocol does not achieve full security against a malicious sender. In the simple PEQT

building block, the simulator cannot extract a malicious sender’s input. Doing so would require inspecting

S, {mi
b} and determining a value s such that S =

⊕
im

i
s[i]. Such an smay not exist, and even if it did, the

problem seems closely related to a subset-sum problem.

However, if the simulator knows a candidate s∗, it can certainly check whether the corrupt sender

has sent the corresponding S value. �is is essentially the only property required for weakly malicious

security.

We note that a corrupt sender could use inconsistent sets {s1, . . . , st} in the parallel PSMT instances.

However, the simulator can still extract whether the candidate s∗ was used in each of them. If the sender

used s∗ in t′ of the t subprotocols, then the simulator can send s∗ to the ideal PSI functionality with

probability t′/t, which is a sound simulation for weakly-malicious security.

Regarding double-sided output, it su�ces to simply run two instances of the one-sided-output PSI

protocol, one in each direction, in parallel. Again, this way of composing PSI protocols is not sound in
general, but it is sound for the special case of weakly-malicious security.

7.4 Trading computation for lower round complexity.

Even when random OTs are pre-processed o�ine, the PSI protocol as currently described requires 2 rounds

to commit to the outputs, and one round to release the output. �e two input-commi�ing rounds are

(apparently) inherently sequential, stemming from the sequential nature of OT derandomization.

In terms of round complexity, these 2 PSI rounds are a bo�leneck within the overall dual-execution

protocol. We now describe a variant of the PSI protocol in which the 2 input-commi�ing messages are

asynchronous and can be sent simultaneously. �e modi�ed protocol involves (a nontrivial amount of)

additional computation but reduces the number of rounds in the overall 2PC online phase by one. �is

tradeo� does not always reduce the overall latency of the 2PC online phase — only sometimes, depending

on the number of garbled circuits being evaluated and the network latency. �e speci�c break-even points

are discussed in Section 9.

In our PEQT protocol above, the two parties have pre-processed random OTs, with choice bits c and

random strings mi
0,m

i
1. To commit to his PSI input, the receiver’s �rst message is d = c⊕ r, to which the

sender responds with S =
⊕

im
i
d[i]⊕s[i].

Consider randomizing the terms of this summation as S =
⊕

i[m
i
d[i]⊕s[i] ⊕ zi] where zi are random

subject to

⊕
i zi = 0. Importantly, (1) each term in this sum depends only on a single bit of d; (2) revealing

all terms in the sum reveals no more than S itself. We let the sender commit to all the potential terms of

this sum and reveal them individually in response to d. In more detail, the sender commits to the following

15

values (in this order):

(?) [m1
s[1] ⊕ z1] [m2

s[2] ⊕ z2] · · · [mn
s[n] ⊕ zn]

[m1
s[1]⊕1 ⊕ z1] [m2

s[2]⊕1 ⊕ z2] · · · [mn
s[n]⊕1 ⊕ zn]

Importantly, these commitments can be made before d is known. In response to the message d from the

receiver, the sender is expected to release the output by opening the commitments indexed by the bits of

d. �e sender will open the commitments {mi
d[i]⊕s[i] ⊕ zi}; the receiver will compute their XOR S and

proceed as before.

�e simulator for a corrupt sender simulates a random message d and then checks whether the sender

has used a candidate input s∗ by extracting the commitments indexed by d to see whether their XOR is⊕
im

i
d[i]⊕s∗[i].

6

We can further move the commitments to the o�ine phase, since there are two commitments per bit

of s per PEQT. Observe that the commitments in (?) are arranged according to the bits of s, which are not

known until the online phase. Instead, in the o�ine phase the sender can commit to these values arranged

according to a random string π. In the online phase, the sender commits to its input s by sending s ⊕ π.

�en in response to receiver message d, the sender must open the commitments indexed by the bits of

d⊕ (s⊕ π).

When extending the asynchronous PEQT to a PSMT protocol, the sender commits to an array of

F (mi
b, j)⊕ z

j
i values for each j.

7.5 Final Protocols

For completeness, we provide formal descriptions of the �nal PSI protocols (synchronous 3-round and

asynchronous 2-round) in Figures 8 & 9.

�eorem 4. �e protocols Πsync-psi and Πasync-psi described in Figures 8 & 9 are weakly-malicious secure (in
the sense of De�nition 3) when ` ≥ κs, the statistical security parameter.

Proof. We prove security of the protocol in Figure 8; the proof of the other protocol is extremely similar.

We �rst consider the case of a corrupt receiver P2. In fact, the protocol is fully secure in this case.

Hybrid 0 (Real interaction) �e simulator runs the protocol on behalf of the honest senderP1 and simulates

the ideal functionalities honestly. In the o�ine phase the simulator extracts the adversary’s choice bits

ci in the OTs. In the input commi�ing phase, the simulator obtains di from the adversary and computes

A2,i = di ⊕ ci.
Replacing di with A2,i ⊕ ci, we can rewrite honest P1’s behavior as:

Si,j =
⊕
t

F (mi,t
ci[t]⊕A1,j [t]⊕A2,i[t]

, j)

Hybrid 1 In the previous hybrid, values mi,t
ci[t]⊕1 are distributed independently of the adversary’s view.

By the PRF-security of F , we can replace any call to F that uses such a key with a random value. �e

resulting hybrid is indistinguishable from the previous one.

In doing so, we see that wheneverA1,j 6= A2,i, the expression for Si,j involves such a term. Hence Si,j
is uniformly distributed whenever A1,j 6= A2,i.

6

Note: although we intend for the two parties’ messages to be sent simultaneously, we must be able to simulate in the case

that a corrupt sender waits for incoming message d before sending its commitments.

16

Hybrid 2 In the previous hybrid, the Si,j values can be simulated knowing only whetherA1,j = A2,i. �is

information can be obtained by the simulator sending A2 = {A2,1, . . . , A2,n} to the ideal PSI function-

ality and receiving output A∗ ⊆ A2. �is hybrid de�nes our �nal simulation.

Next, we consider the case of a corrupt sender P1. In this case, the protocol is only weakly secure:

Hybrid 0 (Real interaction) �e simulator obtains a∗ and D from the adversary, then samples the honest

party’s input D and runs the protocol on behalf of the honest receiver P2. �e simulator also simulates

the ideal functionalities honestly.

Hybrid 1 Note that P1’s view is independent of P2’s input. �e only protocol messages from P2 are the di
values in the �rst step. In this hybrid, the simulator simulates these to be random messages, rather than

using honest P2’s actual input.

