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Abstract

We construct a functional encryption scheme for circuits which achieves a notion of security
that interpolates predicate and functional encryption. Our scheme is secure based on the
subexponential learning with errors (LWE) assumption. Our construction simultaneously achieves
and improves upon the security of the current best known, and incomparable, constructions from
standard assumptions, namely the predicate encryption scheme of Gorbunov, Vaikuntanathan
and Wee (CRYPTO 2015) and the reusable garbled circuits scheme of Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich (STOC 2013). Our contributions may be summarized as follows.

1. We show that existing LWE based predicate encryption schemes [AFV11, GVW15] are
completely insecure against a general functional encryption adversary (i.e. in the “strong
attribute hiding” game). We demonstrate three different attacks, the strongest of which is
applicable even to the inner product predicate encryption scheme [AFV11]. Our attacks
are practical and allow the attacker to completely recover a from its encryption Enc(a)
within a polynomial number of queries. This illustrates that the barrier between predicate
and functional encryption is not just a limitation of proof techniques.

2. We provide a new construction that unifies and extends the constructions of Gorbunov
et al. [GVW15] and Goldwasser et al. [GTKP+13]. Our construction supports a single
“decryption query” as in [GTKP+13] in addition to an unbounded number of “non-decryption
queries” as in [GVW15]. In particular, our construction yields an alternate candidate for
reusable garbled circuits.

3. We upgrade the security of our construction, as well as [AFV11, GVW15], from selective
to semi-adaptive, where the adversary may output the challenge after seeing the public
parameters in the security game. Our transformation is generic, and applies to several
LWE based selectively secure FE schemes.

4. We generalise the above scheme to support q decryption queries, for any polynomial q which
is a-priori fixed. The ciphertext size grows as O(q2), improving upon the q-query version
of [GTKP+13, GVW12] in which the ciphertext size grows as O(q4). Our ciphertext is
succinct in that its size does not depend on the size of the circuit.
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1 Introduction

The last decade has witnessed important progress in the field of computing on encrypted data.
Several sophisticated generalizations of encryption, such as Identity Based Encryption [BF01,
Coc01, GPV08], Attribute Based Encryption [GPSW06, BSW07, GGH+13c, GVW13], Predicate
Encryption [KSW08, AFV11, GVW15], Fully Homomorphic Encryption [Gen09, BV11, GSW13,
BV14], Property Preserving Encryption [PR12] have burst onto the scene, significantly advancing
the capabilities of modern cryptography.

These generalizations aim to provide the capability of computing “blind-folded” – namely,
given an encryption of some data a, an untrusted party should be able to perform computations
on Enc(a) so that the resultant ciphertext may be decrypted meaningfully. The notion of fully
homomorphic encryption permits arbitrary computation on encrypted data, but restricts decryption
to be all-or-nothing, namely, the holder of the secret key may decrypt the resultant ciphertext to
learn the result of the computation, but the same key also decrypts the original ciphertext revealing
a. For applications that require restricted access to results of the computation, the notion of
functional encryption (FE) is more suitable. In functional encryption, a secret key is associated with
a function, typically represented as a circuit C, denoted by SKC and a ciphertext with some input
a from the domain of C, denoted by CTa. Given SKC and CTa, the user may run the decryption
procedure to learn the value C(a). Security of the system guarantees that nothing beyond C(a)
can be learned from CTa and SKC . Functional encryption was formalized by Boneh et al. [BSW11]
to unify and extend the notions of Identity Based Encryption, Attribute Based Encryption and
Predicate Encryption, which had already appeared in the literature.

There has been considerable progress in the last several years towards constructing FE
for advanced functionalities [BF01, Coc01, BW06, BW07, GPV08, CHKP10, ABB10, GPSW06,
BSW07, KSW08, LOS+10, AFV11, Wat12, GVW13, GGH+13c, GGH+13b, GVW15]. For the
most powerful notion of “full-fledged” functional encryption, that allows the evaluation of
arbitrary efficiently-computable functions and is secure against general adversaries, the only known
constructions rely on multilinear maps [GGHZ14] or indistinguishability obfuscation (iO) [GGH+13b].
However, all known candidate multi-linear map constructions [GGH13a, CLT13, GGH15] as well
as iO [GGH+13b] have been recently broken [CHL+15, CGH+15, HJ15, CJL, CFL+, MSZ].

From standard assumptions, the best known constructions do support general functionalities,
but achieve restricted notions of security. Currently, the state-of-the-art comprises two incomparable
constructions:

• The reusable garbled circuits construction of Goldwasser et al. [GTKP+13], which supports
all polynomial sized Boolean circuits but restricts the attacker to only obtain a single secret
key, for any circuit C of her choice. This construction can be compiled with the bounded
collusion FE construction of [GVW12] to obtain a scheme which supports q queries, for any
a-priori bounded q, and with a ciphertext size that grows as O(q4). Note that the ciphertext
size here does not depend on the size of the circuit C, and is thus succinct.

• The recent predicate encryption for circuits construction of Gorbunov et al. [GVW15], which
also supports all polynomial sized Boolean circuits but restricts the attacker to only acquire
keys for circuits Ci such that Ci(a) = 0, when a is the vector of challenge attributes. He may
not request any keys Cj such that Cj(a) = 1. We will refer to the former as 0-keys and the
latter as 1-keys. This restricted game of security is often referred to as weak attribute hiding
in the literature.

Both constructions natively achieve the restricted selective notion of security, which forces the

2



attacker to output the challenge in the very first step of the game, before seeing the public parameters.

Covering the distance from these restricted constructions to full fledged functional encryption
is a much sought-after goal, and one that must contend with several thorny technical issues. The
former construction relies on the use of garbled circuits for decryption, which restricts the number
of supported keys to 1, or, using the additional machinery of [GVW12], to some a-priori bounded
q. The use of garbled circuits is central to this construction, and surmounting the bounded key
limitation appears to require entirely new techniques. On the other hand, the second construction
does support an unbounded number of queries, but restricts them to belong to the 0-set. It is
unclear how to support even a single 1-query in this case, due to various technical hurdles that arise
from the proof techniques (more on this below). This motivates the following question:

Can we provide a single construction that supports an unbounded number of 0-queries and a
bounded number of 1-queries?

1.1 Our Contributions

In this work, we answer the above question in the affirmative and provide a construction that
simultaneously achieves (and improves upon) the best of both [GVW15] and [GTKP+13]. Our
contributions may be summarized as follows.

1. We demonstrate that the inability to handle 1-queries by the proofs of current predicate
encryption systems [GVW15, AFV11] is not a limitation of proof technique. We show that
these constructions are completely insecure against an adversary who requests an arbitrary
number of 1-keys. We demonstrate three different attacks, the strongest of which is even
applicable to the simple inner product testing functionality of [AFV11]. Our attacks are
practical and allow an attacker making a polynomial number of 1-queries to completely recover
a from CTa.

2. We provide a new construction that supports a single 1-query, and an unbounded number of
0-queries, unifying the best of both [GVW15, GTKP+13]. We refer to our construction as a
(1,poly)-FE scheme, where the first term refers to the number of 1 queries, and the second to
the number of 0 queries supported.

3. We upgrade the security of our construction, as well as [AFV11, GVW15], from selective to
semi-adaptive [CW14] where the adversary may output the challenge after seeing the public
parameters in the security game. Our transformation is generic, and applies to several LWE
based selectively secure FE schemes.

4. We generalize our (1, poly)-FE to (Q,poly)-FE for any polynomial Q which is a-priori fixed.
The ciphertext size grows as O(Q2), improving upon the Q-query version of [GTKP+13,
GVW12] in which the ciphertext size grows as O(Q4). Our ciphertext is succinct in that its
size does not depend on the size of the circuit.

We provide a table comparing our results with previous work in Figure 1.

1.2 Our Techniques

Our work builds upon the constructions of Goldwasser et al. [GTKP+13] and Gorbunov et al.
[GVW15]. Both these systems begin with the idea that the public attributes in an attribute based
encryption scheme (ABE) may be hidden, and yet remain amenable to computation, if they are
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0 keys 1-keys CT succinct? CT Q-dependence Security

[GVW15] poly 0 Y — selective

[GTKP+13] + [GVW12] Q1 Q−Q1 Y Q4 selective

[AR16] Q1 Q−Q1 N Q2 full

This poly Q Y Q2 semi-adaptive

Figure 1: Comparison of results with prior work.

encrypted using fully homomorphic encryption. Recall that in an attribute based encryption scheme
[GPSW06], a ciphertext is associated with a public attribute vector a and plaintext bit µ, and it
hides µ, but not a.

Then, to hide a, encrypt it using FHE to obtain â, and treat this encryption as the public
attribute in an ABE system. Since an ABE scheme for circuits [GVW13, BGG+14] allows for a key
SKC to evaluate an arbitrary circuit C on the attribute, the decryptor may now homomorphically
compute on â using the FHE evaluation circuit. Then, given a key corresponding to the circuit
FHE.Eval(C, ·), the decryptor may run the ABE decryption procedure to learn the FHE encryption

of C(a), namely Ĉ(a).

This is not yet enough, as the goal is for the decryptor to learn C(a) in the clear. To achieve

this, FHE decryption must be performed on Ĉ(a) in a manner that does not permit decryption of

any ciphertext other than Ĉ(a). The scheme of Goldwasser et al. [GTKP+13] resolves this difficulty
by employing a single use garbled circuit for the FHE decryption function and using ABE to provide

labels corresponding to input Ĉ(a). This constrains FHE decryption, but restricts the resultant FE
scheme to only be secure against a single key request. The scheme of Gorbunov et al. [GVW15]
resolves this difficulty by making use of two nicely matching asymmetries:

1. The asymmetry in computation. To compute C(a) using the above method, the bulk of the
computation is to be performed on FHE ciphertext, namely FHE.Eval(C, â), where â can be
public. The remainder of the computation, namely running the FHE decryption circuit on

Ĉ(a), is a relatively lightweight circuit.

2. The asymmetry in attribute hiding in the ABE scheme of [BGG+14]. There is an inherent
asymmetry in the homomorphic multiplication procedure of the ABE scheme [BGG+14], so that
computing a product of two ciphertexts wth attributes a1 and a2 respectively, only necessitates
revealing one attribute (say a1) while the other (a2) can remain hidden (for addition, both a1

and a2 may remain hidden). This property is leveraged by [GVW15] to construct partially
hiding predicate (or attribute) encryption (PHPE), which allows computation of an inner
product of a public attribute vector corresponding to FHE.Eval(C, â) and a private attribute
vector, corresponding to the FHE secret key. Since inner product loosely approximates FHE
decryption, this allows the decryptor to obtain a plaintext value corresponding to C(a) as
desired.

While the predicate encryption scheme [GVW15] can handle an unbounded number of 0-queries
from the adversary, it runs into at least three difficulties when faced with a 1-query:

1. The proof of security in the PHPE scheme uses a trapdoor puncturing technique [ABB10]
in the simulation, so that the simulator has a trapdoor to sample keys for 0-queries but this
trapdoor vanishes for 1-queries, disabling the simulator.
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2. Given a PHPE ciphertext CTâ with public attributes â, key homomorphism [BGG+14,
GVW15] enables the evaluation of a circuit C on the PHPE ciphertext resulting in a PHPE
ciphertext CTC( â ) with attributes C( â ). By construction, this resultant ciphertext is an
LWE sample with an error term which is fixed and public linear combination of the error
terms used to construct CTâ. This error is learned by the adversary upon decryption, which
creates leakage that cannot be simulated. Indeed, this leakage, when sufficient, can completely
break LWE security and allow the adversary to learn a in the clear (see Section 4 for details).

3. Recall that the FHE decryption operation is a lightweight operation conducted using PHPE
with the FHE secret key as the private attribute vector. While FHE decryption is lightweight,
it is still not lightweight enough to be performed in its entirety while maintaining the privacy
of the FHE secret. FHE decryption is an inner product followed by a threshold function, of
which only the inner product can be performed securely by PHPE. The authors overcome this
hurdle by making use of the “lazy OR” trick, which roughly allows the decryptor to learn not
the threshold inner product, but the pure inner product, which leaks sensitive information
about the noise used while encrypting a. Again, this leakage cannot be simulated, and when
sufficiently high, can lead to complete recovery of the FHE secret key.

Attacks. Interestingly, all of the above difficulties in proving security translate to polynomial
time attacks that lead to complete message recovery in a game where 1-keys are permitted. Our
first and strongest attack is related to the first difficulty, and is effective even against the inner
product predicate encryption scheme of Agrawal et al. [AFV11]. The attack exploits the fact that
the real world key generation algorithm is stateless, and upon being asked for a key corresponding
to the same function vector multiple times, provides independent short vectors in the same coset of
a given lattice (say F), which can be combined to recover a full trapdoor for F. Since the key in
question is a 1-key, the construction allows the attacker to recover an LWE sample FTs + noise just
by following the decryption procedure. This LWE sample unresistingly reveals all its secrets given a
trapdoor for F, which in turn allow the attacker to recover the entire message.

Our second attack is against the Partially Hiding Predicate Encryption system for circuits
[GVW15] and stems from the second difficulty above. This attack exploits the fact that the
decryptor, given a 1-key, learns a public linear function of the error terms used in encryption. By
requesting sufficient 1-keys, the attacker can solve this linear system to recover the errors used in
encryption, which lead to recovery of the predicate a even when functionality reveals much less.

Our third attack is against the Predicate Encryption system for circuits [GVW15]. As discussed
in the third difficulty, the PE decryption key, which wishes to provide the decryptor with a threshold
inner product value, instead can only provide the exact inner product value, leaving the decryptor
to compute the threshold herself. This leads to an attacker learning linear equations in the errors
used to construct the FHE encryption â, which, when sufficiently many, let her recover the FHE
secret, which in turn lets her recover a.

We emphasize that our attacks are entirely practical. For instance consider the following scenario.
A user who is authorized to obtain a key corresponding to circuit C, pretends that she has lost her
key and re-issues a key request. The key generator checks her credentials and returns a new key
SKC . By obtaining multiple keys for the same circuit C as in Attack #1, the malicious user, who is
only authorised to learn the single bit C(a), instead learns the entire message a. Our attacks also
apply to the weaker indistinguishability based security game of functional encryption [BSW11] but
do not work in the “weak attribute hiding” security game considered by [AFV11, GVW15].

5



Selectively Secure (1,poly)-Functional Encryption. We provide a construction that over-
comes the above vulnerabilities for the case of a single 1-key, and continues to support an unbounded
number of 0-keys. By restricting the attacker to any single query, this yields an alternate construction
for reusable garbled circuits [GTKP+13]. We summarize the main ideas here. For clarity of
exposition, we omit many details; we refer the reader to Sections 5 and 7 for the formal construction
and proof.

Our starting point is the predicate encryption scheme of [GVW15], which we will hereby refer
to as (0,poly)-FE, as it supports zero 1-queries and any polynomial number of 0-queries. The
construction for (0,poly)-FE makes use of two components as described above, namely, (0,poly)-
partially hiding predicate encryption (PHPE) and fully homomorphic encryption (FHE). Our
construction for (1,poly)-FE follows the same high level template as [GVW15], and as our first step,
we require (1,poly)-PHPE. Note that the (0, poly)-PHPE scheme does allow the key generator to
release an unbounded number of both 0 and 1 queries, but as mentioned above, the proof of security
breaks down if the adversary requests a 1-key. This is because the secret key corresponding to a
circuit C is a low norm matrix K satisfying an equation of the following form:[

A | AC

]
K = P mod q

where the matrices A,P are fixed and public, and the matrix AC is computed by executing a
homomorphic evaluation procedure [BGG+14, GVW15] corresponding to the circuit C on some
public matrices. In the real system, the key generator has a trapdoor for A, which allows it to
sample K using known techniques [CHKP10, ABB10]. In the simulation, the matrix AC has a
special form, namely AC = [ARC −C(a) ·G] for some low norm matrix RC and fixed public matrix
G. The simulator has a trapdoor for G which enables it to sample the required K also using known
techniques but only when C(a) 6= 0 [ABB10]. When C(a) = 0, G vanishes along with its trapdoor,
and the simulator has no method by which to sample K1.

To overcome this, we note that if the circuit C is known before the public key is generated, the
simulator can instead sample K first and set P to satisfy the above equation. This is a standard trick
in LWE based systems [GPV08, Pei13], and yields the same distribution of the pair (K,P) as in the
real world. This allows us to take a step forward2, but the adversary’s view remains distinguishable
from the real world, because decryption leaks correlated noise which is un-simulatable, as discussed
in difficulty #2 above. To overcome this, we must choose the noise in the challenge ciphertext
with care so that the noise yielded by the decryption equation is statistically close to fresh and
independently chosen noise. Put together, these tricks enable us to build a (1, poly)-PHPE.

