Faster Malicious 2-party Secure Computation
with Online/Offline Dual Execution’

Peter Rindal® Mike Rosulek?

June 17, 2016

Abstract

We describe a highly optimized protocol for general-purpose secure two-party computation (2PC)
in the presence of malicious adversaries. Our starting point is a protocol of Kolesnikov et al. (TCC 2015).
We adapt that protocol to the online/offline setting, where two parties repeatedly evaluate the same
function (on possibly different inputs each time) and perform as much of the computation as possible
in an offline preprocessing phase before their inputs are known. Along the way we develop several
significant simplifications and optimizations to the protocol.

We have implemented a prototype of our protocol and report on its performance. When two parties
on Amazon servers in the same region use our implementation to securely evaluate the AES circuit 1024
times, the amortized cost per evaluation is 5.1ms offline + 1.3ms online. The total offline+online cost of
our protocol is in fact less than the online cost of any reported protocol with malicious security. For
comparison, our protocol’s closest competitor (Lindell & Riva, CCS 2015) uses 74ms offline + 7ms online
in an identical setup.

Our protocol can be further tuned to trade performance for leakage. As an example, the perfor-
mance in the above scenario improves to 2.4ms offline + 1.0ms online if we allow an adversary to learn
a single bit about the honest party’s input with probability 2720 (but not violate any other security
property, e.g. correctness).

1 Introduction

Secure two-party computation (2PC) allows mutually distrusting parties to perform a computation on their
combined inputs, while revealing only the result. 2PC was conceived in a seminal paper by Yao [Yao82] and
shown to be feasible in principle using a construction now known as garbled circuits. Later, the Fairplay
project [MNPS04] was the first implementation of Yao’s protocol, which inspired interest in the practical
performance of 2PC.

1.1 Cut & Choose, Online/Offline Setting

The leading technique to secure Yao’s protocol against malicious adversaries is known as cut-and-choose.
The idea is to have the sender generate many garbled circuits. The receiver will choose a random subset
of these to be checked for correctness. If all checked circuits are found to be correct, then the receiver has
some confidence about the unopened circuits, which can be evaluated.

“This is the full version of a paper appearing in USENIX 2016.
TOregon State University, {rindalp,rosulekm}@eecs.oregonstate.edu. Supported by NSF award 1149647. The first author is
also supported by an ARCS foundation fellowship.

The cost of the cut-and-choose technique is therefore tied to the number of garbled circuits that
are generated. To restrict a malicious adversary to a 27° chance of violating security, initial cut-and-
choose mechanisms required approximately 17s circuits [LP07]. This overhead was later reduced to 3s
circuits [LP11, sS11, sS13] and then s circuits [Lin13].

Suppose two parties wish to perform N secure computations of the same function f (on possibly
different inputs each time), and are willing to do offline pre-processing (which does not depend on the
inputs). In this online/offline setting, far fewer garbled circuits are needed per execution. The idea, due to
[HKK " 14, LR14], is to generate many garbled circuits (enough for all NV executions) and perform a single
cut-and-choose on them all. Then each execution of f will evaluate a random subset (typically called a
bucket) of the unopened circuits. Because the unopened circuits are randomly assigned to executions, only
O(s/ log N) circuits are needed per bucket to achieve security 27°. Concretely, 4 circuits per bucket suffice
for security 2740 and N = 1024.

1.2 Dual-execution Paradigm

An alternative to cut-and-choose for malicious-secure 2PC is the dual-execution protocol of Mohassel &
Franklin [MF06], which requires only two garbled circuits. The idea is that two parties run two instances
of Yao’s protocol, with each party acting as sender in one instance and receiver in the other. They then
perform a reconciliation step in which their garbled outputs are securely compared for equality. Intuitively,
one of the garbled outputs is guaranteed to be correct, so the reconciliation step allows the honest party
to check whether its garbled output agrees with the correct one held by the adversary.

Unfortunately, the dual execution protocol allows an adversary to learn an arbitrary bit about the
honest party’s input. Consider an adversary who instead of garbling the function f, garbles a different
function f’. Then the output of the reconciliation step (secure equality test) reveals whether f(z1,22) =
f'(z1,x2). However, it can be shown that the adversary can learn only a single bit, and, importantly,
cannot violate output correctness for the honest party.

1.3 Reducing Leakage in Dual-execution

Kolesnikov et al. [KMRR15] proposed a combination of dual-execution and cut-and-choose that reduces
the probability of a leaked bit. The idea is for each party to garble and send s circuits instead of 1, and
perform a cut-and-choose to check each circuit with probability 1/2. Each circuit should have the same
garbled encoding for its outputs, so if both parties are honest, both should receive just one candidate
output.

However, a malicious party could cause the honest party to obtain several candidate outputs. The
approach taken in [KMRR15] is to have the parties use private set intersection (PSI) to find a common value
among their sets of reconciliation values. This allows the honest party to identify which of its candidate
outputs is the correct one.

In Section 4 we discuss in more detail the security offered by this protocol. Briefly, an adversary cannot
violate output correctness for the honest party, and learns only a single bit about the honest party’s input
with probability at most 1/2° (which happens only when the honest part doesn’t evaluate any correct
garbled circuit).

2 Overview of Our Results

We adapt the dual-execution protocol of [KMRR15] to the online/offline setting. The result is the fastest
protocol to date for 2PC in the presence of malicious adversaries. At a very high level, both parties exchange
many garbled circuits in the offline phase and perform a cut-and-choose. In the online phase, each party

evaluates a random bucket of its counterpart’s circuits. The parties then use the PSI-based reconciliation
to check the outputs.

2.1 Technical Contributions

While the high-level idea is straight-forward, some non-trivial technical changes are necessary to adapt
[KMRR15] to the online/offline setting while ensuring high performance in practice.

In particular, an important part of any malicious-secure protocol is to ensure that parties use the
same inputs in all garbled circuits. The method suggested in [KMRR15] is incompatible with offline pre-
processing, whereas the method from [LR15] does not ensure consistency between circuits generated by
different parties, which is the case for dual-execution (both parties generate garbled circuits). We develop
a new method for input consistency that is tailored specifically to the dual-execution paradigm and that
incurs less overhead than any existing technique.

In [KMRR15], the parties evaluate garbled circuits and then use active-secure private set intersection
(PSI) to reconcile their outputs. We improve the analysis of [KMRR15] and show that it suffices to use
PSI that gives a somewhat weaker level of security. Taking advantage of this, we describe an extremely
lightweight PSI protocol (a variant of one in [PSZ14]) that satisfies this weak level of security while being
round-optimal.

2.2 Implementation, Performance

We implemented a C++ prototype of our protocol using state-of-the-art optimizations, including the garbled-
circuit construction of [ZRE15]; the OT-extension protocol of [KOS15] instantiated with the base OTs of
[CO15]. The prototype is heavily parallelized within both phases. Work is divided amongst threads that
concurrently generate & evaluate circuits, allowing network throughput to be the primary bottleneck. The
result is an extremely fast 2PC system. When securely evaluating the AES circuit on co-located Amazon
AWS instances, we achieve the lowest amortized cost to date of 5.1ms offline + 1.3ms online per execution.

2.3 Comparison to GC-based Protocols

There have been several implementations of garbled-circuit-based 2PC protocols that achieve malicious
security [AMPR14, FJN14, KSS12, LR15, PSSW09, sS11, sS13]. Except for [LR15], none of these protocols
are in the online/offline settings so their performance is naturally much lower (100-1000x slower than
online/offline protocols). Among them, the fastest reported secure evaluation of AES is that of [FJN14],
which was 0.46s exploiting consumer GPUs. Other protocols have been described (but not implemented)
that combine cut-and-choose with the dual-execution paradigm to achieve malicious security [HKE13,
MR13]. The protocol of [HKE13] leaks more than one bit when the adversary successfully cheats during
cut-and-choose.

Our protocol is most closely related to that of [LR15], which also achieves fast, active-secure 2PC in the
online/offline setting. [LR15] is an implementation of the protocol of [LR14], and we refer to the protocol
and its implementation as “LR” in this section. Both the LR protocol and ours are based on garbled circuits
but use fundamentally different approaches to achieveing malicious security. For clarity, we now provide
a list of major differences between the two protocols.

(1) LR uses a more traditional cut-and-choose mechanism where one party acts as sender and the other
as receiver & evaluator. Our protocol on the other hand uses a dual-execution paradigm in which both
parties play symmetric roles, so their costs are identical.

Since parties act as both sender and receiver, each party performs more work than in the traditional cut-
and-choose paradigm. However, the symmetry of dual-execution means that both parties are performing

’ H Input Labels \ Reconciliation
LR [LR15] || |z|(B + B')ke |z| Bk
Us (Async PSI) B?%kke
Us (Sync PSI) Bk + B2k,

|x| Bk,

Figure 1: Asymptotic communication costs of the LR protocol vs. ours (comparing online phases). B is the
number of circuits in a bucket; B’ ~ 3B is the number of auxiliary cheating-recovery circuits in [LR15];
|z| is length of sender’s inputs; ks is the statistical security parameter; k. is the computational security
parameter.

computational work simultaneously, rather than idle waiting. The increase in combined work does not
significantly affect latency or throughput if the communication channel is full-duplex.

(2) Our protocol can provide more flexible security guarantees; in particular, it may be used with
smaller parameter choices. In more detail, let x; denote a statistical security parameter, meaning that the
protocol allows the adversary to completely break security with probability 1/2"s. In the LR protocol, a
failure of the cut-and-choose step can violate all security properties, so the number of garbled circuits is
proportional to Ks.

Our protocol has an additional parameter «;, where the protocol leaks (only) a single bit to the ad-
versary with probability 1/2%*. In our protocol (as in [KMRR15]), the number of garbled circuits is pro-
portional to x;. When instantiated with x;, = ks = 40, our protocol gives an equivalent guarantee to
the LR protocol with x5 = 40. From this baseline, our protocol allows either «; to be increased (strictly
improving the security guarantee without involving more garbled circuits) or x; to be decreased (trading
performance for a small chance of a single bit leaking).!

(3) Our online phase has superior asymptotic cost, stemming from the differences in protocol paradigm
— see a summary in Figure 1. LR uses a cheating-recovery phase, introduced in [Lin13]: after evaluating
the main circuits, the parties evaluate auxiliary circuits that allow the receiver to learn the sender’s input
if the receiver can “prove” that the sender was cheating. Our protocol uses the PSI-based dual-execution
reconciliation phase.

The important difference is that in the LR protocol, the sender’s input is provided to both the main
circuits and auxiliary circuits. If there are B main garbled circuits in a bucket, then there are B’ ~ 3B
auxiliary circuits, and garbled inputs must be sent for all of them in the online phase. Each individual
garbled input is sent by decommitting to an offline commitment, so it contributes to communication as
well as a call to a hash function. Furthermore, the cheating-recovery phase involves decommitments to
garbled outputs for the auxiliary circuits, which are again proprotional to the sender’s input length.

In contrast, our protocol uses no auxiliary circuits so has less garbled inputs to send (and less asso-
ciated decommitments to check). Our reconciliation phase scales only with B and is independent of the
parties’ input size. The overall effect is that our online phase involves significantly less communication
and computation, with the difference growing as the computations involve longer inputs. With typical
parameters B = 4 and k4 = 40, our reconciliation phase is cheaper whenever |x| > 54 bits. Even for the
relatively small AES circuit, our protocol sends roughly 10x less data in the online phase.

(4) LR’s online phase uses 4 rounds of interaction? and delivers output only to one party. If both parties

'For example, two parties might want to securely evaluate AES a million times on the same secret-shared key each time,
where the key is not used for anything else. In that case, a 1/22° or 1/23° chance of leaking a single bit about this key might be
permissible.

