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Abstract. At PQCrypto’14 Porras, Baena and Ding proposed a new interesting
construction to overcome the security weakness of the HFE encryption scheme, and
called their new encryption scheme ZHFE. They provided experimental evidence for
the security of ZHFE, and proposed the parameter set (q, n,D) = (7, 55, 105) with
claimed security level 280 estimated by experiment. However there is an important
gap in the state-of-the-art cryptanalysis of ZHFE, i.e., a sound theoretical estimation
for the security level of ZHFE is missing. In this paper we fill in this gap by computing
upper bounds for the Q-Rank and for the degree of regularity of ZHFE in terms of
logq D, and thus providing such a theoretical estimation. For instance the security

level of ZHFE(7,55,105) can now be estimated theoretically as at least 296. Moreover
for the inefficient key generation of ZHFE, we also provide a solution to improve it
significantly, making almost no computation needed.

Keywords: post-quantum cryptography, multivariate public key cryptography, HFE,
ZHFE

1 Introduction

Multivariate public key cryptography (MPKC) [DGS06] is a candidate of post-
quantum cryptography to resist future quantum computers. MPKC uses multi-
variate polynomials to represent its public key, and its security is backed on the
fact that solving a random multivariate quadratic polynomial system is NP-hard
[GJ79]. Since 1980’s there have been many multivariate public key schemes con-
structed, but unfortunately most of them have been broken. One of the most impor-
tant schemes is Patarin’s Hidden Field Equations (HFE) encryption scheme [Pat96]
which uses a low degree univariate polynomial F over the degree n extension field
of Fq to construct the public key P = T ◦ F ◦ S where S, T are two invertible
affine transformations over Fnq . Though Patarin’s original HFE has been broken
[KS99, Cou01, FJ03, GJS06, DH11, BFP13], it has been developed into a big fam-
ily. Some of its variants remain unbroken till now, for example HFEv for encryption
and HFEv- for signature [PCG01, DY13, PCY+15].

In 2014 Porras, Baena and Ding [PBD14a, PBD14b] proposed a very interesting
extension of HFE for encryption to overcome the security weakness of HFE. The
public key of their construction is P = T ◦ (F1, F2) ◦ S, where the central map
(F1, F2) consists of two high degree univariate polynomials F1, F2 with a built-in



trapdoor. The trapdoor is that two linear combinations of all the Frobenius powers
(F1)

qi , (F2)
qi , 0 ≤ i ≤ n−1, are shifted by X,Xq respectively and then added up to

a secret low degree polynomial Ψ . They called their encryption scheme ZHFE and
showed that it is relatively efficient on decryption, but is very inefficient to generate
the private key.

ZHFE uses a low degree polynomial Ψ as the trapdoor function and thus belongs
to the HFE family. So those attacks on HFE, including direct algebraic attack [FJ03]
and the Kipnis-Shamir MinRank attack (KS attack) [KS99, BFP13], might also be
applicable to ZHFE and should be investigated carefully. In [PBD14a, PBD14b],
experimental method was used to verify the security of ZHFE against the two types
of attacks by looking at the computation time and memory consumed for relatively
small parameters. The experiment also computed two important characters, the
degree of regularity [DG10] and the quadratic rank (Q-Rank) [DH11], of the poly-
nomial system which can determine the security. Based on the experiment results,
they found that for relatively small parameters, instances of ZHFE match well with
random instances, and thus concluded by guessing that both the degree of regularity
and Q-Rank increases as the number of variables increases so that ZHFE is secure.
They also recommended a practical parameter set ZHFE(7,55,105) and guessed that
its security level is greater than 280.

Later on Perlner and Smith-Tone [PST16] at PQCrypto’16 provided an addi-
tional cryptanalysis for ZHFE. They considered differential attack and Isomorphism
of Polynomials attack [WP05], and found that the two attacks are not applicable
to ZHFE. They also tried to consider the degree of regularity and the Q-Rank,
but the “Q-Rank” they defined is simply the usual rank rather than the one of
[DH11, PBD14a, PBD14b]. Due to this issue of terminology, they did not came out
a valid theoretical estimation for the two important characters.

Hence it is still missing in the state-of-the-art cryptanalysis of ZHFE the very
much desired theoretical estimation for the degree of regularity, Q-Rank and thus
for the security level of ZHFE. In this paper we fill in this gap by first computing an
upper bound for the Q-Rank of ZHFE which is blogqDc+3 if q > 2 and blog2Dc+4
if q = 2. We then use this upper bound to compute an upper bound for the degree
of regularity of ZHFE which is 1

2(q− 1)(blogqDc+ 3) + 2 if q > 2 and 1
2blog2Dc+ 4

if q = 2. Hence we obtain the missing theoretical result for the security of ZHFE,
and as a consequence, we improve the guessed security level 280 of ZHFE(7,55,105)
to a theoretically estimated level 296. In addition, we find that the Q-Rank and the
degree of regularity of the instances in the experiment of [PBD14a, PBD14b] are still
(much) less than the upper bound. This explains why the tested ZHFE instances
performed the same as random instances.

