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Abstract—This contribution is concerned with the question whether an adversary can automatically manipulate an unknown FPGA
bitstream realizing a cryptographic primitive such that the underlying secret key is revealed. In general, if an attacker has full
knowledge about the bitstream structure and can make changes to the target FPGA design, she can alter the bitstream leading to key
recovery. However, this requires challenging reverse-engineering steps including that of the proprietary bitstream format. We argue that
this is a major reason why bitstream fault injection attacks have been largely neglected in the past. In this paper, we show that
malicious bitstream modifications are i) much easier to conduct than commonly assumed and ii) surprisingly powerful. We introduce a
novel class of bitstream fault injection (BiFI) attacks which does not require any reverse-engineering to undermine cryptographic cores.
Our attacks can be automatically mounted without any detailed knowledge about either the bitstream format of the design of the crypto
primitive which is being attacked. Bitstream encryption features do not necessarily prevent our attack if the integrity of the encrypted
bitstream is not carefully checked. We have successfully verified the feasibility of our attacks in practice by considering several publicly
available AES designs. As target platforms, we have conducted our experiments on Spartan-6 and Virtex-5 Xilinx FPGAs.

Index Terms—FPGA security, bitstream fault injection, automated key recovery, AES, bitstream encryption vulnerability.
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1 INTRODUCTION

FPGAs are used in a wide range of applications and
systems, e.g., in automotive, communications, computer

networks, avionics, defense and many other industries.
Since many of these applications require security, they need
cryptographic primitives as building blocks for services
such as integrity, authenticity, and confidentiality. Methods
of how to attack cryptographic implementations and how
to secure them have been studied for a long time in the
scientific literature. As one of the earlier references, Boneh et
al. [6] demonstrated in 1997 that the RSA public-key scheme
as well as authentication protocols are vulnerable to fault
injections. The idea is to exploit transient hardware faults
that occur during the computations of the cryptographic
algorithm. Due to the injected faults, faulty intermediate
values may propagate sensitive information to the output
revealing the private key. This concept was extended by
Biham and Shamir [5] – known as Differential Fault Analysis
(DFA) – to recover the secret key from symmetric block
ciphers such as DES. In 2003, Piret and Quisquater [24] in-
troduced a sophisticated fault model for AES which enables
an attacker to recover the secret key with only two faulty
ciphertexts.

In the last two decades, numerous other implementation
attacks on hardware have been proposed, including power
and EM side-channel attacks [22], glitch-based fault at-
tacks [15], [8], laser fault attacks [26] and photonic emission
attacks [25], each of which require different expertise and
equipment. For a classification of fault injection attacks, we
refer to contribution [34]. Notably, all proposed methods
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have in common that they cannot be executed automatically
for different designs. They always require an experienced
engineer to adjust the attack to each new target that may
become a time-consuming task in a black-box scenario.
Moreover, the majority of these attacks are generic hardware
attacks, i.e., they do not exploit the specific nature of field
programmable gate arrays.

An alternative attack strategy is to attempt to directly
read-out the key from a non-volatile memory or the bit-
stream. However, this is often a very difficult task. The keys
may be stored externally (e.g., in a hardware security mod-
ule), hard-coded in an obfuscated manner in the bitstream or
can be internally derived using a PUF (Physical Unclonable
Function). Due to the proprietary bitstream file formats that
dominate the industry and hardware architecture which are
often complex, any direct read-out attempt of the key from
the bitstream seems rather difficult. It should be noted that
recovering the entire netlist from a Xilinx FPGA design is
neither trivial nor completely possible, cf. [9]. For more
information about the FPGA security, see [10] and [33].

In this paper, we introduce a new strategy to efficiently
and automatically extract secrets from FPGA designs which
we coin bitstream fault injection (BiFI) attack. The goal is
to reduce the required expertise as well as the engineering
hours. Instead of reverse-engineering an FPGA design, we
manipulate an unknown bitstream without any knowledge of the
design resulting in faulty ciphertexts. These faulty cipher-
texts can then be used to recover the secret key. The general
idea that one might recover secret keys by manipulating
bitstreams without reverse-engineering was first mentioned
in [32], but no concrete attack was proposed and it re-
mained unclear if such an attack is feasible in practice. In
this paper we not only show that such attacks are indeed
feasible, but also that they are also much more powerful
than assumed. A surprising large number of bitstream ma-
nipulations result in exploitable faulty ciphertexts. A key
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finding of our analysis is that it is not necessary to make
targeted manipulations based on knowledge of the target
design. Instead, a set of design-independent manipulation
rules can applied automatically to different regions of the
target bitstream until the attack succeeds. Thus, one only
needs to develop an attack tool once and can apply it to any
design that implements the same cryptographic algorithm.
Crucially, no FPGA reverse-engineering expertise is needed
to perform the BiFI attack on different targets. We verified
the feasibility of the attack with 16 different AES implemen-
tations on a Spartan-6 FPGA. Out of those, 15 designs could
be successfully attacked with BiFI in an automated fashion.

While it might be tempting to think that bitstream en-
cryption can prevent BiFI attacks, this is not necessarily true.
Already in [32] it was noted that bitstream manipulations
might be possible in theory on encrypted bitstreams if no
integrity checks is used. However, it was also noted that the
CRC feature as it is implemented in Virtex-2 through Virtex-
5 FPGAs should prevent bitstream manipulation attacks
such as BiFI. In this paper, we show for the first time that
it is possible to apply BiFI to encrypted bitstreams. We
demonstrate this by successfully attacking 12 out of 13 AES
cores on a Virtex-5 FPGA with enabled bitstream encryption.
Hence, bitstream encryption in combination with a CRC
feature is not necessarily enough to stop BiFI attacks.

However, a carefully designed bitstream authentication,
as they are used in most of the recent Xilinx and Altera
FPGAs, can prevent such an attack. But it is worth noting
that actually most of the currently-deployed FPGAs do
not support bitstream authentication. According to Altera’s
annual business report from 2014 [3] the peak production
of an FPGA is roughly 6 years after introduction and the
FPGAs are sold for more than 15 years. According to the
annual reports of both Xilinx and Altera, around 50% of the
revenue actually comes from older FPGA families which
do not have bitstream authentication [3], [36]. Hence, our
attack is applicable to a large share of FPGAs currently in
use. It seems likely that it will take some time until FPGAs
with bitstream authentication are widely used. It should
also be noted that the bitstream encryption schemes of all
Xilinx FPGAs except for the latest and rather expensive
high-security devices (Kintex and Virtex Ultrascale), have
shown to be vulnerable to side-channel attacks [17], [18],
[20]. Similar to Xilinx, it was shown that Altera FPGAs
are susceptible to side-channel attacks as well [19], [30].
For these seemingly protected schemes, overcoming the bit-
stream encryption is equivalent to bypassing the bitstream
authentication. Therefore, the bitstream authentication of
these devices could be defeated using a side-channel attack
and subsequently a BiFI attack is possible again.

In summary, the majority of currently-deployed Xilinx
FPGAs appear to be vulnerable to the BiFI attack. However,
bitstream manipulations attacks were widely neglected in
the past due to the believed high complexity needed for
reverse-engineering. In contrast, the attacks presented in
this paper show that bitstream fault injection attacks can
be performed completely automatically without any user
interaction and without reverse-engineering of the design
or the bitstream format. Hence, BiFI attacks are low cost
and require very little expertise.