However, (1, poly)-PHPE does not immediately yield (1, poly)-FE due to difficulty #3 above,
namely, leakage on FHE noise. To handle this, we modify the circuit for which the PHPE key is

provided so that the FHE ciphertext Ĉ(a) is flooded with large noise before the inner product with
the FHE secret key is computed. Now, though the attacker learns the exact noise in the evaluated

FHE ciphertext Ĉ(a) as before, this noise is independent of the noise used to generate â and no
longer leaks any sensitive information. Note that care is required in executing the noise flooding
step, since correctness demands that the FHE modulus be of polynomial size. To ensure this, we
flood the FHE ciphertext before the FHE modulus reduction step, leveraging the fact that the

1The careful reader may observe that the simulator is disabled when C(a) = 0, not when C(a) = 1, though we
have claimed that [AFV11, GVW15] can support 0-queries and not 1 queries. This is because, traditional functional
encryption literature defines decryption to be permitted when the function value is 1, and defines the function value
to be 1 when C(a) = 0. We follow this flip to be consistent with prior work.

2This is presently a weak security game where the circuit C is announced before the parameters are generated.
This restriction will be removed subsequently.
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flooding operation is simple addition, and may hence be performed using PHPE with the flooding
noise being part of the private attributes. Now, we have at our disposal a (1, poly)-FE scheme.

Upgrading Selective to Semi-Adaptive. The above techniques yield a (1, poly)-FE scheme,
but one that is secure according to a weak selective definition of security, which is inherited from
the underlying (1,poly)-PHPE scheme. We improve this by providing a method for compiling
our selectively secure PHPE construction to one that satisfies semi-adaptive security, in which the
attacker may see the public parameters before revealing the challenge. Our transformation is generic
– it applies to all constructions that satisfy certain structural properties. In more detail, we require
that: 1) the PHPE ciphertext CTa be decomposable into |a| components CTi, where CTi depends
only on a[i], and 2) CTi is a fixed and public linear function of the message a[i] and randomness
chosen for encryption.

Concretely, consider the ciphertext in the (0, poly)-PHPE of [GVW15]. For i ∈ [`],

CTi = ui =
(
Ai + a[i] ·G

)T
s + noisei ∈ Zmq

Clearly condition (1) is satisfied – the ith component of a influences only ui. Additionally, note
that

ui =
〈
[ AT

i , 1, 1 ]; [ s, a[i] ·GTs, noisei ]
〉

mod q

Here, the first vector is a fixed public vector that is known to the key generator, while the second
vector is made up of components all of which are known to the encryptor.

Given these two conditions, we construct a semi-adaptive PHPE for the circuit class C, denoted
by SaPH, using two ingredients:

1. A single key fully secure3 functional encryption scheme, denoted by FuLin, for the inner
product functionality defined as:

F(V1,...,Vk)(a1, . . . ,ak) =
∑
i∈[k]

Vi · ai mod q

Such a scheme was recently constructed by Agrawal et al. [ALS16].

2. A (1,poly) selectively secure PHPE scheme for the circuit class C, which we denote by SelPH.

Intuitively, the idea is to nest the selective PHPE system for C within an adaptive
FE system for inner products, so that the latter is used to generate ciphertexts of the
former on the fly. In more detail, the public parameters of SaPH are set as the public
parameters of FuLin, the secret key corresponding to C, namely SaPH.SK(C) is the tuple(

SelPH.PK, FuLin.SK( [ AT
i , 1, 1 ] ), SelPH.SK(C)

)
and the ciphertext is SaPH.CT =

FuLin.CT
(
[ s, a[i] · GTs, noisei ]

)
. Now, the ciphertext FuLin.CT

(
[ s, a[i] · GTs, noisei ]

)
and

secret key component FuLin.SK( [ AT
i , 1, 1 ] ) may be decrypted to obtain the SelPH ciphertext,

which may be decrypted using SelPH.SK(C). Some care is required in ascertaining that FuLin is
only invoked for a single secret key, but this can be ensured by taking multiple copies of the FuLin
scheme, and using the same randomness to generate multiple copies of the same key.

The advantage to the above strategy is that the public parameters of the SaPH scheme are now
set as the public parameters of the FuLin scheme, and the public parameters of the SelPH scheme
are moved into the secret keys of SaPH scheme. This enables the simulator of the SaPH scheme to

3Please see Appendix 8.5 for the definition of full security.
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provide the public parameters using the (adaptive/full) simulator for the FuLin scheme, and delay
programming the PHPE public parameters until after the challenge is received, as required by the
SelPH simulator. Thus, selective security may be upgraded to semi-adaptive security for the circuit
class C, by leveraging adaptive security of the simpler inner product functionality. For more details,
please see Section 6. We note that concurrently and independently to our work, [BV16, GKW16]
also construct semi-adaptive FE using completely different techniques.

Generalising to Q queries. To construct (Q,poly)-FE, we again begin by constructing (Q,poly)-
PHPE, which in turn is constructed from (1,poly)-PHPE. The (1,poly)-PHPE scheme has the
following structure: it encodes the message b within an LWE sample β0 = PTs + noise + b. Given
other components of the ciphertext, the decryptor is able to compute a ciphertext cEval and key
generator provides as the key a short matrix K, where

cEval = [ A | AC ]Ts + noise, [ A | AC ] K = P mod q

By computing KTcEval − β0 and rounding the result, the decryptor recovers b.

To generalise the above to handle Q queries, a natural approach would be to encode the message
Q times, using Q distinct matrices P1, . . . ,PQ and have the ith key Ki be a short matrix satisfying
[ A | ACi ] Ki = Pi mod q. Then, the key generator can pick Pi for the ith key, and sample
the corresponding Ki as the secret key. However, this straightforward idea would require the key
generator to keep track of how many keys it has produced so far and would make the key generator
stateful, which is undesirable.

To get around this, we make use of a trick suggested by Gorbunov et al. [GVW12] in a similar
context. The idea is to enable the key generator to generate a fresh matrix P∗i for the ith key in a
stateless manner, as follows. We publish a set of matrices {P1, . . . ,Pk} in the public key, for some
parameter k. The key generator chooses a random subset ∆i ⊂ [k] s.t. |∆i| = v for some suitably
chosen v, and computes P∗i =

∑
j∈∆i

Pj . It then samples Ki so that

[ A | ACi ] Ki = P∗i mod q

If we choose (v, k) as functions of the security parameter κ and number of queries Q in a way
that the Q subsets ∆1, . . . ,∆Q are cover free with high probability, then this ensures that the
matrices P∗1, . . . ,P

∗
Q are independent and uniformly distributed, which will enable the simulator to

sample the requisite keys. This idea can be converted to a secure scheme, see Section 5.3 for details.

This gives us a (Q,poly)-PHPE but constructing (Q,poly)-FE requires some more work. Instead
of flooding the evaluated ciphertext with a single piece of noise, we must now encode at least Q
pieces of noise, to flood the ciphertext for Q decryptions. Fortunately, this can be ensured by
leveraging cover-free sets again, so that the decryptor is forced to add a random cover-free subset
sum of noise terms to the ciphertext before decryption. This ensures that each decryption lets the
decryptor learn a fresh noise term which wipes out any troublesome noise leakage. Details are in
Section 7.3.

Organization of the paper. The paper is organized as follows. In Section 2, we provide the
priliminary definitions and lemmas related to lattices that will be required in the remainder of
the paper. In Section 3 we provide definitions of (1,poly) partially hiding predicate encryption,
(1,poly) functional encryption and fully homomorphic encryption as well as the algorithms that
will be used in our paper. In Section 4, we describe our three attacks using 1-keys against existing
predicate encryption systems. In Section 5 we provide our construction for (1, poly) partially hiding
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predicate encryption as well as its generalisation to (Q,poly)-PHPE. This is upgraded to achieve
semi-adaptive security in Section 6. In Section 7 we provide our (Q,poly) FE scheme.

2 Lattice Preliminaries

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent
Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of n ×m matrices with entries in Zq.
We use bold capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote
vectors. We use x[i] to refer to the ith element of vector x. The notation AT denotes the transpose
of the matrix A. When we say a matrix defined over Zq has full rank, we mean that it has full rank
modulo each prime factor of q.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. If x1 is a length m vector and x2 is a length m′ vector,
then we let [x1|x2] denote the length (m+m′) vector formed by concatenating x1 and x2. However,
when doing matrix-vector multiplication we always view vectors as column vectors.

For a vector x, we let ‖x‖ denote its `2 norm and ‖x‖∞ denote its infinity norm. For any matrix
R, we define ‖R‖ (resp. R‖∞) as the `2 (resp. infinity) length of the longest column of R.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n)
to denote a polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1− negl(n). The function log x is the base 2 logarithm of x. The notation bxe denotes
the nearest integer to x, rounding towards 0 for half-integers.

We will denote by {Ai} and {vj} the set of matrices {Ai}i∈[` and the set of vectors {vj}j∈[t]

when the range is clear from context.

2.1 Lattice Definitions

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a linearly
independent set of vectors whose span is Λ. We will be concerned with integer lattices, i.e., those
whose points have coordinates in Zm. Among these lattices are the “q-ary” lattices defined as
follows: for any integer q ≥ 2 and any A ∈ Zn×mq , we define

Λ⊥q (A) :=
{
e ∈ Zm : A · e = 0 mod q

}
Λu
q (A) :=

{
e ∈ Zm : A · e = u mod q

}
.

The lattice Λu
q (A) is a coset of Λ⊥q (A); namely, Λu

q (A) = Λ⊥q (A)+t for any t such that A·t = u mod q.

Let T = {t1, . . . , tk} be a set of vectors in Rm and T̃ := {t̃1, . . . , t̃k} ⊂ Rm be the Gram-Schmidt
orthogonalization of T. We define ‖T‖GS = ‖T̃‖.

2.2 The LWE Problem

The Learning with Errors problem, or LWE, is the problem of distinguishing noisy inner products
from random. More formally, we define the (average-case) problem as follows:

Definition 2.1 ([Reg09]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability distribution
on Zq. For r ∈ Znq , let Ar,χ be the probability distribution on Znq ×Zq obtained by choosing a vector
a ∈ Znq uniformly at random, choosing e ∈ Zq according to χ, and outputting (a, 〈a, r〉+ e).
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The decision-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number of
samples that are either (all) from Ar,χ or (all) uniformly random in Znq × Zq, output 0 if the former
holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algorithms A, the
probability that A solves the decision-LWE problem (over r and A’s random coins) is negligibly
close to 1/2 as a function of n.

Connection to Lattices. The power of the LWE problem comes from the fact that for certain
noise distributions χ, solving the search-LWE problem is as hard as finding approximate solutions to
the shortest independent vectors problem (SIVP) and the decision version of the shortest vector
problem (GapSVP) in the worst case.

Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called B-bounded if

Pr[ χ ∈ {−B, . . . , B} ] = 1

Regev and Peikert [Reg09, Pei09] showed that there is a B bounded distribution χ such that
solving LWEq,n,χ is as hard as (quantumly) approximating certain worst case lattice problems to
a factor of Õ(n · q/B). These lattice problems are believed to be hard to approximate even for
subexponential q/B, i.e. 2n

ε
for some fixed 0 < ε < 1/2.

Gaussian distributions. Regev [Reg09] defined a natural distribution on any m dimensional
lattice Λ, called the discrete Gaussian distribution, parametrized by a scalar σ > 0. [GVW15]
consider a slightly modified version of the discrete Gaussian, namely the truncated discrete Gaussian
distribution, denoted by DΛ,σ, where the output is replaced by 0 whenever the ‖ · ‖∞ norm of the
sample exceeds σ ·

√
m. We will find it convenient to work with the truncated discrete Gaussian.

The following lemma about discrete Gaussians will be very useful to us.

Lemma 2.2 (Drowning Lemma). [GKPV10] Let n ∈ N. For any real σ = ω(
√

log n), and any
c ∈ Zn,

SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

We will also need the following lemma about randomness extraction.

Lemma 2.3. [ABB10] Suppose that m > (n+ 1) log q+ω(log n) and that q > 2 is prime. Let R be
an m× k matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is polynomial in n. Let A
and B be matrices chosen uniformly in Zn×mq and Zn×kq respectively. Then, for all vectors e ∈ Zm,
the distribution (A,AR,RTe) is statistically close to the distribution (A,B,RTe).

3 Preliminaries: Definitions and Algorithms

In this section we define the notions of partially hiding predicate encryption, (1, poly)-functional
encryption and fully homomorphic encryption. We also provide the algorithms that we will require
in the remainder of the work.

3.1 Partially Hiding Predicate Encryption

A Partially-Hiding Predicate Encryption scheme PHPE for a pair of input-universes X ,Y , a predicate
universe C, a message spaceM, consists of four algorithms (PH.Setup,PH.Enc,PH.KeyGen,PH.Dec):
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PH.Setup(1κ,X ,Y, C,M) → (PH.PK,PH.MSK). The setup algorithm gets as input the security
parameter κ and a description of (X ,Y, C,M) and outputs the public parameter PH.PK, and
the master key PH.MSK.

PH.Enc(PH.PK, (x,y), µ) → CTy. The encryption algorithm gets as input PH.PK, an attribute
pair (x,y) ∈ X × Y and a message µ ∈M. It outputs a ciphertext CTy.

PH.KeyGen(PH.MSK, C) → SKC . The key generation algorithm gets as input PH.MSK and a
predicate C ∈ C. It outputs a secret key SKC .

PH.Dec((SKC , C), (CT,y))→ µ ∨ ⊥. The decryption algorithm gets as input the secret key SKC ,
a predicate C, and a ciphertext CTy and the public part y of the attribute vector. It outputs
a message µ ∈M or ⊥.

Correctness. We require that for all (PH.PK,PH.MSK) ← PH.Setup(1κ,X ,Y, C,M), for all
(x,y, C) ∈ X × Y × C and for all µ ∈M,

• For 1-queries, namely C(x,y) = 1,[
PH.Dec

(
(SKC , C), (CTy,y)

)
= µ

]
≥ 1− negl(κ)

• For 0-queries, namely C(x,y) = 0,[
PH.Dec

(
(SKC , C), (CTy,y)

)
= ⊥

]
≥ 1− negl(κ)

Semi-Adaptive SIM Security. Below, we define the semi-adaptive experiment for partially
hiding predicate encryption (PHPE) that supports a single 1-query and an unbounded number
of 0-queries. We denote such a scheme by (1, poly)-PHPE scheme. We note that the scheme of
Gorbunov et al. [GVW15] is a (0, poly)-PHPE scheme.

Definition 3.1 ((1, poly) (Semi-Adaptive)-SIM-Attribute-Hiding). Let PHPE be a partially hiding
predicate encryption scheme for a circuit family C. For every p.p.t. adversary Adv and a stateful
p.p.t. simulator Sim, consider the following two experiments:

ExprealPHPE,Adv(1
κ): ExpidealPHPE,Sim(1κ):

1: (PH.PK,PH.MSK)← PH.Setup(1κ)
2: (x,y, µ, C∗, stA)← Adv(PH.PK)
3: CTy ← PH.Enc

(
PH.PK, (x,y), µ

)
4: SKC∗ ← PH.KeyGen

(
PH.MSK, C∗

)
5: α←AdvPH.KeyGen(PH.MSK,·)(CTy, SKC∗ , stA)
6: Output (x,y, µ, α)

1: PH.PK← Sim(1κ)
2: (x,y, µ, C∗, stA)← Adv(PH.PK)
3: CTy ← Sim (y, 1|x|, C∗, µ)
4: SKC∗ ← Sim
5: α ←AdvSim(CTy, SKC∗ , stA)
6: Output (x,y, µ, α)

We say an adversary Adv is admissible if:

1. For the single query C∗, it holds that C∗(x,y) = 1.

2. For all queries C 6= C∗, it holds that C(x,y) = 0.

11



In the ideal experiment, the simulator Sim is traditionally given access to an oracle U(x,y,µ)(·),
which upon input C returns ⊥ if C(x,y) = 0 and µ if C(x,y) = 1. However, since in our case Sim
is provided C∗ explicitly, and this is the only 1-query, the simulator can check whether Ci = C∗

for any query Ci, and if not, set Ci(x,y) = 0. Hence, to simplify notation, we omit the oracle in
the ideal experiment above. Note that since C∗ is a 1-query by definition, the simulator must be
provided µ.

The partially hiding predicate encryption scheme PHPE is said to be (1, poly)-attribute hiding if
there exists a p.p.t. simulator Sim such that for every admissible p.p.t. adversary Adv, the following
two distributions are computationally indistinguishable:{

ExprealPHPE,Adv(1
κ)

}
κ∈N

c
≈
{
ExpidealPHPE,Sim(1κ)

}
κ∈N

SIM Security (Selective). Next, we define a selective variant of the above game.