In this paper we also consider the key generation of ZHFE. The original method
for generating the private key of ZHFE [PBD14a, PBD14b] need to solve a large
linear system for the about n3 coefficients of the secret F1, F2, and is very time-
consuming with complexity O(n3ω). Recently a new paper of Baena et al [BCE+16]
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at PQCrypto’16 was devoted to improve the generation method and reduced the
complexity to O(n2ω+1) by carefully studying the structure in the coefficients of
F1, F2. However we find a very simple solution to the key generation which requires
only very little computation, i.e., O(logqD) Fq-additions, and thus we can generate
the private key almost immediately.

This paper is organized as follows. We first review the design of ZHFE in Section
2 and its state-of-the-art cryptanalysis in Section 3. We then present our new security
analysis in Section 4 and our efficient solution to the key generation in Section 5.
Finally we conclude this paper in Section 6.

2 The ZHFE Encryption Scheme

In this section, we shall recall Porras et al’s novel encryption scheme ZHFE [PBD14a,
PBD14b].

2.1 Design of the Core Map

Let K be a degree n extension of Fq and φ : K → Fnq the canonical isomorphism
of vector spaces over Fq. Firstly, we describe how to generate the core map of the
scheme which consists of two high degree polynomials over K,

F1(X) =
∑

aijX
qi+qj +

∑
biX

qi + c, F2(X) =
∑

a′ijX
qi+qj +

∑
b′iX

qi + c′

whose coefficients will be determined later. Pick four linearized polynomials Lkl(Y ) =∑n−1
i=0 ukl;iY

qi , (1 ≤ k, l ≤ 2), with coefficients chosen randomly from K. Then define

Ψ(X,F1, F2) = X · [L11(F1) + L12(F2)] +Xq · [L21(F1) + L22(F2)]. (1)

Choose a positive integer D. The coefficients of F1, F2 are required to satisfy

degΨ(X,F1(X), F2(X)) ≤ D. (2)

By this degree restriction, a very large linear system can be obtained for the coeffi-
cients of F1, F2, and any nonzero solution gives a pair of F1, F2. Then compute

ΨD(X) = Ψ(X,F1(X), F2(X))

=
∑

0≤i≤1

∑
qi+qj+qk≤D

a′′ijkX
qi+qj+qk

∑
qi+qj≤D

b′′ijX
qi+qj +

∑
qi≤D

c′′iX
qi . (3)

Secondly, we describe how to invert the central map (F1, F2). Given any Y1, Y2 ∈
K, since F1, F2 are of high degree, it is expected infeasible in general to solve{

F1(X) = Y1
F2(X) = Y2

(4)
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directly. It is shown in [PBD14a, PBD14b] that Equations (4) can be solved with
the help of ΨD(X) = Ψ(X,Y1, Y2); i.e., solutions to (4) are also solutions to

ΨD(X)− Ψ(X,Y1, Y2) = 0. (5)

Since the degree of Equation (5) is bounded by a relatively small D, Equation (5)
can be solved efficiently using Berlekamp’s algorithm, then each solution can be
checked whether it is also a solution to the original equation (4).

2.2 The ZHFE Encryption Scheme

We can now describe the ZHFE encryption scheme. Its public map is

P = T ◦ (φ× φ) ◦ (F1, F2) ◦ φ−1 ◦ S : Fnq → F2n
q

where S : Fnq → Fnq and T : F2n
q → F2n

q are two randomly chosen invertible affine
transformations.

Public Key The public key includes Fq and the polynomial map P (x1, . . . , xn).
Private Key The private key includes Ψ , D, ΨD and S, T .
Encryption The ciphertext of a plaintext (x1, . . . , xn) ∈ Fnq is obtained by com-

puting (y1, . . . , y2n) = P (x1, . . . , xn).
Decryption A given ciphertext y is decrypted as follows:

1. Compute (w1, . . . , w2n) = T−1(y).
2. Compute (Y1, Y2) = (φ−1(w1, . . . , wn), φ−1(wn+1, . . . , w2n));
3. Substitute (Y1, Y2) into Equation (5), solve it by Berlekamp’s algorithm, and

let Z be the set of solutions.
4. For each X ∈ Z, compute S−1(φ(X)) and check whether it is a solution

to P (x) = y. Each solution is a candidate for the plaintext — additional
redundant information must be added to determine which candidate is the
correct plaintext.

In [PBD14b], parameters (q, n,D) = (7, 55, 105) is suggested for ZHFE and its
security level is claimed to be greater than 280 with more features listed below.