®For our purposes, a round refers to both parties sending a message. In other words, messages in the same round are allowed to
be sent simultaneously, and our implementation takes advantage of full-duplex communication to reduce latency. We emphasize
that synchronicity is not required for our security analysis. The protocol is secure against an adversary who waits to obtain the
honest party’s message in round ¢ before sending its own round ¢ message.

require output, their protocol must be modified to include an additional round. Our online phase also
delivers outputs to both parties using either 5 or 6 rounds (depending on the choice of PSI subprotocols).
We conjecture that our protocol can be modified to use only 4 rounds, but leave that question to follow-up
work.

(5) Our implementation is more efficient than LR. The offline phase more effectively exploits parallelism
and LR is implemented using a mix of Java & C++. The architecture of LR has a serial control flow with
computationally heavy tasks performed in parallel using low level C++ code. In contrast, our protocol
implementation is in C++ and fully parallelized with low level synchronization primitives.

2.4 Comparison to Non-GC Protocols

Another paradigm for malicious security in the online/offline setting is based not on garbled circuits but
arithmetic circuits and secret sharing. Notable protocols and implementations falling into this paradigm
include [DLT14, DPSZ12, DZ15, DZ13, NNOB12]. These protocols indeed have lightweight online phases,
and many instances can be batched in parallel to achieve throughput comparable to our protocol. However,
all of these protocols have an online phase whose number of rounds depends on the depth of the circuit
being evaluated. As aresult, they suffer from significantly higher latency than the constant-round protocols
in the garbled circuit paradigm like ours. The latest implementations of [DPSZ12] can securely evaluate
AES with online latency 20ms [Smal5]. Of special note is the implementation of the [DZ13] protocol
reported in [DZ15], which achieves latency of only 6ms to evaluate AES. However, the implementation is
heavily optimized for the special case of computing AES, and it is not clear how applicable their techniques
are for general-purpose MPC. In any case, no protocol has reported online latency for AES that is less than
our protocol’s total offline+online cost.

The above protocols based on secret-sharing also have significantly more expensive offline phases. Not
all implementations report the cost of their offline phases, but the latest implementations of the [DPSZ12]
protocol require 156 seconds of offline time for securely computing AES [Smal5]; many orders of mag-
nitude more than ours. We note that the protocols in the secret-sharing paradigm have an offline phase
which does not depend on the function that will be evalauted, whereas ours does.

3 Preliminaries

Secure computation. We use the standard notion of universally composable (UC) security [Can01] for
2-party computation. Briefly, the protocol is secure if for every adversary attacking the protocol, there is
a straight-line simulator attacking the ideal functionality that achieves the same effect. We assume the
reader is familiar with the details.

We define the ideal functionality Fp,,ti-sfe that we achieve in Figure 2. The functionality allows parties
to evaluate the function f, N times. Adversaries have the power to delay (perhaps indefinitely) the honest
party’s output, which is typical in the setting of malicious security. In other words, the functionality does
not provide output fairness.

Furthermore, the functionality occasionally allows the adversary to learn an arbitrary additional bit
about the inputs. This leakage happens according to the distribution £ chosen by the adversary at setup
time. The probability of a leaked bit in any particular evaluation of f is guaranteed to be at most €. Further,
the leakage is “risky” in the sense that the honest party detects cheating when the leaked bit is zero.

Building blocks. InFigures 3 & 4 we define oblivious transfer (OT) and commitment functionalities that
are used in the protocol. In the random oracle model, where H is the random oracle, a party can commit
to v by choosing random r <— {0, 1}"< and sending ¢ = H (r||v).

Setup stage: On common input (SETUP, f, N, €) from both parties, where f is a boolean circuit:

« If neither party is corrupt, set L = 0V. Otherwise, wait for input (cHEAT, £) where L is a
distribution over {0,1}" U {1} with the property that for every i, Prr. c[L; = 1] < e
Sample L < L using random coins x and give (CHEATRESULT, X) to the adversary. If L = |
then give output (CHEATING!) to the honest party and stop responding.

« Send output (READY) to both parties. Initialize counter ctr = 1. Proceed to the execution stage.

Execution stage: Upon receiving inputs (INPUT, 1) from P; and (INPUT, z2) from Ps:
« Compute z = f(x1, x2). If both parties are honest, give (oUTPUT, ctr, 2) to both parties.
« If any party is corrupt, give (OUTPUT, ctr, z) to the adversary.

o If Loy = 1, wait for a command (LEAK, P) from the adversary, where P is a boolean predicate.
Compute p = P(x1,x2) and give (LEAKRESULT, p) to the adversary.

« If any party is corrupt, then on input (DELIVER) from the adversary, if p = 0 above, then give
output (CHEATING!) to the honest party, else give output (OUTPUT, ctr, z) to the honest party.

« If ctr = N then stop responding; otherwise set ctr = ctr 4+ 1 and repeat the execution stage.

Figure 2: The (e-leaking) secure function evaluation functionality Fyiti-sfe-

We use and adapt the Garbled Circuit notation and terminology of [BHR12b]; for a formal treatment,
consult that paper. In Appendix A we define the syntax and security requirements, highlighting the dif-
ferences we adopt compared to [BHR12b].

4 The Dual Execution Paradigm

We now give a high-level outline of the (non-online/offline) 2PC protocol paradigm of [KMRR15], which is
the starting point for our protocol. The protocol makes use of a two-phase PSI subprotocol. In the first
phase, both parties become committed to their PSI inputs; in the second phase, the PSI output is revealed.
This component is modeled in terms of the f&’f functionality in Figure 5.

Assume the parties agree on a function f to be evaluated on their inputs. The protocol is symmetric
with respect to Alice and Bob, and for simplicity we describe only Alice’s behavior.

1. Alice generates r; garbled circuits computing f, using a common garbled output encoding for all of
them.

2. Alice announces a random subset of Bob’s circuits to open. However, the actual checking of the
circuits is delayed until later in the protocol.

3. Alice uses OT to receive garbled inputs for the circuits generated by Bob, as in Yao’s protocol. Alice
sends the garbled circuits she generated, along with her own garbled input for these circuits.

4. Alice evaluates the garbled circuits received from Bob. If Bob is honest, then all of his circuits use
the same garbled output encoding and Alice will receive the same garbled output from each one.
But in the general case, Alice might obtain several inconsistent garbled outputs.

Parameters: A sender P, and receiver Ps.

Setup: On common input S from both parties, for every s € S choose random mg, m; < {0, 1}"¢
and random ¢ <— {0, 1}. Internally store a tuple (s, mg, my, ¢).

Py output: On input (GET, s) from P, if there is a tuple (s, mg, m1, ¢) for some mg, m1, ¢ then
give (OUTPUT, s, mg, m1) to P;.

P, output: On input (GET, s) from P, if there is a tuple (s, mg, m1, ¢) for some mg, m1, c then
give (OUTPUT, s, ¢, m.) to Ps.

Figure 3: Random OT functionality F.

Parameters: A sender P; and receiver Ps.

Commit: On input (coMMIT, sid, v) from P;: If a tuple of the form (sid, -,) is stored, then abort.
If P; is corrupt, then obtain value r from the adversary; otherwise choose r «— {0, 1}"< and give
r to P;. Internally store a tuple (sid, r, v) and give (COMMITTED, sid) to Ps.

Reveal: On input (opEN, sid,7’) from P: if a tuple (sid,r’,v) is stored for some v, then give
(OPENED, sid, v) to P». Otherwise, give (ERROR, sid) to Ps.

Figure 4: Non-interactive commitment functionality F om.

Parameters: Two parties: a sender P; and receiver Ps; ¢ = length of items; n = size of parties’
sets.

First phase (input commitment): On input (INPUT, A;) from party P; (i € {1,2}), with A; C
{0,1}* and | A;| = n: If this is the first such command from P; then internally record A; and send
message (INPUT, P;) to both parties.

Second phase (output): On input (outpuT) from P;, deliver (outpuT, A; N Asg) to the other
party.

. n, 0
Figure 5: Two-phase private set intersection (PSI) functionality F .

5. Assume that Alice can decode the garbled outputs to obtain the logical circuit output. For each
candidate circuit output y with garbled encoding be (b for a garbled output under Bob’s encoding),
let Y, denote the encoding of y under Alice’s garbled output encoding (which Alice can compute).
Interpreting Y, and be as sets of individual wire labels, let R, be the XOR of all items in Y U be ,
which we write as R, = D[V, U be] and which we call the reconciliation value for y. Alice sends

the set of all { R, } values as input to a PSI instance.

6. With the PSI inputs committed, the parties open and check the circuits chosen in the cut-and-choose
step. They abort if any circuit is not correctly garbled, or the circuits do not have consistent garbled

output encodings.

7. The parties release the PSI output. Alice aborts if the PSI output is not a singleton set. Otherwise, if

the output is { R*} then Alice outputs the value y such that R* = R,,.

4.1 Security Analysis and Other Details

Suppose Alice is corrupt and Bob is honest. We will argue that Alice learns nothing beyond the function
output, except that with probability 27" she learns a single bit about Bob’s input.

Suppose Alice uses input x as input to the OTs, and Bob has input z2. Since Bob’s circuits are honestly
generated and use the same garbled output encoding, every circuit evaluated by Alice leads to the same
garbled output be* that encodes logical value y* = f(x1,z2). Note that by the authenticity property of
the garbled circuits, this is the only valid garbled output that Alice can predict.

Since Alice may generate malicious garbled circuits, honest Bob may obtain several candidate outputs
from these circuits. Bob’s input to the PSI computation will be a collection of reconciliation values, each
of the form R, = D[V, U be]

At the time of PSI input, none of Bob’s (honestly) garbled circuits have been opened, so they retain
their authenticity property. Then Alice cannot predict any valid reconciliation value except for this I +.
This implies that the PSI output will be either {R,+} or (). In particular, Bob will either abort or output
the correct output y*. Furthermore, the output of the PSI computation can be simulated knowing only
whether honest Bob has included R« in his PSI input.

The protocol includes a mechanism to ensure that Alice uses the same x; input for all of the garbled
circuits. Hence, if Bob evaluates at least one correctly generated garbled circuit, it will give output y* and
Bob will surely include the R, reconciliation value in his PSI input. In that case, the PSI output can be
simulated as usual.

The probability the Alice manages to make Bob evaluate no correctly generated garbled circuits is
27" — she would have to completely predict Bob’s cut-and-choose challenge to make all opened circuits
correct and all evaluated circuits incorrect. But even in this event, the simulator only needs to know
whether f'(z1,22) = y* for any of the f’ computed by Alice’s malicious garbled circuits. This is only one
bit of information about z2 which the simulator can request from the ideal functionality.

4.2 Outline for Online/Offline Dual-Execution

Our high-level approach is to adapt the [KMRR15] protocol to the online/offline setting. The idea is that
the two parties plan to securely evaluate the same function f, N times, on possibly different inputs each
time. In preparation they perform an offline pre-processing phase that depends only on f and N, but not
on the inputs. They generate many garbled circuits and perform a cut-and-choose on all of them. Then
the remaining circuits are assigned randomly to buckets. Later, once inputs are known in the online phase,
one bucket’s worth of garbled circuits are consumed for each evaluation of f.

Our protocol will leak a single bit about the honest party’s input only when a bucket contains no
“good” circuit from the adversary (where “good” is the condition that is verified for opened circuits during
cut-and-choose). Following the lead of [LR15], we focus on choosing the number of circuits so that the
probability of such an event in any particular bucket is 2772, We note that the analysis of parameters in
[HKK " 14, LR14] considers an overall cheating condition, i.e., that there exists a bucket that has no “good”
circuits, which leads to slightly different numbers.

Lemma 1 ([LR15]). Ifthe parties plan to perform N executions, using a bucket of B circuits for each execution
and a total of N > N B garbled circuits generated for the overall cut-and-choose, then the probability that a
specific bucket contains no good circuit is at most:

max (]\]fvéjt) g\ég
te{B,...,NB} (AJ[VB) (B)

Suppose the parties will perform /V executions, using buckets of size B in the online phase, and wish for
27" probability of leakage. We can use the formula to determine the smallest compatible N.In Figure 17
we show all reasonable parameter settings for x;, € {20, 40,80} and N € {8,16,32,...,32768}.

