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Abstract. We discuss a tweak for the domain extension called Merkle-Damgard with Permutation
(MDP), which was presented at ASTACRYPT 2007. We first show that MDP may produce multiple
independent pseudorandom functions (PRFs) using a single secret key and multiple permutations
if the underlying compression function is a PRF against related-key attacks with respect to the
permutations. Using this result, we then construct a hash-function-based MAC function, which we
call FMAC, using a compression function as its underlying primitive. We also present a scheme to
extend FMAC so as to take as input a vector of strings.
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1 Introduction

Background. HMAC [3] is the widely deployed function for message authentication (MAC func-
tion) constructed from a cryptographic hash function. HMAC is defined with a hash function
H as follows:

HMAC(K, M) = H((K @ opad)||H((K ¢ ipad)|M)) ,

where K is a secret key, M is an input message, || represents concatenation, @ represents bitwise
XOR, ipad = 0x3636 - - - 36 and opad = 0x5cbc - --5c¢. It is also depicted in Fig. 1.

Due to the length extension property of standardized hash functions such as SHA-1, SHA-
256 and SHA-512 [17], HMAC invokes the underlying hash function twice. The drawback of the
adoption of this structure is inefficiency for short messages. Inefficiency of HMAC may also come
from the padding of the underlying hash function based on the Merkle-Damgard strengthening.
More efficient scheme is expected to be constructed if a compression function of a hash function
is used as an underlying primitive instead of the hash function itself.
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Fig.1: HMAC. H is a cryptographic hash function. K is a secret key. M is an input message. ®
represents bitwise XOR operation. || represents concatenation of sequences. ipad = 0x3636 - - - 36
and opad = 0xb5cbhc - - - bc.

Recently, an approach attracts a lot of interest to construct symmetric-key schemes using a
public permutation. It is emerged from the sponge construction [10], which is the basis of the



SHA-3 hash function [18]. Following the approach, methods to construct authenticated encryp-
tion schemes and pseudorandom generators are proposed [11]. The Even-Mansour cipher [15, 16],
which is constructed from a public permutation, also attracts renewed interest, and schemes for
encryption, message authentication and authenticated encryption are proposed based on it [22,
23,25, 31]. Chaskey is a recently proposed MAC function based on a permutation [27].

The approach to construct secret-key schemes using a compression function is not new. The
plain Merkle-Damgard cascade is shown to be a PRF against adversaries making prefix-free
queries if the underlying compression function is a PRF [4]. In the context of multi-property
preservation [7], some schemes are proposed such as EMD (Enveloped MD) [7] and MDP [19],
which may produce PRFs with some appropriate keying strategies. The recent proposal OMD
(Offset Merkle-Damgard) [14] for authenticated encryption is constructed with a compression
function.

Our Contribution. This paper extends the MDP domain extension [19] to construct efficient
pseudorandom functions (PRF's). It is first shown that the MDP domain extension with a single
key and multiple permutations may produce multiple independent PRFs if the underlying com-
pression function is PRF against related-key attacks with respect to the permutations. Based
on this result, a PRF with minimum padding is proposed, which is called FMAC (compression-
Function-based MAC). We say that padding is minimum if the produced message blocks does
not include message blocks only with the padding sequence for any non-empty input message.
Finally, a vector-input PRF is constructed with FMAC, which is called vEMAC. A vector-input
PRF (vPRF) takes as input a vector of strings. For vEMAC, the number of the components in
an input vector is bounded from above and the upper bound is determined by the number of
the permutations used in vFEMAC.

Related Work. 1t is shown that HMAC is a PRF if the compression function of the underlying
hash function is a PRF with respect to two keying strategies [1]. In particular, for one of the
keying strategies, the compression function is required to be a PRF against related-key attacks
with respect to ipad and opad.

Yasuda [36] presented a secure HMAC variant without the second key, which is called H?2-
MAC. 1t is shown to be a PRF on the assumption that the underlying compression function is
a PRF even if an adversary is allowed to obtain a piece of information on the secret key.

AMAC [2] is a MAC function using a hash function encapsulated with an unkeyed output
function. Typical candidates for the output function are truncation and the mod function. AMAC
is more efficient than HMAC especially for short messages. It is shown that AMAC is a PRF
if the underlying compression function remains a PRF under leakage of the key by the output
function.