Public Key Private Key Encryption Time Decryption Time Claimed Security

66 KB 11 KB 0.024 s 0.427 s 280

A drawback of ZHFE is the low efficiency of generating the secret F1, F2. In the rest
of this paper, we will discuss the security and key generation of ZHFE.

3 Review of Cryptanalysis of ZHFE

ZHFE uses a low degree polynomial over the extension field K over Fq as the trap-
door, and thus it belongs to the HFE family. It may further be regarded as a Multi-
HFE with two branches, but there is a significant difference. The usual HFE and
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Multi-HFE use one or more polynomials over the extension field K which are of
low degree (thus of low rank) as the core map. This low degree (low rank) is ex-
actly the weakness of HFE and Multi-HFE. To overcome this weakness, ZHFE
[PBD14a, PBD14b] is designed to use two high degree polynomial maps F1, F2 over
K as its core map. The trapdoor is that, F1, F2 are related to a secret low degree
map Ψ (1), which will be inverted, instead of inverting F1, F2, for decryption. This
design is intended to increase the degree and rank of the core map to improve its
security.

There are two types of attacks on the family of HFE schemes, i.e. direct algebraic
attack [FJ03] and the Kipnis-Shamir MinRank Attack (KS attack) [KS99, BFP13].
The security of ZHFE against the two attacks was analyzed in [PBD14a, PBD14b],
and then a few other attacks were also considered in [PST16]. In this section, we
shall review the cryptanalysis of ZHFE from [PBD14a, PBD14b, PST16] and point
out an important gap which is missing there.

3.1 Direct Algebraic Attacks

Direct algebraic attacks, such as F4 [Fau99], F5 [Fau02] and XL [CKPS00] try to
solve the polynomial equation P (x) = y directly, where P is the public polynomial
map, and is applicable to all multivariate public key cryptosystems. The complexity
of direct algebraic attacks is characterized by the degree of regularity of the polyno-
mial system which is informally the highest degree achieved in the process of com-
puting the Gröbner basis, cf. [DG10]. The degree of regularity has been a powerful
tool for investigating the security of the HFE family [DG10, DH11, DY13, PCY+15]
and it has deep connection with another notion, the quadratic rank of the polynomial
system [DH11].

We shall recall the notion of quadratic rank (Q-Rank for short) [DH11] in the
following. The rank Rank(f) of a quadratic function f =

∑
aijxixj +

∑
bixi + c :

Fnq → Fq is defined as the rank of its associated quadratic form
∑
aijxixj . For a

polynomial map F = (f1, . . . , fm) : Fnq → Fmq , its Q-Rank is defined as the minimal
rank of all nonzero linear combination of f1, . . . , fm,

Q-Rank(F ) = min{Rank(f) | f ∈ SpanFq(f1, . . . , fm), f 6= 0}

where SpanFq(f1, . . . , fm) is the linear space over Fq spanned by f1, . . . , fm. For
polynomial

F (X) =
∑

aijX
qi+qj +

∑
biX

qi + c,

over K, its rank is also defined as the rank of its associated quadratic form
∑
aijXiXj

where Xi = Xqi . In addition, its Q-Rank is defined as the minimal rank of all
its nonzero linear combinations of all the Frobenius powers F q

i
of F . Noting the

equivalence between the multivariate representation and univariate representation
of a polynomial, the two definitions of rank and Q-Rank are also equivalent [BFP13].
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Ding and Hodges [DH11] found that the degree of regularity dreg of a polynomial
F is bounded by

dreg(F ) ≤ (q − 1)Q-Rank(F )

2
+ 2 ≤

(q − 1)(blogq(D − 1)c+ 1)

2
+ 2 (6)

if Q-Rank(F ) > 1. As a consequence, they [DH11] found that inverting HFE systems
is polynomial on n if D, q are fixed, and is quasi-polynomial on n if D is of the scale
O(nα). Therefore, to estimate the security level of ZHFE against direct algebraic
attacks, it is very important to understand well its degree of regularity and Q-Rank.

A practical experimental approach to test the security strength of a scheme
against direct algebraic attacks is to compute some instances and compare with
random instances for relatively small parameters. One can do so by computing the
Gröbner basis and comparing the time and memory needed, and calculating the
degree of regularity and see how it changes as the parameters change. In [PBD14a,
PBD14b], experiments were conducted to compute the Gröbner bases of instances of
ZHFE and random instances using the F4 function of MAGMA. Their experiments
included instances with q = 2, n ≤ 40 and q = 7, n ≤ 25. They found that those
relatively small instances of ZHFE match very well with random instances on time,
memory and the degree of regularity. Based on the experiment results they concluded
that ZHFE would perform generally as random instances against direct algebraic
attack, and especially the degree of regularity would grow as n grows.

However, only experiments is not sufficient to guarantee the security level as
only a small range of parameters are tested. Theoretical estimation of the degree of
regularity and thus of the complexity is necessary, as it can ensure what will happen
for parameters beyond the range that can be practically tested. Unfortunately such
theoretical estimation is missing in [PBD14a, PBD14b]. This is an important gap
which should be filled in.