Hybrid 2 From the adversary’s view, P2 determines its output via

{A2,i | ∃j :
⊕
t

F (mi,t
ci[t]

, j) = Si,j}

{A2,i | ∃j :
⊕
t

F (mi,t
A2,i[t]⊕di[t], j) = Si,j}

We modify this hybrid so that P2’s output is computed in the following way: �e simulator chooses a

random i∗ ∈ [n]. �en P2 outputs {a∗} if ∃j :
⊕

t F (mi∗,t
a∗[t]⊕di∗ [t]

, j) = Si∗,j ; otherwise P2 outputs ∅.
Recall that P2’s PSI input consists of a∗ along with values chosen from the “unpredictable” distribution

D. Hence, the hybrids di�er only in the case where there is someA2,i chosen fromD (so i 6= i∗) satisfying:

∃j :
⊕
t

F (mi,t
A2,i[t]⊕di[t], j) = Si,j (1)

For di�erent choices of A2,i, the le� hand side of this expression is indistinguishable from a uniformly

distributed value. �is holds because the mi,t
b values are chosen uniformly (by the simulator), and even

though they are public, they are chosen independently of the argument j to the PRF. Hence PRF security

applies. It is therefore only negligibly likely that there exist a 6= a′ satisfying:⊕
t

F (mi,t
a[t]⊕di[t], j) =

⊕
t

F (mi,t
a′[t]⊕di[t], j)

In other words, any Si,j value produced by the adversary can be consistent with at most a single candidate

A2,i value of P2, except with negligible probability. Since the A2,i values are unpredictable (in the sense

of De�nition 3) and chosen independently of the adversary’s view, the probability of event (1) is therefore

negligible. Hence the hybrids are indistinguishable.

Hybrid 3 In the previous hybrid, the simulated P2 chooses a random i∗ and simply checks whether ∃j :⊕
t F (mi∗,t

a∗[t]⊕di∗ [t]
, j) = Si∗,j . However, since both a∗ and themi,t

b messages are known to the simulator,

the simulator can perform this check. If the check succeeds, the simulator sends {a∗} to the ideal func-

tionality, otherwise it sends ∅ to the ideal functionality. Since honest (ideal) P2 always includes a∗ in its

PSI input, the ideal output always matches the simulator’s input. �is hybrid de�nes our �nal simulation.

17

Parameters: Two parties: a sender P1 and receiver P2; ` = bit-length of items in the set; n = size of

parties’ sets; F = a PRF.

O�line phase: Parties perform random OTs, resulting in P1 holding strings mi,t
{0,1} ← {0, 1}

κc
; and

P2 holding ci and mi,t
ci[t]

. Here, ci ∈ {0, 1}` and i ∈ [n], t ∈ [`].

Input committing phase:

• On input (input, {A2,1, . . . , A2,n}) to P2, P2 randomly permutes its input and then sends di :=
A2,i ⊕ ci for each i ∈ [n].

• On input (input, {A1,1, . . . , A1,n}) for P1, P1 randomly permutes its input and then computes

Si,j =
⊕

t F (mi,t
di[t]⊕A1,j [t]

, j) for i, j ∈ [n].

• P1 sends (commit, sid, (S1,1, . . . , Sn,n)) to Fcom.

Output phase: On input (output), P1 sends (open, sid) to Fcom and P2 receives

(opened, sid, (S1,1, . . . , Sn,n)). P2 then outputs {A2,i | ∃j :
⊕

t F (mi,t
ci[t]

, j) = Si,j}.

Figure 8: Weakly-malicious-secure, synchronous (3-round), two-phase PSI protocol Πsync-psi.

Parameters: Two parties: a sender P1 and receiver P2; ` = bit-length of items in the set; n = size of

parties’ sets; F = a PRF.

O�line phase: Parties perform random OTs, resulting in P1 holding strings mi,t
{0,1} ← {0, 1}

κc
; and

P2 holding ci and mi,t
ci[t]

. Here, ci ∈ {0, 1}` and i ∈ [n], t ∈ [`].

For i ∈ [n], P1 chooses πi ← {0, 1}`. �en for i, j ∈ [n], party P1 does the following:

• For t ∈ {0, 1}`, choose zi,jt ← {0, 1}` subject to

⊕
t z
i,j
t = 0

• for t ∈ [`], b ∈ {0, 1}; P1 sends (commit, (sid, i, j, t, b), F (mi,t
πj [t]⊕b, j)⊕ z

i,j
t) to Fcom.

Input committing phase: On input (input, {A1,1, . . . , A1,n}) for P1 and (input, {A2,1, . . . , A2,n})
for P2, the parties randomly permute their inputs and asynchronously do:

• P1 sends d1,j := A1,j ⊕ πj for each j ∈ [n]

• P2 sends d2,i := A2,i ⊕ ci for each i ∈ [n]

Output phase: On input (output): for i, j ∈ [n], t ∈ [`], party P1 sends (open, (sid, i, j, t, d1,j [t] ⊕
d2,i[t])) to Fcom and P2 expects to receive (opened, (sid, i, j, t, d1,j [t]⊕ d2,i[t]), ρi,jt).

P2 outputs {A2,i | ∃j :
⊕

t F (mi,t
ci[t]

, j) =
⊕

t ρ
i,j
t }

Figure 9: Weakly-malicious-secure, asynchronous (2-round), two-phase PSI protocol Πasync-psi.

8 Protocol Details & Implementation

�e full details of our protocol are given in Figure 11 and the c++ implementation may be found athttps:
//github.com/osu-crypto/batchDualEx. �e protocol uses three security parameters:

18

https://github.com/osu-crypto/batchDualEx
https://github.com/osu-crypto/batchDualEx

Setup stage: On common input (sid, setup, f,N, ε), where f is a boolean circuit, N is the number of exe-

cutions. �e parties agree on parameters B, N̂ as speci�ed by Figure 17. Let M ∈ {0, 1}µ×n be a ks-probe

resistant matrix for each party’s input of sizen. Let a ∈ {0, 1} denote the role of the current party and b = a⊕1.

Note: the protocol is symmetric where both parties simultaneously play the roles of Pa and Pb.

• Cut-and-Choose Commit: Pa chooses at random the cut and choose set σa ⊂ [N̂] of size N̂ −NB.

Pa send (commit, (sid, cut-and-choose, a), σa) to Fcom. For j ∈ [N̂]:

– OT Init: Pa sends (init, (sid,ot, a, j)) to Fµrot and receives choice bits caj in response.

– Send Circuit: Pa chooses random output wire labels dj , computes (F aj , ej) ← Ĝb(f ′, dj) and

sends the F aj to Pb where f ′(xa, r, x̃b) = f(xa,Mr ⊕ x̃b) and r, x̃b are Pb’s inputs. Let eaj , e
b
j , e

r
j

respectively be the labels encoding xa, x̃b, r, for circuit F aj and e∗j,t,h index the label of the tth

wire with value h in the set e∗j

– Input Commit: Pa sends the following to Fcom:

I (commit, (sid, xa-input, a, j, t, h), eaj,t,Mc[t]⊕h)t∈[n],h∈{0,1}.

I (commit, (sid, xb-input, a, j, t, h), ebj,t,h)t∈[n],h∈{0,1}
I (commit, (sid, r-input, a, j, t, h), erj,t,h)t∈[µ],h∈{0,1}

– Output Commit: Pa sends (commit, (sid,output, a, j), dj) to Fcom.

• Cut-and-Choose: Pb sends (open, (sid, cut-and-choose, b)) to Fcom and Pa receives σb. For j ∈ σb:

– OT Decommit: Pa sends (open, (sid,ot, a, j)) to Fµrot and Pb receives choice bits cbj .

– Check Circuit: Pa sends Pb the dj and coins used to garble F aj . Pb veri�es the correctness of

F aj .

– Input Decommit: Let eaj , e
b
j , e

r
j be the veri�ed labels as above.

I Pa sends (open, (sid, xa-input, a, j, t, h))∀t,h to Fcom and Pb receives labels e′a.