By adapting [KMRR15] to the online/offline setting, we obtain the generic protocol outlined in Figure
6. Even with pre-processing, an online OT requires 2 rounds, one of which can be combined with the direct
sending of garbled inputs. The protocol therefore requires 3 rounds plus the number of rounds needed for
the PSI subprotocol (at least 2).

Offline phase:

1. Parties perform offline preprocessing for the OTs that will be needed, and for the PSI subprotocol,
if appropriate.

2. Based on N and ky, the parties determine appropriate parameters N,B according to the discus-
sion in Section 4.2. Each party generates and sends N garbled circuits, and chooses a random
subset of N — N B of their counterpart’s circuits to be opened. The chosen circuits are opened
and parties abort if circuits are found to be generated incorrectly.

3. Each party randomly assigns their counterpart’s circuits to buckets of size B. Each online exe-
cution will consume one bucket’s worth of circuits.

Online phase:

1. Parties exchange garbled inputs: For one’s own garbled circuits in the bucket, a party directly
sends the appropriate garbled inputs; for the counterpart’s garbled circuits, a party uses OT as
a receiver to obtain garbled inputs as in Yao’s protocol.

2. Parties evaluate the garbled circuits and compute the corresponding set of reconciliation values.
They commit their sets of reconciliation values as inputs to a PSI computation.

3. With the PSI inputs committed, the parties open some checking information (see text in Section
4.3) and abort if it is found to be invalid.

4. The parties release the PSI output and abort if the output is (). Otherwise, they output the plain-
text value whose reconciliation value is in the PSI output.

Figure 6: High-level outline of the online/offline, dual-execution protocol paradigm.

4.3 Technicalities

We highlight which parts of the [KMRR15] protocol break down in the online/offline setting and require
technical modification:

Same garbled output encoding. In [KMRR15] each party is required to generate garbled circuits that have a
common output encoding. Their protocol includes a mechanism to enforce this property. In our setting, we
require each bucket of circuits to have the same garbled output encoding. But this is problematic because
in our setting a garbled circuit is generated before the parties know which bucket it will be assigned to.
Our solution is to have the garbler provide for each bucket a translation of the following form. The
garbler chooses a bucket-wide garbled output encoding; e.g., for the first output wire, he chooses wire
labels W', W7 encoding false and true, respectively. Then if Wg , Wf are the output wire labels already
chosen for the jth circuit in this bucket, the garbler is supposed to provide translation values Wi & Wy

for v € {0,1}. After evaluating, the receiver will use these values to translate the garbled input to this
bucket-wide encoding that is used for PSI reconciliation.

Of course, a cheating party can provide invalid translation values. So we use step 3 of the online phase
(Figure 6) to check them. In more detail, a sender must commit in the offline phase to the output wire
labels of every garbled circuit. These will be checked if the circuit is chosen in the cut-and-choose. In step
3 of the online phase, these commitments are opened so that the receiver can check the consistency of the
translation values (i.e., whether they map to a hash of the common bucket-wide encoding provided during
bucketing.). This step reveals all of the bucket-wide encoding values, making it now easy for an adversary
to compute any reconciliation value. This is why we employ a 2-phase PSI protocol, so that PSI inputs are
committed before these translation values are checked.

Adaptive garbling. Standard security definitions for garbled circuits require the evaluator to choose the
input before the garbled circuit is given. However, the entire purpose of offline pre-processing is to gen-
erate & send the garbled circuits before the inputs are known. This requires the garbling scheme to sat-
isfy an appropriate adaptive security property, which is common to all works in the online/offline set-
ting [HKK " 14, LR14]. See Appendix A for details.

Input consistency. To achieve security against active adversaries, GC-based protocols must ensure that
parties provide the same inputs to all circuits that are evaluated. This is known as the problem of input
consistency. The protocol of [KMRR15] uses the input consistency mechanism of shelat & Shen [sS13]
which is unfortunately not compatible with the online/offline setting. More details follow in the next
section.

5 Input Consistency

In this section we describe a new, extremely lightweight input-consistency technique that is tailored for
the dual-execution paradigm.

5.1 Consistency Between Alice’s & Bob’s Circuits

We start with the “classical” dual-execution scenario, where Alice and Bob each generate one garbled
circuit. We describe how to force Alice to use the same input in both of these garbled circuits (of course,
the symmetric steps are performed for Bob). The high-level idea is to bind her behavior as OT receiver
(when obtaining garbled inputs for Bob’s circuits) to the commitments of her garbled inputs in her own
circuits.

It is well-known [Bea95] that oblivious transfers on random inputs can be performed offline, and later
“derandomized” to OTs of chosen inputs. Suppose two parties perform a random string OT offline, where
Alice receives c, m, and Bob receives mg, m1, for random ¢ € {0, 1} and mg, m; € {0, 1}*. Later when
the parties wish to perform an OT of chosen inputs ¢* and (m, m}), Alice can send d = ¢ @ ¢* and Bob
can reply with m @ mq and mj & mygq.

In the offline phase of our protocol, the parties perform a random OT for each Alice-input wire of each
circuit, where Alice acts as the receiver. These will be later used for Alice to pick up her garbled input for
Bob’s circuit. Let ¢ denote the string denoting Alice’s random choice bits for this collection of OTs.

Also in the offline phase, we will have Alice commit to all of the possible garbled input labels for the
circuits that she generated. Suppose she commits to them in an order determined by the bits of ¢; that is,
the wire label commitments for the first input wire are in the order (false,true) if the first bit of ¢ is 0 and
(true,false) otherwise.

In the online phase with input z, Alice sends the OT “derandomized” message d = x@c. She also sends
her garbled inputs for the circuits she generated by opening the commitments indexed by d; that is, she

10

opens the first or second wire label of the ith pair, depending on whether d; = 0 or d; = 1, respectively.
Bob will abort if Alice does not open the correct commitments.

Alice’s effective OT input is x = d @ c, so she picks up garbled input corresponding to x. If Alice
did indeed commit to her garbled inputs arranged according to c, then she opens the commitments whose
truth values are also x = d @ c. More formally,

Offline: Alice garbles the labels Ag, A; and Bob garbles By, B; for Alice’s input. Alice receives OT
message m, and Bob holds mg, m1. Alice sends (commiT, (sid, i), Aiec) to Feom for i € {0, 1}.

Online: Alice send d = ¢ @ z to Bob and (oPEN, (sid, d)) to Fcom. Bob receives (oPEN, (sid, d), Az)
from Fiom and sends (By © mg, B ® myaq) to Alice who computes B, = m. ® (Begg ® me).

Figure 7: Input consistency on a single bit of Alice’s input for “classic” dual-execution.

Looking ahead, we will use cut-and-choose to guarantee that there is at least one circuit for which
Alice’s garbled input commitments are correct in this way.

5.2 Aggregating Several OTs

In our protocol, both parties evaluate a bucket of several circuits. Within the bucket, each of Alice’s circuits
is paired with one of Bob’s, as above. However, this implies that Alice uses separate OTs to pick up her
garbled inputs in each of Bob’s circuits. To address this, we aggregating several OTs together to form a
single OT.

Suppose Alice & Bob have performed two random string OTs, with Alice receiving ¢, ¢, m., m/, and
Bob receiving mg, my, m(, m}, for random ¢, ¢’ € {0,1}. Suppose further that Alice sends 6 = ¢ @ ¢ to
Bob in an offline phase. To aggregate these two random OTs into a single chosen-input OT with inputs
c*, mg, m3, Alice can send d = ¢ @ c*, and Bob can reply with m{ @ (mq © ms) and mj © (Migq ©
Mades)-

The idea extends to aggregate any number B of different random OTs into a single one, with Alice
sending B — 1 different § difference values. In our protocol, we aggregate in this way the OTs for the same
wire across different circuits. Intuitively, Alice either receives wire labels for the same value on each of
these wires (by reporting correct § values), or else she receives nothing for this wire on any circuit.

5.3 Combining Everything with Cut-and-Choose

Now consider a bucket of B circuits. In the offline phase Alice acts as receiver in many random OTs, one
collection of them for each of Bob’s circuits. Let c¢; be her (string of) choice bits for the OTs associated
with the jth circuit. Alice is then supposed to commit to the garbled inputs of her jth circuit arranged
according to ¢;. Bob will check this property for all circuits that are opened during the cut-and-choose
phase by Alice showing the corresponding OT messages.’ Hence with probability at least 1 — 27, at least
one circuit in any given bucket has this property. Alice also reports aggregation values §; = ¢; @ ¢; for
these OTs.

In the online phase Alice chooses her input = and sends di = ¢; @ « as the OT-derandomization
message. This is equivalent to Alice sending d; = ¢; @ d; as the message to derandomize the jth OTs. To
send her garbled input for the jth circuit, Alice is required to open her commitments indexed by d;.

If Alice lies in any of the aggregation strings, then she will be missing at least one of the B-out-of-
B secret shares which mask her possible inputs. Intuitively, Alice’s two strategies are either to provide

’In fact, since the OT messages are long random strings, Alice can prove that she had particular choice bits in many OTs by
simply reporting the xor of all of the corresponding OT messages.

11

honest aggregation strings or not obtain any garbled inputs in the position that she lied. In the latter case,
the simulator can choose an arbitrary input for Alice in that position.

If we then consider the likely case where Bob’s jth circuit is “good” and Alice provided honest aggre-
gation strings, then Alice will have decommitted to inputs for the jth circuit that are consistent with her
effective OT input 7. From the discussion in Section 4.1, this is enough to guarantee that the reconciliation
phase leaks nothing.

Even if there are no “good” circuits in the bucket (which happens with probability 1/2%%), it is still the
case that Alice learns no more than if she had received consistent garbled input x7 for all of Bob’s circuits.
So the reconciliation phase can be simulated knowing only whether Bob evaluates any circuit resulting in
f(x¥, z2). This is a single bit of information about Bob’s input x2.

6 Selective Failure Attacks

In the garbled circuit paradigm, suppose Alice is acting as evaluator of some garbled circuits. She uses
OT to pick up the wire labels corresponding to her input. A corrupt Bob could provide incorrect inputs to
these OTs, so that (for instance) Alice picks up an invalid garbled input if and only if the first bit of her
input is 0. By observing whether the evaluator aborts (or produces otherwise unexpected behavior), Bob
can deduce the first bit of Alice’s input. This kind of attack, where the adversary causes the honest party
to abort/fail with probability depending on its private input is called a selective failure attack.

A common way to prevent selective failure is to use what is called a k-probe-resistant input encoding:

Definition 2 ([LP07, sS13]). Matrix M € {0, 1}**™ is called k-probe resistant if forany L C {1,2,...,n},
the Hamming distance of @, ; M; is at least k, where M; denotes the ith row vector of M.

The idea is for Alice to choose a random encoding z; of her logical input x; satisfying Mz, = z;.
Then the parties evaluate the function f'(Z1,22) = f(Mi1,22). This additional computation of M7
involves only XOR operations, so it does not increase the garbled circuit size when using the Free-XOR
optimization [KS08] (it does increase the number OTs needed).

Alice will now use Z1 as her choice bits to the OTs. The adversary can probe any number of bits of 21,
by inserting invalid inputs to the OT in those positions, and seeing whether the other party aborts. For
each position probed, the adversary incurs a 1/2 probability of being caught.*

The property of k-probe-resistance implies that probing k bits of the physical input ; leaks no in-
formation about the logical input M. However, probing k bits incurs a 1 — 27% probability of being
caught. Hence, our protocol requires a matrix that is ks-probe resistant, where x4 is the statistical security
parameter. We refer the reader to [LR15] for the construction details of k-probe resistant matrices and
their parameters.

6.1 Offlining the k-probe computations

Using k-probe-resistant encodings, the encoded input Z; is significantly longer than the logical input x;.
While the computation of M % within the garbled circuit can involve no cryptographic operations (using
Free-XOR), it still involves a quadratic number of XOR operations.