Definition 3.2 ((1, poly) (Selective)-SIM-Attribute-Hiding). Let PHPE be a partially hiding
predicate encryption scheme for a circuit family C. For every p.p.t. adversary Adv and a stateful
p.p.t. simulator Sim, consider the following two experiments:

ExprealPHPE,Adv(1
κ): ExpidealPHPE,Sim(1κ):

1: (x,y, µ, C∗, stA)← Adv(1κ)
2: (PH.PK,PH.MSK)← PH.Setup(1κ)
3: CTy ← PH.Enc

(
PH.PK, (x,y), µ

)
4: SKC∗ ← PH.KeyGen

(
PH.MSK, C∗

)
5: α←AdvPH.KeyGen(PH.MSK,·)(CTy, SKC∗ , stA)
6: Output (x,y, µ, α)

1: (x,y, µ, C∗, stA)← Adv(1κ)
2: PH.PK← Sim

(
1κ,y, 1|x|, C∗, µ

)
3: CTy ← Sim
4: SKC∗ ← Sim
5: α ←AdvSim(CTy, SKC∗ , stA)
6: Output (x,y, µ, α)

The admissibility of the adversary Adv, the notes about the simulator and the required
indistinguishability of distributions are as in Definition 3.1.

Note. We note that our game is more restricted than the standard selective game, in that the
attacker must output not just (x,y) but also C∗ in the first step. In the traditional selective game,
the query C∗ may be specified after the adversary sees the public parameters. However, we choose
not give our variant a new name for simplicity, since we will anyway achieve the semi-adaptive
definition, which is stronger than the standard selective definition.

For the definition of (Q,poly)-PHPE, where an adversary may request Q decrypting queries, we
merely replace each occurence of C∗ with a tuple C∗1 , . . . , C

∗
Q in both the games above.

3.2 (1, poly)-Functional Encryption

In this section, we define (1, poly) functional encryption.

Definition 3.3. A functional encryption scheme FE for an input universe X , a circuit universe C
and a message space M, consists of four algorithms FE = (FE.Setup,FE.Keygen, FE.Enc,FE.Dec)
defined as follows.
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• FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the security
parameter and outputs the master public and secret keys (PK,MSK).

• FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master secret key MSK and
a circuit C ∈ C and outputs a corresponding secret key SKC .

• FE.Enc
(
PK, (a, µ)

)
is a p.p.t. algorithm that takes as input the master public key PK and an

input message (a, µ) ∈ X ×M and outputs a ciphertext CTa.

• FE.Dec(SKC ,CTa) is a deterministic algorithm that takes as input the secret key SKC and a
ciphertext CTa and outputs µ iff C(a) = 1, ⊥ otherwise.

Note that our definition is a slightly modified, albeit equivalent version of the standard definition
for FE [BSW11]. For compatibility with the PHPE definition, we define our functionality to
incorporate a message bit µ which is revealed when C(a) = 1.

Correctness. Next, we define correctness of the system.

Definition 3.4 (Correctness). A functional encryption scheme FE is correct if for all C ∈ Cκ and
all a ∈ Xκ,

• If C(a) = 1

Pr

[
(PK,MSK)← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK, C),FE.Enc

(
PK, (a, µ)

))
6= µ

]
= negl(κ)

• If C(a) = 0

Pr

[
(PK,MSK)← FE.Setup(1κ);

FE.Dec
(
FE.Keygen(MSK, C),FE.Enc

(
PK, (a, µ)

))
6= ⊥

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

3.2.1 Semi-Adaptive Security.

We define the notion of semi-adaptive simulation based security for (1,poly)-functional encryption,
analogous to Definition 3.1.

Definition 3.5 (Semi-Adaptive SIM). Let FE be a functional encryption scheme for a circuit family
C. For every p.p.t. adversary Adv and a stateful p.p.t. simulator Sim, consider the following two
experiments:

ExprealFE,Adv(1
κ): ExpidealFE,Sim(1κ):

1: (PK,MSK)← FE.Setup(1κ)
2: (a, µ, C∗, st)← Adv(1κ,PK)
3: CTa ← FE.Enc

(
PK,a, µ

)
4: SKC∗ ← FE.Keygen(MSK, C∗)
5: α ←AdvFE.Keygen(MSK,·)(CTa, SKC∗ , st)
6: Output (a, µ, α)

1: PK← Sim(1κ)
2: (a, µ, C∗, st)← Adv(1κ,PK)
3: CTa ← Sim(1|a|, C∗, µ)
4: SKC∗ ← Sim
5: α ←AdvSim(CTa,SKC∗ , st)
6: Output (a, µ, α)

13



We say an adversary Adv is admissible if:

1. For a single query, C∗, it holds that C∗(a) = 1.

2. For all other queries Ci 6= C∗, it holds that Ci(a) = 0.

In the ideal experiment, the simulator Sim is traditionally given access to an oracle U(a,µ)(·),
which upon input C returns ⊥ if C(a) = 0 and µ if C(a) = 1. However, as in Definition 3.1, we
note that our simulator does not require access to an oracle because an admissible adversary may
only make a single 1 query, denoted by C∗, which is provided explicitly to the simulator. Every
other query Ci made by the adversary is a 0 query, hence the simulator can compare each query Ci
with C∗, and set Ci(a) = 0 when the equality does not hold.

The (1,poly)-functional encryption scheme FE is then said to be SA-SIM-secure if there is an
admissible stateful p.p.t. simulator Sim such that for every admissible p.p.t. adversary Adv, the
following two distributions are computationally indistinguishable.{

ExprealFE,Adv(1
κ)

}
κ∈N

c
≈
{
ExpidealFE,Sim(1κ)

}
κ∈N

As before, for the (Q,poly) version of the above game, we merely replace each occurence of C∗

with a tuple C∗1 , . . . , C
∗
Q.

3.3 Fully Homomorphic Encryption

A leveled symmetric key fully homomorphic scheme is a tuple of P.P.T algorithms FHE.KeyGen,
FHE.Enc, FHE.Eval and FHE.Dec:

FHE.KeyGen(1κ, 1d, 1k) : This is a probabilistic algorithm that takes as input the security parameter,
the depth bound for the circuit, the message length and outputs the secret key FHE.SK.

FHE.Enc(FHE.SK, µ) : This is a probabilistic algorithm that takes as input the secret key and
message and produces the ciphertext FHE.CT.

FHE.Eval(C,FHE.CT): This is a deterministic algorithm that takes as input a Boolean circuit
C : {0, 1}k → {0, 1} of depth at most d and outputs another ciphertext FHE.CT′.

FHE.Dec(FHE.SK,FHE.CT): This is a deterministic algorithm that takes as input the secret key
and a ciphertext and produces a bit.

Correctness. Let FHE.SK ← FHE.KeyGen(1κ, 1d, 1k) and C be a circuit of depth d. Then we
require that

Pr
[
FHE.Dec

(
FHE.SK, FHE.Eval(C,FHE.Enc(FHE.SK, µ))

)
= C(µ)

]
= 1

Security. Security is defined as the standard semantic security. Let A be an efficient, stateful
adversary and d, k = poly(κ). The semantic security game is defined as follows.

1. FHE.SK← FHE.Setup(1κ, 1d, 1k)

2. (µ0, µ1)← A(1κ, 1d, 1k)
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3. b← {0, 1}

4. FHE.CT← FHE.Enc(FHE.SK, µb)

5. b′ ← A(FHE.CT)

We require that the advantage of A in the above game be negligible, namely

|Pr(b′ = b)− 1/2| = negl(κ)

Instantiating FHE from Learning with Errors. We make use of the following instantiation
of FHE from LWE.

Theorem 3.6. [BV11, BGV12, GSW13, BV14, AP14] There is an FHE scheme based on the LWE
assumption such that, as long as q ≥ O(κ2):

1. FHE.SK ∈ Ztq for some t ∈ poly(κ).

2. FHE.CT(µ) ∈ {0, 1}` where ` = poly(κ, k, d, log q).

3. FHE.Eval outputs a ciphertext FHE.CT′ ∈ {0, 1}`.

4. There exists an algorithm FHE.Scale(q, p) which reduces the modulus of the FHE ciphertext
from q to p.

5. For any Boolean circuit of depth d, FHE.Eval(C, ·) is computed by a Boolean circuit of depth
poly(d, κ, log q).

6. FHE.Dec on input FHE.SK and FHE.CT′ outputs a bit b ∈ {0, 1}. If FHE.CT′ is an encryption
of 1, then ∑

i∈[t]

FHE.SK[i] · FHE.CT′[i] ∈ [bp/2c −B, bp/2c+B]

for some fixed B = poly(κ). If FHE.CT′ is an encryption of 0, then∑
i∈[t]

FHE.SK[i] · FHE.CT′[i] /∈ [bp/2c −B, bp/2c+B]

7. Security relies on LWEΘ(t),q,χ.

3.4 Algorithms used by our constructions

The following algorithms will be used crucially in our construction and proof.

3.4.1 Trapdoor Generation

Below, we discuss two kinds of trapdoors that our construction and proof will use.
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Generating random lattices with trapdoors. To begin, we provide an algorithm for generating
a random lattice with a trapdoor.

Theorem 3.7. [Ajt99, GPV08, MP12] Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n lg q.
There is a probabilistic polynomial-time algorithm TrapGen(q, n,m) that with overwhelming probability
(in n) outputs a pair (A ∈ Zn×mq , T ∈ Zm×m) such that A is statistically close to uniform in Zn×mq

and T is a basis for Λ⊥q ((A)) satisfying

‖T‖GS ≤ O(
√
n log q ) and ‖T‖ ≤ O(n log q).

The primitive matrix G and its trapdoor. The matrix G ∈ Zn×mq is the “powers-of two”
matrix (see [MP12, Pei13] for the definition). The matrix G has a public trapdoor TG such that
‖TG‖∞ = 2. Let G−1 : Zn×mq → Zn×mq denote a deterministic algorithm which outputs a short

preimage Ã so that G · Ã = A mod q.

3.4.2 Three ways of generating a distribution.

Let F = [ A|AR + γ ·G ] where A← Zn×mq , R← {−1, 1}m×m, G is the primitive matrix defined
above and γ ∈ Zq is arbitrary (in particular, it can be 0). We are interested in the distribution
(F,K,P) ∈ Zn×2m

q × Z2m×m
q × Zn×mq satisfying F K = P mod q.

Given F, we provide three different ways of sampling (K,P) so that the same resultant
distribution is obtained.

1. The first method is to sample P← Zn×mq randomly and use a trapdoor for the left matrix of

F, namely A to sample a low norm K. We let B , AR + γ ·G and p denote a column of P.

Algorithm SampleLeft(A,B,TA,p, σ) [CHKP10, ABB10]:

Inputs: a full rank matrix A in Zn×mq , a “short” basis TA of

Λ⊥q (A), a matrix B in Zn×mq , a vector p ∈ Znq , and a Gaussian
parameter σ.

(3.1)

Output: The algorithm outputs a vector k ∈ Z2m in coset Λp
q (F).

Its distribution is analyzed in the following theorem.

Theorem 3.8 ([ABB10, Theorem 17], [CHKP10, Lemma 3.2]). Let q > 2, m > n and
σ > ‖TA‖GS · ω(

√
log(2m)). Then SampleLeft(A,B,TA,p, σ) taking inputs as in (3.1),

outputs a vector k ∈ Z2m distributed statistically close to DΛp
q (F),σ where F := (A ‖ B).

2. The second method is to again sample P← Zn×mq and use a trapdoor for the right matrix G
(when γ 6= 0) to sample K.

Algorithm SampleRight(A,G,R,TG,p, σ):

Inputs: matrices A in Zn×kq and R in Zk×m, a full rank matrix

G in Zn×mq , a “short” basis TG of Λ⊥q (G), a vector p ∈ Znq , and
a Gaussian parameter σ.

(3.2)

Output: The algorithm outputs a vector k ∈ Z2m in coset Λp
q (F).
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Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}m×m.
Let Sm be the m-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ = supx∈Sm−1‖R · x‖.

Theorem 3.9 ([ABB10, Theorem 19]). Let q > 2,m > n and σ > ‖TG‖GS · sR · ω(
√

logm).
Then SampleRight(A,G,R,TG,p, σ) taking inputs as in (3.2) outputs a vector k ∈ Z2m

distributed statistically close to DΛp
q (F),σ where F := (A ‖ AR + γ ·G).

3. The final method is to sample K←
(
DZ2m,σ

)m
and set P = F ·K mod q. We note that this

method works even if γ = 0. As argued by [GPV08, Lemma 5.2], this produces the correct
distribution.

Lemma 3.10. Assume the columns of F generate Znq and let σ ≥ ω(
√
n log q). Then, for

k← DZ2m,σ, the distribution of the vector p = F · k mod q is statistically close to uniform
over Znq . Furthermore, fix p ∈ Znq and let t be an arbitrary solution s.t. F · t = p mod q.
Then, the conditional distribution of k← DZ2m,σ given F · k = p mod q is t +DΛ⊥(F),σ,−t,
which is precisely DΛp

q (F),σ.

3.4.3 Public Key and Ciphertext Evaluation Algorithms

We will make use of the public key and ciphertext evaluation algorithms from [BGG+14, GVW15]
in our constructions. Since these algorithms can be used as black boxes for our purposes, we only
state their input/output behavior and properties.

By [BGG+14], there exist the following efficient algorithms:

1. ABE.EvalPK takes as input ` matrices {Ai} ∈ Zn×mq and a circuit C : {0, 1}` → {0, 1} and
outputs a matrix AC ∈ Zn×mq .

2. ABE.EvalCT takes as input ` matrices {Ai} ∈ Zn×mq , ` vectors {ui}, the public attribute

y ∈ {0, 1}`, a circuit C : {0, 1}` → {0, 1}, and outputs a vector uC ∈ Zmq .

such that the following properties hold:

1. The output of the ABE.EvalCT algorithm satisfies:

uC =
(

AC + C(y) ·G
)T

s + eEval (3.3)

2. When we have:

Ai = A ·Ri − y[i] ·G
Bi = A ·R′i − x[i] ·G

Then, there exists an efficient algorithm ABE.EvalR, which takes as input ` matrices {Ri} ∈
Zm×mq , a matrix A, the public attribute vector y ∈ {0, 1}` and a circuit C : {0, 1}` → {0, 1}
and outputs a matrix RC ∈ Zm×mq such that:

AC = ARC − C(y) ·G (3.4)

3. We may bound the norms as:

‖eEval‖∞ ≤ O(`n log q)O(d) ·max
i∈[`]
{‖ui − (Ai + y[i] ·G)Ts‖∞, . . .} (3.5)

‖RC‖∞ ≤ O(`n log q)O(d) ·max
i∈[`]
{‖R1‖∞, . . . , ‖R`‖∞} (3.6)
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4. For a multiplication gate, ABE.EvalCT works even if one of the attributes remains private,
and for addition gates, it works even if both attributes remain private. We will denote a
multiplication gate by Mult and an addition gate as Add.

Gorbunov et al. [GVW15] extended the above algorithms to the partially hiding predicate
encryption setting, where the attributes are divided into a private component x and a public
component y. Formally, they construct algorithms PHPE.EvalPK and PHPE.EvalCT which support
the following circuit family:

Ĉ ◦ IP(x,y) = 〈x, Ĉ(y)〉.

They make crucial use of the fact that PHPE.EvalCT does not need x for its execution since the
computation involving x is an inner product. To compute the inner product, the multiplication
may be carried out keeping x private and letting Ĉ(y) be public, and addition may be carried out
keeping both attributes private, as discussed above. Additionally, the circuit Ĉ operates entirely on
public attributes y.

For our purposes, it will be useful to specialize the [GVW15] algorithms for the inner product
zero test functionality. We will make use of the following fact: [GVW15] demonstrate the existence
of efficient algorithms for the inner product zero test functionality, so that for i ∈ [t],

A
Ĉ◦IP = GVW.EvalPK

(
{A

Ĉi
}, {Bi}, IP

)
, u

Ĉ◦IP = GVW.EvalCT
(
{A

Ĉi
,u

Ĉi
}, {Bi,vi},y, IP

)
where

u
Ĉ◦IP =

(
A
Ĉ◦IP + Ĉ ◦ IP(x,y) ·G

)T
s + eEval

Our circuit family. For our construction, we will need to slightly modify the circuit family. As
in [GVW15], our circuit has the structure of a lightweight inner product composed with a heavy
circuit Ĉ, but in our setting the circuit Ĉ does not operate entirely on the public attributes y, it also
includes a lightweight operation on part of the private attributes. In more detail, let x = (x1,x2),
with |x1| = t′ and |x2| = t′′. Then, our circuit Ĉ : {0, 1}t′′+` → {0, 1}t′ may be described as:

Ĉ(x2,y) = C ′(C ′′(y) + x2)

for arbitrary polynomial sized circuits C ′′ : {0, 1}` → {0, 1}t′′ and C ′ : {0, 1}t′′ → {0, 1}t′ . Then, we
define:

Ĉ ◦ IP(x,y) =
〈
x1, Ĉ(x2,y)

〉
We construct algorithms PHPE.EvalCT and PHPE.EvalPK to perform homomorphic evaluation

on the ciphertext and public key respectively. We claim that PHPE.EvalCT does not require x2 for
executing the homomorphic operation corresponding to Ĉ, since the operation involving the private
attributes x2 is addition. Moreover, PHPE.EvalPK can be set as ABE.EvalPK since it does not require
attributes as input.