I Pa sends (open, (sid, xb-input, a, j, t, h))∀t,h to Fcom and Pb receives labels e′b.
I Pa sends (open, (sid, r-input, a, j, t, h))∀t,h to Fcom and Pb receives labels e′r .
I If there exists a e′at,h 6= ea

j,t,Mcbj [t]⊕h
, or e′b 6= ebj , or e′r 6= erj , Pb returns abort .

– Output: Pa sends (open, (sid,output, a, j)) to Fcom. Pb receives d′ and return abort if d′ 6= dj .

• Bucketing: Pb randomly maps the indices of [N̂]− σb into sets βa1 , ..., β
a
N s.t. |βai | = B. For i ∈ [N]:

– Bucket Labels: Pa generates random output labels Oai for bucket βai . For j ∈ βai , Pa send the

output translation T aj := {Oai,t,h ⊕ dj,t,h}t,h and H(Oai,t,h) to Pb, where dj are the output labels

of F aj .

– O�line Inputs:
I Pa sends (aggregate, (sid,ot-ag, a, i), {(sid,ot, a, j)|j ∈ βbi }) to Fµrot and Pb receives the

OT aggregation strings δaj for j ∈ βai .

I Pb sends (deliver, (sid,ot-ag, a, i), {erj , wj |j ∈ βbi }) to Fµrot where wj are the decommit-

ment strings to {(sid, r-input, b, j, t, h)}t,h.

I For j ∈ βbi , Pa receives Xr
j and Wj from Fµrot. Pa send

(open, (sid, r-input, b, j, t, caj [t]),Wj,t)∀t to Fcom and receives X ′rj . Pa returns abort

if X ′rj 6= Xr
j .

Figure 10: Malicious secure online/o�ine dual-execution 2PC protocol Πmulti-sfe.

19

Execution stage: On common bucket index i and Pa’s input xa.

• Receiver’s Inputs: Let j′ be the �rst index in βai . Pa sends x̃a := xa ⊕Mcaj′ to Pb where caj′ are the

choice bits of (sid,ot, a, j′). For all j ∈ βbi :

– Pb sends Xa
j := {eaj,t,(x̃a⊕Mδaj)[t]

}t and W a
j := {wj,(x̃a⊕Mδaj)[t]

}t to Pa where eaj encodes x̃a for

F bj and wj are the decommitments string to {(sid, xa-input, b, j, t, h)}t,h.

– Pa receives Xa
j ,W

a
j and sends (open, (sid, xa-input, b, j, t, (xa ⊕Mcaj)[t]),W a

j,t)∀t to Fcom and

receives X ′aj . Pa returns abort if Xa
j 6= X ′aj .

• Sender’s Inputs: For j ∈ βbi , Pb sends (open, (sid, xb-input, b, j, t, (xb ⊕ Mcbj)[t]))∀t to Fcom. Pa
receives the labels Xb

j . Pa returns abort if x̃b ⊕Mδbj 6= (xb ⊕Mcbj).

• Evaluate: For j ∈ βbi , let Yj := Êv(F bj , (X
b
j , X

r
j , X

a
j)) with semantic value yj .

• PSI Commit: For ∀j, t, if (H(Yj,t) 6= H(Obi,t,yj [t])), then Yj,t ← {0, 1}kc . Let I := {
⊕

t Yj,t ⊕
T bj,t,yj [t] ⊕ O

a
i,t,yj [t]

}j∈βb
i
. Pa pads I to size B with random values and sends (input, (sid, psi, i), I) to

Fpsi and receives (input, Pb).

• Output Decommit: For j ∈ βbi , Pb sends (open, (sid,output, b, j)) to Fcom and Pa receives d′j .

If there exists j, j′ s.t. d′j,t,h ⊕ T bj,t,h 6= d′j′,t,h ⊕ T bj′,t,h, Pa returns abort.

• PSI Decommit: Pb sends (open, (sid, psi, i)) to Fpsi and Pa receives the intersection R. If |R| 6= 1, Pa
returns cheating!, else PA returns yj s.t. Ij ∈ R.

Figure 11: Malicious secure online/o�ine dual-execution 2PC protocol Πmulti-sfe.

κb is chosen so that the protocol will leak a bit to the adversary with probability at most 2−κb . �is

parameter controls the number of garbled circuits used per execution.

κs is the statistical security parameter, used to determine the length of the reconciliation strings used

as PSI input (the PSI protocol scales with the length of the PSI input values). �e adversary can guess

an unknown reconciliation value with probability at most 2−κs .

κc is the computational security parameter, that controls the key sizes for OTs, commitments and gar-

bled circuits.

In our evaluations we consider κc = 128, κs ∈ {40, 80} and κb ∈ {20, 40, 80}. We now prove the security

of our protocol:

�eorem 5. Our protocol (Figure 11) securely realizes the Fmulti-sfe functionality, in the presence of malicious
adversaries.

Proof. We will show a series of hybrids resulting in a simulator which only depends on the output f(x, y)
of each execution and possibly a single bit of leakage. Due to the protocol being symmetric, we will focus

on a malicious adversary A.

Hybrid 0 (Real interaction) �e simulator runs the protocol of Figure 11 and plays the role of the ideal

functionalities. A�er A sends their circuits, the simulator extracts the commitments made to the in-

put/output labels and the function computed by each garbled circuit. �is combined with the simulator

extracting the Frot choice bits fully determines which circuits were maliciously generated and where A
provided inconsistent OT aggregation strings and output translation values.

In particular, let a good bundle be de�ned as a garbled circuit and its associated input, output commit-

ments such that if opened in the Cut-and-Choose step the honest party does not abort. �at is, there

20

exists a set of random coins and decoding information dj such that (F aj , ej) ← Ĝb(f, dj) and F aj is the

provided garbled circuit. �e input commitments are to the corresponding encoding labels ej where the

Garbler’s input commitments are permuted by their OT choice bits. �e output commitments are to the

decoding information dj . Furthermore, let a bad bundle be de�ned to be any garbled circuit and associated

input, output commitments which is not a good bundle.

Hybrid 1 (Rig the cut-and-choose challenge) Let t ≤ N̂ denote the number of bad bundles and L be the

distribution over {0, 1}N ∪{⊥} de�ned as follows: Choose a random cut-and-choose challenge over the

adversary’s bundles (according to the parameters in the protocol) and random assignment of evaluation

bundles into buckets. If any bad bundle is chosen as a checked bundle/circuit, then the outcome of L is

⊥. Otherwise the outcome is a string L where Li = 1 i� the ith bucket contains all bad bundles.

By Lemma 1, this distribution indeed satis�es PrL←L[Li = 1] ≤ ε for appropriately chosen parameters.

As such the simulator sends (cheat,L) to the ideal functionality and receive (cheatresult, χ). Here

χ are the coins used to sample from L, hence χ is exactly the choice of cut-and-choose challenge and

assignment into buckets. �e simulator therefore uses χ as the honest party’s cut-and-choose challenge

and assignment into buckets.

�e description of the distribution L exactly matches the distribution of the real interaction. �e only

change is that the ideal functionality itself chooses the cut-and-choose challenge, rather than the honest

party. �is hybrid is therefore identically distributed.