1.1 Related Work

Reverse-engineering the proprietary bitstream structure of
FPGAs has been the focus of several works. It was shown
by Ziener et al. that reverse-engineering LUT contents in an
FPGA bitstream is relatively easy for Virtex-II FPGAs [4]. It
has also been demonstrated how to recover LUT contents
from a bitstream file [29]. However, reverse-engineering
all elements in an FPGA including routing information
is considerably harder as stated by Benz et al. [4]. The
best results in the open literature were achieved in 2013
by Ding et al., where between 87% and close to 100% of
the routing of target designs were reverse-engineered [9].
Hence, we conclude that while reverse-engineering LUTs
is rather simple, reverse-engineering the entire bitstream is
considerably more challenging.

There are very few works that discuss the manipulation
of non-encrypted bitstreams. It has been recently shown
how to weaken a cryptographic primitive to leak a key by
altering a bitstream [29]. The targets were AES designs that
use a table-lookup implementation of the S-box. The authors
showed how to automatically detect corresponding LUTs
or BRAMs which realize the AES S-boxes, and fix the truth
table outputs to zero. This enables a key recovery requesting
one response. Similarly, Aldaya et al. proposed to modify the
BRAM content of AES implementations based on T-tables,
cf. [2]. Both of these attacks have in common that they
target a specific design-dependent part of the employed
cryptographic algorithm, which might be missing in other
implementations. It was later demonstrated how a Trojan
can be realized in practice by manipulating the bitstream of
the FPGA used in a commercial USB flash drive offering
user data encryption [28]. Even though this shows that
bitstream manipulations are feasible in practice, it is design-
dependent and requires major efforts. In contrast to these
works, the BiFI attack is much more general and targets
a wide range of possible designs with many different im-
plementation styles. Furthermore, in contrast to all previous
works, BiFI (up to some extent) can still deal with encrypted
bitstreams.

We should stress that while most research in the areas of
fault attacks focus on transient faults in the processed data,
our attack targets permanent faults in the control logic. In
our experiments, most designs could be attacked with only
one faulty ciphertext. In many cases, neither the plaintext
nor the fault-free ciphertext are required.

2 BACKGROUND AND ADVERSARY MODEL

This section gives a brief overview of the different building
blocks of an FPGA and also provides the assumed attack
and system model.

2.1 FPGA Building Blocks

One of the most important building blocks in FPGAs are
look-up tables (LUTs). Small truth tables (commonly either
16 or 64 bits wide) implement together with multiplexers
the combinatorial logic of a design. They can realize simple
gates such as an AND or XOR, but can also implement more
general Boolean expressions. LUTs are truth tables with one
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Fig. 1: On the left a 6-to-1 LUT with 6 input bits and 1 output
bit is depicted. The LUT is a truth table T with 64 entries that
is stored in the bitstream (right side).

output bit, cf. Figure 1. Besides LUTs and multiplexers,
FPGAs consist of D-flip-flops, BRAM blocks, DSPs and other
resources that define the wiring between these building
blocks. They can be connected with millions of wires to form
a complex circuitry. The entire configuration of these ele-
ments is described in the binary bitstream file. LUTs, being
the main logic elements in most modern FPGAs, are used
for a multitude of tasks like storing constants, processing
input signals, saving/loading data from flip-flops, copying
signals from one location to another, controlling data buses
or writing/loading BRAM contents. Given that LUTs play
such a key role in FPGA designs, they are a particular
interesting target for bitstream manipulation attacks.

Since we will later introduce various LUT modification
rules in the bitstream, we first provide some low-level back-
ground information on how LUTs are used in most Xilinx
FPGAs. An FPGA area is virtually divided into several
Configurable Logic Blocks (CLB), each of which consists of
– usually four – so-called slices. One slice includes various
flip-flops, multiplexers, and input/output pins which are
interconnected to a switch box. It also offers four native
64-bit LUTs. Fig. 2 illustrates a simplification of the most
common slice configurations. Note that we ignored some
hardware elements such as flip-flops and switch-boxes for
the sake of simplicity.
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Fig. 2: Subset of the most commonly used possible slice
configurations with focus on look-up tables.

Each 6-bit LUT can implement one out of 264 possible
6 7→ 1 Boolean functions, cf. configuration (a) in Fig. 2.
Alternatively, each 64-bit LUT can be split into two 32-bit
subtables in order to realize two different 5 7→ 1 Boolean
functions with shared inputs, cf. configuration (b) in Fig. 2.
Two (resp. four) LUTs within one slice can also be combined
to realize larger truth tables with 128 bits (resp. 256 bits)
to realize 7 7→ 1 (resp. 8 7→ 1) Boolean functions, cf.
configuration (c) and (d) in Fig. 2.

2.2 System Assumptions and Adversary Model
In the following, we describe a generic system model for
SRAM-based FPGA systems which can be often found in
various practical applications. Additionally, we describe
our adversary model. SRAM-based FPGAs employ volatile
memory, thus they require an external (usually untrusted)
storage, e.g., a flash or EEPROM chip that stores the bit-
stream file. It needs to be loaded upon each power-up of
the FPGA, cf. Fig. 3. As described above, many modern
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Fig. 3: Overview of system model. A proprietary bitstream
file implements an unknown AES circuit, which configures
an SRAM-based FPGA once it is powered-up. It then pro-
vides an AES interface to any possible real-world applica-
tion.

applications call for cryptographic primitives to be realized
on FPGAs. In this system model, we target particular de-
signs where encryption/decryption algorithms (e.g., AES)
are implemented. It is assumed that the key is not directly
accessible to the adversary. For example, it is encoded or
obfuscated in external memory, stored in a secure on-chip
memory, hard-coded in the design/bitstream, or gener-
ated internally by a PUF. We furthermore assume that the
attacker can query the AES implementation (with either
known or chosen plaintexts) and observe the ciphertexts.
However, in many cases we need to observe only one faulty
ciphertext.

Like most implementation attacks (either side-channel
or fault-injection), our attack requires physical access to the
target FPGA, an assumption which is often given in practice.
We suppose that the adversary has read- and write-access
to the external memory which stores the bitstream of the
target device. Consequently, he can arbitrarily modify the
bitstream, and observe the behavior of the FPGA accord-
ingly. More precisely, we suppose that the attacker is able
to extract and modify the content of LUTs in the target
bitstream. To achieve such an ability we refer to [29], where
the corresponding techniques are described.

3 BITSTREAM MANIPULATION ATTACKS

The first step of the attack is to read out the bitstream of
the device under attack from the non-volatile memory or
by wiretapping the configuration data bus. The attack tool
then repeatedly i) manipulates the bitstream by changing
some LUT contents, ii) configures the target device, and iii)
queries the manipulated design to collect faulty ciphertexts.

The faulty ciphertexts that are collected in this way are
then used to recover the key by testing a set of hypotheses,
e.g. the hypothesis that the collected faulty ciphertext is
simply the plaintext XORed with the key. However, there are
several LUTs in even small FPGAs, and testing all possible
modifications on all LUT bits is not practically feasible.
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Therefore, we try to reduce the space for manipulations
by defining particular rules in such a way that the faulty
ciphertexts can be still used for key recovery.