Formally, let t = t′ + t′′. Then, there exist efficient algorithms PHPE.EvalPK and PHPE.EvalCT
such that:

1. PHPE.EvalPK takes as input ` + t matrices {Ai}, {Bj} ∈ Zn×mq and a circuit Ĉ ◦ IP and
outputs a matrix A

Ĉ◦IP ∈ Zn×mq .

2. PHPE.EvalCT takes as input `+ t matrices {Ai, }{Bj} ∈ Zn×mq , `+ t vectors {ui}, {vj}, the

public attribute y ∈ {0, 1}` and a circuit Ĉ ◦ IP, and outputs a vector u
Ĉ◦IP ∈ Zmq .
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3. PHPE.EvalR takes as input ` + t matrices {Ri}, {R′j} ∈ Zm×mq , the matrix A, the public

attribute vector y ∈ {0, 1}` and a circuit Ĉ ◦ IP and outputs a matrix R
Ĉ◦IP ∈ Zm×mq .

such that the following properties hold:

u
Ĉ◦IP =

(
A
Ĉ◦IP + Ĉ ◦ IP(x,y) ·G

)T
s + eEval (3.7)

When

Ai = A ·Ri − y[i] ·G
Bi = A ·R′i − x[i] ·G

Then A
Ĉ◦IP = AR

Ĉ◦IP − Ĉ ◦ IP(x,y) ·G (3.8)

Additionally, we may bound the norms as:

‖eEval‖∞ ≤ O(`n log q)O(d) ·max
i∈[`]
{‖ui − (Ai + y[i] ·G)Ts‖∞, . . .} (3.9)

‖R
Ĉ◦IP‖∞ ≤ O(`n log q)O(d) ·max

i∈[`]
{‖R1‖∞, . . . , ‖R`‖∞, ‖R′1‖∞, . . . , ‖R′t‖∞} (3.10)

In Appendix 8.2, we describe how to construct algorithms PHPE.EvalCT, PHPE.EvalPK and
PHPE.EvalR. For brevity, we refer to PHPE.Eval· as Eval· in the remainder of the paper, since these
are the only evaluation algorithms that will be invoked.

4 Attacking Predicate Encryption schemes using 1-Keys

In this section, we demonstrate that known LWE based predicate encryption constructions [AFV11,
GVW15] are insecure against an adversary that requests 1-keys.

4.1 Attack #1 on [AFV11] using 1-keys.

This attack crucially exploits the stateless nature of the KeyGen algorithm. Since the key generation
algorithm is stateless, requesting many keys for the same function results in fresh, independent keys,
which may be combined to fully recover the message. We now describe the attack in detail.

Say the attacker requests many keys for the vector v such that 〈x,v〉 = 0 for b ∈ {0, 1}. Let
Av =

∑
viAi. Now by construction of keys in [AFV11], we have:

[A |Av]

[
e0

f0

]
= u (mod q) (4.1)

[A |Av]

[
e1

f1

]
= u (mod q) (4.2)

This implies [A |Av]

[
e0 − e1

f0 − f1

]
= 0 (mod q) (4.3)

Thus, we have a short vector in the lattice Λ⊥q (A|Av). By making many queries for the same v, the

attacker may recover a full trapdoor basis for Λ⊥q (A|Av). Now, note that the ciphertext contains

ATs + noise as well as
(

Ai + x[i]G
)T

s + noise. Since 〈x,v〉 = 0, we can follow the decryption
procedure to recover AT

vs + noise which in turn allows the attacker to recover

[A |Av]Ts + noise
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for which he now has a trapdoor. Using the trapdoor, he can now recover the noise terms to
get exact linear equations in the LWE secret s, completely breaking LWE security. Note that by
functionality, the attacker should only have been able to learn a single bit of information, namely
〈x, v〉 = 0.

The reason this attack works in the strong attribute hiding setting, is that a particular linear
relation needs to be satisfied to enable decryption, which, given a decrypting key, can be exploited to
carry out the attack. Specifically, in the above attack, the decryption procedure allows the attacker
to recover [A |Av]Ts + noise which would not be possible if the decryption condition did not hold.

4.2 Attack #2 on Partially Hiding Predicate Encryption [GVW15] using 1-keys

This attack exploits the structure of the ciphertext evaluation algorithm in the PHPE construction
of [GVW15]. Let

β0 = ATs + e, β1 = PTs + e′ + b

c1 =
(
A1 + y1 ·G

)T
s + e1, c2 =

(
A2 + y2 ·G

)T
s + e2

Then, to compute a product ciphertext corresponding to y1 · y2, the EvalCT algorithm does the
following:

y2 · c1 =
(
y2A1 + y1y2 ·G

)T
s + y2 · e1

G−1(−A1)T c2 =
(
A2G

−1(−A1)− y2 ·A1

)T
s + G−1(−A1)T e2

CTEval = G−1(−A1)T c2 + y2 · c1 =
(
A2G

−1(−A1) + y1y2 ·G
)T

s +
(
G−1(−A1)T e2 + y2 · e1

)
︸ ︷︷ ︸

eEval

Now, note that the error term eEval is linear, with known linear coefficients G−1(−A1) and y2, even
though we evaluated a multiplication gate. When decryption succeeds with key K, the decryptor
learns

e′ −KT ·
(

e
eEval

)
where eEval =

(
G−1(−A1)T e2 + y2 · e1

)
Thus, a single 1-key (even if it corresponds to a non-linear function) yields a system of m linear
equations in the 4m variables e, e′, e1, e2. By requesting another 3 keys 4, the attacker can completely
recover the above error terms, which in turn lead to recovery of s, which then permit complete
recovery of all the private attributes.

4.3 Attack #3 on Predicate Encryption [GVW15] using 1-keys

Our last attack applies to the construction of Predicate Encryption (PE) from Partially Hiding
Predicate Encryption described in [GVW15]. We outline the idea here, and refer the reader to
Appendix 8.1 for details. Recall that the PE system of [GVW15] uses (symmetric key) FHE to
encrypt the attribute a and sets the FHE encryption, say â as the public attribute y of a PHPE
encryption. The FHE secret key FHE.SK is set to be the PHPE secret attribute x. It then uses
PHPE to compute on the public â to obtain an FHE encryption of the desired function value,

say Ĉ(a). Next, it uses a PHPE key corresponding to the FHE decryption circuit to compute

FHE.Dec
(
Ĉ(a), FHE.SK

)
.

4For example, corresponding to y2 · y1, a1y1 + a2y2 and b1y1 + b2y2
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However, FHE decryption corresponds to threshold inner product, whereas the PHPE
construction can only support exact inner product computation while maintaining privacy of
the secret attributes. To get around this difficulty, the authors propose the “lazy-OR” trick, which
permits the decryptor to learn the exact inner product and compute the threshold on her own.
While this is safe if the attacker never gets to decrypt the challenge ciphertext, it leads to an attack
if the attacker can get decryption keys. This is because for certain function queries, successful
decryption permits the attacker to obtain linear equations (in public coefficients) in the noise terms
used in the construction of the FHE ciphertext â. This in turn leads to recovery of the FHE secret,
which leads to recovery of the attributes a. For more details, please see Appendix 8.1.

5 (1, poly)-Partially Hiding Predicate Encryption

In the light of the above attacks, it is clear that the (0,poly)-PHPE scheme is insecure if the
adversary is allowed an unbounded number of 1-keys. In this section, show that the situation can be
remedied for the case of a bounded number of 1-queries. To begin, we construct a partially hiding
predicate encryption scheme that supports the functionality Ĉ ◦ IP as described in Section 3.4.

Our warm-up construction supports an unbounded number of 0-queries, as in [GVW15], but
also a single 1-query. Additionally, the adversary may request the same 1-key an unbounded number
of times. We note that previous systems [AFV11, GVW15] were insecure against multiple requests
of the same 1-key, see Attack 1 in Section 4. We will show in Section 5.3 how to extend this
construction to support any bounded number of 1-queries.

5.1 Construction

The construction of our (1,poly)-PHPE scheme is very close to [GVW15]. The main difference is
that the randomness used to generate the key for any circuit Ĉ ◦ IPγ is chosen using a pseudorandom

function PRFseed(Ĉ ◦ IPγ), so that multiple key requests for the same circuit result in the same key.
This modification enables the simulator to sample a single (unique) 1-key K∗ corresponding to some
fixed circuit Ĉ∗ ◦ IPγ such that Ĉ∗ ◦ IP(x,y) = 1 and mitigates the Attack 1 described in Section 4.

We now proceed to describe the construction.

PH.Setup(1κ, 1t, 1`, 1d) : Given as input the security parameter κ, the length of the private and
public attributes, t and ` respectively, and the depth of the circuit family, do the following:

1. Choose random matrices

Ai ∈ Zn×mq for i ∈ [`], Bi ∈ Zn×mq for i ∈ [t], P ∈ Zn×mq

To simplify notation, we denote by {Ai} the set {Ai}i∈[`] and by {Bi} the set {Bi}i∈[t].

2. Sample (A,T)← TrapGen(1m, 1n, q).

3. Let G ∈ Zn×mq be the powers of two matrix with public trapdoor TG.

4. Choose a pseudorandom function family {PRFseed}seed∈{0,1}κ and sample a seed, denoted
by seed.

5. Output the public and master secret keys.

PH.PK =
(
{Ai}, {Bi},A,P

)
, PH.MSK = (PH.PK,T, seed)
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PH.KeyGen(PH.MSK, Ĉ ◦ IPγ) : Given as input the circuit and the master secret key, do the
following:

1. Let A
Ĉ◦IP = EvalPK

(
{Ai}, {Bi}, Ĉ ◦ IP

)
.

2. Generate randomness rand to be used by the SampleLeft algorithm using PRFseed(Ĉ ◦ IPγ).

3. Sample K such that
[A| A

Ĉ◦IP + γ ·G] ·K = P mod q

using K ← SampleLeft(A,A
Ĉ◦IP + γ · G,T,P, s, rand). Here rand is the randomness

used by the algorithm and s is the standard deviation of the Gaussian being sampled (
instantiated in Section 8.3).

4. Output SK
Ĉ◦IPγ = K.

PH.Enc
(
PH.PK, (x,y), µ

)
: Given as input the master public key, the private attributes x, public

attributes y and message µ, do the following:

1. Sample s← DZn,sB and error terms e← DZm,sB and e′ ← DZm,sD .

2. Let b = [0, . . . , 0, dq/2eµ]T ∈ Zmq . Set

β0 = ATs + e, β1 = PTs + e′ + b

3. For i ∈ [`], compute
ui = (Ai + yi ·G)Ts + RT

i e

where Ri ← {−1, 1}m×m.

4. For i ∈ [t], compute
vi = (Bi + xi ·G)Ts + (R′i)

Te

where R′i ← {−1, 1}m×m.

5. Output the ciphertext
CTy =

(
y,β0,β1, {ui}, {vj}

)
for i ∈ [`], j ∈ [t].

PH.Dec
(
SK

Ĉ◦IPγ ,CTy

)
: Given as input a secret key and a ciphertext, do the following:

1. Compute
u
Ĉ◦IP = EvalCT

(
{Ai,ui}, {Bj ,vj}, Ĉ ◦ IP,y

)
2. Compute

ν = β1 −KT

(
β0

u
Ĉ◦IP

)
3. Round each coordinate of ν and if

[
Round(ν[1]), . . . ,Round(ν[m − 1])

]
= 0 then set

µ = Round(ν[m]).

4. Output µ.
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Correctness. By the correctness of the EvalCT algorithm (Section 3.4.3), we have:

u
Ĉ◦IP = EvalCT

(
{Ai,ui}, {Bi,vi}, Ĉ ◦ IP,y

)
= (A

Ĉ◦IP + Ĉ ◦ IP(x,y) ·G)Ts + eEval

When Ĉ ◦ IP(x,y) = γ, since β0 = ATs + e0, we have:(
β0

u
Ĉ◦IP

)
=

(
AT(

A
Ĉ◦IP + γ ·G

)T ) · s +

(
e0

eEval

)
Hence,

KT

(
β0

u
Ĉ◦IP

)
≈ PTs + (K)T

(
e0

eEval

)
Thus, β1 −KT

(
β0

u
Ĉ◦IP

)
≈ b +

{
e′ −KT

(
β0

u
Ĉ◦IP

)}

Thus, we require that when Ĉ ◦ IP(x,y) = γ, the first m − 1 coordinates of the error term{
e′−KT

(
β0

u
Ĉ◦IP

)}
be bounded above by q/4 which can be ensured by our setting of parameters

(see Section 8.3).

On the other hand, when Ĉ ◦ IP(x,y) 6= γ, then, letting Ĉ ◦ IP(x,y) = γ + γ∗ for some γ∗, and
KT = [KT

1 |KT
2], we have

β1 −KT

(
β0

u
Ĉ◦IP

)
≈ b + γ∗ ·KT

2 G

Thus, the error contains a factor γ∗ ·KT
2 G which is large. Hence, it holds that the first m − 1

co-ordinates of the error will be greater than q/4 with overwhelming probability, and decryption
will output ⊥, as desired.

5.2 Proof of Security

Next, we argue that the above construction is secure against an adversary who requests an unbounded
number of 0-keys and a single 1-key.

Theorem 5.1. The partially hiding predicate encryption scheme described in Section 5.1 is secure
according to definition 3.2.

Proof. We define a p.p.t. simulator Sim and argue that its output is computationally indistinguish-
able (under the LWE assumption) from the output of the real world.

Simulator Sim
(
1κ,y, 1|x|, Ĉ∗ ◦ IPγ , µ

)
: The simulator obtains as input the security parameter, the

public attribute y, the size of the private attribute x, the circuit Ĉ∗ ◦ IPγ such that Ĉ∗ ◦ IPγ(x,y) = 1
and µ, which is revealed by correctness of decryption. It does the following:

1. It generates all public parameters as in the real PH.Setup except P. To generate P, it computes
A
Ĉ∗◦IP = EvalPK

(
{Ai}, {Bi}, Ĉ∗ ◦ IP

)
, samples K∗ ←

(
DZ2m,s

)m
and sets:

P = [A | A
Ĉ∗◦IP + γ ·G] K∗ (5.1)

23



2. It generates all keys using the real PH.KeyGen except the key for Ĉ∗ ◦ IPγ , which it sets as
K∗ sampled above.

3. For the challenge ciphertext, it samples β0,ui,vi independently and uniformly from Zmq .

4. It computes β1 to satisfy the decryption equation corresponding to Ĉ∗ ◦ IPγ as follows.

• Let u
Ĉ∗◦IP = EvalCT

(
{Ai,ui}, {Bi,vi}, Ĉ∗ ◦ IP,y

)
.

• Sample e′′ ← DZm,sD

• Set β1 = (K∗)T
(

β0

u
Ĉ∗◦IP

)
+ e′′ + b where b = [0 . . . , 0, dq/2eµ]T ∈ Zmq .

5. It outputs the challenge ciphertext

CT∗ =
(
{ui}i∈[`], {vi}i∈[t],y,β0,β1

)
We argue that the output of the simulator is distributed indistinguishably from the real world.

Intuitively, there are only two differences between the real world and simulated distribution. The
first is that instead of choosing P first and sampling K∗ to satisfy equation 5.1, we now choose K∗

first and set P accordingly. This is a standard trick in LWE based systems (see the excellent survey
[Pei13], where this is trick 1), its first use that we are aware of appears in [GPV08].

The second difference is in how the challenge ciphertext is generated. In our challenge ciphertext
the elements (β0,ui,vi) are sampled uniformly at random while β1 which is computed using the
elements (β0,ui,vi) and K∗ in order to satisfy the decryption equation. We note that β1 is the
only ciphertext element that is generated differently from the challenge ciphertext in the simulator
of [GVW15]. In the [GVW15] simulator, β1 is also sampled at random, whereas in our case, it is
generated to satisfy the decryption equation involving CT∗ and SK(Ĉ∗ ◦ IPγ) since Ĉ∗ ◦ IPγ(x,y) = 1.
Enforcing this relation is necessary, as it is dictated by the correctness of the system5.