Hybrid 2 (Delay/equivocate commitments) �e simulator provides empty commitments to the garbled

circuits’ output labels in the Output Commit step. When speci�ed to open the commitments during

the Output Decommit step, the simulator equivocates the commitments to the correct values. Note that

this is identical to the previous hybrid except that these values are never used in the simulator until they

are opened.

Hybrid 3 (Simulate garbled circuits) A�er the Cut-and-Choose Commit step,A has commi�ed to the ran-

dom coins which determine their cut-and-choose sets. Extract these coins and determine the set of circuits

evaluated in the online phase. For all such evaluation circuits, generate simulated garbled circuits and

make the corresponding input label commitments be to empty values.

In the online phase, extract A’s e�ective OT input bits y. If A lies about the OT aggregation strings,

take y to be any input which is consistent between all OT inputs, e.g. the �rst set of derandomized OT

choice bits. Send (input, y) to the ideal functionality and receive (output, ctr, z) in response. Use the

output z to generate simulated input labels where A provided honest OT aggregation values, i.e. do not

sample input labels where A provided inconsistent OT aggregation bits. Equivocate the corresponding

input label commitments made in the Input Commit phase and send the input labels toA using the aggre-

gated Frot functionality. For all input wires where the simulator did not sample a label, send uniformly

random values. �is change is indistinguishable due to A not having at least one of the corresponding

OT messages used to mask the output.

Note that the order in which A’s input is extracted and garbled circuit material is generated matches

the garbling scheme security of De�nition 6. Furthermore, all output labels which encode output values

other than z have not yet been sampled. �e simulator will therefore delay the sampling of these output

wire labels until they are used in the PSI Commit step and at which point the corresponding commitments

will be equivocated. By the security of the garbling scheme, this change is indistinguishable.

Hybrid 4 (Weak PSI Malicious Security) It is now the case that the simulator knows the ideal output value

z but still must use the honest parties input x to evaluate the malicious circuits to compute the PSI

reconciliation set I . Let us de�ne the distribution D and value a∗ by the following process of cases.

• Good bucket - there exist at least one good bundle: Set a∗ to be the reconciliation value encoding

z. Sampling D is then de�ned as, evaluate the malicious circuits using the honest parties input.

21

For each set of output labels, translate them to the PSI reconciliation values as speci�ed in the PSI

Commit step. De�ne A to be this set of reconciliation values which do not equal a∗. Pad A with

uniform values to size B− 1. Note that since Hybrid 3, the simulator delays the sampling of output

wire labels encoding outputs other than z until the PSI Commit step. �erefore each element of A
is either uniform or the sum of a uniform output label which is independent of A’s view.

• Bad bucket - there are all bad bundles: �e simulator asks the ideal functionality for a single bit of

leakage by sending (leak,∃j : D̃e(Ev(Fj , En(ej , x))) = z) to the Fmulti-sfe functionality where the

Fj are the garbled circuit of this bucket and ej are the corresponding input labels extracted from

Frot. In response the simulator receives the leakage (cheatresult, p). If p = 1 the simulator sets

a∗, D to be as above. Otherwise, the simulator arti�cially sets a∗ to be the PSI reconciliation value

of the �rst circuit in the bucket and de�nes D to be as above. Note that when p = 0, a∗ is the sum

of at least one output label which is uniform and independent of A’s view.

By the process above, it is indeed the case that “A← D; output a uniformly chosen element of A” yields

a uniformly distributed element over {0, 1}`. In particular, each such element of A is either uniform or

the sum of bucket wide output labels for which at least one term is independent of A’s view. Moreover,

a∗ is the only “predictable” value and only when it is the reconciliation value encoding z.

�e Simulator will then use I = A ∪ {a∗} as input to the PSI subprotocols. Furthermore, this process

of determining A, a∗ matches the security requirements of a weakly malicious-secure PSI speci�ed in

De�nition 3. We can therefore substitute the PSI subprotocol with the ideal two-phase PSI functionality

FB,`psi de�ned in Figure 5.

Hybrid 5 (Removing PSI Inputs) Observe that the ideal PSI outputs either the singleton set containing the

reconciliation value encoding z or the empty set. Moreover, the outcome of this is determined by the

existence of a circuit which evaluates to z. �e simulator therefore need not evaluate the circuits sent

by A using the honest party’s input. Instead the simulator will perform the following, if the current

bucket has at least a single honest circuit, the simulator will input the reconciliation value encoding z
and uniformly random values everywhere else. Otherwise the simulator will ask the ideal functionality

for the single bit of leakage as in Hybrid 4. If leaked bit is p = 1, the simulator will provide PSI input as

above. Otherwise the simulator provides PSI inputs which are uniformly random. By the security of the

ideal PSI functionality and the intersection being identical to before, this change is indistinguishable.

Hybrid 6 (Uniform Inputs) �e simulator is no longer evaluating any circuits and therefore can request

uniformly distributed inputs to evaluate A’s circuits on. Recall that the simulator’s o�ine input Mcj is

uniformly distributed in A’s view by the security of the k-probe resistant matrix. Requesting uniformly

random inputs in the online phase is therefore indistinguishable.

Hybrid 7 (Inconsistent translation values) Consider the case where A provides malicious output label

translation values T during the Bucket Labels phase. �ese values allow the evaluator to translate circuit

output labels to common bucket labels in the PSI Commit Step. Since these values are provided a�er

the cut and choose, A need not provide honest values. However, the simulator will always abort in the

Output Decommit step of the online phase in this event. �erefore, the simulator need not send A’s

extracted input to the ideal functionality for any buckets with malicious translation values. Instead, the

simulator can use the zero string for z. Due to the simulator aborting before the PSI Decommit phase,

this simulator is indistinguishable from the previous.

Hybrid 8 (Ideal Simulation) Now observe that the simulation of the ith execution only depends on whether

the simulated party’s ith bucket holds a garbled circuit which if evaluated would result in a PSI input

encoding with semantic value f(x, y). It follows that the simulator knows this information: if Li = 1
(bad bucket) then the ideal functionality informs the simulator if such a circuit exists. Otherwise, Li = 0
and there does exist at least one good circuit in this bucket.

22

In summary, the simulator implicit in �nal hybrid only uses the output of the ideal functionality. In partic-

ular, A evaluates simulated garbled circuits with �xed output f(x, y) and the simulator does not use the

honest parties input. If A successfully cheats by generating a bad bucket, then only a single additional bit

of information is leaked about the honest parties input x. �erefore the protocol leak no more information

than the ideal functionality in Figure 2.

8.1 Implementation & Architecture

In the o�ine phase, the work is divided between p parallel sets of 4 threads. Within each set, two threads

generate OTs and two threads garble and receive circuits and related commitments. Parallelizing OT gen-

eration and circuit generation is key to our o�ine performance; we �nd that these two activities take

roughly the same time.

We generate OTs using an optimized implementation of the Keller et al. [KOS15] protocol for OT

extension. Starting from 128 base OTs (computed using the protocol of [PVW08]), we �rst run an OT

extension to obtain 128 · p OT instances. We then distribute these instances to the p di�erent thread-sets,

and each thread-set uses its 128 OT instances as base OTs to perform its own independent OT extension.