Lindell & Riva [LR14] suggest a technique that moves these computations associated with k-probe-
resistant encodings to the offline phase. The parties will compute the related function f'(#1,¢,z2) =
f(21® Me, z2). In the offline phase, Alice will use OT to obtain wire labels for a random string c. She can
also begin to partially evaluate the garbled circuit, computing wire labels for the value Mc.

*Technically, the sender will commit to all garbled inputs, and then the OTs will be used to transfer the decommitment values.
That way, the receiver can abort immediately if an incorrect decommitment value is received.

12

In the online phase, Alice announces Z; = 1 & M c where z; is her logical input. Then Bob directly
sends the garbled inputs corresponding to #;. This introduces an asymmetry into our input consistency
technique. The most obvious solution to maintain compatibility is to always evaluate circuits of the form
(21, c1,22,¢2) = f(#1BMecy, £ Mcs), so that Alice uses the same physical input (c1, #1) in both hers
and Bob’s circuits. However, we would prefer to let Alice use logical input z; rather than its (significantly
longer) k-probe-encoded input, to reduce the concrete overhead. It turns out that we can accommodate
this by exploiting the Zs-linearity of the encoding/decoding operation.

Consider a bucket of circuits {1, ..., B}. For the jth circuit, Alice acts as receiver in a set of random
OTs, and receives random choice bits ¢;. The number of OTs per circuit is the number of bits in a &-probe-
resistant encoding of Alice’s input.

For Alice’s jth circuit, she must commit to her garbled inputs in the order given by the string Mc;
(rather than just c; as before). This condition will be checked by Bob in the event that this circuit is
opened during cut-and-choose. To assemble a bucket, Alice reports aggregation values d; = c¢1 @ ¢; as
before. Imagine Alice derandomizing these OTs by sending an all-zeroes derandomization message. This
corresponds to her accepting the random c; as her choice bits. (Of course, an all-zeroes message need not
be actually sent.) Bob responds and uses the aggregated OTs to send Alice the garbled inputs for ¢; for all
of his garbled circuits (indeed, even in the jth circuit Alice receives garbled inputs corresponding to c¢y).

In the online phase, Alice decides her logical input x1, and she sends £; = Mcy & x1. This value
derandomizes the offline k-probe-resistant encoding. Then in her own jth circuit, Alice must open the
garbled input commitments indexed by the (public) string &1 @& M ;.

To see why this solution works, suppose that Alice’s jth circuit is “good” (i.e., garbled correctly and
input commitments arranged by M ¢;). As before, define her effective OT input to the jth OTsas ¢* = ¢;®9J;
(which should be ¢; if Alice did not lie about d;). Even if Alice lied about the § values she surely learns no
more than she would have learned by being truthful about the § values and using effective input c¢* in all
OTs. Hence, we can imagine that she uses logical input 27 = 21 @ Mc* in all of Bob’s garbled circuit.

Alice is required to open garbled inputs indexed by Z1 ® Mé; = &1 @ M (c* ® ¢;) = a7 ® Mc;. These
are exactly the garbled inputs corresponding to logical input 27, since the commitments were arranged
according to Mc;. We see that Bob evaluates at least one correctly garbled circuit with Alice using input
27, which is all that is required for weak input consistency.

7 Optimizing PSI Reconciliation

7.1 Weaker security.

Our main insight is that our PSI reconciliation step does not require a fully (UC) secure PSI protocol.
Instead, a weaker security property suffices. Recall that the final steps of the [KMRR15] protocol proceed
as follows:

+ Alice & Bob commit to their PSI inputs.
« The garbled-output translations are opened and checked.
+ The parties either abort or release the PSI output.

For simplicity, assume for now that only one party receives the final PSI output. We will address two-sided
output later.

Suppose Alice is corrupt and Bob is honest. Following from the discussion of security in Section 4,
Bob will use as PSI input a collection of valid reconciliation values. At the time Alice provides her PSI
inputs, the authenticity property of the garling scheme is in effect. This means that Alice can predict a

13

valid reconciliation value only for the “correct” output y*. All other valid reconciliation values that might
be part of Bob’s PSI input are unpredictable.
Below we formalize a weak notion of security for input distributions of this form:

n, b

Definition 3. Let II be a two-phase protocol for set intersection (F,;, Figure 5). We say that I is weakly

malicious-secure if it achieves UC-security with respect to environments that behave as follows:

1. The adversary sends a value a* € {0,1}" to the environment along with the description of a distribution
D whose support is cardinality-(n — 1) subsets of {0, 1}¢. We further require that D is unpredictable
in the sense that the procedure “A < D; output a uniformly chosen element of A” yields the uniform
distribution over {0, 1}* (the joint distribution of all elements of A need not be uniform).

2. The environment (privately) samples A <— D and gives input A U {a*} to the honest party for the first
phase of PSL

3. After the first phase finishes (i.e., both parties’ inputs are committed), the environment gives the coins
used to sample A to the adversary.

4. The environment then instructs the honest party to perform the second phase of PSI to obtain output.

In this definition, the adversary knows only one value in the honest party’s set, while all other values
are essentially uniform. We claim that when £ is large, the simulator for this class of environments does not
need to fully extract the adversary’s PSI input! Rather, the following are enough to ensure weakly-malicious
security:

+ The adversary is indeed committed to some (unknown to the simulator) effective input during the
commit phase.

« The simulator can test whether the adversary’s effective PSI input contains the special value a*.

With overwhelming probability, no effective input element other than a* can contribute to the PSI output.
Any other values in the adversary’s effective input can simply be ignored; they do not need to be extracted.

For technical reasons and convenience in the proof, we have the environment give the adversary the
coins used to sample A, but only after the PSI input phase.

7.2 PSZ protocol paradigm.

We now describe an inexpensive protocol paradigm for PSI, due to Pinkas et al. [PSZ14]. Their protocol is
proven secure only against passive adversaries. We later discuss how to achieve weak malicous security.

The basic building block is a protocol for private equality test (PEQT) based on OT. A benefit of
using OT-based techniques is that the bulk of the effort in generating OTs can be done in the offline phase,
again leading to a lightweight online phase for the resulting PSI protocol.

Suppose a sender has input s and receiver has input r, with 7, s € {0, 1}", where the receiver should
learn whether » = s (and nothing more). The PEQT protocol requires n string OTs; in the ith one, the
receiver uses choice bit 7[i] and the sender chooses random string inputs (mj, m}). The sender finally
sends S = @l mi[i], and the receiver checks whether S = @Z mi[i], which is the XOR of his OT outputs.

The PEQT can be extended to a private set membership test (PSMT), in which the sender has a set
{s!,...,s'} of strings, and receiver learns whether r € {s!, ..., s'}. We simply have the sender randomly
permute the s/ values, compute for each one S7 = @, F(m’; [i]’j) and send {S*, ..., S'}, where F is a

PRF.” The receiver can check whether @, F (mf“[ﬂ ,j) matches S7 for any j. Finally, we can achieve a PSI

>Simply XORing the m{ values would reveal some linear dependencies; applying a PRF renders all of the 57 values indepen-
dently random except the ones for which r = s7.

14

where the receiver has strings {r!, ..., r'} by running independent PSMTs of the form r/ € {s',..., s}
for each 77 (in random order).

The overhead of this approach is O(t?), and [PSZ14] describe ways to combine hashing with this basic
PSI protocol to obtain asymptotically superior PSI protocols for large sets. However, we are dealing with
very small values of ¢ (typically at most 5), so the concrete cost of this simple protocol is very low.

To make the PSI protocol two-phase, we run the OTs and commit to the S values in the input-committing
phase. Then the output phase consists simply of the sender opening the commitments to S.

7.3 Achieving weakly-malicious security and double-sided output.

We use the [PSZ14] protocol but instantiate it with malicious-secure OTs. This leads to the standard notion
of security against an active receiver since the simulator can extract the receiver’s input from its choice
bits to the OTs.

However, the protocol does not achieve full security against a malicious sender. In the simple PEQT
building block, the simulator cannot extract a malicious sender’s input. Doing so would require inspecting
S, {m}} and determining a value s such that S = P, mi[i]. Such an s may not exist, and even if it did, the
problem seems closely related to a subset-sum problem.

However, if the simulator knows a candidate s*, it can certainly check whether the corrupt sender
has sent the corresponding S value. This is essentially the only property required for weakly malicious
security.

We note that a corrupt sender could use inconsistent sets {s!, ..., s’} in the parallel PSMT instances.
However, the simulator can still extract whether the candidate s* was used in each of them. If the sender
used s* in t' of the t subprotocols, then the simulator can send s* to the ideal PSI functionality with
probability ¢’ /¢, which is a sound simulation for weakly-malicious security.

Regarding double-sided output, it suffices to simply run two instances of the one-sided-output PSI
protocol, one in each direction, in parallel. Again, this way of composing PSI protocols is not sound in
general, but it is sound for the special case of weakly-malicious security.

7.4 Trading computation for lower round complexity.

Even when random OTs are pre-processed offline, the PSI protocol as currently described requires 2 rounds
to commit to the outputs, and one round to release the output. The two input-committing rounds are
(apparently) inherently sequential, stemming from the sequential nature of OT derandomization.

In terms of round complexity, these 2 PSI rounds are a bottleneck within the overall dual-execution
protocol. We now describe a variant of the PSI protocol in which the 2 input-committing messages are
asynchronous and can be sent simultaneously. The modified protocol involves (a nontrivial amount of)
additional computation but reduces the number of rounds in the overall 2PC online phase by one. This
tradeoff does not always reduce the overall latency of the 2PC online phase — only sometimes, depending
on the number of garbled circuits being evaluated and the network latency. The specific break-even points
are discussed in Section 9.

In our PEQT protocol above, the two parties have pre-processed random OTs, with choice bits ¢ and
random strings m{), m}. To commit to his PSI input, the receiver’s first message is d = ¢ & r, to which the
sender responds with S = P, mil[i] sl

Consider randomizing the terms of this summation as S = @i[mém osli] © z;] where z; are random
subject to @, z; = 0. Importantly, (1) each term in this sum depends only on a single bit of d; (2) revealing
all terms in the sum reveals no more than .S itself. We let the sender commit to all the potential terms of
this sum and reveal them individually in response to d. In more detail, the sender commits to the following

15

values (in this order):

[m;[l]@1 @ 21] [mg[Q}EBl @ 2o - [m?[n]eél @ 2zn)

Importantly, these commitments can be made before d is known. In response to the message d from the
receiver, the sender is expected to release the output by opening the commitments indexed by the bits of
d. The sender will open the commitments {mfi[i] osfi] @ zi }; the receiver will compute their XOR S and
proceed as before.

The simulator for a corrupt sender simulates a random message d and then checks whether the sender
has used a candidate input s* by extracting the commitments indexed by d to see whether their XOR is
SyY le[i]EBs* [i] S

We can further move the commitments to the offline phase, since there are two commitments per bit
of s per PEQT. Observe that the commitments in (x) are arranged according to the bits of s, which are not
known until the online phase. Instead, in the offline phase the sender can commit to these values arranged
according to a random string 7. In the online phase, the sender commits to its input s by sending s & .
Then in response to receiver message d, the sender must open the commitments indexed by the bits of
d® (s D).

When extending the asynchronous PEQT to a PSMT protocol, the sender commits to an array of
F(m},j) & 2] values for each j.

7.5 Final Protocols

For completeness, we provide formal descriptions of the final PSI protocols (synchronous 3-round and
asynchronous 2-round) in Figures 8 & 9.

Theorem 4. The protocols Ilsyncpsi and I gsyncpsi described in Figures 8 & 9 are weakly-malicious secure (in
the sense of Definition 3) when { > kg, the statistical security parameter.

Proof. We prove security of the protocol in Figure 8; the proof of the other protocol is extremely similar.
We first consider the case of a corrupt receiver P. In fact, the protocol is fully secure in this case.