PRF modes of a compression function other than those mentioned above are also known.
Yasuda [32] presented a novel PRF mode of a compression function, which almost maximizes the
efficiency of the Merkle-Damgard iteration. It is shown to be a PRF if the underlying compression
function is a PRF against a kind of related-key attacks. Sandwich construction for an iterated
hash function is shown to produce a PRF if the underlying compression function is a PRF with
respect to two keying strategies [33].

PRF modes for keyed compression functions were also proposed. XOR MAC [5] was the first
proposal, which was followed by the protected counter sum construction [9]. It is shown that
various hashing modes preserve the PRF security of keyed compression functions [8]. Yasuda
proposed PRF modes for keyed compression functions with security beyond birthday [34, 35, 37,
38].

Minimum padding is already common among block-cipher-based MAC functions such as
CMAC [29] and PMAC [13]. CMAC, which is based on OMAC (One-key CBC-MAC) [20],



originated from XCBC [12]. The idea to finalize the iteration with multiple non-cryptographic
transformations for domain separation is used in the secure CBC-MAC variants GCBC1 and
GCBC2 [28].

Rogaway and Shrimpton [30] introduced the notion of vPRF. They also presented a generic
scheme to construct a vPRF from a common PRF taking a single string as input. Minematsu [26]
also proposed a vPRF using his universal hash function based on bit rotation.

Organization. Section 2 gives notations and definitions used in the remaining parts of the paper.
It is shown in Sect. 3 that the MDP domain extension may produce multiple independent PRFs
with a single secret key and multiple permutations. Based on the result in Sect. 3, FMAC and
vFMAC is presented and their security is confirmed in Sect. 4. Section 5 gives short discussion
on the proposed constructions. Section 6 concludes the paper.

2 Preliminaries

2.1 Notations and Definitions

Let ¥ = {0,1}. For any non-negative integer I, X' is identified with the set of all X-sequences
of length [. X0 is the set of the empty sequence e. For [ > 1, let (X')* = [J,5o(Z")? be the set
of all ¥-sequences whose lengths are multiples of I. Let (X)* = (X)*\ {5}_ For k1 < ko, let
(El)[kl,kz} — Ufikl (Zl)i.

For x € X*, the length of = is denoted by |z|. The concatenation of z; and x2 in X* is
denoted by x1||z2.

The operation of selecting element s from set S uniformly at random is denoted by s « S.

Let f : K xD — R be a family of functions from D to R indexed by keys in K. Then, f(K,-)
is a function from D to R for each key K € K and is often denoted by fx(-).

Let F(D,R) denote the set of all functions from D to R. Let P(D) denote the set of all
permutations on D. ¢d represents an identity permutation.

2.2 Pseudorandom Functions

For f: K x D — R, let A be an adversary trying to distinguish fx from a function p, where K
and p are chosen uniformly at random from K and F(D,R), respectively. A is given access to
fi or p as an oracle and makes adaptive queries in D and obtains the corresponding outputs.
The prf-advantage of A against f is defined as

Adv?f@4):lpr[Aﬁ¥::@ —pr[ar =1]| |

where K « K and p «~ F(D,R). In this notation, adversary A is regarded as a random variable.
f is called a pseudorandom function, or PRF in short, if no efficient adversary A can have
any significant prf-advantage against f.
The definition of the prf-advantage can naturally be extended to adversaries with multiple
oracles. The prf-advantage of adversary A with access to m oracles is defined as

AdvP(A) = [Pr[ATR e Fim = 1] — Pr[APterm = 1|

where (K1,...,Ky) « K™ and (p1,...,pm) « F(D,R)™.
The following lemma is a paraphrase of Lemma 3.3 in [4]:



Lemma 1. Let A be any adversary against f with access to m oracles. Then, there exists an
adversary B against f such that

Adv?_prf(A) <m- Adv?rf(B) .

The run time of B is approximately total of that of A and the time required to compute f to
answer to the queries made by A. The number of the queries made by B is at most max{g; |1 <
i < m}, where q; is the number of the queries made by A to its i-th oracle.

2.3 PRFs under Related-Key Attacks

The notion of PRF under related-key attacks is formalized by Bellare and Kohno [6]. Let & C
F(K,K). Let key € F(? x K,K) be a function such that key(¢, K) = ¢(K). Adversary A has
oracle access to g(key(-, K),-), where g € F(K x D, R). The oracle accepts (p,x) € & x D as a
query and returns g(¢(K),z). To simplify the notation, g(key(:, K), ) is denoted by g[K]. The
pri-rka-advantage of A against f € F(IC x D, R) with a ®-restricted related-key attack (#-RKA)
is given by

AdvB(A) = |Pr[ATE] = 1] — Prartf] = 1]

where K « K and p « F(K x D, R).