3.2 The Kipnis-Shamir MinRank Attack

In 1999 Kipnis and Shamir [KS99] proposed an attack to recover the secret key of
HFE. Their attack relies on the fact that the core map of HFE has a small rank and
thus can be converted into the MinRank Problem.

The MinRank Problem: Let K be a finite field and M1, . . . ,Mm t×t matrices
over K. Given a positive integer r ≤ t, find scalars λ1, . . . , λm, not all zero, such that

Rank(λ1M1 + · · ·+ λmMm) ≤ r.

It is well known that this is generally an NP-hard problem, but if r is small, then the
MinRank problem is not too hard to compute. Kipnis and Shamir [KS99] proposed
a method to solve the MinRank problem for small r and thus gave an attacking
method to HFE though not breaking it.
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In 2013, Bettale, Faugère and Perret improved the KS attack significantly and
break HFE and multi-HFE [BFP13]. They showed that the rank of HFE also gives
the Q-Rank of the public polynomial map, then reduced the MinRank problem from
the extension field K to the much smaller field Fq and thus reduced the complexity
considerably. The complexity of their improved KS attack is estimated as O(n(r+1)ω)
where r is the Q-Rank of the HFE scheme, and thus breaks HFE with practical
parameters. Their attack also breaks multi-HFE with k branches with complexity
O(nk(r+1)ω). Therefore the Q-Rank of the polynomial system is not only important
for the degree of regularity and direct algebraic attack, but also determines the
security level against Bettale, Faugère and Perret’s (BFP’s for short) KS attack.

In [PBD14b], the Q-Rank of the suggested parameter set ZHFE(7,55,105) is
showed by experiments to be greater than 3. However for the case that whether
the Q-Rank is 4, their experiment did not stop but reached the set time limit and
memory limit. Based on this experiment result, it was then guessed in [PBD14b]
that for ZHFE: 1) the Q-rank grows as n grows; 2) the Q-rank is independent of D;
3) in principle there seems no obvious way to recover Ψ .

Later on [PST16] tried to analyze the Q-Rank of ZHFE for q > 2. However,
it should be clarified that the “Q-Rank” of a polynomial F =

∑
aijX

qi+qj over
K in [PST16, Section 3] is defined as the rank of the matrix of the associated
quadratic form, while the “Q-Rank” of F defined here and in [PBD14a, PBD14b]
is the minimal rank of all nonzero linear combinations of all the Frobenius powers
F q

i
of F . Namely the “Q-Rank” of [PST16] is NOT the “Q-Rank” defined here

and in [PBD14a, PBD14b]. In [PST16, Subsection 3], they noticed that the rank of
L11(F1) + L12(F2) is no more than dlogqDe+ 2, and then claimed that the rank of
(F1, F2) is bounded by dlogqDe+2 if Lij are nonsingular, and can be increased easily
by choosing singular Lij with small co-rank; but due to their definition, they did
not conclude the Q-Rank of ZHFE. Therefore, theoretical analysis of the Q-Rank of
ZHFE and the security of ZHFE against BFP’ KS attack is still missing in [PST16].

3.3 Other Attacks

[PST16] also considered a few other attacks. They computed the differential sym-
metry of the secret Ψ and found no evidence to attack ZHFE by the symmetry.
They then further proved that Ψ does not have nontrivial differential invariant and
thus differential attack is not applicable to ZHFE. The number of equivalent and
nonequivalent keys are estimated in [PST16], and found to be large enough to pre-
vent the IP-basded equivalent key attacks [WP05].

4 New Security Analysis of ZHFE

From the preceding review on current cryptanalysis of ZHFE, [PBD14a, PBD14b]
showed convincing experimental results to support that ZHFE is like random sys-
tems against direct algebraic attack for relatively small parameters, but lacked a
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theoretical analysis. For BFP’s KS attack, their experiment results only showed that
the Q-Rank of ZHFE(7,55,105) is greater than 3, and again theoretical analysis on
the Q-Rank is lacked. [PST16] found that a few other attacks are not applicable to
ZHFE and also considered the rank of ZHFE — but unfortunately not the Q-Rank.
Therefore a thorough theoretical analysis on the Q-Rank of ZHFE is still missing in
the cryptanalysis of ZHFE, but is necessary to ensure the security level of ZHFE.

In this section, we shall fill this gap. We will first deduce a linear system deter-
mining the two maps

F̄1 = L11(F1) + L12(F2), F̄2 = L21(F1) + L22(F2).

which unexpectedly turns out to be so simple that no computation is needed to solve
it. We then apply this technical result to give an upper bound for the Q-Rank of
ZHFE. Finally we apply this upper bound to give the missing theoretical estimation
on the security of ZHFE against direct algebraic attack and BFP’s KS attack.