Formally, we establish the proof via the following hybrids, where the first one corresponds to the
real world and the last corresponds to the ideal world.

The Hybrids.

Hybrid 0: The real experiment.

Hybrid 1: The real game algorithm PH.Setup is replaced with PH.Setup∗1, which uses the knowledge
of (x,y, Ĉ∗ ◦ IPγ) to setup the public parameters and the master key.

Hybrid 2: PH.Enc is replaced by PH.Enc∗1, in which β0 is computed as in the real world, but all
other ciphertext elements are derived from it. The keygen algorithm is as in the real game.

Hybrid 3: The real game PH.KeyGen is replaced with PH.KeyGen∗1 where instead of using the
trapdoor T of the matrix A, the secret keys for 0-queries are sampled using the public
trapdoor TG along with the trapdoor information generated using PH.Setup∗1 and the secret
key for the 1-query Ĉ∗ ◦ IPγ is sampled using the master key.

5Note that the step of “programming” β1 forces the simulator to use its knowledge of y. On the other hand, the
simulator in [GVW15] does not need to use y for simulation, implying that even y is hidden when the attacker does
not request 1-keys. Since the real decryption procedure needs y in order to decrypt, this (in our opinion) further
illustrates the weakness of the weak attribute hiding definition.
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Hybrid 4: The encryption algorithm is changed from PH.Enc∗1 to PH.Enc∗2. Here, the ciphertext
element β0 is switched to random and all other ciphertext elements are derived from it.

Hybrid 5: The algorithm PH.KeyGen∗1 is replaced by PH.KeyGen∗2. The PH.KeyGen∗2 algorithm is
similar to the real world PH.KeyGen algorithm, except for the key corresponding to Ĉ∗ ◦ IPγ .

Hybrid 6: The encryption algorithm is changed from PH.Enc∗2 to PH.Enc∗3, in which the ciphertext
elements {ui}, {vi} are changed to random. The remaining elements β0 and β1 are as before.

Hybrid 7: The algorithm PH.Setup∗1 is replaced by PH.Setup∗2. The algorithm PH.Setup∗2 is similar
to the real world PH.Setup algorithm, except for how the matrix P is generated. This is the
simulated world.

We now describe the algorithms used in our hybrids.

Auxiliary Algorithms.

PH.Setup∗1(1κ, 1d,x,y, Ĉ∗ ◦ IPγ): Do the following:

1. Sample a matrix with associated trapdoor:

(A,T)← TrapGen(1m, 1n, q)

Let G be the primitive matrix with public trapdoor TG that we defined in Section 3.4.1.

2. Let Ai = A ·Ri − y[i] ·G ∈ Zn×mq for i ∈ [`], where Ri ← {−1, 1}m×m.

3. Let Bi = A ·R′i − x[i] ·G ∈ Zn×mq for i ∈ [t], where R′i ← {−1, 1}m×m.

4. Compute R
Ĉ∗◦IP ← EvalR

(
{Ri}, {R′i}, {Bi}, y, Ĉ∗ ◦ IP

)
algorithm.

5. Sample K∗ ←
(
DZ2m,s

)m
and set

P = [A | A ·R
Ĉ∗◦IP] ·K∗

Note that

If A
Ĉ∗◦IP ← EvalPK

(
{Ai}, {Bj}, Ĉ∗ ◦ IP

)
, and Ĉ∗ ◦ IP(x,y) = γ,

then, [A
Ĉ∗◦IP + γ ·G] = [A ·R

Ĉ∗◦IP]

6. Output the master public key as PH.PK =
(
{Ai}, {Bi},A,P

)
and the master secret key

as PH.MSK =
(
T, {Ri}, {R′i},K∗

)
.

PH.Enc∗1
(
PH.PK,PH.MSK,y, µ, Ĉ∗ ◦ IP

)
: The ciphertext is computed as follows:

1. Sample s, e← DZn,sB and set β0 = ATs + e.

2. For i ∈ [`], j ∈ [t] compute

ui = RT
i · β0, vj = (R′j)

T · β0

3. Compute β1 as follows.

• Compute u
Ĉ∗◦IP = EvalCT

(
{Ai,ui}, {Bi,vi}, Ĉ∗ ◦ IP,y

)
.

• Sample e′′ ← DZm,sD .
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• Set β1 = (K∗)T
(

β0

u
Ĉ∗◦IP

)
+ e′′ + b where b = [0 . . . , 0, dq/2eµ]T ∈ Zmq .

4. Output
(
{ui}, {vi},y,β0,β1

)
PH.KeyGen∗1(PH.MSK, Ĉ ◦ IPρ, Ĉ∗ ◦ IPγ): Do the following:

1. Compute the homomorphic public key corresponding to the circuit Ĉ ◦ IP as

A
Ĉ◦IP ← EvalPK

(
{Ai}, {Bi}, Ĉ ◦ IP

)
2. By section 3.4.3, we have that A

Ĉ◦IP = A ·R
Ĉ◦IP−〈x, Ĉ(y)〉·G. An admissible adversary

can request:

• A circuit Ĉ ◦ IPρ such that 〈x, Ĉ(y)〉 6= ρ, hence Ĉ ◦ IPρ(x,y) = 0. In this case, we
have:

[A
Ĉ◦IP + ρ ·G] = [A ·R

Ĉ◦IP + (ρ− 〈x, Ĉ(y)〉) ·G]

Hence, we may sample K← SampleRight
(
A, (ρ−〈x, Ĉ(y)〉)·G, R

Ĉ◦IP, TG, P, s, rand
)

so that:
[A | A

Ĉ◦IP + ρ ·G] K = P (mod q)

Note that rand is the randomness used by the SampleRight algorithm, generated
using PRFseed(Ĉ ◦ IPρ), so that multiple requests for Ĉ ◦ IPρ result in the same key.

• The circuit Ĉ∗ ◦ IPγ , such that 〈x, Ĉ∗(y)〉 = γ in which case we let K = K∗. Note
that,

[A
Ĉ∗◦IP + γ ·G] = [A ·R

Ĉ∗◦IP]

Hence, [ A | A
Ĉ∗◦IP + γ ·G ] K∗ = P mod q

3. Return SK
Ĉ◦IPρ = K.

PH.Enc∗2(PH.PK,PH.MSK,y, Ĉ∗ ◦ IP): Sample β0 ← Zmq randomly. Compute the remaining
ciphertext elements as in PH.Enc∗1.

PH.KeyGen∗2(PH.PK,PH.MSK, Ĉ ◦ IPρ, Ĉ∗ ◦ IPγ): Do the following:

1. If Ĉ ◦ IPρ 6= Ĉ∗ ◦ IPγ , sample the key K using the SampleLeft algorithm as in KeyGen.

2. If Ĉ ◦ IPρ = Ĉ∗ ◦ IPγ , let K = K∗.

3. Return SK
Ĉ◦IPρ = K.

PH.Enc∗3(PH.PK,PH.MSK,y, Ĉ∗ ◦ IP): Sample ui, vi randomly – all other terms are computed as
in PH.Enc∗2.

PH.Setup∗2(1κ, 1d, Ĉ∗ ◦ IPγ): Do the following:

1. Sample the parameters (A, {Ai}, {Bi}) as in PH.Setup.

2. Compute A
Ĉ∗◦IP ← EvalPK

(
{Ai}, {Bi}, Ĉ∗ ◦ IP

)
.

3. Sample K∗ ←
(
DZ2m,σ

)m
and set

P = [A | A
Ĉ∗◦IP + γ ·G] ·K∗

4. Output the master public key as PH.PK =
(
{Ai}, {Bi},A,P

)
and the master secret key

as PH.MSK =
(
T,K∗

)
.
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Indistinguishability of Hybrids. Below we argue that consecutive hybrids are indistinguishable.

Lemma 5.2. Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Proof. The only difference between the two hybrids is in how the public parameters are generated.

In Hybrid 0,

A← TrapGen(1m, 1n, q), {Ai}, {Bj}, P← Zn×mq ∀i ∈ [`], j ∈ [t]

By correctness of TrapGen algorithm (see Section 3.4.1), we have that in Hybrid 0,(
A, {Ai}, {Bj}, P

)
s
≈
(
U , {U}, {U}, U

)
where U denotes the uniform distribution over Zn×mq .

In Hybrid 1, we have:

A← Zn×mq , Ai = A ·Ri − y[i] ·G, Bj = A ·R′j − x[j] ·G, P = [A | A ·R
Ĉ∗◦IP] ·K∗

where Ri,R
′
i ← {−1, 1}m×m, K∗ ∈

(
DZ2m,σ

)m
. A is chosen uniformly in Hybrid 2.

Let K∗ =

(
K∗1
K∗2

)
. Then P = P1 + P2

where P1 = A ·K∗1 and P2 = A ·R
Ĉ∗◦IP ·K

∗
2

By Section 3.4.2 and [GPV08, Lemma 5.2], we have (A,P1)
s
≈ (A,U). Now, consider the distribution

of Hybrid 2:(
A, {Ai}, {Bj}, P1 + P2

)
s
≈
(
A, {Ai}, {Bj}, U

)
s
≈
(
A, {U}, {U}, U

)
by [GVW15, Lemma 2.2]

s
≈
(
U , {U}, {U}, U

)
Since this is the distribution in Hybrid 0, we are done.

Lemma 5.3. Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Proof. The difference between the two hybrids is in how the ciphertext elements {ui}, {vj}, β1

are generated. In Hybrid 1, for i ∈ [`], j ∈ [t], we have

ui = (Ai + y[i] ·G)Ts + RT
i e, vj = (Bj + x[j] ·G)Ts + (R′j)

Te, β1 = PTs + e1 + b

By construction of P, we may write:

β1 = PTs + e1 + b

= (K∗)T
(

AT

RT

Ĉ∗◦IP
AT

)
· s + e1 + b ∈ Zmq

In Hybrid 2, for i ∈ [`], j ∈ [t]:

ui = RT
i · β0, vj = (R′)Tj · β0, β1 = (K∗)T

(
β0

u
Ĉ∗◦IP

)
+ e′′ + b
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Now, since β0 = ATs + e, we have,

RT
iβ0 = (ARi)

Ts + RT
i e

= (Ai + y[i] ·G)Ts + RT
i e

Similarly, we have, (R′j)
Tβ0 = (Bj + x[j] ·G)Ts + (R′j)

Te

as in Hybrid 1. Next, consider the distribution of β1. Recall that

u
Ĉ∗◦IP = EvalCT

(
{Ai,ui}, {Bi,vi}, Ĉ∗ ◦ IP,y

)
= (A

Ĉ∗◦IP + Ĉ∗ ◦ IP(x,y) ·G)Ts + eEval by definition of EvalCT

=
(
AR

Ĉ∗◦IP + (〈x, Ĉ∗(y)〉 − 〈x, Ĉ∗(y)〉) ·G
)T

s + eEval

=
(
AR

Ĉ∗◦IP
)T

s + eEval

Since β0 = ATs + e0, we have:(
β0

u
Ĉ∗◦IP

)
=

(
AT

RT

Ĉ∗◦IP
AT

)
· s +

(
e0

eEval

)
Hence,

β1 = (K∗)T

{(
AT

RT

Ĉ∗◦IP
AT

)
· s +

(
e0

eEval

)}
+ e′′ + b

= (K∗)T
(

AT

RT

Ĉ∗◦IP
AT

)
· s +

{
(K∗)T

(
e0

eEval

)
+ e′′

}
+ b

Thus, it suffices to ensure that

e1
s
≈

{
(K∗)T

(
e0

eEval

)
+ e′′

}
(5.2)

where the LHS is the error used in construction of β1 in Hybrid 1, and the RHS is the error used in
construction of β1 in Hybrid 2. This may be ensured by choosing e1 and e′′ to be sufficiently larger

than (K∗)T
(

e0

eEval

)
so that Equation 5.2 is satisfied. Please see Section 8.3 for details about

parameters.

Lemma 5.4. Hybrid 2 and Hybrid 3 are statistically indistinguishable.

Proof. Between Hybrid 2 and Hybrid 3, the manner of generating keys changes from PH.KeyGen
to PH.KeyGen∗1. We must consider two cases:

1. For 0-keys, the argument is exactly the same as in [GVW15, Lemma 3.6]. In Hybrid 2, these
keys are sampled using the SampleLeft algorithm, whereas in Hybrid 3, they are sampled using
the SampleRight algorithm. By Section 3.4.2, the resultant distribution is the same.

2. For 1-keys, first note that since Ĉ∗ ◦ IP(x,y) = γ, and we have A
Ĉ∗◦IP = AR

Ĉ∗◦IP − γ ·G by
Section 3.4.3, it holds that:

[A | A
Ĉ∗◦IP + γ ·G] = [A | AR

Ĉ∗◦IP]
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Next, note that P is chosen the same way in both Hybrid 2 and Hybrid 3, namely, sample
K∗ ←

(
DZ2m,s

)m
and set:

P = [A | AR
Ĉ∗◦IP] K∗

Let F = [A | AR
Ĉ∗◦IP]. Now, in Hybrid 2, given (F, P), we sample K using SampleLeft so

that
[A | AR

Ĉ∗◦IP] K = P mod q (5.3)

By Section 3.4.2, the distribution of K is statistically close to
(
DΛP

q (F),s

)m
.

In Hybrid 3, we output K∗ which was sampled to generate P in PH.Setup∗1. Given (F, P) we
have by Section 3.4.2, that K∗ is distributed as

(
DΛP

q (F),s

)m
.

Note that in Hybrid 2, the SampleLeft algorithm is invoked using randomness generated by
a PRF, hence repeated requests for the circuit Ĉ∗ ◦ IP result in the same key. This matches
with the simulation, which can only know a single solution to Equation 5.3.

Hence, the distribution of the 1-key for Ĉ∗ ◦ IP in Hybrids 2 and 3 is equivalent.

Lemma 5.5. Hybrid 3 and Hybrid 4 are computationally indistinguishable under the LWE
assumption.

Proof. As in [GVW15], we show how the LWE assumption can be broken given an adversary that
distinguishes between Hybrids 3 and 4. Given the sample (A,u) where u is either real or random,
the remainder of the distribution can be sampled as follows:

1. Run PH.Setup∗1 and PH.KeyGen∗1 using A that is provided. These algorithms are used to
produce the public parameters and the function keys.

2. To produce the ciphertext, set β0 = u and generate the remaining components as in Hybrid 3
(and also Hybrid 2), namely,

ui = RT
iβ0, vi = R′

T

iβ0

and

β1 = (K∗)T
(

β0

u
Ĉ∗◦IP

)
+ e′′ + b

Now if u = ATs + e then we get the distribution of Hybrid 3, while if u is real and of Hybrid 4 if u
is random.

Lemma 5.6. Hybrid 4 and Hybrid 5 are statistically indistinguishable.

Proof. The proof is analogous to the proof of indistinguishability between Hybrids 2 and 3.

Lemma 5.7. Hybrid 5 and Hybrid 6 are statistically indistinguishable.

Proof. The only difference between Hybrids 5 and 6 is in how ui,vi are generated. To argue
indistinguishability, we must show:(

A,B,β0, {ARi,R
T
iβ0}, {BR′i, (R

′
i)

Tβ0}
)
≈
(
A,B,β0, {ARi,ui}, {BR′i,vi}

)
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This follows directly from [GVW15, Lemma 3.9]. Note that β1 is generated from the above
components in the exact same way in both Hybrids, and hence does not feature in the joint
distribution.

Lemma 5.8. Hybrid 6 and Hybrid 7 are statistically indistinguishable.

Proof. The proof follows similarly as the proof of indistinguishability between Hybrids 0 and 1.

Thus, we have shown that the real world and simulated world are indistinguishable. We refer
the reader to Appendix 8.3, for the setting of parameters.

5.3 (Q, poly)-Partially Hiding Predicate Encryption

In this section, we describe how to generalise the above scheme to handle Q queries. As discussed
in Section 1, we repurpose a trick suggested by Gorbunov et al. [GVW12]. The idea is to enable
the key generator to generate a fresh matrix P∗i for the ith key in a stateless manner. To do this,
we publish a set of matrices {P1, . . . ,Pk} in the public key, where k is a parameter to be chosen
later. The key generator chooses a random subset ∆i ⊂ [k] s.t. |∆i| = v for some suitably chosen v,
and computes P∗i =

∑
j∈∆i

Pj . It then samples Ki so that

[ A | ACi ] Ki = P∗i mod q

If we choose (v, k) as functions of parameters of (κ,Q) in a way that the Q subsets ∆1, . . . ,∆Q

are cover free with high probability, then this ensures that the matrices P∗1, . . . ,P
∗
Q are independent

and uniformly distributed, which will enable the simulator to sample the requisite keys. It suffices to
choose v = Θ(κ) and k = Θ(v ·Q2) for this to happen (see [GVW12, Section 5.2] for more details).