3.1 Manipulations Rules
All of the conducted manipulations target the LUTs of the
FPGA, i.e., only the combinatorial logic of the design is
changed. Let LUTi be the ith occupied LUT of n available
LUTs on the target FPGA. A LUT is a 64-bit truth table T that
implements a Boolean function y = f(x) with x ∈ {0, 1}6
and y ∈ {0, 1}. Let us denote the jth binary element in this
truth table as T [j] with 0 ≤ j ≤ 63. As stated before, we
suppose that the location of the truth table in the bitstream
for each LUT is known to the attacker, and hence he can
directly modify any single bit of this truth table.

With T as the original truth table and its corresponding
manipulated truth table T̃ , we define three basic operations:

1) Clear: T̃ [j] = 0, ∀j ∈ {0, ..., 63}
2) Set: T̃ [j] = 1, ∀j ∈ {0, ..., 63}
3) Invert: T̃ [j] = T [j]⊕ 1, ∀j ∈ {0, ..., 63},

and accordingly we define three manipulation rules as

•
R1[i]/R2[i]/R3[i] : Clear/Set/Invert the ith

64-bit LUT,

which cover the cases where the entire LUT forms a 6 7→ 1
function, cf. configuration (a) in Fig. 2.

Besides modifying the entire LUT, we also consider the
cases where only the upper or lower half of the LUT is
manipulated. As an example, we can form T̃ by

• T̃ [j] = 1, ∀j ∈ {0, ..., 31}
• T̃ [j] = T [j], ∀j ∈ {32, ..., 63}.

In other words, we only modify the upper half (first 32
bits) of the truth table. The motivation of considering these
operations is the cases where a LUT realized a 5 7→ 2
function, cf. configuration (b) in Fig. 2. Hence we define
three other rules as

•
R4[i, h]/R5[i, h]/R6[i, h] : Clear/Set/Invert the

hth half of the ith LUT.

To cover other two configurations – (c) and (d) Fig. 2 –
where two or four LUTs are grouped to form larger truth
tables, we define the next four rules as

•
R7[i]/R8[i] : Clear/Set all 4 LUTs within

the ith slice.

•
R9[i, h]/R10[i, h] : Set/Clear (h = 1) upper or

(h = 2) lower 2 LUTs within
the ith slice.

Let us define the Hamming weight of the content of all
4 LUTs within a slice by HW . Accordingly we define two
rules as

•
R11[n], R12[n] : Clear/Set all 4 LUTs within slices

with HW = n,

with n ∈ {1, ..., 256}. In other words, by these rules we
clear/set all slices that have a specific Hamming weight.
The motivation for these rules is to potentially alter multiple
instances of the same Boolean function simultaneously. This
may result in manipulating all instances of the same S-Box
in the design at once.

Based on our observations, the LUTs of the control logic
that examine whether a counter (e.g., AES round counter)
reaches a certain value (e.g., to issue a done signal) have a
considerably low or high HW. In other words, the content
of such LUTs have a high imbalance between the number of
’1’s and ’0’s. As an example, a LUT with 4 inputs c3c2c1c0
which checks whether c3c2c1c0=1010 (10dec as the number
of AES-128 rounds) has HW=1. Therefore, we consider the
following rules accordingly

•
R13[i, j] : Invert bit T [j] of the ith LUT, if

1 ≤ HW ≤ 15,

•
R14[i, j] : Invert bit T [j] of the ith LUT, if

49 ≤ HW ≤ 64.

Finally, we cover the case where a LUT is replaced by
a random Boolean function (in our experiments we applied
this rule 10 times to each LUT):

• R15[i] : Set the ith LUT to a random 64-bit value.

3.2 Key Recovery

By applying any of the above-explained rules, we hit control
logic and/or data processing part if a faulty ciphertext is
observed. For the key recovery, in the following we define
a couple of hypotheses, each of which can be examined
by having a plaintext-ciphertext pair (p, c). To define these
hypotheses we use the following notations:.

• p, k, c, c̃ : 16-byte plaintext, key, ciphertext, and faulty
ciphertext with c = AES128k(p).

• 0128: 128-bit value consisting of all 0’s.
• rkj : 16-byte jth round key with j ∈ {0, ..., 10} with

rk0 = k.
• SB(st), SR(st),MC(st) : SubBytes, ShiftRows, and

MixColumns operations on the current 16-byte
state st. Analogously, SB−1(st), SR−1(st), and
MC−1(st) represent the respective inverse functions.

• sbj , srj ,mcj , kaj : 16-byte state after SubBytes,
ShiftRows, MixColumns, and KeyAdd operations re-
spectively at round j.

Based on our observation, in several cases the key can
be extracted without knowing the corresponding ciphertext.
We hence define the following hypotheses:

• H1[j] : c̃ = rkj
• H2[j] : c̃ = SB(0128)⊕ rkj ,

for j ∈ {0, . . . , 10}. The hypothesis H1 mainly deals with
the cases where the state st becomes 0128. Further, H2

targets the faults which hit the control logic in such a
way that the S-box input register becomes always inactive.
We give a more detailed information about this concept in
Section 5.1.3. If only one round key rkj is extracted, the main
key can be easily recovered (e.g., see [14]). As a side note,
these hypotheses should be also examined on the invert of
the faulty ciphertext c̃.

Further, we consider the following hypotheses:

• H3[j]: c̃ = c⊕ rkj
• H4: c̃ = ka9
• H5: c̃ = sb10
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To recover the key using H3 is straightforward as rkj =
c̃ ⊕ c. Hypotheses H4 and H5 check the dependency be-
tween the faulty ciphertext and the state in the last AES
round. With hypothesis H4 the last roundkey rk10 can be
recovered: rk10 = SR (SB (c̃)). A similar approach can be
followed for hypothesis H5.

The next set of hypotheses are defined as:

• H6[j]: c̃ = p⊕ rkj
• H7: c̃ = sr1
• H8: c̃ = sb1
• H9: c̃ = mc1
• H10: c̃ = AESk′(p)
• H11: c̃ = SR(S(p))⊕ rk9,

where k′ is defined as rk′0 = rk0, and rk′j∈{1,...,10} = 0128.
Using H6 is straightforward. H7, H8, and H9 can also be
checked by applying the corresponding inverse functions,
e.g., rk0 = SB−1

(
SR−1

(
MC−1 (c̃)

))
⊕ p for H9.

To examine H10, we need to apply a specific form of the
decryption function as rk0 = AES−1k′′ (c̃) ⊕ p with ∀j ∈
{0, . . . , 10}, rk′′j = 0128. Hypothesis H11 can be seen as an
AES encryption where only the last round is executed. In
this case, the last round key can be trivially computed with
rk10 = c̃⊕ SR(SB(p)).

In each of the above hypotheses only one faulty cipher-
text is used. One can also define hypotheses that used two
faulty ciphertexts generated by two different bitstream ma-
nipulations for a certain plaintext. As an example, c̃1 = kaj
and c̃2 = kaj+1, which can lead to a full key recovery.
In this scenario, the adversary needs to try all possible
combinations between different faulty ciphertexts, and the
computation complexity of the attack increases quadrati-
cally. Since it is – to some extent – in contradiction with
our goal (i.e., limiting the number of rules as well as the
hypotheses for key recover), we omit the corresponding
results although we have observed such successful cases in
6 designs in our experiments.

4 EXPERIMENTAL SETUP AND RESULTS

For practical evaluations, we collected 16 AES encryp-
tion designs D0, ..., D15, four of which were developed
by our group. The other 12 cores have been taken from
publicly-available websites, e.g., NSA homepage, Open-
Cores, GitHub, SASEBO project1.