Hybrid 0 (Real interaction) The simulator runs the protocol on behalf of the honest sender P; and simulates
the ideal functionalities honestly. In the offline phase the simulator extracts the adversary’s choice bits
¢; in the OTs. In the input committing phase, the simulator obtains d; from the adversary and computes
Az =d; ® .

Replacing d; with A ; ® ¢;, we can rewrite honest P;’s behavior as:

%t

Sij = D Fm e memsim)
t

Hybrid 1 In the previous hybrid, values mi’fm o1

By the PRF-security of F', we can replace any call to F' that uses such a key with a random value. The
resulting hybrid is indistinguishable from the previous one.

are distributed independently of the adversary’s view.

In doing so, we see that whenever Ay ; # As ;, the expression for S; ; involves such a term. Hence S; ;
is uniformly distributed whenever Ay ; # As ;.

Note: although we intend for the two parties’ messages to be sent simultaneously, we must be able to simulate in the case
that a corrupt sender waits for incoming message d before sending its commitments.

16

Hybrid 2 In the previous hybrid, the S; ; values can be simulated knowing only whether A ; = A ;. This
information can be obtained by the simulator sending Ay = {A31,..., A2, } to the ideal PSI function-
ality and receiving output A* C As. This hybrid defines our final simulation.

Next, we consider the case of a corrupt sender P;. In this case, the protocol is only weakly secure:

Hybrid 0 (Real interaction) The simulator obtains a* and D from the adversary, then samples the honest
party’s input D and runs the protocol on behalf of the honest receiver P». The simulator also simulates
the ideal functionalities honestly.

Hybrid 1 Note that P;’s view is independent of P’s input. The only protocol messages from P, are the d;
values in the first step. In this hybrid, the simulator simulates these to be random messages, rather than
using honest P»’s actual input.

Hybrid 2 From the adversary’s view, P determines its output via
{Azi | 3 : @F(mzfm,ﬁ = Si;}
{Az; |35 : @F mAQZ[t]@d 0 d) = Sij}

We modlfy this hybrid so that P»’s output is computed 1n the following way: The simulator chooses a
random ¢* € [n]. Then P, outputs {a*} if 3j :), F' [t]@d [t}’j) Si+ j; otherwise P, outputs (.

Recall that P’s PSI input consists of a* along with Values chosen from the “unpredictable” distribution
D. Hence, the hybrids differ only in the case where there is some As ; chosen from D (so ¢ # ¢*) satisfying:

3 : @F mAz [ted; (1)) J) = Si; (1)

For different choices of As ;, the left hand side of this expression is indistinguishable from a uniformly
distributed value. This holds because the mz’t values are chosen uniformly (by the simulator), and even
though they are public, they are chosen independently of the argument j to the PRF. Hence PRF security
applies. It is therefore only negligibly likely that there exist a # o’ satisfying:

@F CORAPN @F M)

In other words, any S; ; value produced by the adversary can be consistent with at most a single candidate
As ; value of P, except with negligible probability. Since the A, ; values are unpredictable (in the sense
of Definition 3) and chosen independently of the adversary’s view, the probability of event (1) is therefore
negligible. Hence the hybrids are indistinguishable.

Hybrid 3 In the previous hybrid, the simulated P, chooses a random 7* and simply checks whether 37 :
@, F(m! [t Bd (1]’ J) = Si= ;. However, since both a* and the mé’t messages are known to the simulator,
the 51mulator can perform this check. If the check succeeds, the simulator sends {a*} to the ideal func-
tionality, otherwise it sends () to the ideal functionality. Since honest (ideal) P, always includes a* in its
PSIinput, the ideal output always matches the simulator’s input. This hybrid defines our final simulation.

O

17

Parameters: Two parties: a sender P} and receiver P»; ¢ = bit-length of items in the set; n = size of
parties’ sets; F' = a PRF.
Offline phase: Parties perform random OTs, resulting in P; holding strings m%” « {0,1}"; and

P, holding ¢; and mi’fm. Here, ¢; € {0,1} and i € [n],t € [/].

Input committing phase:

« Oninput (INpUT, {A21, ..., A2, }) to P2, P> randomly permutes its input and then sends d; :=
Ay @ ¢ for each i € [n].

« On input (INPUT, {Al,l, ..., A1n}) for Pi, P; randomly permutes its input and then computes
it . L
Si; =D, F(mzli[t]EBALj[t}’]) fori,j € [n].

« Py sends (commrT, sid, (S1.1, ..., Snn)) to Feom.

Output phase: On input (output), P; sends (oPEN,sid) to Feom and P, receives
(OPENED, sid, (S1.1,...,Snn)). P2 then outputs {Ag; | 35 : @tF(mZC’f[t],j) =S}

Figure 8: Weakly-malicious-secure, synchronous (3-round), two-phase PSI protocol Ilsync psi.

Parameters: Two parties: a sender P; and receiver Py; ¢ = bit-length of items in the set; n = size of
parties’ sets; ' = a PRF.

Offline phase: Parties perform random OTs, resulting in P; holding strings mf‘{’é 1y {0,1}"¢; and

P, holding ¢; and mi’it[t]. Here, ¢; € {0,1} and i € [n],t € [£].

For i € [n], Py chooses m; <— {0, 1}%. Then for i, j € [n], party P; does the following:

« Fort € {0,1}!, choose 2"/ « {0,1}" subject to @, z =0

« fort € [¢],b € {0,1}; P; sends (commrr, (sid, i, j,t,b), F<mi§[t]@b7j) & 27) 10 Feom.
Input committing phase: On input (INPUT, {4} 1, ..., A1, }) for P; and (1NPUT, {A21,..., A2n})
for P», the parties randomly permute their inputs and asynchronously do:

« P sendsd; j :== Ay ; @ mj for each j € [n]

« Pysends dy; := Ay ; @ c; for each i € [n]
Output phase: On input (ouTpuT): for ¢, j € [n], t € [¢], party P; sends (OPEN, (sid, 1, j,t,dy ;[t] ®
da,i[t])) to Feom and P» expects to receive (OPENED, (sid, i, j, t,dy ;[t] © da[t]), py”).

Py outputs { A | 3 : @, F(myjy.d) = @i’}

Figure 9: Weakly-malicious-secure, asynchronous (2-round), two-phase PSI protocol IT,sync-psi-

8 Protocol Details & Implementation

The full details of our protocol are given in Figure 11 and the c++ implementation may be found at ht tps:
//github.com/osu-crypto/batchDualEx. The protocol uses three security parameters:

18

https://github.com/osu-crypto/batchDualEx
https://github.com/osu-crypto/batchDualEx

Setup stage: On common input (sid, seTup, f, N, €), where f is a boolean circuit, N is the number of exe-
cutions. The parties agree on parameters B, N as specified by Figure 17. Let M € {0, 1}**™ be a ks-probe
resistant matrix for each party’s input of size n. Leta € {0, 1} denote the role of the current party and b = a® 1.
Note: the protocol is symmetric where both parties simultaneously play the roles of P, and P.

+ Cut-and-Choose Commit: P, chooses at random the cut and choose set o, C [N | of size N - NB.

~

P, send (commIT, (sid, CUT-AND-CHOOSE, a), 04) to Feom. For j € [N]:
~ OT Init: P, sends (1N1T, (sid, 0T, a, j)) to F and receives choice bits ¢f in response.

- Send Circuit: P, chooses random output wire labels d;, computes (F}',e;) < 6?)(]“7 d;) and
b
7€
respectively be the labels encoding z, Zy, 7, for circuit £ and e;t) ,, index the label of the

wire with value h in the set e;‘

sends the ' to P, where f(xa,r, &) = f(xq, Mr & Typ) and 1, T are Py’s inputs. Let e

— Input Commit: P, sends the following to Fcom:
» (commirr, (sid, 2,-INPUT, a, j, t, h), e?,t,MC[t]@h)te[n]7h€{071}'
> (comMmiIT, (sid, z,-INPUT, a, j, t, h), eé’.)t’h)t€[n),he{0,1}
» (commirr, (sid, r-INPUT,a,j,t,h), € in)t€lul,hef0,1}

Output Commit: P, sends (commIT, (sid, oUTPUT, a, j), d;) to Feom.
« Cut-and-Choose: P, sends (OPEN, (sid, CUT-AND-CHOOSE, b)) to Feom and P, receives oy. For j € oy

- OT Decommit: P, sends (OPEN, (sid, 0T, a, j)) to Flo, and P receives choice bits .

- Check Circuit: P, sends P, the d; and coins used to garble FJ‘?. P, verifies the correctness of
F.

3 eg’-, e’ be the verified labels as above.

» P, sends (OPEN, (sid, £,-INPUT, a, j, t, b))y, to Feom and Py, receives labels e’®.

Input Decommit: Let e

» P, sends (OPEN, (sid, 2,-INPUT, a, 5, t, h))y to Feom and Py receives labels e’
» P, sends (OPEN, (sid, 7-INPUT,a, j,t, h))ve,n to Feom and Py, receives labels e’
[3

: la a b b I8 T
If there exists a €;%, # € L. ten OF € # ej,or e’ # €7, P, returns ABORT .

Oh’

Output: P, sends (OPEN, (sid, OUTPUT, a, j)) to Feom. P receives d’ and return ABorT if d’ # d.

~

+ Bucketing: P, randomly maps the indices of [N] — o}, into sets 57, ..., 8% s.t. | 5% = B. Fori € [N]:

- Bucket Labels: P, generates random output labels Of for bucket . For j € 8¢, P, send the
output translation T := {Oﬁth @ djinte,n and H(Oﬁt’h) to P, where d; are the output labels
of Ff.

- Offline Inputs:

» P, sends (AGGREGATE, (sid, 0T-AG, a, 1), {(sid, 0T, a, j)|j € B°}) to Fl; and P, receives the
OT aggregation strings 6§ for j € ;.

> P sends (DELIVER, (sid, 0T-AG, a, 1), {€}, w;|j € B%}) to Fly where w; are the decommit-
ment strings to {(sid, 7-INPUT, b, j,¢, h) }¢ 1.

» For j € b P, receives X! and W; from JFL. P, send
(oPEN, (sid, r-INPUT, b, j, ¢, ¢} [t]), W) 1)yt to Feom and receives X. P, returns ABORT
if X7 # X7

Figure 10: Malicious secure online/offline dual-execution 2PC protocol IIyiti-sfe-

19

Execution stage: On common bucket index ¢ and P,’s input x,.

« Receiver’s Inputs: Let j' be the first index in 8¢. P, sends &, := z, ® Mc?, to P, where c‘j’, are the
choice bits of (sid, ot, a,). For all j € 3%

@ encodes Z,, for

- D, sends X§ := {e;t’(f;a@M&.‘;)[t]}t and W¢ .= {wj,(ia@M(;;)[t]}t to P, where ¢

F? and w; are the decommitments string to {(sid, z-INPUT, b, j, , h) }1 .
- P, receives X, W and sends (OPEN, (sid, 7,-INPUT, b, j, ¢, (zo ® Mc§)[t]), Wi)vi to Feom and

receives X*. I, returns ABORT if X # X%

« Sender’s Inputs: For j € 3, P, sends (oPEN, (sid, z,-INPUT, b, j, t, (7} ® M’cé’.)[t]))w to Feom. Pa
receives the labels X?. P, returns ABORT if & & M6? # (zp & Mch).

- Evaluate: For j € 8%, let Y := I-i/(F;’, (X}, X7, X)) with semantic value y;.

« PSI Commit: For Vj,t, if (H(Y;,) # H(Oftwm)), then Vj; + {0,1}fc. Let I := {P,Y;: &
ij,t,yj 1 ® Ottt }jepe- Pa pads I to size B with random values and sends (iNpuT, (sid, ps1,7), I) to
Fpsi and receives (INPUT, P).

« Output Decommit: For j € ﬁf, P, sends (oPEN, (sid, OUTPUT, b, j)) to Feom and P, receives d;.