Below, we describe the strategy more formally. For ease of exposition, we only outline the
differences from the (1, poly)-scheme described above.

1. QPH.Setup. The setup algorithm is modified so that instead of choosing a single P it now
chooses a set P1, . . . ,Pk ← Zn×mq .

2. QPH.Enc. The encryptor computes
{
{ui}, {vj},β0

}
as before, but instead of computing a

single β1, it now computes k encodings of the message as:

{ β1j = PT
j s + e′j + b }j∈[k]

3. QPH.KeyGen. To produce a key for a circuit Ĉ ◦ IP, the key generator samples a random
binary vector r with hamming weight v and computes the subset sum P∗ =

∑
j∈[k]

rj Pj . It now

produces a key (K, r) where K is sampled using SampleLeft to satisfy:

[A| A
Ĉ◦IP + γ ·G] K = P∗
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4. QPH.Dec. Given the ciphertext {ui}, {vj},β0, {β1j} and a key (K, r), the decryptor computes

β∗1 =
∑
j∈[k]

rj β1j

=
∑
j∈[k]

rj
(
PT
j s + e′j + b

)
= (P∗)Ts + er +

( ∑
j∈[k]

rj
)
b where er =

∑
j∈[k]

rj e′j

By correctness of the (1, poly)-scheme, this lets the decryptor learn
∑
j∈[k]

rj b, which lets her

recover b since r is provided.

Generalizing the proof of security. We describe how to generalize the simulator. The simulator
receives as input the security parameter, the public attribute y, the size of the private attribute x,
Q circuits {Ĉ∗i ◦ IPγi }i∈[Q] such that Ĉ∗i ◦ IPγi (x,y) = 1, and µ, which is revealed by correctness of
decryption. It does the following:

1. Generating the Public Key. It generates the public parameters {B1, . . . ,Bt}, A as in the
real PH.Setup. For {A1, . . . ,A`}, it samples Ri ← {−1, 1}m×m and sets Ai = A Ri−y[i] ·G
for i ∈ [`]. Note that the simulator knows y.

It generates P1, . . . ,Pk as follows:

(a) For i ∈ [Q] compute

A
Ĉ∗i ◦IP

= EvalPK
(
{Aj}j∈[`], {Bj}j∈[t], Ĉ

∗
i ◦ IP

)
(b) Next, sample K∗i ←

(
DZ2m,s

)m
and set:

P∗i = [A | A
Ĉ∗i ◦IP

+ γi ·G] K∗i ∀i ∈ [Q]

= [A | AR
Ĉ∗i ◦IP

] K∗i

where K∗i =

(
K∗1i
K∗2i

)
.

(c) Choose Q random binary vectors r1, . . . , rQ ∈ {0, 1}k of hamming weight v.

(d) For i ∈ [Q], write down the following equations in variables K1, . . . ,Kk:

A K∗1i + A R
Ĉ∗i ◦IP

K∗2i = A
(∑
j∈[k]

ri[j] Kj

)
(5.4)

Now, to satisfy the above, it suffices to set:

K∗1i + R
Ĉ∗i ◦IP

K∗2i =
∑
j∈[k]

ri[j] Kj (5.5)

(e) Next, note that by cover-freeness, we have that for each equation i ∈ [Q], the subset sum
in the RHS contains at least one matrix, say Ki′ , which does not appear in any other
equation. Rearranging terms, we get for i ∈ [Q],

Ki′ =
(
K∗1i + R

Ĉ∗i ◦IP
K∗2i

)
−
( ∑
j:j 6=i′

ri[j] Kj

)
(5.6)
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(f) Sample all the Kj from DZm,s that appear in the RHS of the above equations, namely
Kj where j 6= i′, j ∈ [k], i′ ∈ [Q]. Set the Q values Ki′ in the LHS to satisfy the above
equation.

(g) For i ∈ [k], set Pi = A Ki mod q.

2. Generating Function Keys. It generates all keys using the real PH.KeyGen except the Q
keys {Ĉ∗i ◦ IPγi }i∈[Q], which it sets as { (ri, K∗i ) }i∈[Q].

3. Generating the Challenge Ciphertext. For the challenge ciphertext, do the following.

(a) Sample β0, {uj}j∈[`], {vj}j∈[t] independently and uniformly from Zmq .

(b) Sample e′′j ← DZm,sD for j ∈ [k].

(c) It computes β1j for j ∈ [k] as

β1j = KT
j β0 + e′′j + b

(d) It outputs the challenge ciphertext

CT∗ =
(
{ui}i∈[`], {vi}i∈[t],y,β0, {β1i}i∈[k]

)
See Appendix 8.4 for the analysis of our simulator.

6 Upgrading PHPE Security: Selective to Semi-Adaptive

In this section, we show how to construct a (1, poly)-Partially Hiding Predicate Encryption scheme
for circuit class C satisfying semi-adaptive security according to definition 3.1. Our construction,
which we denote by SaPH, will make use of two ingredients:

1. A single key6, FULL-SIM secure (see Appendix 8.5 for the definition), functional encryption
scheme for the following functionality:

F(V1,...,Vk)(a1, . . . ,ak) =
∑
i=1

Vi · ai mod q

where Vi ∈ Zm×mq and ai ∈ Zmq for i ∈ [k]. The parameters k, q,m are input to the setup
algorithm. Such a scheme was recently constructed by [ALS16]7. We will denote this scheme
by FuLin.

2. A (1, poly) selectively secure PHPE scheme for the circuit class C, as provided in Section 5.
We will denote this scheme by SelPH.

Our approach is quite general and can be used to upgrade the security of any selectively secure
functional encryption system where the ciphertext is a linear polynomial with public coefficients.
This applies to all constructions of functional encryption from the LWE assumption, including
[ABB10, AFV11, BGG+14, GVW15].

Our construction is described below.
6More precisely, we require that the adversary may request the same single function any number of times, but

multiple requests for the same function result in the same key.
7While the construction in [ALS16] has stateful KeyGen against a general adversary, we only need the single key

version which is clearly stateless.
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SaPH.Setup(1κ, 1t, 1`, 1d): Given as input the circuit and the master secret key, do the following:

1. For i ∈ [`], let (FuLin.PKi,FuLin.MSKi)← FuLin.Setup
(
1κ, (Zmq )3

)
.

2. For j ∈ [t], let (FuLin.PK′j ,FuLin.MSK′j)← FuLin.Setup
(
1κ, (Zmq )3

)
.

3. Let (FuLin.PK0,FuLin.MSK0)← FuLin.Setup
(
1κ, (Zmq )2

)
.

4. Let (FuLin.PK′0,FuLin.MSK′0)← FuLin.Setup
(
1κ, (Zmq )3

)
.

5. Let {PRG}s∈{0,1}κ be a family of PRGs with polynomial expansion. Sample a PRG seed,
denoted by seed.

6. Output

PH.PK =
{
FuLin.PK0, FuLin.PK

′
0, {FuLin.PKi}i∈[`], {FuLin.PK′j}j∈[t]

}
PH.MSK =

{
seed, FuLin.MSK0, FuLin.MSK′0, {FuLin.MSKi}i∈[`], {FuLin.MSK′j}j∈[t]

}
SaPH.Enc

(
PH.PK, (x,y), µ

)
: Given as input the master public key, the private attributes x, public

attributes y and message µ, do the following:

1. Sample s← DZn,sB and error terms e← DZm,sB and e′ ← DZm,sD .

2. Let b = [0, . . . , 0, dq/2eµ]T ∈ Zmq .

3. Sample Ri ← {−1, 1}m×m for i ∈ [`] and R′j ← {−1, 1}m×m for j ∈ [t].

4. Set

β̂0 = FuLin.Enc
(

s, e
)

8, ûi = FuLin.Enc
(

s, y[i] ·GTs, RT
i e
)
,

β̂1 = FuLin.Enc
(

s, e′,b
)
, v̂j = FuLin.Enc

(
s, x[j] ·GTs, R′

T

je
)

5. Output the ciphertext
CTy =

(
y, β̂0, β̂1, {ûi}, {v̂j}

)
for i ∈ [`], j ∈ [t].

SaPH.KeyGen(PH.MSK, Ĉ ◦ IPγ) : Given as input the circuit and the master secret key, do the
following:

1. Use PRG(seed) to generate sufficient randomness rand for the SelPH.Setup algorithm as
well as {randi}, {rand′j}, rand0, rand′0 for the FuLin.KeyGen algorithms.

2. Sample (SelPH.PK, SelPH.MSK)← SelPH.Setup
(
1κ, 1t, 1`, 1d, rand

)
.

Parse SelPH.PK =
(
{Ai}, {Bj}, A, P

)
.

3. Let

FuLin.SKi ← FuLin.KeyGen
(
FuLin.MSKi, (A

T
i , 1, 1), 9 randi

)
∀i ∈ [`]

FuLin.SK′j ← FuLin.KeyGen
(
FuLin.MSK′j , (B

T
j , 1, 1), rand′j

)
∀j ∈ [t]

FuLin.SK0 ← FuLin.KeyGen
(
FuLin.MSK0, (A

T, 1), rand0

)
FuLin.SK′0 ← FuLin.KeyGen

(
FuLin.MSK′0, (P

T, 1, 1), rand′0
)

8Note that we are abusing notation slightly, since the message space of FuLin was set as Zmq but s ∈ Znq . However,
since n < m, we can pad it with zeroes to make it match. We do not explicitly state this for the sake of notational
convenience.

9Here, 1 is used to denote the m×m identity matrix.
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4. Let SelPH.SK(Ĉ ◦ IPγ)← SelPH.KeyGen
(
SelPH.MSK, Ĉ ◦ IPγ

)
.

5. Output

SelPH.SK(Ĉ ◦ IPγ) =
((

SelPH.PK, SelPH.SK(Ĉ ◦ IPγ)
)
,(

{FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK
′
0

))
SaPH.Dec

(
SK

Ĉ◦IPγ ,CTy

)
: Given as input a secret key and a ciphertext, do the following:

1. Let

β0 = FuLin.Dec(FuLin.SK0, β̂0), ui = FuLin.Dec(FuLin.SKi, ûi),

β1 = FuLin.Dec(FuLin.SK′0, β̂1), vj = FuLin.Dec(FuLin.SK′j , v̂j)

Let SelPH.CT =
(
β0, β1, {ui}, {vj}, y

)
.

2. Output µ← SelPH.Dec
(
SelPH.PK, SelPH.CT, SelPH.SK

)
.

Correctness. Correctness may be argued using the correctness of FuLin and SelPH.

By correctness of FuLin, the tuple (β0, β1, {ui}, {vj}) produced in the first step of decryption
is precisely the ciphertext of the SelPH scheme. More formally, we get:

ui = FuLin.Dec(FuLin.SKi, ûi) = (Ai + yi ·G)Ts + RT
i e

vj = FuLin.Dec(FuLin.SK′j , v̂j) = (Bi + xi ·G)Ts + (R′i)
Te

β0 = FuLin.Dec(FuLin.SK0, β̂0) = ATs + e

β1 = FuLin.Dec(FuLin.SK′0, β̂1) = PTs + e′ + b

Let SelPH.CT =
(
β0, β1, {ui}, {vj}, y

)
. Then, by correctness of SelPH, the following is correct

µ = SelPH.Dec
(
SelPH.PK, SelPH.CT, SelPH.SK

)
6.1 Security

Theorem 6.1. Assume that SelPH satisfies selective SIM attribute hiding (definition 3.2) and that
FuLin satisfies FULL-SIM security (definition 8.4). Then the scheme SaPH satisfies semi-adaptive
SIM attribute hiding (definition 3.1).

Proof. We begin by defining the semi-adaptive simulator SA.Sim. Our simulator will use FuLin.Sim
and SelPH.Sim to simulate the view of the semi-adaptive adversary SA.Adv as follows.

Semi Adaptive Simulator SA.Sim(1κ):

1. Invoke k ∈ [`+ t+ 2] simulators FuLin.Simk to obtain

SaPH.PK =
(
{FuLin.PKi}, {FuLin.PK′j},FuLin.PK0,FuLin.PK

′
0

)
Return this to the adversary SA.Adv.
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2. SA.Adv now outputs the PHPE challenge (x,y, µ, Ĉ∗ ◦ IPγ), upon which the simulator SA.Sim

gets (y, 1|x|, Ĉ∗ ◦ IPγ , µ). Invoke SelPH.Sim to obtain:(
SelPH.PK, SelPH.CT, SelPH.SK(Ĉ∗ ◦ IPγ)

)
← SelPH.Sim(1κ,y, 1|x|, Ĉ∗ ◦ IPγ , µ)

3. Parse SelPH.PK =
(
{Ai}, {Bj}, A, P

)
. Obtain ` + t + 2 function keys for the ` + t + 2

single key FuLin schemes from their respective simulators as:

FuLin.SKi ← FuLini.Sim(AT
i , 1, 1), ∀ i ∈ [`]

FuLin.SK′j ← FuLin`+j .Sim(BT
j , 1, 1), ∀ j ∈ [t]

FuLin.SK0 ← FuLin.Sim`+t+1(AT, 1)

FuLin.SK′0 ← FuLin.Sim`+t+2(PT, 1, 1)

Return the 1-key SaPH.SK(Ĉ∗ ◦ IPγ) to SA.Adv as:(
SelPH.PK, SelPH.SK(Ĉ∗ ◦ IPγ), {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0

)
4. Parse

SelPH.CT = ( y, {ui}, {vj}, β0, β1)

Let ûi ← FuLini.Sim
(

(AT
i , 1, 1), ui

)
∀i ∈ [`]

v̂j ← FuLin`+j .Sim
(

(BT
j , 1, 1), vj

)
∀j ∈ [t]

β̂0 ← FuLin.Sim`+t+1

(
(AT, 1),β0

)
β̂1 ← FuLin.Sim`+t+2

(
(PT, 1, 1),β1

)
Return the challenge ciphertext to SA.Adv as:

SaPH.CT =
(
y, {ûi}, {v̂j}, β̂0, β̂1

)
5. Adversary may request 0-keys Ĉ ◦ IPρ, which are forwarded to SelPH.Sim to obtain

SelPH.SK(Ĉ ◦ IPρ). Then, the key SaPH.SK(Ĉ ◦ IPρ) is defined as:(
SelPH.PK, SelPH.SK(Ĉ ◦ IPρ), {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0

)
and returned to the adversary SA.Adv.

Analysis of SA.Sim: Correctness of the simulator SA.Sim follows from correctness of FuLin.Sim
and SelPH.Sim. We will argue that the real world is indistinguishable from the simulated world via
a sequence of hybrids, which are defined below.

Hybrid 0: Ideal world SaPH.

Hybrid 1: In this hybrid, replace the simulator SelPH.Sim by the algorithms SelPH.Setup,
SelPH.KeyGen used by SaPH.KeyGen.

Hybrid 2: In this hybrid, replace the simulator FuLin.Sim by the algorithms FuLin.Setup, FuLin.Enc
and FuLin.KeyGen. This is the real world.
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We now argue that consecutive hybrids are indistinguishable.

Lemma 6.2. Hybrids 0 and 1 are computationally indistinguishable by the selective security of the
SelPH scheme.

Proof. Assume there exists an adversary A who distinguishes between Hybrids 0 and 1. We will
construct an adversary B to break selective security of the SelPH scheme. The adversary B does the
following:

1. B runs simulators FuLink.Sim to obtain FuLink.PK for k ∈ [` + t + 2]. It sets SaPH.PK =
{FuLink.PK} and provides this to A.