Most of the designs (D0, D2−D4, D6, D9−D15) operate
on a round-based architecture. D1 is based on a word-based
architecture, where 32-bit blocks are processed at each clock
cycle. D7 and D8 follow a serialized architecture, i.e., with
only one instance of the S-Box, where at each clock cycle one
byte is processed. Finally, D5 is an unrolled pipeline design
with 10 separately instantiated round functions, which can
give one ciphertext per clock cycle if the pipeline is full.

Each core is provided by an interface to set the key k and
the plaintext p, and to fetch the ciphertext c. We developed
an FPGA design template to play the role of an RS-232 inter-
face between a PC and the target AES core, where the key is
kept constant by the template. During the integration of any
of the target AES cores, we did not modify the AES circuitry,

1. D0 [16], D1 [13], D2 [11], D4 [12], D5 [31], D6 [21], D10 [23],
D11-D15 [1]

but adopted the template to fit to the sequences required by
the underlying AES interface. As an example, some of the
AES cores require first to perform a key schedule, while the
others process the actual encryption and key schedule in
parallel.

In order to perform the attacks, we developed a program
to automatically apply all the rules R1-R15 given in Sec-
tion 3.1 one after each other. To this end, our tool first queries
the original design with a particular plaintext and captures
the fault-free ciphertext (p, c). Afterwards, for each rule our
tool manipulates the bitstream accordingly, configures the
FPGA, queries the design with the same particular plaintext
p and collects the corresponding faulty ciphertext c̃. Another
program (which we have also developed) examines all the
hypotheses H1-H11 described in Section 3.2 by analyzing
each faulty ciphertext.

4.1 Results without Bitstream Encryption

Our setup is based on a Spartan-6 (XC6SLX16) FPGA,
where the JTAG port is used for configuration. The entire
bitstream manipulation, configuration, query and collection
of the faulty ciphertext takes around 3.3 seconds. We should
emphasize that by manipulating the bitstream, the Cyclic-
Redundancy-Check (CRC) checksum should be correct [29].
Alternatively, the bitstream can be modified in such a way
that the CRC check is simply disabled.

As stated before, we conducted our attack on 16 different
designs. The corresponding results are depicted in Table 1
indicating which manipulation rule R1-R15 on which AES
design D0-D15 led to an exploitable faulty ciphtertext. Sim-
ilarly, Table 2 shows for each AES design which hypotheses
H1-H11 led to successful key recovery.

For all designs, except the unrolled pipeline one (D5), at
least one hypothesis could make use of the faulty ciphertexts
generated by the manipulation rules to recover the key. In
Section 5.1 we give a detailed analysis on the exploitable
faults. In short, many exploitable faults hit the control logic
(i.e., the AES state machine is modified). We predict this
to be the reason why the design D5 cannot be successfully
attacked, since the unrolled pipeline design makes use of
the simplest state machine.

It can be seen from Table 1 that many different ma-
nipulations rules lead to exploitable faulty ciphtertexts.
It is also worth mentioning that each manipulation rule
was successful for at least one design. To compare the
efficiency of the manipulation rules, we computed a ratio
between the number of performed bitstream manipulations
and the number of exploitable faults, cf. Fig 4a. Note that a
lower ratio means that the underlying manipulation rule is
more efficient, since the average number of manipulations
required for an attack becomes smaller. As stated before,
each manipulation rule led to at least one exploitable faulty
ciphertext. However, some of them are more efficient than
the others. The most efficient one is R7 (i.e., clear an entire
slice), and R13 and R14 are among the worst manipulation
rules. On the other hand, we should emphasize that in
R13 and R14 each bit of the target LUT is independently
manipulated. Hence, the number of manipulated bitstreams
in these two rules is considerably higher compared to the
other rules.
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D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 d.att.
Changing all 64 bits of a LUT in the bitstream

R1[i] : Clear LUT 1 3 . 6 . . . 1 1 3 1 . . . . 2 8
R2[i] : Set LUT 2 4 3 1 . . . 2 2 2 . 3 . . . 1 9
R3[i] : Invert LUT 1 9 2 2 1 . . . 1 2 2 2 . . . 2 10

Changing only 32 bits of a LUT in the bitstream
R4[i, h] : Clear half LUT . 4 . 7 . . 1 4 3 3 . . 1 1 1 2 10
R5[i, h] : Set half LUT 1 3 2 3 . . . 3 3 2 . 3 1 1 1 1 12
R6[i, h] : Invert half LUT . 7 2 5 1 . . 1 1 3 1 2 2 2 3 4 13

Changing two or four 64-bit LUTs in the bitstream
R7[i] : Clear slice . 1 . 4 . . . 1 . 3 1 . . . . 1 5
R8[i] : Set slice 1 1 1 1 . . . 1 . 1 . 1 . . . 1 3
R9[i, h] : Set 2 LUTs 1 2 . 5 . . . 1 2 3 1 . . . . 1 8
R10[i, h] : Clear 2 LUTs 1 2 1 1 . . . 2 2 1 . 2 . . . 1 9

Clearing only LUTs with a specific slices’ HW in the bitstream
R11[n] : Clear slice if HW=n . . . 1 . . . 1 . . . . . . . . 2
R12[n] : Set slice if HW=n . 1 . 1 . . . 1 . . . . . . . . 2

Inverting single LUT bits (64 times) for a specific HW in the bitstream
R13[i, j] : Invert bits if HW ≤ 15 . 2 2 3 . . 2 5 5 4 . . 1 1 1 . 7
R14[i, j] : Invert bits if HW ≥ 49 . 1 . . . . . . . . . . . . . . 1

Configuring random Boolean functions (10 times) in the bitstream
R15[i] : Set LUT randomly 7 31 16 16 1 . . 3 7 13 1 12 5 2 5 3 14

Statistics∑
exploitable faulty ciphertexts 15 71 29 56 3 0 3 26 27 40 7 25 10 7 11 19

Number of vulnerable LUTs (R1-R14) 5 20 4 18 1 0 2 9 7 13 3 5 3 3 4 6
Measurement time R1-R12 (hours) 20 26 18 74 22 64 26 9 9 42 62 12 26 246 28 12
Measurement time R13-R14 (hours) 110 12 11 38 16 53 18 5 5 26 34 8 18 61 21 7

TABLE 1: Overview of the experiments with regard to the different modification rules. Each entry in the table represents the
number of times for which applying the manipulation rule Ri lead to an exploitable fault for design Dj . The last column
“d.att.” (designs attacked) shows the number of different designs Dj that could be attacked with the corresponding rule. In
the experiment, several different modification rules resulted in an exploitable faulty ciphertext when applied to the same
LUT. The number of LUTs that lead to at least one exploitable faulty ciphertext for at least one of the manipulation rules
R1 −R14 is shown in row “Number of vulnerable LUTs” as a reference.