The prf-rka-advantage can naturally be extended to adversaries with multiple oracles as well
as the prf-advantage. The prf-rka-advantage of adversary A with access to m oracles launching
a O-RKA is defined as

Advg—;)rf—rka(A) _ Pr[Af[Kl},...,f[Km] — ” _ PI‘[Apl[KI]""’pm[Km] — 1]

where (K1,...,K;;) « K™ and (p1,...,pm) « F(K x D, R)™.

2.4 MDP domain extension

The MDP domain extension is a variant of the plain Merkle-Damgard iteration of a compression
function [19]. Tt finalizes the iteration of the compression function by permuting the chaining
variable fed into the final compression function with a permutation.

Let F': X" x X% — X" be a compression function. Let m be a permutation on X™. The
MDP domain extension of F' with 7 is defined by the function I*>™ : X" x (X*)* — £" such
that

7 (Y, X | Xa | -+ | Xa) = Yo

for any Yy € X" and X1, Xo,..., X, € X%, where

: F(Y;_l,Xi) 1f1§z§x—1
' F(r(Yp1),Xs) ifi=zx .

X1, Xo,..., X, are called blocks. I*"™ is also depicted in Fig. 2.

3 Multiple PRFs based on MDP

It is shown in this section that the MDP domain extension may produce multiple independent
PRF's with a single compression function, a single secret key and multiple permutations.

For compression function F' : X" x X% — 3™ and set of permutations IT = {m, m2,..., 74} C
P\ {id}, let 171 = {[Fm [Fme o [Fma)
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Fig. 2: MDP domain extension 77 (Yy, X1 || Xa|| -+ || Xz) = Yz

Let A be an adversary against 17>/, The advantage of A is defined by
F,r F,r F,m
AdVII)II‘Jf’SH(A) — ‘PI‘ |:AIK l’IK 2""’IK d — 1 _ PI- {APlvP%m»Pd — 1] ,

where K « X™ and (p1, pa, .. ., pa) « F((X¥)F, X™)9 Notice that the setting is different from
that of PRF for an adversary with multiple oracles in Sect. 2.2. I[f;’m, III;’”, . .,II];’”
single key K.

For I, let

use a

pir = Pr [7(X) = 7'(X) for some distinct 7,7’ € IT U {id}] ,

where X is a random variable with uniform distribution over X".

The following theorem states that I/ may produce multiple independent PRFs with a
single key under the assumption that F' is a PRF against related-key attacks restricted by
T U {id}.

Theorem 1. Let A be any adversary against I running in time at most t and making at
most q queries in total. Suppose that each query consists of at most £ blocks. Then, there exists
an adversary B against F' such that
f f-rk
AV (4) < g (Aaviirs, L(B) + o)
B runs in time at most t + O(lqTF), and makes at most q queries. T is the time required to
compute F'.

Remark 1. Theorem 1 extends Theorem 2 in [19] in two ways. First, Theorem 1 deals with
multiple instances of I”°™, while the latter shows the PRF security of a single instance. Second,
Theorem 1 covers the case that p;; # 0. Theorem 2 in [19] only covers the case that Piry =0
for me P(X™)\ {id}.

Remark 2. The probability py should be negligibly small for IT = {71, ma,...,7mq}. Let ¢, ¢, ..., ¢cq
be distinct nonzero constants in X"

— Suppose that m;(x) =z @ ¢; for 1 <1i < d. Then, p;; = 0.
— Suppose that 7;(x) = ¢; - ¢ and ¢; # 1 for 1 <i < d. Then, p;y = 1/2™.

Theorem 1 immediately follows from Lemma 2 and Lemma 3.

Lemma 2. Let A be any adversary against 1™ running in time at most t and making at most
q queries in total. Suppose that each query consists of at most £ blocks. Then, there exists an
adversary B against F with access to q oracles such that

AP (4) < £ (AdvEPERR (B) + gpr

B runs in time at most t + O(LqTr) and makes at most q queries.