2. A returns the challenge (x,y, µ, Ĉ∗ ◦ IPγ), which B outputs as its challenge.

3. B is provided
(
SelPH.PK, SelPH.SK(Ĉ∗ ◦ IPγ), SelPH.CTy

)
. It does the following:

(a) To construct SaPH.SK(Ĉ∗ ◦ IPγ), it does the following.

i. It requests FuLin keys from the simulators FuLink.Sim for k ∈ [`+ t+ 2] as:

{FuLin.SKi for function (AT
i , 1, 1)}, FuLin.SK0 for function (AT, 1)

{FuLin.SK′j for function (BT
j , 1, 1)}, FuLin.SK′0 for function (PT, 1, 1)

ii. It sets as SaPH.SK(Ĉ∗ ◦ IPγ) the tuple:(
SelPH.PK, SelPH.SK(Ĉ∗ ◦ IPγ), {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0

)
(b) To construct SaPH.CT, it does the following:

i. Parse SelPH.CTy = ( y, {ui}, {vj}, β0, β1).

ii. Invoke the simulators FuLink.Sim for k ∈ [`+ t+ 2] as:

Let ûi ← FuLini.Sim
(

(AT
i , 1, 1), ui

)
∀i ∈ [`]

v̂j ← FuLin`+j .Sim
(

(BT
j , 1, 1), vj

)
∀j ∈ [t]

β̂0 ← FuLin.Sim`+t+1

(
(AT, 1),β0

)
β̂1 ← FuLin.Sim`+t+2

(
(PT, 1, 1),β1

)
iii. Return the challenge ciphertext to A as:

SaPH.CT =
(
y, {ûi}, {v̂j}, β̂0, β̂1

)
4. If A makes a query Ĉ ◦ IPρ, invoke SelPH.Sim(Ĉ ◦ IPρ) to obtain SelPH.SK(Ĉ ◦ IPρ). Return

SaPH.SK(Ĉ ◦ IPρ) as(
SelPH.PK, SelPH.SK(Ĉ ◦ IPρ), {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0

)
where SelPH.PK and {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0 are as generated in the

previous step.

5. Finally, when A outputs some α, output the same.
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When the SelPH objects come from the simulator, then A sees the distribution of Hybrid 0, and
when they come from the real scheme, A sees the distribution of Hybrid 1. Thus, if it can distinguish
between these, then B is a successful adversary against the SelPH scheme.

Lemma 6.3. Hybrids 1 and 2 are indistinguishable by the FULL-SIM security of the FuLin scheme.

Proof. Assume there exists adversary A who distinguishes between Hybrids 1 and 2. We will
construct an adversary B to break FULL-SIM security of the FuLin scheme.

1. B receives the FuLink.PK for k ∈ [`+ t+ 2]. It provides this set to A as the SaPH.PK.

2. A returns the challenge (x,y, µ, Ĉ∗ ◦ IPγ). B does the following:

(a) To construct SaPH.SK(Ĉ∗ ◦ IPγ):

i. It computes SelPH.PK and SelPH.SK(Ĉ∗ ◦ IPγ) by itself using the SelPH algorithms.

ii. Now, SelPH.PK =
(
{Ai}, {Bj}, A, P

)
. It requests `+ t+ 2 FuLin keys:

{FuLin.SKi for function (AT
i , 1, 1)}, FuLin.SK0 for function (AT, 1)

{FuLin.SK′j for function (BT
j , 1, 1)}, FuLin.SK′0 for function (PT, 1, 1)

iii. It sets as SaPH.SK(Ĉ∗ ◦ IPγ) the tuple:(
SelPH.PK, SelPH.SK(Ĉ∗ ◦ IPγ), {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0

)
(b) To construct SaPH.CT: It chooses `+ t+ 2 challenge messages (sampled as in SelPH.Enc),

one for each instance of FuLin, and outputs:(
s, y[i] ·GTs, RT

i e
)
i∈[`](

s, x[j] ·GTs, R′
T

je
)
j∈[t](

s, e
)
,
(

s, e′,b
)

It receives
(
{ûi}, {v̂j}, β̂0, β̂1

)
which it sets as SaPH.CT.

(c) B outputs SaPH.CT and SaPH.SK(Ĉ∗ ◦ IPγ).

3. A may request a 0-query Ĉ ◦ IPρ. It computes SelPH.SK(Ĉ ◦ IPρ) itself using the SelPH.KeyGen
algorithm. It outputs(

SelPH.PK, SelPH.SK(Ĉ ◦ IPρ), {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK
′
0

)
where SelPH.PK and {FuLin.SKi}, {FuLin.SK′j}, FuLin.SK0, FuLin.SK

′
0 are as generated in the

previous step.

4. When A outputs some state α, B outputs the same.

When the FuLin objects come from the simulator, then A sees the distribution of Hybrid 1, and
when they come from the real scheme, A sees the distribution of Hybrid 2. Thus, if it can distinguish
between these, then B is a successful adversary against the FuLin scheme.

Thus, we have proved that the simulator is correct, establishing the theorem.
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7 (1, poly)-Functional Encryption.

In this section, we construct our (1,poly)-functional encryption scheme. The ciphertext of the
construction is succinct, providing a unification of the results [GKP+13, GVW15]. Our construction
of (1, poly)-functional encryption uses (1,poly)-partially hiding predicate encryption and fully
homomorphic encryption in a manner similar to [GVW15, Section 4].

7.1 Construction

We begin with an overview of the main ideas in the construction. Let us recall the (0, poly)-FE
scheme constructed by [GVW15]. The scheme makes use of two ingredients, namely, a (0, poly)-
PHPE scheme for circuits, and a fully homomorphic encryption scheme for circuits. The ciphertext
of (0, poly)-FE corresponding to an attribute a is a PHPE ciphertext corresponding to (â, t) where
â is the FHE encryption of a, and corresponds to the public attributes in PHPE, while t is the FHE
secret key and corresponds to the private attributes in PHPE.

The secret key corresponding to circuit C in the (0,poly)-FE scheme is a set of PHPE secret
keys { Ĉ ◦ IPγ }γ∈[bp/2c−B,bp/2c+B] where:

Ĉ ◦ IPγ(x,y) = 1 if 〈x, Ĉ(y)〉 = γ

= 0 otherwise.

The decryptor executes the homomorphic ciphertext evaluation procedure for circuit FHE.Eval(·, C)
on the attributes â embedded in the PHPE ciphertext as in [BGG+14] to obtain a ciphertext

corresponding to public attributes Ĉ(a), where Ĉ(a) is an FHE encryption of C(a). Now, when
C(a) = 1, then by correctness of FHE, there exists a noise term γ ∈ [bp/2c−B, bp/2c+B] such that〈

t, Ĉ(a)
〉

= γ. The decryptor tries keys corresponding to all possible γ within the aforementioned

range to ascertain whether Ĉ ◦ IPγ(â, t) = 1. Note that this step makes it crucial that the FHE
decryption range be polynomial in size. Fortunately, as noted by [GVW15], this can be ensured
by the modulus reduction technique in FHE schemes [BGV12, GSW13, BV14], which allows a
superpolynomial modulus to be scaled down to polynomial size.

The first idea in building (1, poly)-FE is to replace the use of (0,poly)-PHPE in the above
transformation by the (1,poly) PHPE constructed in Section 5. However, as discussed in Attack
#3, Section 4, such a straightforward adaptation leads to vulnerabilities. This is because decryption

using a 1-key allows the decryptor to learn the exact inner product of the FHE ciphertext Ĉ(a) and
the FHE secret key t rather than the threshold inner product corresponding to FHE decryption.
This lets her obtain leakage on the noise terms used to construct â, which is problematic. We will
denote the noise used in the construction of the FHE ciphertext â by Noise( â ).

Overcoming Leakage on FHE noise. For a single 1-key, there is a natural way out, via “noise
flooding” or “noise smudging” [Gen09, GKPV10, AJLA+12]. To prevent leakage on Noise( â ),
we may augment the FHE evaluation circuit with a “flooding” operation, which, after computing
FHE.Eval(â, C) adds large noise η to this encryption to drown out the effects of Noise( â ). This idea
is complicated by the fact that our construction of (1, poly)-FE must use an FHE scheme whose
final modulus is polynomial in size, whereas η must be chosen to satisfy:

Noise( FHE.Eval( â, C) ) + η
s
≈ η (7.1)

so that, by Lemma 2.2, it drowns the effects of Noise( â ). The above constraint may necessitate η,
and hence the FHE modulus, to be superpolynomial in the security parameter.
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Fortunately, we can work around this difficulty by performing FHE modulus reduction after
flooding. Then, η can be superpolynomial in the security parameter to obliterate the dependency
of the revealed noise on the initial noise, while letting the final FHE modulus still be polynomial.
Additionally, flooding is a simple addition operation, which can be performed using PHPE while
setting the flooding noise as a private attribute.

Formally, we require a PHPE scheme for the circuit family CPHPE where Ĉ ◦ IP ∈ CPHPE is defined
as follows. Let the private attributes x = (t, η) and public attributes y = â. Then, define:

Ĉ(η, â) = FHE.Scaleq,p
(
FHE.Eval(â, C) + η

)
Ĉ ◦ IP

(
t, η, â

)
=
〈
t, Ĉ(η, â)

〉
mod p

Ĉ ◦ IPγ
(

t, η, â
)

= 1 iff Ĉ ◦ IP
(

t, η, â
)

= γ, 0 otherwise.

Above, FHE.Eval is the FHE ciphertext evaluation algorithm, and FHE.Scale is the modulus
reduction algorithm described in Section 3.3. Recall that FHE.Scaleq,p takes as input an FHE
ciphertext that lives modulo q and reduces it to a ciphertext that lives modulo p. For the sake of
brevity, we abuse notation and do not explicitly include the inputs (q, p) in the inputs to Ĉ ◦ IP.
Note that FHE.Scaleq,p corresponds to circuit C ′ and FHE.Eval corresponds to circuit C ′′ defined in
Section 3.4.3.

Construction. We now proceed to describe the construction.

FE.Setup(1κ, 1k, 1d): The setup algorithm takes the security parameter κ, the attribute length k
and the function depth d and does the following:

1. Choose the FHE modulus q in which FHE.Eval(·, ·) will be computed and the FHE
modulus p ∈ poly(κ) in which decryption will be performed as per Section 3.3.

2. Invoke the setup algorithm for the PHPE scheme for family CPHPE to get:

(PH.PK,PH.MSK)← PH.Setup(1κ, 1t, 1`, 1d
′
)

where t = |FHE.SK| + |FHE.CT|, ` is the length of an FHE encryption of k bits
corresponding to the attributes a, i.e. ` = k · |FHE.CT| and d′ is the bound on the
augmented FHE evaluation circuit.

3. Output (PK = PH.PK, MSK = PH.MSK).

FE.Keygen(MSK, C) : The key generation algorithm takes as input the master secret key MSK and
a circuit C. It does the following:

1. Let R , [bp/2c − B, bp/2c + B]. Compute the circuit Ĉ ◦ IPγ as described above for
γ ∈ R.

2. For γ ∈ R, compute

PH.SK
Ĉ◦IPγ ← PH.KeyGen(PH.MSK, Ĉ ◦ IPγ)

3. Output the secret key as SKC = {PH.SK
Ĉ◦IPγ}γ∈R.

FE.Enc(PK,a, µ): The encryption algorithm does the following:

1. Sample a fresh FHE secret key FHE.SK, and denote it by t.
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2. Compute an FHE encryption of a to get â = FHE.Enc( a, t ).

3. Sample η to satisfy equation 7.1.

4. Set public attributes y = â and private attributes x = (t, η).

5. Compute PH.CTâ = PH.Enc
(
PH.PK, (x,y), µ

)
.

6. Output CTa =
(

â,PH.CTâ

)
.

FE.Dec(SKC ,CTa): Do the following:

1. Parse SKC as the set {PH.SK
Ĉ◦IPγ}γ∈R.

2. For γ ∈ R, let τγ = PH.Dec
(
CTa,PH.SKĈ◦IPγ

)
. If there exists some value γ′ for which

τγ′ 6= ⊥, then output µ = τγ′ , else output ⊥.

Correctness. Correctness follows from correctness of PHPE. Recall that

Ĉ ◦ IPγ(t, η, â) = 1 if 〈t, Ĉ(η, â)〉 = γ, and 0 otherwise.

Note that Ĉ(η, â) = FHE.Scale
(
FHE.Eval(C, â) + η, q, p

)
is a modulo p FHE ciphertext of message

C(a) by properties of FHE (see Section 3.3). Now, if C(a) = 1, then for some ρ ∈ [bp/2c−B, bp/2c+
B], we have that: 〈

t, Ĉ(η, â)
〉

= ρ mod p

Hence PH.Dec
(
SK

Ĉ◦IPγ , Ĉ ◦ IPγ , CTâ, â
)

= µ iff γ = ρ. On the other hand, if C(a) = 0, then ρ

must lie outside [bp/2c −B, bp/2c+B]. Hence PH.Dec returns ⊥ by correctness of PHPE.

7.2 Proof of Security

Next, we argue that the above scheme satisfies semi-adaptive security.

Theorem 7.1. The (1, poly) functional encryption scheme described above is secure according to
definition 3.5.

Proof. We construct a simulator FE.Sim as required by definition 3.5 as follows.

Simulator FE.Sim(1κ). The simulator is described as follows.

1. It invokes PHPE.Sim(1κ) to obtain the public parameters and returns these.

2. The FE adversary outputs (a, µ, C∗) upon which, FE.Sim obtains (1|a|, µ, C∗). It does the
following:

(a) It samples an FHE secret key FHE.SK and sets â = FHE.Enc(FHE.SK,0).

(b) It samples γq to satisfy Equation 7.1. Let γ denote its scaled down version modulo p. It

computes Ĉ∗ ◦ IPγ as described above.

(c) It invokes PHPE.Sim
(

â, 1|FHE.SK|+|FHE.CT|, Ĉ∗ ◦ IPγ , µ
)

to obtain
(
PH.CT, PH.SK(Ĉ∗ ◦ IPγ)

)
.

(d) For ρ ∈ R \ γ, it constructs Ĉ∗ ◦ IPρ and sends these queries to PHPE.Sim. It receives

PH.SK(Ĉ∗ ◦ IPρ).

(e) It outputs
(
PH.CT, {PH.SK(Ĉ∗ ◦ IPρ)}ρ∈R

)
.
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3. When Adv makes any query C, FE.Sim transforms it into {Ĉ ◦ IPρ}ρ∈R and sends this to
PHPE.Sim. It returns the set of received keys to Adv. Note that these are 0-keys.

4. When Adv outputs α, output the same.

We argue that the simulator is correct via a series of hybrids.

Hybrid 0: The real experiment.

Hybrid 1: In this hybrid, the FHE encryption â is generated honestly but the remainder of the
experiment is simulated.

Hybrid 2: This is the simulated experiment.

We now argue that consecutive hybrids are indistinguishable.

Lemma 7.2. Hybrids 0 and 1 are computationally indistinguishable assuming security of (1,poly)
PHPE.

Proof. Assume there exists an adversary Adv and a distinguisher D who distinguishes between the
two hybrids. We use these to construct (Adv′,D′) that break the security of (1,poly) PHPE. Adv′

behaves as follows:

1. Obtain the public key PHPE.PK and output this to Adv.

2. Adv outputs the tuple (a, µ, C∗) such that C∗(a) = 1. Do the following.

(a) Sample an FHE secret key FHE.SK and set â = FHE.Enc(FHE.SK,a).

(b) Sample γq to satisfy Equation 7.1 and let γ be its scaled down version modulo p. Compute

Ĉ∗ ◦ IPγ as described above.

(c) Compute η so that Noise
(
FHE.Eval(â, C∗)

)
+ η = γq.

(d) Output
(

(FHE.SK, η), â, µ, Ĉ∗ ◦ IPγ
)

as the PHPE. challenge. Obtain
(
PH.CTâ, PH.SK(Ĉ∗ ◦ IPγ)

)
.

(e) Output queries Ĉ∗ ◦ IPρ for ρ ∈ R \ γ to receive PH.SK(Ĉ∗ ◦ IPρ).
(f) Output FE.CT = (â, PH.CTâ) and FE.SK = {PH.SK(Ĉ∗ ◦ IPρ)}ρ∈R.

3. When Adv makes any query C, transform it into {Ĉ ◦ IPρ}ρ∈R and send this to PHPE.Sim.
Return the set of received keys to Adv.

4. When Adv outputs α, output the same.

Note that the only difference between the two distributions is that in Hybrid 0, the algorithms
PH.Setup, PH.KeyGen and PH.Enc are used, whereas in Hybrid 1, the simulator PH.Sim is used.
Thus, if there exists a distinguisher that can distinguish between the two hybrids, it is immediate
that the real and simulated worlds in the PHPE experiment can be distinguished.

Lemma 7.3. Hybrids 1 and 2 are indistinguishable assuming semantic security of FHE.

Proof. The only difference between Hybrids 1 and 2 is that in the former, the FHE ciphertext is
generated honestly as â whereas in the latter, the FHE ciphertext is an encryption of 0. Hence,
given an adversary who can distinguish beween these two hybrids, we can construct an adversary
who breaks the semantic security of FHE. For details, we refer the reader to [GVW15, Lemma
4.4].
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7.3 Generalizing to handle Q queries.

In this section, we discuss how to generalize our (1,poly)-FE scheme to (Q,poly)-FE for any
polynomial Q fixed in advance. We will follow the template for (1,poly)-FE but replace the use of
(1,poly)-PHPE with (Q,poly)-PHPE constructed in Section 5.3. It remains to perform the flooding
operation for Q keys instead of 1, in a manner that allows KeyGen to remain stateless. However,
this can easily be handled, by using tricks similar to Section 5.3.