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 d.att.
H1 : rk0 . . . . . . . . . . . 12 . . . . 1
H1 : rk10 . . . 33 . . . 2 4 15 . 3 . . . 5 6
H2 : S(0128)⊕ rk0 . . . . . . . . . . . . 4 2 4 . 3
†H2 : S(0128)⊕ rk1 . . . . . . . 1 . . . . . . . . 1
†H2 : S(0128)⊕ rk2 . . . . . . . . . . 1 . . . . . 1
H2 : S(0128)⊕ rk10 . 6 . . . . . 2 2 . . . . . . . 3
H3 : c⊕ rk10 . . . . . . . 2 2 . . . . . . . 2
H4 : ka10 . . . . 3 . 2 . . . . . . . 1 1 4
H6 : p⊕ rk0 4 . 19 10 . . . . . 14 2 10 1 3 4 7 10
†H6 : p⊕ rk2 1 . . . . . . . . 2 . . . . . . 2
H6 : p⊕ rk4 6 . . 1 . . . . . 1 . . . . . . 3
†H6 : p⊕ rk5 . . . 3 . . . . . 1 . . . . . . 2
‡H6 : p⊕ rk6 . . . 1 . . . . . 2 . . . . . . 2
H6 : p⊕ rk10 4 . . 8 . . . . . 5 . . . . . . 3
‡H7 : sr1 . 2 . . . . . . . . . . . . . . 1
†H9 : mc1 . . . . . . . . . . . . 3 . . . 1
H10 : AESk(p), rkj = 0 . 63 10 . . . 1 17 17 . 4 . 2 2 2 4 10
H11 : SR(S(p))⊕ rk10 . . . . . . . . . . . . . . . 2 1

Statistics
Collected responses 20333 26455 18044 75296 22442 65051 26522 8914 9080 42620 62991 12261 26226 249813 28188 12077
Unique faulty responses 6411 7412 6022 28512 8955 3772 15887 2587 2675 15760 10137 5171 15484 45971 17246 5317

TABLE 2: Overview of the experiments with regard to the different hypotheses. Each entry in the table represents the
number of times a hypotheses Hi for each design Dj could be used to recover the key from faulty ciphertexts being the
result of applying the modification rules R1-R15. Some of the hypotheses (marked by †) succeed only for R15 while some
other hypotheses with ‡ could make use of only R1-R14. The last column “d.att.” shows the number of different designs
that could be successfully attacked by the corresponding hypothesis. The last two rows summarize the number of collected
responses (which are equivalent to the number of times a bitstream manipulation was conducted) and the number of
observed unique faulty ciphertexts.

We would like to stress that in average every 3227
random manipulations (R15) led to an exploitable faulty
ciphertext (cf. Fig 4a) indicating that it is also a solid strategy.
Nevertheless, manipulations rules R1-R12 are a bit more
efficient than random manipulations with an average 1971
manipulations required to observe an exploitable faulty
ciphertext.

As stated before, the entire manipulation, configuration,
and query takes around 3.3 seconds. Hence, in average

1971 × 3.3 = 1.8 hours of bitstream manipulations are
needed per exploitable faulty ciphertext for rules R1-R12.
However, this time varies significantly depending on the
targeted design. Figure 4b shows the average time of bit-
stream manipulations (over manipulation rules R1-R12)
needed for an exploitable fault for each of the 16 AES
designs.
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(a)

(b)

Fig. 4: a) The ratio the number of performed bitstream
manipulations over the number of exploitable faults. b) The
average attack time (in hours) until an exploitable faulty
ciphertext is obtained for each of the targeted design (using
modification rules R1-R12).

4.2 Experimental Setup with Bitstream Encryption

To prevent reverse-engineering and IP-theft some FPGAs
are equipped with so-called bitstream encryption. We also
investigated to what extent the above-presented attack can
be efficient when the underlying bitstream is encrypted. To
this end, we take a closer look at this feature integrated in
several Xilinx FPGAs.

When this protection mechanism is enabled in the ven-
dor’s software, the user can chose a 256-bit AES key k as
well as a 128-bit initial vector IV . Excluding the header, the
main body of the bitstream is encrypted using AES256k(·)
in Cipher Block Chaining (CBC) mode. The corresponding
bitstream data of size m is divided into n 16-byte plaintext
blocks with Pi∈{1,..., m

16}, and sequentially encrypted as

Ci = AES256k(Pi ⊕ Ci−1), for i > 0 and C0 = IV. (1)

Analogously, the decryption is performed by a dedicated
hardware module on the FPGA as

Pi = AES256−1k (Ci)⊕ Ci−1, for i > 0 and C0 = IV. (2)

The key needs to be programmed once into the target
FPGA either in its volatile (BBRAM) or non-volatile mem-
ory (eFUSE). At every power-up, if the FPGA receives an
encrypted bitstream, it runs the corresponding CBC de-
cryption and configures its internal elements accordingly.
In relatively old Xilinx FPGAs, i.e., Virtex-4, Virtex-5, and
Spartan-6 families, the integrity of the encrypted bitstream
is examined by a 22-bit CRC. In Virtex-4 and Virtex-5 FP-
GAs, the CRC checksum is not included in the encrypted
part, and the corresponding command to enable the CRC
is involved in the (unencrypted) header of the bitstream.

Hence, the attacker can easily disable such an integrity
check by patching the encrypted bitstream. However, in case
of Spartan-6 the encrypted part of the bitstream contains
the CRC as well. Therefore, any bitstream manipulation
most likely leads to CRC failure (see Appendix 7.1 for more
information). Further, in more recent Xilinx products, e.g.,
Virtex-6 and the entire 7-series, the integrity (as well as
authenticity) is additionally examined by an HMAC, which
also disables any bitstream manipulation.

Therefore, in order to investigate the efficiency of our
BiFI attack when the bitstream is encrypted, we conducted
our experiments on a Virtex-5 FPGA. Obviously it is desir-
able to control the effect of manipulation of the bitstream,
e.g., to avoid the propagation of the changes. If l bits of
ciphertext block Ci+1 – in CBC mode – are toggled, its effect
on the plaintext block Pi+1 is not predictable. However, it
also directly changes the corresponding l bits of the next
plaintext block Pi+2, and interestingly such a manipulation
does not propagate through the entire bitstream. This con-
cept is illustrated in Figure 5.

 AES256k
-1  AES256k

-1  AES256k
-1  AES256k

-1

Ci

...

Ci+1 Ci+2 Ci+3

IV

Pi Pi+1 Pi+2 Pi+3

random 
stream key

random 128 
plaintext bits

controllable 
bits

Fig. 5: The impact of faulting one ciphertext block in case of
CBC decryption.

4.3 Results with Enabled Bitstream Encryption
On our Virtex-5 (XC5VLX50) setup – with bitstream encryp-
tion enabled – we examined 13 AES designs (D0, D2-D6,
D9-D15) out of the previously expressed 16 designs2. If we
ignore the unpredictable changes on plaintext Pi+1, toggles
on the bits of ciphertext Ci+1 lead to the same toggles on
plaintext Pi+2 (see Fig. 5). Therefore, we can only apply
the rules R3 and R6 which toggle the entire or a half of a
LUT. Further, the unpredictable manipulation of plaintext
Pi+1 may also hit a utilized LUT. In short, manipulation
of ciphertext Ci+1 based on R3 and R6 indirectly applies
the rule R15 to other LUTs as well. More importantly, the
unpredictable changes on plaintext Pi+1 can lead to mis-
configuration of switch boxes, and hence short circuits3. In
such scenarios, the FPGA cannot be configured, and needs
to be restarted.

We should emphasize that we assume that the attacker
has a deep knowledge about the underlying bitstream
structure. As an example, he knows which parts of the
bitstream (either unencrypted or encrypted) belong to LUTs’
configuration. However, in case of the encrypted bitstream
he cannot realize which LUTs are utilized. Therefore, the

2. Due to their e.g., hard-coded macros not compatible with Virtex-5,
the designs D1, D7, and D8 could not be synthesized on this FPGA.