We further modi�ed the OT extension protocol to process and �nalize OT instances in blocks of 128

instances. �is has two advantages: First, OT messages can be used by other threads in the o�ine phase as

they are generated. Second, OT extension involves CPU-bound matrix transposition computations along

with I/O-bound communication, and this approach interlaces these operations.

�e o�ine phase concludes by checking the circuits in the cut-and-choose, bucketing the circuits, and

exchanging garbled inputs for the random k-probe-encoded inputs.

�e online phase similarly uses threading to exploit the inherently parallel nature of the protocol. Upon

receiving input, a primary thread sends the other party their input correction value as the �rst protocol

message. �is value is in turn given to B sub-threads (where B is the bucket size) that transmit the

appropriate wire labels. Upon receiving the labels, the B threads (in parallel) each evaluate a circuit.Each

of the B threads then executes (in parallel) one of the set-membership PSI sub-protocols. A�er the other

party has commi�ed to their PSI inputs, the translation tables of each circuit is opened and checked in

parallel. �e threads then obtain the intersection and the corresponding output value.

8.2 Low-level Optimizations

We instantiate the garbled circuits using the state-of-the-art half-gates construction of [ZRE15]. �e imple-

mentation utilizes the hardware accelerated AES-ni instruction set and uses �xed-key AES as the gate-level

cipher, as suggested by [BHKR13]. Since circuit garbling and evaluation is the major computation bo�le-

neck, we have taken great care to streamline and optimize the execution pipeline.

�e protocol requires the bucket’s common output labels to be random. Instead, we can optimize the

online phase choose these labels as the output of a hash at a random seed value. �e seed can then be sent

instead of sending all of the common output labels. From the seed the other party regenerates the output

labels and proceed to validate the output commitments.

9 Performance Evaluation

We evaluated the prototype on Amazon AWS instances c4.8xlarge (64GB RAM and 36 virtual 2.9

GHz CPUs). We executed our prototype in two network se�ings: a LAN con�guration with both parties

in the same AWS geographic region and 0.2 ms round-trip latency; and a WAN con�guration with parties

in di�erent regions and 75 ms round-trip latency.

We demonstrate the scalability of our implementation by evaluating a range of circuits:

23

PSI Async Sync

κs B Time Size Time Size

40

2 0.31 2,580 0.35 138

3 0.34 5,790 0.39 303

4 0.42 10,280 0.46 532

6 0.65 32,100 0.55 1,182

80

5 0.55 23,100 0.51 850

7 0.83 62,860 0.66 1,638

9 1.39 103,860 0.83 2,682

Figure 12: �e running time (ms) and online communication size (bytes) of the two PSI protocols when

executed with κs-bit strings and input sets of size B.

• �e AES circuit takes a 128-bit key from one party and a 128-bit block from another party and outputs

a 128-bit block to both. �e circuit consists of 6800 and gates and 26,816 xor gates.

• �e SHA256 circuit takes 512 bits from both parties, xors them together and returns the 256-bit hash

digest of the xor’ed inputs. �e circuit consists of 90,825 and gates and 145,287 xor gates.

• �e AES-CBC-MAC circuit takes a 16-block (2048-bit) input from one party and a 128-bit key from

the other party and returns the 128-bit result of 16-round AES-CBC-MAC. �e circuit consists of

156,800 and gates and 430,976 xor gates.
7

In all of our tests, we use system parameters speci�ed in Figure 17. N denotes the number of executions,

and B denotes the bucket size (number of garbled circuits per execution) and we use ∼ B online threads.

9.1 PSI protocol comparison

In Section 7 we describe two PSI protocols that can be used in our 2PC protocol — a synchronous protocol

that uses 3 rounds total, and an asynchronous protocol that uses 2 rounds total (at higher communication

cost). We now discuss the tradeo�s between these two PSI protocols. A summary is given in Figure 12.

For small parameters in the LAN se�ing, the 2-round asynchronous protocol is faster overall, but for

larger parameters the 3-round synchronous protocol is faster. �is is due to the extra data sent by the

2-round protocol. Speci�cally, the asynchronous protocol sends O(B2κsκc) bytes while the synchronous

one sends O(Bκs + B2κc). In the remaining comparisons, we always use the PSI protocol with lowest

latency, according to Figure 12.

9.2 Comparison to the LR protocol

We compare our prototype to that of [LR15] with 40-bit security. �at is, we use κb = κs = 40; both

protocols have identical security and use the same bucket size. We use identical AWS instances and a

similar number of threads to those reported in [LR15].

Figure 13 shows the results of the comparison in the LAN se�ing. It can be seen that our online times

are 5 to 7 times faster and our o�ine times are 4 to 15 times faster. Indeed, for N = 1024 our total (online

plus o�ine) time is less than the online time of [LR15].

In the WAN se�ing with small circuits such as AES where the input size is minimal we see [LR15]

achieve faster online times. �eir protocol has one fewer round than ours protocol, which contributes 38ms

to the di�erence in performance. However, for the larger SHA256 circuit our implementation outperforms

7

�e circuit is not optimized; each call to AES recomputes the entire key schedule.

24

κs = κb = 40 [LR15] �is

Circuit N O�ine Online O�ine Online

LAN

AES

32 197 12 45 1.7

128 114 10 16 1.5

1024 74 7 5.1 1.3

SHA256

32 459 50 136 10.0

128 275 40 78 8.8

1024 206 33 48 8.4

WAN

AES

32 1,126 163 282 190

128 919 164 71 191

1,024 760 160 34 189

SHA256

32 3,638 290 777 194

128 3,426 256 399 192

1,024 2,992 207 443 191

Figure 13: Amortized running times per execution (reported in ms) for [LR15] and our prototype. We used

bucket size B = 6, 5, 4 for N = 32, 128, 1024.

κb = κs = 80 κb = κs = 40 κb = 20; κs = 40
Circuit N Storage O�ine Online Storage O�ine Online Storage O�ine Online

AES

32 0.21 69 2.3 0.12 45 1.7 0.06 40 1.1

128 0.88 25 2.1 0.32 16 1.4 0.38 16 1.1

1,024 6.8 16 1.8 1.6 5.1 1.3 0.76 2.4 1.0

SHA-256

32 6.8 234 15.7 1.3 136 10.0 0.68 65 7.6

128 8.7 190 12.3 3.5 78 8.8 4.4 95 6.4

1,024 62.1 131 11.4 15.6 48 8.4 8.8 24 6.3

2048

CBC-

MAC

32 3.8 621 22.7 2.4 655 14.9 1.2 247 11.1

128 15.4 450 18.1 6.2 191 13.4 7.9 246 10.6

1,024 109.5 378 15.8 31.0 95 12.3 15.6 71 10.6

Figure 14: Amortized running times per execution (reported in ms) and total o�ine storage (reported in

GB) for our prototype in the LAN con�guration. �e peak o�ine storage occurs before the cut and choose,

consisting of the circuits, commitments, and OT messages. For κb = 80 we use parameters (N,B) ∈
{(32, 12), (128, 9), (1024, 7)}. For κb = 40 we use parameters (N,B) ∈ {(32, 6), (128, 5), (1024, 5)}. For

κb = 20 we use parameters (N,B) ∈ {(32, 3), (128, 2), (1024, 2)}.

that of [LR15] by 16 to 100ms per execution and we achieve a much more e�cient o�ine phase ranging

from 4 to 22 times faster for both circuits.