If there exists j, j’ s.t. d} , ;, @ Tﬁt’h #dyp, ® T]b’,t,h’ P, returns ABORT.

« PSI Decommit: P, sends (OPEN, (sid, Ps1,4)) to Fpsi and P, receives the intersection R. If |R| # 1, P,
returns CHEATING!, else Py returns y; s.t. I; € R.

Figure 11: Malicious secure online/offline dual-execution 2PC protocol I1yiti-sfe-

Kp is chosen so that the protocol will leak a bit to the adversary with probability at most 27", This
parameter controls the number of garbled circuits used per execution.

ks 1is the statistical security parameter, used to determine the length of the reconciliation strings used
as PSI input (the PSI protocol scales with the length of the PSI input values). The adversary can guess
an unknown reconciliation value with probability at most 27"s.

K¢ is the computational security parameter, that controls the key sizes for OTs, commitments and gar-
bled circuits.

In our evaluations we consider k. = 128, ks € {40, 80} and k3, € {20, 40, 80}. We now prove the security
of our protocol:

Theorem 5. Our protocol (Figure 11) securely realizes the F myyi-sfe functionality, in the presence of malicious
adversaries.

Proof. We will show a series of hybrids resulting in a simulator which only depends on the output f(z,y)
of each execution and possibly a single bit of leakage. Due to the protocol being symmetric, we will focus
on a malicious adversary A.

Hybrid 0 (Real interaction) The simulator runs the protocol of Figure 11 and plays the role of the ideal
functionalities. After A sends their circuits, the simulator extracts the commitments made to the in-
put/output labels and the function computed by each garbled circuit. This combined with the simulator
extracting the Fro choice bits fully determines which circuits were maliciously generated and where A
provided inconsistent OT aggregation strings and output translation values.

In particular, let a good bundle be defined as a garbled circuit and its associated input, output commit-
ments such that if opened in the Cut-and-Choose step the honest party does not abort. That is, there

20

exists a set of random coins and decoding information d; such that (F}', ;) « C/J\b(f.dj) and F is the
provided garbled circuit. The input commitments are to the corresponding encoding labels e; where the
Garbler’s input commitments are permuted by their OT choice bits. The output commitments are to the
decoding information d;. Furthermore, let a bad bundle be defined to be any garbled circuit and associated
input, output commitments which is not a good bundle.

Hybrid 1 (Rig the cut-and-choose challenge) Let £ < N denote the number of bad bundles and £ be the
distribution over {0, 1}*V U { L} defined as follows: Choose a random cut-and-choose challenge over the
adversary’s bundles (according to the parameters in the protocol) and random assignment of evaluation
bundles into buckets. If any bad bundle is chosen as a checked bundle/circuit, then the outcome of L is
L. Otherwise the outcome is a string L where L; = 1 iff the ith bucket contains all bad bundles.

By Lemma 1, this distribution indeed satisfies Pry. o[L; = 1] < e for appropriately chosen parameters.
As such the simulator sends (CHEAT, £) to the ideal functionality and receive (CHEATRESULT, X). Here
X are the coins used to sample from £, hence Y is exactly the choice of cut-and-choose challenge and
assignment into buckets. The simulator therefore uses x as the honest party’s cut-and-choose challenge
and assignment into buckets.

The description of the distribution £ exactly matches the distribution of the real interaction. The only
change is that the ideal functionality itself chooses the cut-and-choose challenge, rather than the honest
party. This hybrid is therefore identically distributed.

Hybrid 2 (Delay/equivocate commitments) The simulator provides empty commitments to the garbled
circuits’ output labels in the Output Commit step. When specified to open the commitments during
the Output Decommit step, the simulator equivocates the commitments to the correct values. Note that
this is identical to the previous hybrid except that these values are never used in the simulator until they
are opened.

Hybrid 3 (Simulate garbled circuits) After the Cut-and-Choose Commit step, .A has committed to the ran-
dom coins which determine their cut-and-choose sets. Extract these coins and determine the set of circuits
evaluated in the online phase. For all such evaluation circuits, generate simulated garbled circuits and
make the corresponding input label commitments be to empty values.

In the online phase, extract A’s effective OT input bits y. If A lies about the OT aggregation strings,
take y to be any input which is consistent between all OT inputs, e.g. the first set of derandomized OT
choice bits. Send (INPUT, y) to the ideal functionality and receive (OUTPUT, ctr, z) in response. Use the
output z to generate simulated input labels where A provided honest OT aggregation values, i.e. do not
sample input labels where A provided inconsistent OT aggregation bits. Equivocate the corresponding
input label commitments made in the Input Commit phase and send the input labels to .4 using the aggre-
gated Fo functionality. For all input wires where the simulator did not sample a label, send uniformly
random values. This change is indistinguishable due to .4 not having at least one of the corresponding
OT messages used to mask the output.

Note that the order in which A’s input is extracted and garbled circuit material is generated matches
the garbling scheme security of Definition 6. Furthermore, all output labels which encode output values
other than z have not yet been sampled. The simulator will therefore delay the sampling of these output
wire labels until they are used in the PSI Commit step and at which point the corresponding commitments
will be equivocated. By the security of the garbling scheme, this change is indistinguishable.

Hybrid 4 (Weak PSI Malicious Security) It is now the case that the simulator knows the ideal output value
z but still must use the honest parties input x to evaluate the malicious circuits to compute the PSI
reconciliation set I. Let us define the distribution D and value a* by the following process of cases.

o Good bucket - there exist at least one good bundle: Set a* to be the reconciliation value encoding
z. Sampling D is then defined as, evaluate the malicious circuits using the honest parties input.

21

For each set of output labels, translate them to the PSI reconciliation values as specified in the PSI
Commit step. Define A to be this set of reconciliation values which do not equal a*. Pad A with
uniform values to size B — 1. Note that since Hybrid 3, the simulator delays the sampling of output
wire labels encoding outputs other than z until the PSI Commit step. Therefore each element of A
is either uniform or the sum of a uniform output label which is independent of A’s view.

« Bad bucket - there are all bad bundles: The simulator asks the ideal functionality for a single bit of
leakage by sending (LEAK, 3j : BE(EV(F]-, En(ej,x))) = z) to the Fryiisfe functionality where the
F}; are the garbled circuit of this bucket and e; are the corresponding input labels extracted from
Frot- In response the simulator receives the leakage (CHEATRESULT, p). If p = 1 the simulator sets
a*, D to be as above. Otherwise, the simulator artificially sets a* to be the PSI reconciliation value
of the first circuit in the bucket and defines D to be as above. Note that when p = 0, a* is the sum
of at least one output label which is uniform and independent of A’s view.

By the process above, it is indeed the case that “A <— D; output a uniformly chosen element of A” yields
a uniformly distributed element over {0, 1}*. In particular, each such element of A is either uniform or
the sum of bucket wide output labels for which at least one term is independent of .A’s view. Moreover,
a* is the only “predictable” value and only when it is the reconciliation value encoding z.

The Simulator will then use I = A U {a*} as input to the PSI subprotocols. Furthermore, this process
of determining A, a* matches the security requirements of a weakly malicious-secure PSI specified in
Definition 3. We can therefore substitute the PSI subprotocol with the ideal two-phase PSI functionality
]_-gi,e defined in Figure 5.

Hybrid 5 (Removing PSI Inputs) Observe that the ideal PSI outputs either the singleton set containing the
reconciliation value encoding z or the empty set. Moreover, the outcome of this is determined by the
existence of a circuit which evaluates to z. The simulator therefore need not evaluate the circuits sent
by A using the honest party’s input. Instead the simulator will perform the following, if the current
bucket has at least a single honest circuit, the simulator will input the reconciliation value encoding z
and uniformly random values everywhere else. Otherwise the simulator will ask the ideal functionality
for the single bit of leakage as in Hybrid 4. If leaked bit is p = 1, the simulator will provide PSI input as
above. Otherwise the simulator provides PSI inputs which are uniformly random. By the security of the
ideal PSI functionality and the intersection being identical to before, this change is indistinguishable.

Hybrid 6 (Uniform Inputs) The simulator is no longer evaluating any circuits and therefore can request
uniformly distributed inputs to evaluate .4’s circuits on. Recall that the simulator’s offline input M¢; is
uniformly distributed in .A’s view by the security of the k-probe resistant matrix. Requesting uniformly
random inputs in the online phase is therefore indistinguishable.

Hybrid 7 (Inconsistent translation values) Consider the case where A provides malicious output label
translation values 7" during the Bucket Labels phase. These values allow the evaluator to translate circuit
output labels to common bucket labels in the PSI Commit Step. Since these values are provided after
the cut and choose, A need not provide honest values. However, the simulator will always abort in the
Output Decommit step of the online phase in this event. Therefore, the simulator need not send A’s
extracted input to the ideal functionality for any buckets with malicious translation values. Instead, the
simulator can use the zero string for z. Due to the simulator aborting before the PSI Decommit phase,
this simulator is indistinguishable from the previous.

Hybrid 8 (Ideal Simulation) Now observe that the simulation of the ith execution only depends on whether
the simulated party’s ith bucket holds a garbled circuit which if evaluated would result in a PSI input
encoding with semantic value f(z,y). It follows that the simulator knows this information: if L; = 1
(bad bucket) then the ideal functionality informs the simulator if such a circuit exists. Otherwise, L; = 0
and there does exist at least one good circuit in this bucket.

22

In summary, the simulator implicit in final hybrid only uses the output of the ideal functionality. In partic-
ular, A evaluates simulated garbled circuits with fixed output f(z,y) and the simulator does not use the
honest parties input. If A successfully cheats by generating a bad bucket, then only a single additional bit
of information is leaked about the honest parties input z. Therefore the protocol leak no more information
than the ideal functionality in Figure 2. O

8.1 Implementation & Architecture

In the offline phase, the work is divided between p parallel sets of 4 threads. Within each set, two threads
generate OTs and two threads garble and receive circuits and related commitments. Parallelizing OT gen-
eration and circuit generation is key to our offline performance; we find that these two activities take
roughly the same time.

We generate OTs using an optimized implementation of the Keller et al. [KOS15] protocol for OT
extension. Starting from 128 base OTs (computed using the protocol of [PVW08]), we first run an OT
extension to obtain 128 - p OT instances. We then distribute these instances to the p different thread-sets,
and each thread-set uses its 128 OT instances as base OTs to perform its own independent OT extension.

We further modified the OT extension protocol to process and finalize OT instances in blocks of 128
instances. This has two advantages: First, OT messages can be used by other threads in the offline phase as
they are generated. Second, OT extension involves CPU-bound matrix transposition computations along
with I/O-bound communication, and this approach interlaces these operations.

The offline phase concludes by checking the circuits in the cut-and-choose, bucketing the circuits, and
exchanging garbled inputs for the random k-probe-encoded inputs.

The online phase similarly uses threading to exploit the inherently parallel nature of the protocol. Upon
receiving input, a primary thread sends the other party their input correction value as the first protocol
message. This value is in turn given to B sub-threads (where B is the bucket size) that transmit the
appropriate wire labels. Upon receiving the labels, the B threads (in parallel) each evaluate a circuit.Each
of the B threads then executes (in parallel) one of the set-membership PSI sub-protocols. After the other
party has committed to their PSI inputs, the translation tables of each circuit is opened and checked in
parallel. The threads then obtain the intersection and the corresponding output value.

8.2 Low-level Optimizations

We instantiate the garbled circuits using the state-of-the-art half-gates construction of [ZRE15]. The imple-
mentation utilizes the hardware accelerated AES-ni instruction set and uses fixed-key AES as the gate-level
cipher, as suggested by [BHKR13]. Since circuit garbling and evaluation is the major computation bottle-
neck, we have taken great care to streamline and optimize the execution pipeline.

The protocol requires the bucket’s common output labels to be random. Instead, we can optimize the
online phase choose these labels as the output of a hash at a random seed value. The seed can then be sent
instead of sending all of the common output labels. From the seed the other party regenerates the output
labels and proceed to validate the output commitments.