3. Based on our observations, the currently-available FPGAs in the
market are protected against such short circuits, preventing them being
destroyed.
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D0 D2 D3 D4 D5 D6 D9 D10 D11 D12 D13 D14 D15 d.att.
R3[i] 12 7 11 1 . 2 6 1 8 6 4 5 6 12

R6[i, h] 25 11 14 2 . 2 8 2 11 8 7 13 13 12∑
exploitable faulty ciphertexts 37 18 25 3 . 4 14 3 19 14 11 18 19 12

TABLE 3: Overview of the BiFI attack on encrypted bitstreams. Two modification rules R3 and R6 were tested and each
table entry represents the number of exploitable faulty ciphertexts.

D0 D2 D3 D4 D5 D6 D9 D10 D11 D12 D13 D14 D15 d.att.
H1 : rk0 . . . . . . . . 7 . . . 5 2
H1 : rk10 . . 16 . . . 7 . . . . . . 2
H2 : S(0128)⊕ rk0 . . . . . . . . . 3 4 13 . 3
H2 : S(0128)⊕ rk1 2 . . . . . . . . . . . . 1
H3 : c⊕ rk10 . . . . . . . 1 . . . . . 1
H4 : ka10 . . . 3 . . . . 1 . . . . 2
H6 : p⊕ rk0 17 12 . . . . . . 11 7 6 5 13 7
H6 : p⊕ rk2 9 . 1 . . . 1 . . . . . . 3
H6 : p⊕ rk3 . . 2 . . . . . . . . . . 1
H6 : p⊕ rk5 4 . 5 . . . . . . . . . . 2
H6 : p⊕ rk6 . . 1 . . . . . . . . . . 1
H6 : p⊕ rk8 2 . . . . . . . . . . . . 1
H6 : p⊕ rk10 3 . . . . . 6 . . . . . . 2
H10 : AESk(p), rkj = 0128 . 6 . . . 4 . 1 . 2 1 . 1 6
H11 : SR(S(p))⊕ rk1 . . . . . . . . . 2 . . . 1

Statistics
Collected responses 86400 86400 86400 86400 86400 86400 86400 86400 86400 86400 86400 86400 86400
Unique faulty responses 4655 7659 16959 12118 9432 12124 8089 19638 4677 11706 12469 21945 5269

TABLE 4: Overview of the exploitable faulty ciphertexts of the different hypotheses for 13 different designs with enabled
bitstream encryption.

rules R3 and R6 need to be applied to all available LUTs
(28,800 in our Virtex-5 (XC5VLX50) FPGA). Hence, the
attack takes longer compared to that on an unencrypted
bitstream. Further, since the Virtex-5 FPGA equipped in our
setup is larger (hence, larger bitstream) than the Spartan-6
one, each configuration takes around 6.6 seconds, i.e., two
times slower than the previously-shown experiments, which
in sum turns into 6.8 days to apply both R3 and R6 rules on
all available LUTs. Table 3 shows the corresponding result
of the attacks on the targeted 13 AES designs.

Similar to the unencrypted case, only the unrolled
pipeline design D5 cannot be successfully attacked. Notably,
an average of 11.5 hours is needed for a successful attack
over all designs. For further details, we refer to Table 4
which shows all successful hypotheses leading to the ex-
posure of the key.

We also conducted another attack in which we con-
sidered the encrypted part of the bitstream as a complete
black-box, i.e., without directly targeting the LUTs. In order
to minimize the effect on plaintext block Pi+2, we only
toggled the most significant bit of one ciphertext block. In
other words, we tried to apply only R15 on plaintext block
Pi+1. As a proof of concept, we examined the attack only
on design D10, which took around 6 days, and led to four
exploitable faulty ciphertexts4. Therefore, knowing the exact
locations of the LUT contents in the (encrypted) bitstream is
not necessarily essential.

4.4 Discussion on Altera Bitstream Encryption Scheme
The underlying mode of encryption and the employed
integrity check determine whether a BiFI attack can be

4. It is noteworthy that in this case we expectedly observed several
misconfigurations.

mounted on an encrypted bitstream. While we used Xil-
inx FPGAs in our practical experiments, below we discuss
about the feasiblity of our attack on Altera’s bitstreams
with enabled encryption. In the recent families of Altera
FPGAs (similar to that of Xilinx FPGAs), an HMAC authen-
tication process is integrated. Hence, such devices are not
susceptible to our attacks (unless the bitstream encryption
and authentication is circumvented e.g., by a side-channel
analysis attack [19], [30]). However, the older Stratix-II and
Stratix-III families use AES in counter mode and a simple
CRC for integrity check. The underlying scheme in Stratix-
II and Stratix-III are similar except i) AES-128 replaced by
AES-256 in the later one, and ii) arithmetic counter (of the
counter mode) replaced by a sophisticated pseudo-random-
number generator (for more information see [19], [30]).

 AESk  AESk  AESk  AESk

IV

...

IV+1 IV+2 IV+3

Ci

Pi Pi+1 Pi+2 Pi+3

controllable 
bits

Ci+1 Ci+2 Ci+3

Fig. 6: The decryption in Counter Mode as it is used for
bitstream encryption in Stratix-II and III FPGAs. Toggling
a single ciphertext bit results in a predictable toggle of a
plaintext bit.

Both devices generate a stream key which is XORed with
the plaintext blocks to form the encrypted bitstream. The
decryption process (performed on the FPGA) follows the
same concept as depicted in Figure 6. In this case, if an
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adversary manipulates the bitstream by toggling l bits of the
ciphertext block Ci+1, the corresponding l bits of the same
plaintext block Pi+1 toggle, and the changes propagate nei-
ther to other bits of the same block nor subsequent blocks.
Therefore, compared to the encryption feature of Xilinx FP-
GAs, the attacker has more control over the manipulations,
hence higher efficiency of BiFI attacks. More importantly,
since the CRC is linear, it can be trivially predicted how
the CRC checksum should change by any toggle made on
a ciphertext block (similarly on a plaintext block). More
precisely, the attacker can toggle any arbitrary bit(s) of the
encrypted bitstream and correspondingly modify the CRC
checksum. Therefore, the counter mode makes BiFI attacks
considerably easier if a CRC integrity check is employed.
Although we have not yet practically examined it, we are
confident that our attack can be easily and successfully
applied on Altera Stratix-II and Stratix-III FPGAs.

5 ANALYSIS

So far we have only expressed the manipulation rules as
well as the hypotheses which we used to conduct successful
attacks. Below, we give more details by focusing on a few
cases, where observed faulty ciphertexts led to key recovery.

5.1 Evaluation of Observed Faults

For a couple of exploitable faulty ciphertexts, we investi-
gated at the netlist level, what exactly caused this faulty
behavior. To do so, we used FPGA Editor (provided by
the Xilinx ISE toolchain) to analyze the LUTs whose mod-
ification in the bitstream led to a key exposure. Due to
the large number of faults, we only cover a small subset
of exploitable faults that are representative for a class of
similar possible faults. Hence, the provided analysis is not a
comprehensive study and only aims at providing the reader
with an intuition of what can happen during the attack. It is
noteworthy that the presented figures are a simplified high-
level representation of the usually more complex hardware
structure.