As discussed in Section 2.3, our protocol has asymptotically lower online communication cost, es-

pecially for computations with larger inputs. Since both protocols are more-or-less I/O bound in these

experiments, the di�erence in communication cost is signi�cant. Concretely, when evaluating AES with

N = 1024 andB = 4 our protocol sends 16, 384 bytes of wire labels and just 564 bytes of PSI data. �e on-

line phase of [LR15] reports to use 170, 000 bytes with the same parameters. Even using our asynchronous

PSI sub-protocol, the total PSI cost is only 10,280 bytes.

9.3 E�ect of security parameters

We show in Figure 14 how our prototype scales for di�erent se�ings of security parameters in the LAN

se�ing. In particular, the security properties of our protocol allow us to consider smaller se�ings of pa-

rameters than are advised with traditional cut-and-choose protocols such as [LR15]. As a representative

example, we consider κb = 20 and κs = 40 which means that our protocol will leak a single bit only with

25

LAN WAN

κs B Time Bandwidth Time Bandwidth

40

2 0.26 327 0.63 144

3 0.41 353 0.72 206

4 0.56 381 1.01 213

6 0.82 465 1.32 293

80

5 0.75 568 1.39 300

7 1.01 725 2.02 366

9 2.42 465 3.41 331

Figure 15: Maximum amortized throughput (ms/execution) and resulting bandwidth (Kbps) when perform-

ing many parallel evaluations of AES with the given bucket size B and statistical security κs.

probability 1/220 but guarantee all other security properties with probability 1− 1/240.

Our protocol scales very well both in terms of security parameter and circuit size. Each doubling of κs
only incurs an approximate 25% to 50% increase in running time. �is is contrasted by [LR15] reporting

a 200% to 300% increase in running time for larger security parameters. Our improvement is largely due

to reducing the number of cryptographic steps and no cheat-recovery circuit which consume signi�cant

online bandwidth.

We see a more signi�cant trend in the total storage requirement of the o�ine phase. For example, when

performing N = 1024 AES evaluations for security parameter κb = 20 the protocol utilizes a maximum

of 0.76 GB of storage while κb = 40 requires 1.6 GB of storage. �is further validates κb = 20 as a storage

and bandwidth saving mechanism. [LR15] reports that 3.8 GB of o�ine communication forN = 1024 and

40-bit security.

9.4 �roughput & Bandwidth

In addition to considering the se�ing when executions are performed sequentially, we tested our prototype

when performing many executions in parallel to maximize throughput. Figure 15 shows the maximum

average throughput for AES evaluations that we were able to achieve, under di�erent security parameters

and bucket sizes. �e time reported is the average number of milliseconds per evaluation.

In the LAN se�ing, 8 evaluations were performed in parallel and achieved an amortized time of 0.26ms

per evaluation for bucket size B = 2. A bucket size of 2 can be obtained by performing a modest number

(sayN = 256) of executions with κb = 20, or a very large number of executions with κb = 40. We further

tested our prototype in the WAN se�ing where we obtain a slightly decreased throughput of 0.72ms per

AES evaluation with 40-bit security.

References

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure com-

putation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 387–404. Springer, Heidelberg, May 2014.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, CRYPTO’95,

volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. E�cient garbling

from a �xed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478–492.

IEEE Computer Society Press, May 2013.

26

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-

tions to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors,

ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting

Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press,

October 2012.

[Can01] Ran Cane�i. Universally composable security: A new paradigm for cryptographic protocols.

In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CG13] Ran Cane�i and Juan A. Garay, editors. CRYPTO 2013, Part II, volume 8043 of LNCS. Springer,

Heidelberg, August 2013.

[CO15] Tung Chou and Claudio Orlandi. �e simplest protocol for oblivious transfer. In Kristin E.

Lauter and Francisco Rodrı́guez-Henrı́quez, editors, Progress in Cryptology - LATINCRYPT 2015,

volume 9230 of Lecture Notes in Computer Science, pages 40–58. Springer, 2015.

[DLT14] Ivan Damgaard, Rasmus Lauritsen, and Tomas To�. An empirical study and some improve-

ments of the MiniMac protocol for secure computation. Cryptology ePrint Archive, Report

2014/289, 2014. http://eprint.iacr.org/2014/289.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation

from somewhat homomorphic encryption. In Safavi-Naini and Cane�i [SNC12], pages 643–

662.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean circuits

using preprocessing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 621–641.

Springer, Heidelberg, March 2013.

[DZ15] Ivan Damgård and Rasmus Winther Zakarias. Fast oblivious AES: a dedicated application of

the MiniMac protocol. Cryptology ePrint Archive, Report 2015/989, 2015. ia.cr/2015/989.

[FJN14] Tore Kasper Frederiksen, �omas P. Jakobsen, and Jesper Buus Nielsen. Faster maliciously se-

cure two-party computation using the GPU. In Michel Abdalla and Roberto De Prisco, editors,

SCN 14, volume 8642 of LNCS, pages 358–379. Springer, Heidelberg, September 2014.

[GG14] Juan A. Garay and Rosario Gennaro, editors. CRYPTO 2014, Part II, volume 8617 of LNCS.

Springer, Heidelberg, August 2014.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. E�cient secure two-party computation using

symmetric cut-and-choose. In Cane�i and Garay [CG13], pages 18–35.

[HKK
+

14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Malozemo�.

Amortizing garbled circuits. In Garay and Gennaro [GG14], pages 458–475.

[KMRR15] Vladimir Kolesnikov, Payman Mohassel, Ben Riva, and Mike Rosulek. Richer e�-

ciency/security trade-o�s in 2PC. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,

TCC 2015, Part I, volume 9014 of LNCS, pages 229–259. Springer, Heidelberg, March 2015.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal

overhead. In Rosario Gennaro and Ma�hew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume

9215 of LNCS, pages 724–741. Springer, Heidelberg, August 2015.

27

http://eprint.iacr.org/2014/289
http://ia.cr/2015/989

[KS08] Vladimir Kolesnikov and �omas Schneider. Improved garbled circuit: Free XOR gates and

applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,

Anna Ingólfsdó�ir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS,

pages 486–498. Springer, Heidelberg, July 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with

malicious adversaries. In Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Security
Symposium, pages 285–300. USENIX Association, 2012.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In

Cane�i and Garay [CG13], pages 1–17.

[LP07] Yehuda Lindell and Benny Pinkas. An e�cient protocol for secure two-party computation in

the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of

LNCS, pages 52–78. Springer, Heidelberg, May 2007.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious

transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329–346. Springer,

Heidelberg, March 2011.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the on-

line/o�ine and batch se�ings. In Garay and Gennaro [GG14], pages 476–494.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the o�ine/online se�ing with security for

malicious adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages

579–590. ACM, 2015.

[MF06] Payman Mohassel and Ma�hew Franklin. E�ciency tradeo�s for malicious two-party com-

putation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,

volume 3958 of LNCS, pages 458–473. Springer, Heidelberg, April 2006.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party com-

putation system. In Ma� Blaze, editor, Proceedings of the 13th USENIX Security Symposium,

pages 287–302. USENIX, 2004.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More e�cient and

secure two-party computation. In Cane�i and Garay [CG13], pages 36–53.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A

new approach to practical active-secure two-party computation. In Safavi-Naini and Cane�i

[SNC12], pages 681–700.