Proof. Let X = X1||Xa| ---||X;, where |X;| = w for 1 <i<landl </ For1<i; <iy<lI,
let X, io] = Xy | Xy 41l - [[ Xiy. For i € {0, 1,...,¢} and two functions s : (T4 — 3 and
£z 5 5 et R[z]fj’g (X)L — X7 be a function such that

Fm p(X) if 1 <4,
R[l]/if (X)=1"rn . .
I (X)), X)) 1= i+1,
where X[ ;) = ¢ if i = 0. We define

F,mq R[Z.]F,WQ R[ﬂFﬂrd

P, = Pr [ARMM,E’ pg Bl E

)

where (1, ..., uq) « F(Z)1 )4 and € « F((Z*)04, X7). Then, the advantage of A is
AdVE (A) = [Py — P

The algorithm of an adversary B against F' with g oracles is described below. Let the oracles
(g1,...,9q) of B be either (F[K;], F[K>],..., F[K,])or (p1, p2, ..., pq) such that (K7,..., K;) «
(X™)% and (p1, P2, .., pq) «= F((IITU{id}) x X", X™)%. B uses A as a subroutine.

1. B selects r from {1,...,¢} uniformly at random.
2. If 7 > 2, then B selects functions (i1, . . . , jig) from F((Z¥)Lr=1 57)d yniformly at random.
3. B runs A. Finally, B outputs the output of A.

For1<k<gqgand1<I</{ let X =X1||Xo|---]X; be the k-th query made by A during
the execution of A. Suppose that X is given to the j-th oracle. If [ > r, then B makes a query
to the idz(k)-th oracle, where idz : {1,...,q} — {1,...,q} is a function such that

— idx(k) = idx(K') if there exists a previous k’-th query X’ (k' < k) such that X[,Lr—l} =
X[l,r—l}a and
— idz(k) = k otherwise.

The query made by B is (7j, X,) if I = r and (id, X;) if > r + 1. The answer of B to X is
i;(X) if1<r—1,
Gido(k) (75, X7) if I =,

1775 (Giggey (id, X ), Xppgr ) 1> 7+ 1.
Now, suppose that B is given oracles (F[K1],..., F[K,]). Then, the answer of B to X is

fij(X) ifl<r—1,
Fﬂj(szz(k))(XT) ifl = r,

IF’”J'(FKI.M) (Xp), Xppgry) Hl>r+1

Kida (k) can be regarded as an output of a function chosen uniformly at random from F((X wyr=1_ym)
since idr(k) is a function of X[y ,_1) and Kjgy k) is chosen uniformly at random from X™. Thus,

B provides A with the oracle R[r — 1]F’7Tj

e and
Pr |:BF[K1],...,F[K¢1] = ]_i|

Pr [r = i p B FIKG] — ] — ipr [BrUsh-FUal = 1| =]

Il
™~

; 0 4
i=1 i=1
1< R[i-1]""1 R[i-1)"""2 .. R[i—1)"""d 1<
= - Pr | A Hue T g oo BT e — 1 = 2 P



Suppose that B is given oracles (p1, ..., fq). Then, the answer of B to X is

fi;(X) ifl<r—1,
pzdz )(ﬂ-ja ) ifl = r,
I Py (id, X0 ), Xppyrg) 0>+ 10

Notice that pigq k) (m1,-), - - - vﬁzdz(k) (7Td, ) and pjgy () (id, -) are independent of each other. Thus,
B provides A with the oracle R[r ] , and

l
L 1
Pr[Bpl""’pq — 1] — Z ZR .

i=1
Thus,
1 1
FIK1),.. F[Ky _ 1] _ probe — 11 — [ A
Pr [BFU- Pl 1] — Py [BPti — 1] | = E;—l Py 5?—13
Po—P 1, o
N L)

Now, let (p1, p2,...,pq) «= F(X™ x X%, X")9 Then,

Pr [ BFU P _ 1} Pr [Bes = 1]
< ‘Pr [BF[Kl},...,F[Kq} _ 1} _Pr [Bpl[Kl],...,pq[Kq] _ 1”

+

rf-rka
= Advi’cay p(B) +

Pr [Bpl[Kl],...,pq[Kq] — 1} _ Pr [B,al,...,,sq _ 1]‘

(p1[K1l, ..., pqlKy]) and (p1,- .., pq) are identical as long as w(K;) # n'(Kj;) for any distinct
m,m € IT U{id} for 1 <i < q. Thus,

PI' |:B,01[K1]7-~-7/7Q[KQ] = 1] — Pr [Bﬁl,-wﬁq - 1]’ S qu .