5.1.1 Hitting the Control Logic
A successful key recovery on the round-based design D0

was due to manipulating a LUT whose two output bits
are used to control a 3-to-1 multiplexer controlled by two
bits (m1,m2). A part of this design performs the following
operations

• CLK cycle 1: state = p⊕ rk0,

• CLK cycles 2-10: state = mcj ⊕ rkj , j ∈ {1, ..., 9},
• CLK cycle 11: c = sr10 ⊕ rk10.

Depending on the clock cycle (i.e., the round counter) the
targeted LUT (which controls the multiplexer) switches
between the plaintext p (0, 0), the state after MixColumns
mcj (0, 1), and the final state after the final ShiftRows sr10
(1, 0), cf. the upper part of Figure 7. The 128-bit multiplexer
output is XORed to the corresponding 128-bit round key.

By applying the rule R1 (Clear LUT), the LUT outputs
are permanently fixed to (0, 0), and hence, the multiplexer
always outputs p regardless of the clock cycle, cf. the lower
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    St. ShiftRows
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St. j th 
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KeySchedule
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00...0

Usual workflow of original circuit

  Workflow of manipulated circuit
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LUT
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LUT
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m2
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Fig. 7: Manipulation rule R1 (Clear LUT), round-based de-
sign D0, consequence: plaintext p (instead of sr10) is XORed
to the last AES round key rk10.

part of Figure 7. More precisely, by such a bitstream manip-
ulation, the following operations are performed

1) CLK cycle 1: state = p⊕ rk0,

2) CLK cycles 2-10: state = p⊕ rkj , j ∈ {1, .., 9},
3) CLK cycle 11: c̃ = p⊕ rk10.

The circuit outputs c̃ = p⊕ rk10 instead of c = sr10 ⊕ rk10,
which is the motivation to include hypothesis H6 for key
recovery.

5.1.2 Update mechanism of flip-flops - Never Update 128-
bit key register
We noticed a manipulated LUT whose output controls the
update of a couple of flip-flops. As an example, a LUT
might control the CE signal (Clock Enable) of a 128-bit state
or key register. The flip-flops’ content is updated on e.g.,
the rising edge of the clock, only if the CE signal is ‘1’.
The manipulation rule R1 (Clear LUT) turns such a LUT
into constant ‘0’, hence always disabling the update. We
have observed many cases where the round key registers
are never updated. Such a LUT modification can hence turn
flip-flops into read-only elements, while they only output
their initial value5.

An example is depicted in Figure 8. It shows that the
key schedule output is not stored by the flip-flops and they
output always ‘0’. Therefore, such a manipulation rule can
lead to all round keys rkj∈{1,...,10} = 0128.
Based on our observations – depending on the design archi-
tecture – the initial KeyAdd operation is still conducted by
the correct round key rk0. More precisely, the manipulated
AES core performs the following operations:

1) state = p⊕ rk0,

2) state = MC(SB(SR(state)))⊕ 0128, j ∈ {1, ..., 9},
3) c̃ = SB(SR(state))⊕ 0128.

Therefore, the hypothesis H10 (defined in Section 3.2) can
examine whether a manipulation hit the corresponding
LUT, and consequently recover the key.

5. In Xilinx FPGAs the initial value of every flip-flop can be defined.
Without any definition, the default value (usually ‘0’) is taken by the
synthesizer.
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KeySchedule
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Fig. 8: Manipulation rule R1 (Clear LUT), round-based de-
sign D15, group of flip-flops forming a 128-bit round key
register (rkj,0 - rkj,127) used for XOR with the current AES
state. Due to the manipulation, none of the round key flip-
flops are updated. Instead, they always remain ‘0’.

5.1.3 Update mechanism of flip-flops - Never Update S-box
Input Register
We have observed a similar scenario for the other registers.
As an example, we focus on the AES design D1 with 32-bit
datapath, where updating the complete 128-bit AES states
requires at least four clock cycles. Similar to the prior case,
the CE pin of the registers are controlled by a LUT. If such
a LUT is manipulated by R1 (Clear LUT), the register will
have always its initial value, cf. Figure 9.

FSM LUT

AES state 1st column

00...0

AES state 2nd column

AES state 3rd column

AES state 4th column 8

32 S-box 
Input

INIT=0...0 

2

clk
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0

S-box

32

0x00

S-box
S-box
S-box

8

Const = 0x63

Fault impact  32-bit input always 
remains zero   never update FFs     i.e., 
plaintext influence canceled

R1: Clear LUT

...

...

...

...

Fig. 9: Manipulation rule R1 (Clear LUT), word-based design
D1, due to the bitstream manipulation the S-box inputs
remain zero, this results into the leakage of the last round
key rk10.

It is noteworthy that in this design, the four aforementioned
AES S-boxes are used only for the SubBytes operation, i.e.,
the key schedule circuitry employs separate S-box instances.
Even though all the main AES operations (ShiftRows, Ad-
dRoundkey, MixColumns, etc.) operate correctly, the round
output is not stored into the S-box input registers. Therefore,
the manipulated design outputs c̃ = SB(SR(0128))⊕rk10 =
SB(0128)⊕ rk10, which trivially leads to recovering the last
round key rk10, i.e., hypothesis H2.

These results indeed indicate that preventing registers
from updating their state can lead to various exploitable
ciphertexts. However, as expressed above, the feasibility of
the key recovery depends on the initial value of the registers.

Hence, if the registers (in HDL representation) are initialized
by arbitrary values, the aforementioned attacks would need
to guess the initial value instead of 0128, which obviously
complicates the attacks.

5.1.4 Update mechanism of flip-flops - Invert Updating

We also observed that the manipulation rule R3 (Invert
LUT) resulted in inverting a signal that controls when the
output register (128-bit flip-flops so-called out reg) should
be updated by trivially being connected to its CE pin. In
the underlying AES core, the out reg is not updated during
the encryption except when the encryption is terminated
thereby storing the ciphertext. To this end, the correspond-
ing LUT output (so-called update out reg enable) is ‘1’ at
only one clock cycle, cf. upper part of Figure 10.

state

clk
0

1

0

1update_out_
reg_enable

ka8

out_reg 0 0 c

0

update_out_
reg_enable

1

ka0 ka1 ka8 ka9 ka9out_reg

...

...

...

...

End of encryption

ka9

0 0

cka1ka0

After inverting LUT

Normal Operation

Fig. 10: Manipulation rule R3 (Invert LUT), round-
based design D4, Due to the LUT inversion of the up-
date out reg enable control signal, the relevant output reg-
ister out reg is updated at the wrong clock cycles, i.e., the
modified AES core fails to copy the correct ciphertext c and
writes the leaking state ka9.

By the aforementioned manipulation, the LUT output
update out reg enable is inverted, and the output register
out reg stores the cipher state after KeyAdd operation at
all cipher rounds except the last one. Consequently, the
state after the AddRoundkey at round 9 (i.e., ka9) is given
as faulty output instead of the correct ciphertext c. By
examining hypothesis H4 it can be tested whether such a
LUT is hit which directly leads to key recovery.

5.1.5 Hitting the State Machine or Round Counter

One of the most common observed exploitable faults was
due to manipulation of a LUT that (partially) processes the
state machine or counter signals. As a consequence, in many
cases the manipulated AES core finished its operations
earlier than the fault-free case. Such a manipulation leads
to the exposure of various intermediate values, e.g., the
state after the jth AddKey (kaj). A representative example
is illustrated in Figure 11.
We have observed that the manipulated LUT realizes the
following function:

final round = rnd0 · rnd3 · rnd1 · rnd2. (3)
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Fig. 11: Manipulation rule R13 (Invert bits if HW ≤ 15),
round-based design D6, consequence: modification of AES
round counter threshold.