[PSSW09] Benny Pinkas, �omas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party

computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,

pages 250–267. Springer, Heidelberg, December 2009.

[PSZ14] Benny Pinkas, �omas Schneider, and Michael Zohner. Faster private set intersection based on

OT extension. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 23rd USENIX Security
Symposium, pages 797–812. USENIX Association, 2014.

28

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for e�cient and com-

posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages

554–571. Springer, Heidelberg, August 2008.

[Sma15] Nigel Smart. Personal communication, November 2015.

[SNC12] Reihaneh Safavi-Naini and Ran Cane�i, editors. CRYPTO 2012, volume 7417 of LNCS. Springer,

Heidelberg, August 2012.

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries. In

Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 386–405. Springer,

Heidelberg, May 2011.

[sS13] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assumptions.

In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 523–534.

ACM Press, November 2013.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,

pages 160–164. IEEE Computer Society Press, November 1982.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data

transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,

EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, Heidelberg, April

2015.

A Adaptively Secure Garbling Schemes

A garbling scheme is a tuple of algorithms (Gb, En, Ev,De) with the following syntax and semantics. All

algorithms accept a security parameter as explicit input, which we leave implicit.

• Gb(f, d) → (F, e); Here f is a boolean circuit with m inputs and n outputs; d is an n × 2 array of

(output) wire labels; F is a garbled circuit; and e is an m× 2 array of input wire labels.

By wire labels, we simply mean strings (i.e., elements of {0, 1}κc). We deviate from [BHR12b] in

requiring the output wire labels d to be chosen by the caller of Gb, rather than chosen by Gb itself.

In the notation of [BHR12b], we assume that the scheme is projective in both its input and output

encodings, meaning that e and d consist of two possible wire labels for each wire.

• En(e, x)→ X takes an m× 2 array of wire labels e and a plaintext input x ∈ {0, 1}m and outputs

a garbled encoding X of x. By assuming that the scheme is projective, we assume that X =
(X1, . . . , Xm) where Xi = e[i, xi].

• Ev(F,X)→ Y ; takes a garbled circuit F and garbled encodingX of an input, and returns a garbled

encoding of the output Y .

• D̃e(Y)→ y. We assume a way to decode a garbled output to a plaintext value. It is a deviation from

[BHR12b] to allow this to be done without the decoding information d. Rather, we may assume that

the garbled outputs contain the plaintext value, say, as the last bit of each wire label.

Our correctness condition is that for the variables de�ned above, we have Ev(F, En(e, x)) = En(d, f(x))
and D̃e(Ev(F, En(e, x))) = f(x) for all inputs x to the circuit f . In other words, evaluating the garbled

circuit should result in the garbled output that encodes f(x) under the encoding d.

29

In our construction, an adversary sees the garbled circuit F �rst, then it receives some of the garbled

inputs (corresponding to the k-probe matrix encoded inputs). Finally in the online phase it is allowed to

choose the rest of its input to the ciruict and receive the rest of the garbled inputs. Hence, our security

game considers an adversary that can obtain the information in this order.

We overload the syntax of the encoding algorithm En. Since En is projective, we write En(e, i, b) to

denote the component ei,b — that is, the garbled input for the ith wire corresponding to truth value b. Recall

that we also garble a circuit with output wire labels d speci�ed (rather than chosen by the Gb algorithm).

Our security de�nition lets the adversary choose d.

De�nition 6. For a garbling scheme (Gb, En, Ev,De), an interactive oracle program Adv, and algorithms
S = (S0, S1, S2), we de�ne the following two games/interactions:

GAdv

real :

get f, d from Adv
H

(F, e)← Gb(f, d)
give F to Adv

H

for i = 1 to m:

get xi from Adv
H

Xi ← En(e, i, xi)
give Xi to Adv

H

Adv
H

outputs a bit

GAdv,S
ideal :

get f, d from Adv
S0

F ← S1(f)
give F to Adv

S0

for i = 1 to m− 1:

get xi from Adv
S0

Xi ← S2(i)
give Xi to Adv

S0

get xm from Adv
S0

y = f(x1 · · ·xm)
Y ← En(d, y)
Xm ← S2(m, y, Y)
give Xm to Adv

S0

Adv
S0

outputs a bit

In Gideal,H is a random oracle. In Gideal, the tuple S = (S0, S1, S2) all share state. All algorithms receive the
security parameter as implicit input.

�en the garbling scheme is adaptively secure if there exists a simulator S such that for all polynomial-
time adversaries Adv, we have that∣∣Pr[GAdvreal outputs 1]− Pr[GAdv,Sideal outputs 1]

∣∣
is negligible in the security parameter.

Note that in the Gideal game, the simulator receives no information about the input x as it produces the

garbled circuit F and all but one of the garbled input components. Finally when producing the last garbled

input component, the simulator learns f(x) and its garbled output encoding En(d, f(x)). In particular, the

simulator receives no information about x, so its outputs carry no information about x beyond f(x). �e

game also implies an authenticity property for garbled outputs of values other than f(x) — the simulator’s

total output contains no information about the rest of the garbled outputs d.

In Figure 16 we describe a generic, random-oracle transformation from a standard (static-secure) gar-

bling scheme to one with this �avor of adaptive security. �e construction is quite similar to the transfor-

mations in [BHR12a], with some small changes. First, since we know in advance which order the adversary

will request its garbled inputs, we include the random oracle nonceR in the last garbled input value (rather

than secret-sharing across all garbled inputs). Second, since we garble a circuit with particular garbled out-

put values in mind, we provide “translation values” that will map the garbled outputs of the static scheme

to the desired ones. �ese translation values also involve the random oracle, so they can be equivocated

by the simulator.

30

Ĝb(f, d̂):

(F, e, d)← Gb(f)
R← {0, 1}κ
for each output wire i:

δbi ← H(R‖out‖i‖b‖dbi)⊕ d̂bi
F̂ ← (F ⊕H(R‖gc), {δbi })
ê← (e01, e

1
1, e

0
2, e

1
2, . . . , e

0
m‖R, e1m‖R)

return (F̂ , ê)

Êv(F̂ , X̂):

parse X̂m as Xm‖R and F̂ as (F ′, δ)

X ← (X̂1, X̂2, . . . , Xm)
Y ← Ev(F ′ ⊕H(R‖gc), X)

y ← D̃e(Y)
for each output wire i:

Ŷi = δyii ⊕H(R‖out‖i‖yi‖Yi)
return Ŷ

Figure 16: Transformation from a static-secure doubly-projective garbling scheme (Gb, En, Ev,De, D̃e) to

one satisfying De�nition 6.

�eorem 7. If (Gb, En, Ev,De, D̃e) is a doubly-projective garbling scheme satisfying the (static) prv and aut
properties of [BHR12b] then the scheme in Figure 16 satis�es adaptive security notion of De�nition 6 in the
random oracle model.

�e proof is very similar to analogous proofs in [BHR12a]. �e main idea is that the simulator can

choose the “masked” F̂ and δ translation values upfront. �en it is only with negligible probability that an

adversary will call the random oracle on the secret nonceR, so the relevant parts of the oracle are still free

to be programmed by the simulator. When the adversary provides the �nal bit of input, the simulator gets

f(x) and can obtain a simulated garbled circuit F and garbled outputs d from the static-secure scheme.