4.1 Computing L11(F1) + L12(F2) and L21(F1) + L22(F2)

Here we shall compute the conditions for the coefficients of

F̄1 = L11(F1) + L12(F2), F̄2 = L21(F1) + L22(F2)

to satisfy the degree restriction (2) on Ψ . Since the two cases 1) q > 2 and 2) q = 2
are different, we shall deal with them separately.

First Case: q > 2. Write

F̄1(X) =
∑

0≤i≤j≤n−1
āijX

qi+qj +
∑

0≤i≤n−1
b̄iX

qi + c̄

F̄2(X) =
∑

0≤i≤j≤n−1
ā′ijX

qi+qj +
∑

0≤i≤n−1
b̄′iX

qi + c̄′

Then by calculation, we have

Ψ(X,F1, F2) =
∑

1≤i≤j≤n−1
ā′ijX

q+qi+qj +
∑

2≤i≤j≤n−1
āijX

1+qi+qj +
∑

1≤i≤n−1
b̄′iX

q+qi

+
∑

1≤j≤n−1
(ā1j + ā′0j)X

1+q+qj +
∑

1≤j≤n−1
ā0jX

2+qj +
∑

2≤i≤n−1
b̄iX

1+qi

+ ā′00X
2+q + (b̄1 + b̄′0)X

1+q + c̄′Xq + ā00X
3 + b̄0X

2 + c̄X. (7)

Notice that the highest degree is of the form q+2qn−1. So we shall separate the degree
range by q + 2qs−1 < D ≤ q + 2qs, 1 ≤ s ≤ n− 1. Then degΨ(X,F1, F2) ≤ q + 2qs

if and only if 
āij = 0, 2 ≤ i < j, j > s
ā′ij = 0, 1 ≤ i < j, j > s

ā0j = 0, ā′0j = −ā1j , j > s

b̄i = 0, b̄′i = 0, i > s

(8)
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Therefore, to find F̄1, F̄2, we just need to solve this system of linear equations whose
solution is already obvious and does not need any computation. In other words, the
two secret maps are

F̄1 =
∑

1≤j≤n−1
ā1jX

q+qj +
∑

0≤i≤j≤s,i 6=1

āijX
qi+qj +

∑
0≤i≤s

b̄iX
qi + c̄ (9)

F̄2 =
∑

0≤j≤n−1
ā′0jX

1+qj +
∑

1≤i≤j≤s
ā′ijX

qi+qj +
∑

0≤i≤s
b̄′iX

qi + c̄′ (10)

where the coefficients can be arbitrarily chosen with the only restriction

ā′0j = −ā1j , j > s.

The secret ΨD is then computed by (7) requiring only s+ 1 ≈ logqD Fq-additions.

Second Case: q = 2. Write

F̄1(X) =
∑

0≤i<j≤n−1
āijX

2i+2j +
∑

0≤i≤n−1
b̄iX

2i + c̄

F̄2(X) =
∑

0≤i<j≤n−1
ā′ijX

2i+2j +
∑

0≤i≤n−1
b̄′iX

2i + c̄′

Notice that there is no āii, ā
′
ii since X2i+2i = X2i+1

. By computation,

Ψ(X,F1, F2) =
∑

1≤i<j<n
ā′ijX

2+2i+2j +
∑

2≤i<j<n
āijX

1+2i+2j +
∑

2≤i<n
(ā1i + ā′0i)X

1+2+2i

+
∑

2≤i≤n−1
(ā0i + b̄′i)X

2+2i +
∑

3≤i≤n−1
b̄iX

1+2i + (ā′01 + b̄2)X
5

+ (ā01 + b̄′1)X
4 + (b̄1 + b̄′0)X

3 + (b̄0 + c̄′)X2 + c̄X. (11)

The highest degree is of the form 2 + 2n−2 + 2n−1. So we shall separate the degree
range by 2+2s−2+2s−1 < D ≤ 2+2s−1+2s, 2 ≤ s ≤ n−1. Then degΨ(X,F1, F2) ≤
2 + 2s−1 + 2s if and only if

āij = 0, 2 ≤ i < j, j > s
ā′ij = 0, 1 ≤ i < j, j > s

ā′0j = ā1j , b̄
′
j = ā0j , b̄j = 0, j > s

(12)

So we already solve the two secret maps

F̄1 =

n−1∑
j=2

ā1jX
2+2j +

n−1∑
j=1

ā0jX
1+2j +

∑
2≤i<j≤s

āijX
2i+2j +

∑
0≤i≤s

b̄iX
2i + c̄ (13)

F̄2 =
n−1∑
j=0

ā′0jX
1+2i +

n−1∑
j=0

b̄′jX
2j +

∑
1≤i<j≤s

ā′ijX
2i+2j + c̄′ (14)
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where the coefficients are arbitrarily chosen with the only restriction

ā′0j = ā1j , b̄′j = ā0j , j > s

The secret ΨD is then computed by (11) requiring only 2s+2 ≈ 2 log2D F2-additions.