F:
P

To answer to the queries made by A, B may compute ., I and simulate fi. It

approximately costs at most /g evaluations of F'. a

Lemma 3. Let A be any adversary with m oracles against F' running in time at most t, and
making at most q queries. Then, there exists an adversary B against F' such that

m-prf-rka rf-rka
Adv HS{zd} p(A) <m-Adv II)YU{zd} p(B) -

B runs in time at most t + O(qTr) and makes at most q queries, where Ty represents the time
required to compute F'.

Lemma 3 is a generalized version of Lemma 4 in [19], which only covers the case that |[IT| = 1.
The proof of Lemma 3 is omitted since it is standard and similar to that of Lemma 4 in [19].



4 Applications

4.1 PRF with minimum padding
The proposed MAC function FMAC consists of a compression function F' : X" x X% — X" and
distinct permutations 7y and w5 on L™,

The padding function used in FMAC is defined as follows: For any M € X*,

ad(M) — M if [ M| >0and |[M|=0 (mod w)
P T\ M0t i M| =00r M| £0 (mod w) |

where [ is the minimum non-negative integer such that |M|+1+[7=0 (mod w). In particular,
pad(e) = 10% 1,

For any M, | pad(M)| is the minimum positive multiple of w, which is greater than or equal
to |M|. Let pad(M) = M ||Ma|| - - - || My, where |M;| = w for every i such that 1 <i < m.m =1

if |[M| =0, and m = [|M|/w] if |[M| > 0. M; is called the i-th block of pad(M).
FMAC is the MAC function C*{mm2} . 5om s 5%, 577 defined by

CF,{T(‘LWQ}(K’ M) = I7™ (K, pad(M)) if [M|>0and |[M|=0 (mod w)
I772(K pad(M)) if [M|=0or |M|#0 (mod w) .

CFAmm2} g shown to be a PRF under the assumptions that F is a PRF against related-key
attacks with respect to permutations 7 and 7 and that pyr, ) is negligibly small.

Corollary 1. Let m; and wy be permutations in P(X™)\ {id}. Let A be any adversary against
CFAmmt punning in time at most t and making at most q queries. Suppose that the length of
each query is at most bw. Then, there exists an adversary B against F' such that

rf rf-r
Adv%’Fv{mJ@} (A) < £q (Adv?id,wklamz},F(B) + p{ﬂlﬂ‘?})

B runs in time at most t + O(0qTr), and makes at most q queries. T is the time required to
compute F'.

Proof. Let A be an adversary against 771, [¥>™ using A as a subroutine. Let (h1, h2) be the

oracles of A. Then, (hi, hy) are either (If;’m, II};’M) with K « X" or (py, p2) « F((Xv)T, X7)2
A simply runs A. Let M be a query made by A. If [M| > 0 and |[M| = 0 (mod w), then A

returns h;(pad(M)) to A. Otherwise, A returns hy(pad(M)) to A. Finally, A outputs the output

of A. The run time of A is almost equal to that of A and A makes at most q queries in total.
Notice that

Pr [AII?JI’II?M = 1] =Pr [AC?{WMQ} = 1]

and
Pr [Am,pz = 1} =Pr[4’ =1] ,

where p « F(X*, X™). Thus, from Theorem 1, there exists an adversary B against F' such that

f f n f-rka
Advlg‘F,{ﬂfl,WQ} (A) = AdVI])II;',S{Trl,ﬂ'Q}(A) S Eq (Adv?’fd;l'l,ﬂ'Q},F(B) + p{7T]_,7T2}>
B runs in time at most ¢ + O(¢qTF), and makes at most ¢ queries. O



4.2 Vector-Input PRF

A scheme is proposed to construct a vector-input PRF (vPRF) using instances of FMAC. In the
original formalization [30], a vVPRF accepts vectors with any number of components as inputs.
In contrast, the proposed scheme has a parameter which specifies the maximum number of the
components in an input vector.

Let d be a positive integer, which is the maximum number of the components in an input
vector. Let F' : X" x X% — X" and II = {m,mo,...,maqr2} C P(X™)\ {id}. The proposed
vector-input function vEMAC VI . xn s (54)0d 5 ¥7 i defined as follows: For an s-
component vector (S1,52,...,Ss) such that 0 < s <d,

Cg,{wzd+1,ﬂzd+2}(€) if s =0,

VF’Hst,S,---asS — - - . .
(K, (S1, 52 ) CII;,{ 2d+1:T2d+2} (@f:l CI};,{TFZZ—l,WQZ}(Si)> if s> 1.