Such a LUT controls the AES core to stop the operations
when the round counter reaches (rnd3, rnd2, rnd1, rnd0) =
(1, 0, 1, 0) = 10dec, obviously corresponding to 10 cipher
rounds of AES-128. Inverting certain bits of this LUT’s
content, e.g., by R13, can lead to decrease or increase the
number of rounds that the AES core operates.

Similarly, if manipulation rule R2 (Set LUT) is applied,
the targeted LUT (which e.g., makes the DONE signal)
forces the AES core to terminate the operation right after
the start, cf. Figure 12. The state machine control flow is
therefore affected, and as a consequence an intermediate
state (e.g., p⊕ rk0) is given instead of the ciphertext.

FSM
/ RS232

LUT
FSM/

round cnt

DONE=   

START

p

Sample/transfer 
c if DONE=   c

DONE=    if round cnt = 10

DONE=    if round cnt < 10

R1: Set LUT

11...1

Fault impact 
DONE is always '1'

c=AESk(p)

Fig. 12: Manipulation rule R2 (Set LUT), round-based de-
sign D9, consequence: the AES core permanently observes
DONE=‘1’.

5.2 Discussions

This paper focused on generating exploitable permanent
faults using bitstream manipulation. However, we would
like to highlight that the presented approach to recover an
AES key from permanent faults is not restricted to these at-
tacks. Basically, several other fault techniques can be used to
create similar exploitable faulty ciphertexts. For example, it
was shown that laser fault attacks can also be used to change
the configuration of the FPGA, e.g., in [7]. Typically, the goal
of most laser fault attacks on FPGA designs is to cause tran-
sient faults in one round of the AES encryption to recover
the key using a differential fault analysis. Permanent faults
are usually not intended and are seen (e.g., in [7]) mainly
as an obstacle from an attacker’s perspective. However, the
results in this paper show that permanent faults can actually
be a very powerful attack vector. The key insight is that even
random configuration errors (rule R15) have a high chance
to result in exploitable faulty ciphertexts. Hence, the same
attack idea can also be performed with random (or targeted)

laser fault injection. Clock glitch or power glitch during the
configuration of the bitstream might also be used to cause
such configuration faults. Therefore, investigating how the
BiFI attack can be extended to other fault techniques or
cryptographic algorithms is an interesting future research
direction.

6 CONCLUSION

This paper introduces a new attack vector against crypto-
graphic implementations on SRAM-based FPGAs. In this
attack – so-called bitstream fault injection (BiFI) – the faults
are injected repeatedly by configuring the target FPGA with
malicious bitstreams. As a key insight of the BiFI attack,
it can be automated so that no reverse-engineering of the
target design is needed. Our attack, which is based on
injecting permanent faults, is feasible in many practical real-
istic scenarios, where the attacker can manipulate the FPGA
configuration and observe the faulty outputs of the target
design. The adversary indeed manipulates the bitstream to
alter and exploit the configuration maliciously.

Our experimental results with 16 AES implementations
on a Spartan-6 FPGA showed that 15 out of these 16 designs
could be successfully attacked in average in a few hours.
The larger the design is (i.e., the more LUTs are utilized), the
longer the attack takes. We furthermore showed that such a
key recovery is even possible for some FPGAs when the
bitstream encryption is enabled. The time required for the
attack (in case of the encrypted bitstream) depends on the
size of the underlying FPGA (more precisely on the number
of available LUTs). It can range from hours (for low and
mid-range FPGAs) up to weeks (for high-range FPGAs, e.g.,
with 1 million LUTs).

In short, the BiFI attack is non-invasive and requires
neither a sophisticated setup nor a reverse-engineering tool.
Indeed, it can be conducted by engineers without particular
expertise. Hence, an interesting research question is how to
develop the designs – rather than a sound integrity check
– to defeat such attacks. For example, whether the concepts
in [27], [35], developed mainly for software platforms, can
be integrated into FPGA designs.
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7 APPENDIX

7.1 Testing the Bitstream Encryption Vulnerability of
Xilinx FPGAs

In an initial step, we used the Xilinx tool to generate
an encrypted bitstream for a Virtex-5 FPGA with enabled
CRC-check (bs enc crc on). For a quick test, we randomly
modified one encrypted block in the bitstream and tried to
configure the corresponding Virtex-5 FPGA. As expected,
the FPGA refused to configure the manipulated bitstream.
In the next step, we generated another encrypted bitstream
for the same FPGA design and using the same key k and
the same IV, but with disabled CRC-check (bs enc crc off ).

Disabling the CRC-check means that two 22-bit CRC
values toggle to a fixed default sequence (defined by Xilinx)
and that one bit toggles in the bitstream header which is
responsible for disabling/enabling the CRC check.

The comparison of both encrypted bitstreams
bs enc crc on versus bs enc crc off revealed that only
the unencrypted parts of the file are different, i.e., the
encrypted blocks are identical, cf. Fig. 13. Therefore, we
concluded that the encrypted parts of the bitstream does not
contain the checksum. Otherwise, due to the default CRC
sequence at least one encrypted block would be different.

Meta information

CRC disable = 1

header

body

Encrypted 

bitstream section

C1C2C3   CN-1 CN

Unencrypted 

bitstream section 1

Unencrypted 

bitstream section 2

  CRC default  

  CRC default ...

Meta information

CRC disable = 0

Encrypted 

bitstream section

C1C2C3   CN-1 CN

Unencrypted 

bitstream section 1

Unencrypted 

bitstream section 2

   CRC1  

   CRC2 ...

Fig. 13: Bitstreams Virtex-5 (VLX50), left: encryption enabled
and CRC off (bs enc crc off ), right: encryption enabled and
CRC on (bs enc crc on).
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bitstream section
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Unencrypted 
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Meta information

CRC disable = 0

Encrypted 

bitstream section

C1C2C3   CN-1 CN

Unencrypted 

bitstream section 1

Unencrypted 

bitstream section 2

   CRC2  

Fig. 14: Bitstreams Spartan-6 (SLX75), left: encryption en-
abled and CRC off (bs enc crc off ), right: encryption enabled
and CRC on (bs enc crc on.)

To evaluate our findings on Virtex-5, we i) first observed
all bit toggles due to bs enc crc on versus bs enc crc off,
then ii) applied the same bit toggles on the target encrypted
bitstream (with enabled CRC-check), iii) applied various
manipulation rules (Section 4.3), and finally iv) configured
the manipulated bitstream into the FPGA device. It turned
out that the Virtex-5 FPGA accepted the manipulated bit-

stream, and hence, there is no appropriate integrity check
leading to feasible BiFI attacks.

We repeated the same experiment on a Spartan-6 (SLX75)
FPGA and noticed that one (out of two) CRC sequences is
part of the last encrypted block CN , cf. Fig. 14. Therefore, for
these kind of bitstreams the integrity is ensured providing
protection against BiFI attacks unless side-channel attacks
are used to recover the underlying bitstream encryption key.

One further observation we made is that the Spartan-
6 FPGAs in general denies any encrypted bitstream with
disabled CRC-check. This is not the case for Virtex-5.