4.2 Upper Bound for the Q-Rank of ZHFE

Notice that F̄1, F̄2 can have maximum degree q + qn−1 and 1 + qn−1 respectively.
Although their maximum degree can be this high, their ranks are still small.

Theorem 1. We have the following upper bound on the Q-Rank of ZHFE(q, n,D):

1. If q > 2, D ≤ q + 2qs, then

Q-Rank (ZHFE) ≤ s+ 2 ≤ blogqDc+ 3.

2. If q = 2, D ≤ 2 + 2s−1 + 2s, then

Q-Rank (ZHFE) ≤ s+ 3 ≤ blog2Dc+ 4,

Proof. From the calculation in Subsection 4.1, if q > 2 is odd, the associated sym-
metric matrices of the quadratic forms of F̄1, F̄2 are

ā00 ā01/2 · · · ā0s/2
ā01/2 ā11 · · · ā1s/2 · · · ā1,n−1/2

...
...

...
ā0s/2 ā1s/2 · · · āss

...
ā1,n−1/2


,


ā′00 · · · ā′0s/2 · · · ā′0,n−1/2
...

...
ā′0s/2 · · · ā′ss

...
ā′0,n−1/2


respectively. If q > 2 even, the two matrices are

0 ā01 · · · ā0s
ā01 0 · · · ā1s · · · ā1,n−1
...

...
...

ā0s ā1s · · · 0
...

ā1,n−1


,


0 · · · ā′0s · · · ā′0,n−1
...

...
ā′0s · · · 0
...

ā′0,n−1


respectively, with zero diagonal. It is then obvious that

Rank(F̄1) ≤ s+ 2 and Rank(F̄2) ≤ s+ 2.
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If q = 2, the two matrices are

0 ā01 · · · ā0s · · · ā0,n−1
ā01 0 · · · ā1s · · · ā1,n−1
...

...
...

ā0s ā1s · · · 0
...

...
ā0,n−1 ā1,n−1


,


0 · · · ā′0s · · · ā′0,n−1
...

...
ā′0s · · · 0
...

ā′0,n−1


respectively. Then it is also obvious that their ranks are ≤ s+3 and ≤ 2 respectively.

Rank(F̄1) ≤ s+ 3 and Rank(F̄2) ≤ s+ 2.

Since F̄1, F̄2 are linear combinations of the Frobenius powers of F1, F2, the Q-
Rank of (F1, F2) is bounded above by the ranks of F̄1, F̄2. Therefore we have the
first part of the claimed upper bound for the Q-Rank of ZHFE.

Notice that for q+2qs−1 < D ≤ q+2qs or 2+2s−2+2s−1 < D ≤ 2+2s−1+2s, we
have s−1 < logqD < s+1, thus blogqDc = s−1 or blogqDc = s. So s ≤ blogqDc+1
and the second part of the claimed upper bound follows immediately.

As an example, for ZHFE(7,55,105), 105 = q + 2qs where q = 7 and s = 2, so
its Q-Rank r ≤ 4. From [PBD14b], the Q-Rank of ZHFE(7,55,105) r > 3, so r = 4.
This example shows that the above estimation is tight.

From this result, we see that the Q-rank of ZHFE is independent on n, but
dependent on the degree D of the secret Ψ . Moreover, we will show next how to apply
BFP’s KS attack [BFP13] to recover the secret Ψ . Therefore the three guesses of
[PBD14b] on the Q-Rank, summarized in Subsection 3.2 of this paper, are incorrect.
In addition, we remark that the upper bound on the rank of F̄1, F̄2 when q > 2 was
also noticed in [PST16], but they did not use it to conclude an upper bound for the
Q-Rank of ZHFE. Instead, they concluded that they can choose Lij and F1, F2 to
make (F1, F2) have high rank. The reason is that they defined the Q-Rank as the
usual rank.

4.3 BFP’s KS Attack

As pointed out in [PBD14b], ZHFE can be regarded as a simple case of multi-HFE
with two branches, i.e., K2 → K2, (X1, X2) 7→ (F1(X1), F2(X2)). Based on this
viewpoint, we next sketch how to apply BFP’s KS attack [BFP13] to attack ZHFE
by recovering F̄1, F̄2 and Ψ , and estimate its complexity.

F̄1 has high degree q + qn−1 but small Q-Rank (bounded by s + 2 if q = 2 and
s+ 3 if q > 3), and F̄2 also has high degree 1 + qn−1 but small Q-Rank bounded by
s+ 2. So the first step is to apply BFP’s KS attack to compute F̄1, F̄2. Since there
are two branches, the complexity is O(n2(r+1)ω) in terms of Fq operations. So the

11



complexity of the first step is, O(n(2s+6)ω) if q > 2 for small q, and O(n(2s+8)ω) if
q = 2.