�en it can program the random oracle to return the appropriate masks.
8

8

Technically, the proof assumes that the simulator for the static-secure scheme can set the (simulated) garbled input encoding

arbitrarily. �is is true for common existing schemes; e.g., [ZRE15].

31

κb = 40 B = 3 4 5 6 7 8 9 10 11

N = 8 – – –

307 203 161 143 136 135

(38.38) (25.38) (20.12) (17.88) (17.00) (16.88)

16 – – –

344 253 222 214

(21.50) (15.81) (13.88) (13.38)

32 – –

708 430 361 349

(22.12) (13.44) (11.28) (10.91)

64 –

2268 836 615 583

(35.44) (13.06) (9.61) (9.11)

128 –

2321 1137 995

(18.13) (8.88) (7.77)

256 –

2730 1764 1760

(10.66) (6.89) (6.88)

1024

18756 5664 5593

(18.32) (5.53) (5.46)

2048

20066 9730

(9.80) (4.75)

4096

25099 17906

(6.13) (4.37)

8192

36743 34282

(4.49) (4.18)

16384

60961

(3.72)

32768

109908

(3.35)

κb = 20 B = 2 3 4 5 6

N = 8 – –

84 70 69

(10.50) (8.75) (8.62)

16 –

186 113 109

(11.62) (7.06) (6.81)

32 –

224 176

(7.00) (5.50)

64 –

313 303

(4.89) (4.73)

128

1449 500

(11.32) (3.91)

256

1476 882

(5.77) (3.45)

1024

2865

(2.80)

2048

4883

(2.38)

4096

8962

(2.19)

8192

17146

(2.09)

16384

33525

(2.05)

32768

66291

(2.02)

Figure 17: For each N,B, κb, the table shows the minimum number N̂ of circuits that must be generated

in the o�ine phase to ensure that the probability of a particular execution leaking a bit is at most 2−κb .

�e number in parentheses is the ratio N̂/N , i.e., the amortized number of total (o�ine+online) circuits

needed per execution. An empty entry o�ers no bene�t over the con�gurations to the le� (both N and B
are higher than another con�guration). An “–” entry means that the ratio N̂/N > κb, so that batching N
executions is no be�er (in terms of total o�ine+online cost) than doing N executions in isolation. (Figure

continues on next page.)

32

κ
b

=
8
0

B
=

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

N
=

8
–

–
–

–
–

–
–

–

5
7
5

4
6
0

3
9
0

3
4
5

3
1
5

2
9
6

2
8
3

2
7
5

2
7
0

2
6
8

(
7
1
.8

8
)

(
5
7
.5

0
)

(
4
8
.7

5
)

(
4
3
.1

2
)

(
3
9
.3

8
)

(
3
7
.0

0
)

(
3
5
.3

8
)

(
3
4
.3

8
)

(
3
3
.7

5
)

(
3
3
.5

0
)

1
6

–
–

–
–

–
–

1
2
0
3

8
4
5

6
6
0

5
5
6

4
9
6

4
6
1

4
4
1

4
3
0

4
2
6

(
7
5
.1

9
)

(
5
2
.8

1
)

(
4
1
.2

5
)

(
3
4
.7

5
)

(
3
1
.0

0
)

(
2
8
.8

1
)

(
2
7
.5

6
)

(
2
6
.8

8
)

(
2
6
.6

2
)

3
2

–
–

–
–

–

2
0
4
1

1
3
2
7

1
0
0
4

8
4
3

7
5
9

7
1
7

6
9
9

6
9
5

(
6
3
.7

8
)

(
4
1
.4

7
)

(
3
1
.3

8
)

(
2
6
.3

4
)

(
2
3
.7

2
)

(
2
2
.4

1
)

(
2
1
.8

4
)

(
2
1
.7

2
)

6
4

–
–

–
–

3
9
3
0

2
2
6
3

1
6
2
3

1
3
4
4

1
2
2
0

1
1
7
1

1
1
6
3

(
6
1
.4

1
)

(
3
5
.3

6
)

(
2
5
.3

6
)

(
2
1
.0

0
)

(
1
9
.0

6
)

(
1
8
.3

0
)

(
1
8
.1

7
)

1
2
8

–
–

–

9
3
2
0

4
3
2
5

2
7
9
8

2
2
4
4

2
0
4
0

1
9
8
4

(
7
2
.8

1
)

(
3
3
.7

9
)

(
2
1
.8

6
)

(
1
7
.5

3
)

(
1
5
.9

4
)

(
1
5
.5

0
)

2
5
6

–
–

–

9
8
3
2

5
2
3
9

3
9
1
7

3
5
1
3

3
4
4
3

(
3
8
.4

1
)

(
2
0
.4

6
)

(
1
5
.3

0
)

(
1
3
.7

2
)

(
1
3
.4

5
)

1
0
2
4

–
–

3
2
3
9
3

1
4
6
3
7

1
1
2
6
3

1
0
7
9
5

(
3
1
.6

3
)

(
1
4
.2

9
)

(
1
1
.0

0
)

(
1
0
.5

4
)

2
0
4
8

–
–

3
7
2
1
5

2
1
6
4
4

1
9
4
2
6

(
1
8
.1

7
)

(
1
0
.5

7
)

(
9
.4

9
)

4
0
9
6

–

1
7
0
7
3
5

4
8
6
8
0

3
5
8
8
2

3
5
7
9
5

(
4
1
.6

8
)

(
1
1
.8

8
)

(
8
.7

6
)

(
8
.7

4
)

8
1
9
2

–

1
8
1
4
1
8

7
2
6
9
1

6
4
4
9
9

(
2
2
.1

5
)

(
8
.8

7
)

(
7
.8

7
)

1
6
3
8
4

–

2
1
4
4
0
7

1
2
1
4
9
0

(
1
3
.0

9
)

(
7
.4

2
)

3
2
7
6
8

2
3
2
0
8
8
2

2
9
1
6
0
3

2
1
9
5
9
9

(
7
0
.8

3
)

(
8
.9

0
)

(
6
.7

0
)

(Figure 17 continued)

33

	Introduction
	Cut & Choose, Online/Offline Setting
	Dual-execution Paradigm
	Reducing Leakage in Dual-execution

	Overview of Our Results
	Technical Contributions
	Implementation, Performance
	Comparison to GC-based Protocols
	Comparison to Non-GC Protocols

	Preliminaries
	The Dual Execution Paradigm
	Security Analysis and Other Details
	Outline for Online/Offline Dual-Execution
	Technicalities

	Input Consistency
	Consistency Between Alice's & Bob's Circuits
	Aggregating Several OTs
	Combining Everything with Cut-and-Choose

	Selective Failure Attacks
	Offlining the k-probe computations

	Optimizing PSI Reconciliation
	Weaker security.
	PSZ protocol paradigm.
	Achieving weakly-malicious security and double-sided output.
	Trading computation for lower round complexity.
	Final Protocols

	Protocol Details & Implementation
	Implementation & Architecture
	Low-level Optimizations

	Performance Evaluation
	PSI protocol comparison
	Comparison to the LR protocol
	Effect of security parameters
	Throughput & Bandwidth

	Adaptively Secure Garbling Schemes