It is shown that VT is a vPRF if F is a PRF against related-key attacks with respect to
permutations in II and pj; is negligibly small.

Corollary 2. Let IT = {m,ma,...,maq+2} C P(X")\ {id}. Let A be any adversary against
VI running in time at most t and making at most q queries. Suppose that the length of each
vector component in queries is at most fw and that the total number of the vector components
in all of the queries is at most (> q — 1). Then, there exists an adversary B against F such
that

a(q—1)

rf rf-rka
AdV%F,H(A) </l(lo+q) (Adv%u{l;d}’F(B) + pH> + SnTi

B runs in time at most t + O(LaTr), and makes at most (0 + q) queries. Tr is the time required
to compute F.

Corollary 2 directly follows from Lemmata 4 and 5.

Lemma 4. Let II = {m,m2,...,mar2} C P(X™) \ {id}. Let A be any adversary against
{C’Fv{ﬂzz‘flﬂm} 1<i<d+ 1} running in time at most t and making at most q queries in total.

Suppose that the length of each query is at most fw. Then, there exists an adversary B against
F such that

AdvP'™

rf-rka
{CF’{ﬂQi—lﬂ"Qi} ) S Eq (AdVII)YU{zd},F(B) —|— pn)

1§i§d+1} (4

B runs in time at most t + O(lqTF), and makes at most q queries. T is the time required to
compute F'.

Proof. Let A be an adversary against {IF’“, e IF’”2d+2} using A as a subroutine. Then,
Ais given (2d+2) oracles (hy, h, . . ., hagyo), which are either <I§’m, . ,II?’WQd“) with K « X7
or (1517 s 7pA2d+2) «= F((Ew)+7 Zn)2d+2'

A simply runs A. Let M be a query made by A to its j-th oracle. If [M| > 0 and |M| =0
(mod w), then A returns hoj_q1(pad(M)) to A. Otherwise, A returns hg;(pad(M)) to A. Finally,
A outputs the output of A. The run time of A is almost equal to that of A and A makes at most
q queries in total.

Notice that

~ BT F,moq42 F{my,mo} F{moqy1:m2q42}

9



and

where (p1,...,par1) « F(X* X)) Thus, from Theorem 1, there exists an adversary B
against F' such that

A dvprfs

rfs 2 rf-rka
{CF,{w%,l,rrzi} 1§i§d+1}(A) = AdVII)F,H (A) < {q (Adv?]u{id},F(B) + pH)

B runs in time at most ¢ + O(¢qTF), and makes at most ¢ queries. O

Lemma 5. Let IT = {71, 72,..., T2} C P(X™)\ {id}. Let A be any adversary against V11
running in time at most t and making at most q queries. Suppose that the length of each vector
component in queries is at most Lw and that the total number of the vector components in all of
the queries is at most o. Then, there exists an adversary B against {CF’{“Qi—l’”Qi} 1<i<d+ 1}
such that

prf prfs CI(q - 1)
AL () S A sizar) P gt

B runs in time at most t and makes at most (o + q) queries in total. The length of each query
s at most fw.

Proof. Notice that
F,IT
AdvPT | (4) = (Pr [AVK - 1} _Pr[Af = 1]‘ ,

where p « F((X*)0d xm),
Let p; : X* — X" for 1 < i < d+ 1. Let VPLoPd+1 . (E*)[O’d] — X™ be a vector-input
function such that

Vp17.“7pd+1(S]_,SQ,...,Ss) — pd+l(5) . lfS = 0,
pat+1 (Bi=y pi(Si)) i s> 1.

VPLsPatl ig obtained from VII;’H simply by replacing CF{mi-1.m2i} with p; for 1 <4 < d + 1.
Then,

AdVI{;g,H<A) <
PI. |:AVII;,H:1:| _Pr |:AVP1 ,,,,, Pd+1 :1i|‘+‘Pr |:AVPI ,,,,, Pd+1 :1 —PI‘[APZI] ’ (1)

where K « 5™ (p1,...,pas1) « F(E5*, XM and p « F((29)04 £,

For the first term of the upper bound of Eq. (1), let B be an adversary against C'F Amma}
oFAmsmat - OFAmarimaie} et (91,92,---,94+1) be the oracles of B, which are either
(CFAmme} oFAmsmal  CFAmarimeatal) or (p1,pa,...,pas1). B runs A. For each query
(S1,52,...,5s) made by A, B returns gq+1 (D;_; 9i(Si)). Finally, B outputs the output of
A. Thus,

)Pr [AV;;,H _ 1} Py [Avm ,,,,, Pd+1 _ 1} ‘ _ AderfS

{CF,{Wzi—lﬂfzi} B) .