Next recovering Ψ can be done with the simple relation

Ψ = XF̄1 +XqF̄2.

More explicitly, once we have found two linearly independent G1, G2 with rank s+2
(if q > 2 and s+3 if q > 3) and s+2 respectively, then F̄1, F̄2 are linear combinations
of the Frobenius powers of G1, G2, and thus there are coefficients such that

Ψ(X,G1, G2) = X(u1G1 + u2G
q
1 + · · ·+ unG

qn−1

1 + v1G2 + v2G
q
2 · · ·+ vnG

qn−1

2 )

+Xq(un+1G1 + un+2G
q
1 + · · ·+ u2nG

qn−1

1 + vn+1G2 + vn+2G
q
2 + · · ·+ v2nG

qn−1

2 )

satisfies the degree condition degΨ ≤ D. So to recover Ψ , we can just find these
coefficients by solving an overdefined linear system with 4n variables. Such a linear
system can be solved using only part of its relations, say 8n of them, and thus the
complexity is O(n3).

Therefore the complexity of BFP’s KS attack is dominated by the first step of
recovering F̄1, F̄2, and thus is estimated as

O(n2(r+1)ω) =

{
O(n(2s+6)ω) ≈ O(n(2blogq Dc+8)ω), if q > 2,

O(n(2s+8)ω) ≈ O(n(2blog2Dc+10)ω), if q = 2,

in terms of Fq operations. Notice that this complexity is polynomial on n but ex-
ponential on logqD. This seems not so satisfying as it is not exponential on n and
that D is small in practice, but it is still secure enough for practical parameters. For
example, if choosing ω = 2, the security level of ZHFE(7,55,105) against BFP’s KS
attack is estimated as at least 2138. As comparison, the HFE system with the same
set of parameters (q, n,D) = (7, 55, 105) has Q-Rank 3 and its security level against
BFP’s KS attack is n(r+1)ω = 554ω = 246. The key improvement of ZHFE is that it
has bigger Q-Rank 4 and it has two branches, i.e. its number of equations double
that of HFE.

4.4 Direct Algebraic Attacks

By Ding and Hodges’ formula [DH11] for the degree of regularity, we have the
following consequence of Theorem 1.

Theorem 2. Let dreg be the degree of regularity of the public polynomial map P of
ZHFE(q, n,D).

1. If q > 2, D ≤ q + 2qs, then

dreg ≤
(q − 1)(s+ 2)

2
+ 2 ≤

(q − 1)(blogqDc+ 3)

2
+ 2.
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2. If q = 2, D ≤ 2 + 2s−1 + 2s, then

dreg ≤
s+ 3

2
+ 2 ≤ blog2Dc+ 4

2
+ 2 =

1

2
blog2Dc+ 4.

For instance, the degree of regularity of ZHFE(2,n,500) is bounded by 8, and the
one of ZHFE(7,n,105) is bounded by 14. In the experiment of [PBD14a, PBD14b],
the highest degree of regularity achieved for the tested instances is 5 for ZHFE(2,n,500)
in [PBD14a] and 6 for ZHFE(7,n,105) in [PBD14b], both of which are only about
half of our upper bounds. This explains why the tested instances were like random
instances when being solved by direct algebraic attack, and suggests that if bigger
parameters exceeding the upper bound were tested, we might see significant drop
on computation time compared to random instances. This will require more power-
ful computer and/or more time to do the experiment, but such bigger parameters
should be tested in the future.

Comparing with the upper bound for the degree of regularity of HFE (6),

dreg(HFE) ≤
(q − 1)(blogq(D − 1)c+ 1)

2
+ 2,

we see the upper bound for ZHFE is more than the one for HFE with difference

(q − 1) if q > 2, and
3

2
if q = 2.

Therefore ZHFE(q, n,D) can be more secure than HFE(q, n,D) if q is bigger. It
should be noted that a little change of the degree of regularity can result a dif-
ference on the complexity by a factor of a few thousand. For instance, following
[DY13, PCY+15], the security of HFE(7,55,105) and ZHFE(7,55,105) against direct
algebraic attacks F4, F5 can be estimated as

CF4/F5
(HFE (7, 55, 105)) ≥ 3τT 2 = 3

(
55

2

)(
55

11

)2

≥ 285.7

CF4/F5
(ZHFE (7, 55, 105)) ≥ 3τT 2 = 3

(
55

2

)(
55

14

)2

≥ 296

respectively. Namely both HFE(7,55,105) and ZHFE(7,55,105) are practically secure
against direct algebraic attacks. However it should be noted that their security
level against BFP’s KS attack is 246 and 2138 respectively. Hence our theoretical
estimation for the security level of ZHFE(7,55,105) is at least 296.