9 Performance Evaluation

We evaluated the prototype on Amazon AWS instances c4.8xlarge (64GB RAM and 36 virtual 2.9
GHz CPUs). We executed our prototype in two network settings: a LAN configuration with both parties
in the same AWS geographic region and 0.2 ms round-trip latency; and a WAN configuration with parties
in different regions and 75 ms round-trip latency.

We demonstrate the scalability of our implementation by evaluating a range of circuits:

23

PSI Async Sync
ks | B || Time Size | Time Size
2 0.31 2,580 0.35 138
40 3 0.34 5,790 0.39 303
4 0.42 10,280 0.46 532
6 0.65 32,100 0.55 | 1,182
5 0.55 23,100 0.51 850
80 | 7 0.83 62,860 0.66 | 1,638
9 1.39 | 103,860 0.83 | 2,682

Figure 12: The running time (ms) and online communication size (bytes) of the two PSI protocols when
executed with k,-bit strings and input sets of size B.

+ The AES circuit takes a 128-bit key from one party and a 128-bit block from another party and outputs
a 128-bit block to both. The circuit consists of 6800 AND gates and 26,816 XOR gates.

+ The SHA256 circuit takes 512 bits from both parties, xoRrs them together and returns the 256-bit hash
digest of the xor’ed inputs. The circuit consists of 90,825 AND gates and 145,287 XOR gates.

+ The AES-CBC-MAC circuit takes a 16-block (2048-bit) input from one party and a 128-bit key from
the other party and returns the 128-bit result of 16-round AES-CBC-MAC. The circuit consists of
156,800 AND gates and 430,976 XOR gates.’

In all of our tests, we use system parameters specified in Figure 17. /N denotes the number of executions,
and B denotes the bucket size (number of garbled circuits per execution) and we use ~ B online threads.

9.1 PSI protocol comparison

In Section 7 we describe two PSI protocols that can be used in our 2PC protocol — a synchronous protocol
that uses 3 rounds total, and an asynchronous protocol that uses 2 rounds total (at higher communication
cost). We now discuss the tradeoffs between these two PSI protocols. A summary is given in Figure 12.
For small parameters in the LAN setting, the 2-round asynchronous protocol is faster overall, but for
larger parameters the 3-round synchronous protocol is faster. This is due to the extra data sent by the
2-round protocol. Specifically, the asynchronous protocol sends O(B2k,) bytes while the synchronous
one sends O(Brs + B%k,). In the remaining comparisons, we always use the PSI protocol with lowest
latency, according to Figure 12.

9.2 Comparison to the LR protocol

We compare our prototype to that of [LR15] with 40-bit security. That is, we use x, = ks = 40; both
protocols have identical security and use the same bucket size. We use identical AWS instances and a
similar number of threads to those reported in [LR15].

Figure 13 shows the results of the comparison in the LAN setting. It can be seen that our online times
are 5 to 7 times faster and our offline times are 4 to 15 times faster. Indeed, for N = 1024 our total (online
plus offline) time is less than the online time of [LR15].

In the WAN setting with small circuits such as AES where the input size is minimal we see [LR15]
achieve faster online times. Their protocol has one fewer round than ours protocol, which contributes 38ms
to the difference in performance. However, for the larger SHA256 circuit our implementation outperforms

"The circuit is not optimized; each call to AES recomputes the entire key schedule.

24

ks = Kkp = 40 [LR15] This
Circuit N Offline ‘ Online || Offline ‘ Online
32 197 12 45 1.7
AES 128 114 10 16 1.5
1024 74 7 5.1 1.3
LAN 32 459 50 136 10.0
SHA256 128 275 40 78 8.8
1024 206 33 48 8.4
32 1,126 163 282 190
AES 128 919 164 71 191
1,024 760 160 34 189
WAN 32 3,638 290 777 194
SHA256 128 3,426 256 399 192
1,024 || 2,992 207 443 191

Figure 13: Amortized running times per execution (reported in ms) for [LR15] and our prototype. We used
bucket size B = 6,5,4 for N = 32,128,1024.

Ky = ks = 80 Ky = ks = 40 Ky = 20; ks = 40
Circuit ‘ N Storage ‘ Offline ‘ Online || Storage ‘ Offline ‘ Online || Storage ‘ Offline ‘ Online
32 0.21 69 2.3 0.12 45 1.7 0.06 40 1.1
AES 128 0.88 25 2.1 0.32 16 14 0.38 16 1.1
1,024 6.8 16 1.8 1.6 5.1 1.3 0.76 2.4 1.0
32 6.8 234 15.7 1.3 136 10.0 0.68 65 7.6
SHA-256 128 8.7 190 12.3 3.5 78 8.8 44 95 6.4
1,024 62.1 131 11.4 15.6 48 8.4 8.8 24 6.3
2048 32 3.8 621 22.7 24 655 14.9 1.2 247 11.1
CBC- 128 15.4 450 18.1 6.2 191 13.4 7.9 246 10.6
MAC 1,024 109.5 378 15.8 31.0 95 12.3 15.6 71 10.6

Figure 14: Amortized running times per execution (reported in ms) and total offline storage (reported in
GB) for our prototype in the LAN configuration. The peak offline storage occurs before the cut and choose,
consisting of the circuits, commitments, and OT messages. For x; = 80 we use parameters (N, B) €
{(32,12), (128,9), (1024, 7)}. For K, = 40 we use parameters (N, B) € {(32,6), (128,5), (1024, 5)}. For
kp = 20 we use parameters (N, B) € {(32,3), (128, 2), (1024, 2)}.

that of [LR15] by 16 to 100ms per execution and we achieve a much more efficient offline phase ranging
from 4 to 22 times faster for both circuits.

As discussed in Section 2.3, our protocol has asymptotically lower online communication cost, es-
pecially for computations with larger inputs. Since both protocols are more-or-less I/O bound in these
experiments, the difference in communication cost is significant. Concretely, when evaluating AES with
N = 1024 and B = 4 our protocol sends 16, 384 bytes of wire labels and just 564 bytes of PSI data. The on-
line phase of [LR15] reports to use 170, 000 bytes with the same parameters. Even using our asynchronous
PSI sub-protocol, the total PSI cost is only 10,280 bytes.

9.3 Effect of security parameters

We show in Figure 14 how our prototype scales for different settings of security parameters in the LAN
setting. In particular, the security properties of our protocol allow us to consider smaller settings of pa-
rameters than are advised with traditional cut-and-choose protocols such as [LR15]. As a representative
example, we consider x; = 20 and £ = 40 which means that our protocol will leak a single bit only with

25

LAN WAN
ks | B || Time ‘ Bandwidth || Time ‘ Bandwidth
2 0.26 327 0.63 144
40 3 0.41 353 0.72 206
4 0.56 381 1.01 213
6 0.82 465 1.32 293
5 0.75 568 1.39 300
80 | 7 1.01 725 2.02 366
9 2.42 465 3.41 331

Figure 15: Maximum amortized throughput (ms/execution) and resulting bandwidth (Kbps) when perform-
ing many parallel evaluations of AES with the given bucket size B and statistical security x.

probability 1/22° but guarantee all other security properties with probability 1 — 1/24°,

Our protocol scales very well both in terms of security parameter and circuit size. Each doubling of x4
only incurs an approximate 25% to 50% increase in running time. This is contrasted by [LR15] reporting
a 200% to 300% increase in running time for larger security parameters. Our improvement is largely due
to reducing the number of cryptographic steps and no cheat-recovery circuit which consume significant
online bandwidth.

We see a more significant trend in the total storage requirement of the offline phase. For example, when
performing N = 1024 AES evaluations for security parameter s, = 20 the protocol utilizes a maximum
of 0.76 GB of storage while kj, = 40 requires 1.6 GB of storage. This further validates x; = 20 as a storage
and bandwidth saving mechanism. [LR15] reports that 3.8 GB of offline communication for N = 1024 and
40-bit security.

9.4 Throughput & Bandwidth

In addition to considering the setting when executions are performed sequentially, we tested our prototype
when performing many executions in parallel to maximize throughput. Figure 15 shows the maximum
average throughput for AES evaluations that we were able to achieve, under different security parameters
and bucket sizes. The time reported is the average number of milliseconds per evaluation.

In the LAN setting, 8 evaluations were performed in parallel and achieved an amortized time of 0.26ms
per evaluation for bucket size B = 2. A bucket size of 2 can be obtained by performing a modest number
(say N = 256) of executions with k;, = 20, or a very large number of executions with x; = 40. We further
tested our prototype in the WAN setting where we obtain a slightly decreased throughput of 0.72ms per
AES evaluation with 40-bit security.

References

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure com-
putation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 387-404. Springer, Heidelberg, May 2014.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 97-109. Springer, Heidelberg, August 1995.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478—492.
IEEE Computer Society Press, May 2013.

26

[BHR12a]

[BHR12b]

[Can01]

[CG13]

[CO15]

[DLT14]

[DPSZ12]

[DZ13]

[DZ15]

[FIN14]

[GG14]

[HKE13]

[HKK*14]

[KMRR15]

[KOS15]

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 134-153. Springer, Heidelberg, December 2012.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784-796. ACM Press,
October 2012.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136-145. IEEE Computer Society Press, October 2001.

Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part II, volume 8043 of LNCS. Springer,
Heidelberg, August 2013.

Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Kristin E.
Lauter and Francisco Rodriguez-Henriquez, editors, Progress in Cryptology - LATINCRYPT 2015,
volume 9230 of Lecture Notes in Computer Science, pages 40-58. Springer, 2015.

Ivan Damgaard, Rasmus Lauritsen, and Tomas Toft. An empirical study and some improve-
ments of the MiniMac protocol for secure computation. Cryptology ePrint Archive, Report
2014/289, 2014. http://eprint.iacr.org/2014/289.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Safavi-Naini and Canetti [SNC12], pages 643-
662.

Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation of boolean circuits
using preprocessing. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 621-641.
Springer, Heidelberg, March 2013.

Ivan Damgard and Rasmus Winther Zakarias. Fast oblivious AES: a dedicated application of
the MiniMac protocol. Cryptology ePrint Archive, Report 2015/989, 2015. ia.cr/2015/989.

Tore Kasper Frederiksen, Thomas P. Jakobsen, and Jesper Buus Nielsen. Faster maliciously se-
cure two-party computation using the GPU. In Michel Abdalla and Roberto De Prisco, editors,
SCN 14, volume 8642 of LNCS, pages 358-379. Springer, Heidelberg, September 2014.

Juan A. Garay and Rosario Gennaro, editors. CRYPTO 2014, Part II, volume 8617 of LNCS.
Springer, Heidelberg, August 2014.

Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Canetti and Garay [CG13], pages 18-35.

Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Malozemoft.
Amortizing garbled circuits. In Garay and Gennaro [GG14], pages 458—475.

Vladimir Kolesnikov, Payman Mohassel, Ben Riva, and Mike Rosulek. Richer effi-
ciency/security trade-offs in 2PC. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part I, volume 9014 of LNCS, pages 229-259. Springer, Heidelberg, March 2015.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 724-741. Springer, Heidelberg, August 2015.

27

http://eprint.iacr.org/2014/289
http://ia.cr/2015/989

[KS08]

[KSS12]

[Lin13]

[LP07]

[LP11]

[LR14]

[LR15]

[MFO06]

[MNPS04]

[MR13]

Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magntis M. Halldorsson,
Anna Ingolfsdottir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS,
pages 486-498. Springer, Heidelberg, July 2008.

Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with
malicious adversaries. In Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Security
Symposium, pages 285-300. USENIX Association, 2012.

Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In
Canetti and Garay [CG13], pages 1-17.

Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 52-78. Springer, Heidelberg, May 2007.

Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious
transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329-346. Springer,
Heidelberg, March 2011.

Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the on-
line/offline and batch settings. In Garay and Gennaro [GG14], pages 476-494.

Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with security for
malicious adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages
579-590. ACM, 2015.

Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party com-
putation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 458-473. Springer, Heidelberg, April 2006.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party com-
putation system. In Matt Blaze, editor, Proceedings of the 13th USENIX Security Symposium,
pages 287-302. USENIX, 2004.

Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More efficient and
secure two-party computation. In Canetti and Garay [CG13], pages 36-53.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A

[PSSW09]

[PSZ14]

new approach to practical active-secure two-party computation. In Safavi-Naini and Canetti
[SNC12], pages 681-700.

Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party
computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 250-267. Springer, Heidelberg, December 2009.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on
OT extension. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 23rd USENIX Security
Symposium, pages 797-812. USENIX Association, 2014.

28

[PVWO08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and com-
posable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
554-571. Springer, Heidelberg, August 2008.

[Smal5] Nigel Smart. Personal communication, November 2015.

[SNC12] Reihaneh Safavi-Naini and Ran Canetti, editors. CRYPTO 2012, volume 7417 of LNCS. Springer,
Heidelberg, August 2012.

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries. In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 386—405. Springer,
Heidelberg, May 2011.

[sS13] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assumptions.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 523-534.
ACM Press, November 2013.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160-164. IEEE Computer Society Press, November 1982.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220-250. Springer, Heidelberg, April
2015.

A Adaptively Secure Garbling Schemes

A garbling scheme is a tuple of algorithms (Gb, En, Ev, De) with the following syntax and semantics. All
algorithms accept a security parameter as explicit input, which we leave implicit.

« Gb(f,d) — (F,e); Here f is a boolean circuit with m inputs and n outputs; d is an n X 2 array of
(output) wire labels; F' is a garbled circuit; and e is an m X 2 array of input wire labels.

By wire labels, we simply mean strings (i.e., elements of {0, 1}"<). We deviate from [BHR12b] in
requiring the output wire labels d to be chosen by the caller of Gb, rather than chosen by Gb itself.
In the notation of [BHR12b], we assume that the scheme is projective in both its input and output
encodings, meaning that e and d consist of two possible wire labels for each wire.

« En(e,x) — X takes an m x 2 array of wire labels e and a plaintext input « € {0, 1}"* and outputs
a garbled encoding X of z. By assuming that the scheme is projective, we assume that X =
(X1,...,X,,) where X; = e[i, z;].

« Ev(F, X) — Y; takes a garbled circuit F' and garbled encoding X of an input, and returns a garbled
encoding of the output Y.

. bVe(Y) — y. We assume a way to decode a garbled output to a plaintext value. It is a deviation from
[BHR12b] to allow this to be done without the decoding information d. Rather, we may assume that
the garbled outputs contain the plaintext value, say, as the last bit of each wire label.

Our correctness condition is that for the variables defined above, we have Ev(F, En(e, z)) = En(d, f(z))
and De(Ev(F,En(e,x))) = f(x) for all inputs x to the circuit f. In other words, evaluating the garbled
circuit should result in the garbled output that encodes f(x) under the encoding d.

29

In our construction, an adversary sees the garbled circuit F' first, then it receives some of the garbled
inputs (corresponding to the k-probe matrix encoded inputs). Finally in the online phase it is allowed to
choose the rest of its input to the ciruict and receive the rest of the garbled inputs. Hence, our security
game considers an adversary that can obtain the information in this order.

We overload the syntax of the encoding algorithm En. Since En is projective, we write En(e, i,b) to
denote the component e; ;, — that is, the garbled input for the ith wire corresponding to truth value b. Recall
that we also garble a circuit with output wire labels d specified (rather than chosen by the Gb algorithm).
Our security definition lets the adversary choose d.

Definition 6. For a garbling scheme (Gb, En, Ev, De), an interactive oracle program Adv, and algorithms
S = (S0, S1, S2), we define the following two games/interactions:

gAdV,S_
ideal -
get f,d from Adv>°
gAd;/: F + Sl(f)
e give F' to Adv™

get f, d from Adv
(F,e) < Gb(f,d)
give I to Adv!
fori =1tom:
get x; from Adv’
X; + En(e, i, z;
give X; to AdVH) y=Fflarom)

. Y + En(d,y)
Adv outputs a bit ’
v** outputs a bi X, < So(m,y,Y)

give X, to Adv™
Adv®° outputs a bit

fori =1tom — 1:
get z; from Adv>°
give X; to Adv™°

get ,,, from Adv>°

In Gigears H is a random oracle. In Gigeqy, the tuple S = (So, S1,.S2) all share state. All algorithms receive the
security parameter as implicit input.
Then the garbling scheme is adaptively secure if there exists a simulator S such that for all polynomial-
time adversaries Adv, we have that
| Pr[GA%Y outputs 1] — Pr[gf;g:;s outputs 1]|

real
is negligible in the security parameter.

Note that in the Gi4ea game, the simulator receives no information about the input z as it produces the
garbled circuit F' and all but one of the garbled input components. Finally when producing the last garbled
input component, the simulator learns f(x) and its garbled output encoding En(d, f(x)). In particular, the
simulator receives no information about z, so its outputs carry no information about x beyond f(x). The
game also implies an authenticity property for garbled outputs of values other than f(z) — the simulator’s
total output contains no information about the rest of the garbled outputs d.

In Figure 16 we describe a generic, random-oracle transformation from a standard (static-secure) gar-
bling scheme to one with this flavor of adaptive security. The construction is quite similar to the transfor-
mations in [BHR12a], with some small changes. First, since we know in advance which order the adversary
will request its garbled inputs, we include the random oracle nonce R in the last garbled input value (rather
than secret-sharing across all garbled inputs). Second, since we garble a circuit with particular garbled out-
put values in mind, we provide “translation values” that will map the garbled outputs of the static scheme
to the desired ones. These translation values also involve the random oracle, so they can be equivocated
by the simulator.

30

Gb(f, d):
(F,e,d) < Gb(f)
R+ {0,1}"
for each output wire i:
60 < H(R||lout|i[lb]|d?) ® d?
F « (F @ H(R||ge), {3!})
e+ (e et e, el ... el ||R el |IR)
return (F, €)

Ev(F, X):
parse X,, as X,,||R and F as (F’,)
X (XI,XQ,...,Xm)
Y < Ev(F' @ H(R||gc), X)
y < De(Y)
for each output wire ::
Y, = 8% @ H(R|out]il|y:{|})

return Y

Figure 16: Transformation from a static-secure doubly-projective garbling scheme (Gb, En, Ev, De, 6;:) to
one satisfying Definition 6.

Theorem 7. If (Gb, En, Ev, De, ﬁe) is a doubly-projective garbling scheme satisfying the (static) prv and aut
properties of [BHR12b] then the scheme in Figure 16 satisfies adaptive security notion of Definition 6 in the
random oracle model.

The proof is very similar to analogous proofs in [BHR12a]. The main idea is that the simulator can
choose the “masked” F and § translation values upfront. Then it is only with negligible probability that an
adversary will call the random oracle on the secret nonce R, so the relevant parts of the oracle are still free
to be programmed by the simulator. When the adversary provides the final bit of input, the simulator gets
f(x) and can obtain a simulated garbled circuit F' and garbled outputs d from the static-secure scheme.
Then it can program the random oracle to return the appropriate masks.®

$Technically, the proof assumes that the simulator for the static-secure scheme can set the (simulated) garbled input encoding
arbitrarily. This is true for common existing schemes; e.g., [ZRE15].

31

[kp=40] B=3 4 5 6 7 8 9 10 11]
Nz)]) 307 203 161 143 136 135
= (38.38) (25.38) (20.12) (17.88) (17.00) (16.88)
6 B B 344 253 222 214
(2150) (1581) (13.88) (13.38)
” 3 3 708 430 361 349
(22.12) (13.44) (11.28) (10.91)
64 B 2268 836 615 583
(35.44) (13.06) (9.61) (9.11)
28 a1 1137 995
(18.13) (8.88) (7.77)
yoe T 2730 1764 1760
(1066) (689) (6.88)
18756 5664 5593
102411 1832y (5.53) (5.46)
20066 9730
2048 11 980) (475)
25099 17906
209 613) (437)
36743 34282
8192 11 449 (418)
16384 ?297621)
32768 1(23?93(?;
[p=20] B=2 3 4 5 6]
84 70 69
N=38 - (10.50) (8.75) (8.62)
y i} 186 113 109
(11.62) (7.06) (6.81)
224 176
32 (7.00) (5.50)
313 303
64 489) (473)
1449 500
12811 1132 (391
1476 882
26 | 577) (3.45)
2865
024 | o)
4883
208 || o
8962
4096 || ;)
17146
8192 | (500
33525
16384 || ot
66291
32768 |y

Figure 17: For each N, B, kp, the table shows the minimum number N of circuits that must be generated
in the offline phase to ensure that the probability of a particular execution leaking a bit is at most 27"%.
The number in parentheses is the ratio N /N, i.e., the amortized number of total (offline+online) circuits
needed per execution. An empty entry offers no benefit over the configurations to the left (both NV and B
are higher than another configuration). An “-” entry means that the ratio N /N > Ky, so that batching N
executions is no better (in terms of total offline+online cost) than doing N executions in isolation. (Figure
continues on next page.)

32

(o9) (068) (£8°0L)
665612 509167 288027 || -
(eve) (60°€T)
06¥IZl LOVPIZ yeel
(Lgr) (L89) (s12e) _ 2618
66VF9 1692L SIFISI
(FLg) (oL8) (8811) (89TH) 9605
S6LSE T88SE 0898F SELOLT
(6¥6) (Lsor) (L1'81)
9Z¥61 ¥P9IZ STeLE sroz
®sor) (oo1r) (62FT) (€9T€) B 20T
S6L0T €921T LE9PT €6€2E
(sper) (eLer) (ogst) (9%02) (19'8¢) B 96z
(3443 €15 LT6€ 6£2S €86
(os's1) (Fe'sT) (e5L1) (9812) (6L€e) (182L) _ B ozl
7861 0%0Z v¥ee 86LT szeh 026
(Lrer) (oe81) (9061) (00T2) (9¢'se) (9¢'se) (1FT9) B B 9
€911 111 0221 3! €291 €922 0€6€
(eL1e) (812) (vee) (ecee) (be92) (8€18) (L¥1H) (8L'€9) _ _ _ _ _ ze
569 669 LTL 65L €78 7001 LTET 1502
(z992) (8892) (95L2) (18'82) (00'1e) (s¥e) (Serp) (182S) (61°SL) _ _ _ _ o1
92y 0gp 1§44 19% 96% 955 099 b8 €021
(osee) (seee) (8ewe) (8e'se) (00'Le) (8€'6€) (erew) (Susv) (054S) (88'14) _ _ _ _ _ _ _ 8= N
892 0.2 (4 €82 962 SI¢ She 06¢ 09% SLS
[12 0z 61 81 L1 91 S vl €1 a1 I 01 6 8 L 9 S v=g | 08=%

(Figure 17 continued)

33

	Introduction
	Cut & Choose, Online/Offline Setting
	Dual-execution Paradigm
	Reducing Leakage in Dual-execution

	Overview of Our Results
	Technical Contributions
	Implementation, Performance
	Comparison to GC-based Protocols
	Comparison to Non-GC Protocols

	Preliminaries
	The Dual Execution Paradigm
	Security Analysis and Other Details
	Outline for Online/Offline Dual-Execution
	Technicalities

	Input Consistency
	Consistency Between Alice's & Bob's Circuits
	Aggregating Several OTs
	Combining Everything with Cut-and-Choose

	Selective Failure Attacks
	Offlining the k-probe computations

	Optimizing PSI Reconciliation
	Weaker security.
	PSZ protocol paradigm.
	Achieving weakly-malicious security and double-sided output.
	Trading computation for lower round complexity.
	Final Protocols

	Protocol Details & Implementation
	Implementation & Architecture
	Low-level Optimizations

	Performance Evaluation
	PSI protocol comparison
	Comparison to the LR protocol
	Effect of security parameters
	Throughput & Bandwidth

	Adaptively Secure Garbling Schemes