1§z’§d+1}(

The run time of B approximately equals that of A. The number of queries made by B to its
oracles is at most (d + 1)q.
For the second term of the upper bound of Eq. (1), let R be the oracle of A such that

1. Prior to the interaction with A,

10



- Y+ Lforl1<i<gand1l<j<d,
— Z;« X" for 1 <i<gq,and
— bad + 0.
2. During the interaction with A, return Z; to the i-th query made by A.
3. For 1 <i<gq,letS; =(Si1,52,...,5is) be the i-th query made by A, where 0 <s; < d.
For 1 <j <s;,
— Y, « X" if S, is new, that is, S; j # Sy ; for any i’ such that i’ < ¢, and
— Y, ; < Yy ; if there exists some i’ such that ¢/ < i and S;; = Sy ;.
4. bad < 1 if, for some distinct ¢ and 7/,

Si 851
Dris =Dres
J=1 J=1

Since R is identical to p, Pr [A® = 1] = Pr[4” = 1]. As long as bad = 0, R is also identical
to VPi-Pd+1 Notice that

S St
K K2 1
e | Dy = v | < o
j=1 j=1

Thus,

5 Discussion

The drawback of our proposals is that it requires the underlying compression function to be
a PRF against related-key attacks. However, the related-key-deriving functions, which are the
underlying permutations, cannot be chosen by adversaries. They are chosen by the users.

FMAC shares some features with existing MAC functions. The novelty of FMAC is its
simplicity.

— The compression-function-based MAC function of OMD [14] already uses minimum padding.
The difference between the OMD MAC function and FMAC is that the former uses a keyed
compression function as its underlying primitive. OMD is also inspired by tweakable block
ciphers [24].

— The idea to finalize the iteration with multiple non-cryptographic transformations was used
in the secure CBC-MAC variants GCBC1 and GCBC2 [28]. Due to the structure of CBC-
MAC, that is, the addition of a message block to a chaining variable, addition of non-zero
constants cannot be used for the non-cryptographic transformations of GCBC1 and GCBC2.

Some generic constructions of vPRF using any string-input PRF are already known. S2V
by Rogaway and Shrimpton [30] involves finite field multiplications. S2V-R by Minematsu [26]
requires bit rotations. Protected-counter-sum construction by Bernstein [9] can also be used
for vPRF, which requires encoding of an input to add counter values. On the other hand, an
instantiation of vEMAC only requires additions, though it is not a generic construction.

For vEMAC, the number of the components of an input vector is bounded from above,
and the upper bound depends on the number of the underlying permutations. To reduce the
number of permutations used for the construction, I*™ can be used instead of CFA™™} Let
{m1,m2,...,mg41} C P(X™). For any M € X*, let

pad (M) = M|]10" ,

11



where [ is the minimum non-negative integer such that [M|+1+1 =0 (mod w). The vPRF
VAT, T} gy (E*)[O’d} — X" is defined as follows: For an s-component vector
(S1,52,...,8s) such that 0 < s < d,

I (pad'(c)) if s =0,

v EAmL 2, } K, (51,8,...,55)) = 7r i
( ( 1,02 )) I;’ d+1 (pad' (@f:1 ]gvm(pad/(si)») if s >1.

The security proof is omitted since it is similar to that of V! with IT = {m, 7o, ..., Tagia}.

6 Conclusion

We have shown that the MDP domain extension may produce multiple independent PRFs
using a single key and multiple permutations if the underlying compression function is a PRF
against related-key attacks with respect to the permutations. Then, based on this result, we have
presented a MAC function called FMAC, which is cascade of a compression function based on
MDP. We have also extended FMAC so as to take as input a vector of strings. We have confirmed
their security as PRF on the assumption that the underlying compression function is PRF under
related-key attacks. Future work is to evaluate their security as PRF in the multi-user setting.
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