5 Improving the Key Generation of ZHFE

The private key F1, F2, Ψ of ZHFE are defined subject to the following condition

degΨ = deg(X · [L11(F1) + L12(F2)] +Xq · [L21(F1) + L22(F2)]) ≤ D.

13



Thus to generate F1, F2, one need to solve a large linear system derived from the
vanishing coefficients of Ψ . Notice that this linear system has the coefficients of
F1, F2 as the variables whose number is about n3. The method of [PBD14a, PBD14b]
solves F1, F2 with complexity O(n3ω) which is very high as it may take several days
to generate a practical key. Later on another paper [BCE+16] is devoted to improve
the key generation and reduces the complexity to O(n2ω+1). Here we shall propose
a solution to improve the key generation which requires only little computation and
is almost immediate.

Recall that in Subsection 4.1, we have computed

F̄1 = L11(F1) + L12(F2), F̄2 = L21(F1) + L22(F2).

and expressed them in terms of (9), (10) if q > 2, and (13), (14) if q = 2, whose
coefficients can be arbitrarily chosen without any computation. In addition, the
secret ΨD is computed by (7) if q > 2 and (11) if q = 2 which requires only very
little computation, i.e., about logqD if q > 2, or 2 log2D if q = 2, additions of Fq
elements.

Our solution then is to forget F1, F2, Lij , but regard F̄1, F̄2 as two individual
maps, and use the pair (F̄1, F̄2) as the core map of ZHFE instead of (F1, F2). So the
public map becomes

P = T ◦ (φ× φ) ◦ (F̄1, F̄2) ◦ φ−1 ◦ S : Fnq → F2n
q

and in the decryption step, we solve the following equation

ΨD(X)− (XY1 +XqY2) = 0

instead of Equation (5), while the rest of the scheme remain the same. Namely we
redesign the Ψ of ZHFE as

Ψ = XF̄1 +XqF̄2.

instead of (1), and use (F̄1, F̄2) as the core map instead of (F1, F2). With this simple
change, the original time-consuming key generation of ZHFE now becomes almost
immediate with very little computation, i.e., about logqD Fq-additions if q > 2, or
2 log2D F2-additions if q = 2. We remark that our new design may be regarded as
equivalent to the original one. This is because that (F̄1, F̄2) is a linear transformation
of (F1, F2), and if this linear transformation is nonsingular, then (F1, F2) is also
a linear combination of (F̄1, F̄2). If one still wants to compute (F1, F2) then just
compute the inverse of the linear transformation with complexity O(nω), better
than the improvement O(n2ω+1) of [BCE+16].

One may concern if this change affects the security of ZHFE, but we claim that
it does not. From the security analysis in the preceding section, we see that to attack
ZHFE, one actually does not need to recover F1, F2 and the four linear maps Lij ,
but only need F̄1, F̄2 which are sufficient to recover the secret Ψ . Namely the two
maps F1, F2 and the four linear maps Lij actually do not matter, and what matters
is F̄1, F̄2. So the security analysis is not changed and thus our redesign of ZHFE
does not change the security.
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6 Conclusion

ZHFE is a new novel extension of the HFE encryption scheme and is designed to
overcome the security weakness of HFE. There has been cryptanalysis of ZHFE
and especially experimental evidence for its security, however a sound theoretical
estimation of its security is still missing. We filled in this gap in this paper by
providing such a theoretical estimation for the security of ZHFE. We achieved this
goal by first computing for the Q-Rank of ZHFE(q, n,D) an upper bound which is
blogqDc+ 3 if q > 2 and blog2Dc+ 4 if q = 2. We then estimated the security level,
in terms of Fq operations, of ZHFE against Bettale, et al’s improved Kipnis-Shamir
MinRank attack as O(n(2blogq Dc+8)ω) for small q > 2, and O(n(2blog2Dc+10)ω) for
q = 2, where 2 ≤ ω ≤ 3 depends on the Gaussian elimination algorithm chosen. For
instance the security level of ZHFE(7,55,105) against this attack is estimated as at
least 2138. We further applied our upper bound on the Q-Rank to give an upper

bound for the degree of regularity of ZHFE which is
(q−1)(blogq Dc+3)

2 +2 if q > 2 and
1
2blog2Dc+4 if q = 2. Consequently the security level of ZHFE(7,55,105) against the
direct algebraic attack F4 is estimated as at least 296. Therefore we conclude that
ZHFE does increase the degree of regularity and Q-Rank of HFE and thus improve
the security to have practical and secure parameters. The security estimation here
may still be improved, and more refined analysis and experiment should be carried
out in the future to have a more solid estimation.

Moreover we also provided a solution to improve the inefficient key generation of
ZHFE. The original key generation of ZHFE is very time-consuming with complexity
O(n3ω) and is later improved to O(n2ω+1) by Baena et al. However our solution
requires very little computation, i.e., O(logqD) Fq-additions, and thus can generate
the private key almost immediately.
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