In more detail, the encryptor now samples η1, . . . , ηk (for some k to be chosen) instead of a
single η, sets public attributes y = â as before and private attributes x = (η1, . . . , ηk, t). It outputs
PH.CT = PH.Enc

(
PH.PK, (y,x), µ

)
.

The key generator chooses a random binary vector r ← {0, 1}k with hamming weight v, and
computes the PHPE secret key for Ĉ ◦ IPγ for γ ∈ [bp/2c −B, bp/2c+B] where Ĉ ◦ IPγ is slightly
modified so that in place of flooding the requisite ciphertext with η, it floods it with

∑
j∈[k]

rjηj . By

suitable choice of the parameters (k, v) as in Section 5.3, for Q queries, the vectors r1, . . . , rQ chosen
as above represent a collection of cover free sets. This implies that each of the Q noises revealed to
the decryptor, corresponding to decryption performed using each of the Q 1-keys, contains a fresh
and unique ηj noise term which does not appear in any other decryption equation. This suffices for
flooding the problematic noise terms Noise(â) as in the case of (1, poly)-FE. We defer details to the
full version of the paper.
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8 Appendix

8.1 Additional Attack on [GVW15] using 1-keys.

We briefly describe an additional attack that holds in the [GVW15] construction, which does not
apply to the [AFV11] construction. The construction of [GVW15] uses the “lazy OR” trick to
handle FHE decryption. This means that instead of revealing the threshold inner product as
required by FHE decryption, it reveals the exact inner product. Note that when C(x) = 0, the
exact inner product between the FHE ciphertext for C(x) and the FHE secret key, which is revealed
by the construction, is noise γ. However, since the FHE evaluation procedure is deterministic, γ
is a function of the noise terms used in the original FHE encryptions of x, learning which lead to
recovery of the FHE secret key.

In more detail, consider circuits C computing linear functions. Say that the FHE ciphertext for
a uses noise µ. Now, if we compute the function 〈v,a〉 homomorphically on the FHE ciphertext,
the resultant ciphertext contains noise terms 〈v,µ〉. Note that now, if 〈v,a〉 = 0, the 1-key enables
the attacker to decrypt the FHE ciphertext and learn the noiseless linear equation γ = 〈v,µ〉, of
which v is known. Using several of such equations, he can recover the noise terms µ, which in turn
lead to removing the noise from FHE encryptions, which lead to a recovery of the FHE secret.
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We note that the authors of [GVW15] already observe that revealing the exact inner product
does not allow the construction to achieve strong attribute hiding. Here we highlight that this is
not a limitation of the proof technique.

8.2 Generalising EvalCT

We describe how to construct PHPE.EvalPK and PHPE.EvalCT to support circuits of the required
structure, namely:

Ĉ(x2,y) = C ′(C ′′(y) + x2)

for arbitrary polynomial sized circuits C ′′ : {0, 1}` → {0, 1}t′′ and C ′ : {0, 1}t′′ → {0, 1}t′ . And:

Ĉ ◦ IP(x,y) =
〈
x1, Ĉ(x2,y)

〉
PHPE.EvalCT takes as input ` + t matrices {Ai, }{Bj} ∈ Zn×mq , ` + t vectors {ui}, {vj}, the

public attribute y ∈ {0, 1}` and a circuit Ĉ ◦ IP where Ĉ(x2,y) = C ′(C ′′(y) + x2), and computes
u
Ĉ◦IP as follows:

• Let C ′′j denote the circuit computing the jth bit of C ′′. For i ∈ [`], j ∈ [t′′], compute

u′′j = ABE.EvalCT
(
{Ai,ui},y, C ′′j

)
, A′′j = ABE.EvalPK

(
{Ai}, C ′′j

)
• We have vt−t′′ , . . . ,vt encoding the attributes x2. For j ∈ [t′′], let

u′j = ABE.EvalCT
(
{A′′j ,u′′j }, {Bt−j ,vt−j},Add

)
, A′j = ABE.EvalPK

(
{A′′j }, {Bt−j},Add

)
• Let C ′j denote the circuit computing the jth bit of C ′. For i ∈ [t′′], j ∈ [t′], compute

u
Ĉj

= ABE.EvalCT
(
{A′i,u′i}, C ′′(y), C ′j

)
, A

Ĉj
= ABE.EvalPK

(
{A′i}, C ′j

)
• At this stage we have public key and ciphertext corresponding to Ĉ(x2,y). All that remains

is to compute the inner product with x1, which is performed as in [GVW15]. Recall that
B1, . . . ,Bt′ and v1, . . . ,vt′ are the public key and ciphertext components corresponding to x1.
For i ∈ [t′],

Let A
Ĉ◦IP = GVW.EvalPK

(
{A

Ĉi
}, {Bi}, IP

)
, u

Ĉ◦IP = GVW.EvalCT
(
{A

Ĉi
,u

Ĉi
}, {Bi,vi},y, IP

)
The algorithm PHPE.EvalR may be constructed analogously using ABE.EvalR and GVW.EvalR.

First, one would invoke ABE.EvalR to construct the matrices corresponding to C ′′, say R′′1, . . . ,R
′′
t′′ .

Next, invoke ABE.EvalR to construct matrices corresponding to the addition of C ′′(y) and x2. Note
that for addition, no attributes are required as input. Then, invoke ABE.EvalCT for computing C ′,
and finally GVW.EvalR for computing the matrix R

Ĉ◦IP.

8.3 Parameters for (1, poly)-PHPE

In this section, we choose the parameters so that correctness and security of the scheme are satisfied.
We must satisfy the following constraints.
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1. For correctness, the final magnitude of error obtained must be below q/4.

2. We must choose m large enough that the trapdoor generation algorithm may be invoked
(Theorem 3.7).

3. We must set the parameter s used to produce the three distributions (see Section 3.4.2) large
enough so that the these are statistically indistinguishable.

4. We must choose the parameter sD used to sample the error in β1 large enough so that the
following equation (used to argue indistinguishability of Hybrid 1 and 2) is satisfied:

e1
s
≈

{
(K∗)T

(
e0

eEval

)
+ e′′

}
(8.1)

Here e0 is sampled from a discrete Gaussian of width sB and eEval is bounded by Equation
3.9.

We choose our parameters similarly to [GVW15]. The only difference between our setting
and [GVW15] is that in the latter, it is required that the final error, which is dominated by

(K∗)T
(

e0

eEval

)
≤ BEval (say) be slightly less than the field size q, whereas, we require that this

term be flooded by e′′, which is a discrete Gaussian with parameter sD. In order to apply Lemma
2.2 to satisfy the above, we must choose sD so that

BEval

sD
= negl(κ)

If we choose our parameters analogously to [GVW15], but for circuits of depth d′ = 2d instead of d,
then, evaluating a circuit of depth d results in BEval = 2O(d) = 2O(nε). Now, if we choose sD = B2

Eval,
then Equation 8.1 is satisfied. Since the final error is now O(2O(d′)), correctness of the parameters
holds directly from [GVW15]

Summarizing, our parameters may be chosen as in [GVW15] : choose the LWE dimension
n ≥ d′(κ)1/ε to support circuits of depth d′, set sB = O(

√
n), q = 2O(nε) for some constant K,

m = Θ(n log q) and s = O(`tnd)O(d).

8.4 Simulator Analysis for (Q, poly) PHPE.

Analysis of the Simulator. We now argue that the simulator is correct, via a sequence of
hybrids.

The Hybrids.

Hybrid 0: The real experiment.

Hybrid 1: The real game algorithm QPH.Setup is replaced with QPH.Setup∗1, which uses the

knowledge of (x,y), and {Ĉ∗i ◦ IPγi }i∈[Q] to setup the public parameters and the master key.

Hybrid 2: QPH.Enc is replaced by QPH.Enc∗1, in which β0 is computed as in the real world, but all
other ciphertext elements are derived from it. The keygen algorithm is as in the real game.
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Hybrid 3: The real game QPH.KeyGen is replaced with QPH.KeyGen∗1 where instead of using the
trapdoor T of the matrix A, the secret keys for 0-queries are sampled using the public trapdoor
TG along with the trapdoor information generated using QPH.Setup∗1 and the secret keys for

the 1-queries {Ĉ∗i ◦ IPγi }i∈[Q] are sampled using the master key.

Hybrid 4: The encryption algorithm is changed from QPH.Enc∗1 to QPH.Enc∗2. Here, the ciphertext
element β0 is switched to random and all other ciphertext elements are derived from it.

Hybrid 5: The algorithm QPH.KeyGen∗1 is replaced by QPH.KeyGen∗2. The QPH.KeyGen∗2 algorithm
is similar to the real world QPH.KeyGen algorithm, except for the keys corresponding to
{Ĉ∗i ◦ IPγi }i∈[Q]

Hybrid 6: The encryption algorithm is changed from QPH.Enc∗2 to QPH.Enc∗3, in which the ciphertext
elements {ui}, {vi} are changed to random. The remaining elements β0 and β1i for i ∈ [k]
are as before.

Hybrid 7: The algorithm QPH.Setup∗1 is replaced by QPH.Setup∗2. The algorithm PH.Setup∗2 is
similar to the real world QPH.Setup algorithm, except for how the matrices { Ai }i∈[`] and
{ Pj }j∈[k] is generated. This is the simulated world.

We now describe the auxiliary evaluation algorithms.

QPH.Setup∗1
(

1κ, 1d,x,y, { Ĉ∗i ◦ IPγ }i∈[Q]

)
: Do the following:

1. Sample a matrix with associated trapdoor:

(A,T)← TrapGen(1m, 1n, q)

Let G be the primitive matrix with public trapdoor TG that we defined in Section 3.4.1.

2. Let Ai = A ·Ri − y[i] ·G ∈ Zn×mq for i ∈ [`], where Ri ← {−1, 1}m×m.

3. Let Bi = A ·R′i − x[i] ·G ∈ Zn×mq for i ∈ [t], where R′i ← {−1, 1}m×m.

4. Generate P1, . . . ,Pk as follows:

(a) For i ∈ [Q] compute

A
Ĉ∗i ◦IP

= EvalPK
(
{Aj}j∈[`], {Bj}j∈[t], Ĉ

∗
i ◦ IP

)
R
Ĉ∗i ◦IP

= EvalR
(
{Ri}, {R′i}, {Bi}, y, Ĉ∗i ◦ IP

)
(b) Next, sample K∗i ←

(
DZ2m,s

)m
and set:

P∗i = [A | A
Ĉ∗i ◦IP

+ γi ·G] K∗i ∀i ∈ [Q]

= [A | AR
Ĉ∗i ◦IP

] K∗i

where K∗i =

(
K∗1i
K∗2i

)
.

(c) Choose Q random binary vectors r1, . . . , rQ ∈ {0, 1}k with hamming weight v.
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(d) For i ∈ [Q], write down the following equations in variables K1, . . . ,Kk:

A K∗1i + A R
Ĉ∗i ◦IP

K∗2i = A
(∑
j∈[k]

ri[j] Kj

)
(8.2)

Now, to satisfy the above, it suffices to choose K1, . . . ,Kk such that:

K∗1i + R
Ĉ∗i ◦IP

K∗2i =
∑
j∈[k]

ri[j] Kj (8.3)

(e) Note that by cover-freeness, we have that for each equation i ∈ [Q], the RHS contains
at least one matrix Ki′ which does not appear in any other equation. Rearranging
terms, we get for i ∈ [Q],

Ki′ =
( ∑
j:j 6=i′

ri[j] Kj

)
−
(
K∗1i + R

Ĉ∗i ◦IP
K∗2i

)
(8.4)

(f) Sample Kj ← DZm,s where j 6= i′, where j ∈ [k], i′ ∈ [Q]. Intuitvely, these are the
matrices that appear in the RHS of the above equations. Set the Q values Ki′ to
satisfy the above equations.

(g) For i ∈ [k], set
Pi = A Ki mod q

5. Output the master public key as PH.PK =
(
{Ai}i∈[`], {Bi}i∈[t],A, { Pi }i∈[k]

)
and the

master secret key as

PH.MSK =
(

T, {Ri}i∈[`], {R′i}i∈[t], {K∗i }i∈[k]

)
PH.Enc∗1

(
PH.PK,PH.MSK, (x,y), µ, { Ĉ∗i ◦ IPγ }i∈[Q]

)
: All ciphertext elements are derived from

β0 as follows:

1. Sample s, e← DZn,sB and set β0 = ATs + e.

2. For i ∈ [`], j ∈ [t] compute

ui = RT
i · β0, vj = (R′j)

T · β0

3. Sample e′′j ← DZm,sD for j ∈ [k].

4. Set β1j = (Kj)
Tβ0 + e′′j + b where b = [0 . . . , 0, dq/2eµ]T ∈ Zmq .

5. Output
(
{ui}, {vi},y,β0, {β1j}

)
QPH.KeyGen∗1(PH.MSK, Ĉ ◦ IPρ, {Ĉ∗i ◦ IPγi}i∈[k]): Do the following:

1. Compute the homomorphic public key corresponding to the circuit Ĉ ◦ IP as

A
Ĉ◦IP ← EvalPK

(
{Ai}, {Bi}, Ĉ ◦ IP

)
2. By section 3.4.3, we have that A

Ĉ◦IP = A ·R
Ĉ◦IP−〈x, Ĉ(y)〉·G. An admissible adversary

can request:
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• A circuit Ĉ ◦ IPρ such that 〈x, Ĉ(y)〉 6= ρ, hence Ĉ ◦ IPρ(x,y) = 0. In this case, we
have:

[A
Ĉ◦IP + ρ ·G] = [A ·R

Ĉ◦IP + (ρ− 〈x, Ĉ(y)〉) ·G]

Hence, we may sample K← SampleRight
(
A, (ρ−〈x, Ĉ(y)〉) ·G, R

Ĉ◦IP, TG, P, s
)

so that:
[A | A

Ĉ◦IP + ρ ·G] K = P (mod q)

Return K.

• The circuit Ĉ∗i ◦ IPγi , such that 〈x, Ĉ∗i (y)〉 = γi in which case we return K∗i .

QPH.Enc∗2: Here, the ciphertext β0 is switched to random. All the other ciphertext elements are
derived from it as in QPH.Enc∗1

QPH.KeyGen∗2: Here, the 0 keys are chosen as in the real world, and the 1 keys are chosen as in
QPH.KeyGen∗1.

QPH.Enc∗3: Here, the ciphertext components {ui}, {vj} for i ∈ [`], j ∈ [t] are changed to random.

QPH.Setup∗2: Here, the public key components {Bj}, A are chosen as in the real world, and Ai,
Pi are chosen as in the simulation.

We now show that consecutive hybrids are indistinguishable.

Lemma 8.1. Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Proof. The arguments for the public parameters { Ai } and { Bj } are as in Lemma 5.2. The
remaining thing to argue is the distribution of P1, . . . ,Pk.

In Hybrid 0, P1, . . . ,Pk are sampled uniformly, r1, . . . , rQ are sampled randomly from {0, 1}k
such that hamming weight of each ri is v, and P∗1, . . . ,P

∗
Q are set as

P∗i =
∑
j∈[k]

ri[j] Pj

By the cover free property of r1, . . . , rQ, it holds that each ri has at least one index, say i′ so that
ri[i
′] = 1 and rj [i

′] = 0 for all j 6= i. Hence for i ∈ [Q],

P∗i = P′i +
∑
j 6=i′

ri[j] Pj

Let I denote the set {i′}i∈[Q]. Thus, in Hybrid 0, we sample Pj for j ∈ [k] \ I, sample Pj for j ∈ [I]
uniformly and set P∗i for i ∈ [Q] according to the above.

Now, consider Hybrid 1. Note that the equation 8.4 implies that

A ·Ki′ = A ·
(
K∗1i + R

Ĉ∗i ◦IP
K∗2i

)
−A ·

( ∑
j:j 6=i′

ri[j] Kj

)
Hence Pi′ = P∗i −

∑
j:j 6=i′

ri[j]Pj

In Hybrid 2, we sample P∗1, . . . ,P
∗
Q as well as Pj for j ∈ [k] \ I uniformly and compute Pj for

j ∈ [I]. Since there is a 1-1 correspondence between Pi′ and P∗i , it does not matter whether we
pick Pi′ randomly and compute P∗i or pick the latter randomly and compute the former. Thus, it
follows that the two distributions are statistically indistinguishable.
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Lemma 8.2. Hybrids 1 and 2 are statistically indistinguishable.

Proof. The difference between Hybrids 1 and 2 is in how the ciphertext elements are generated. In
Hybrid 1, they are as in the real world, whereas in Hybrid 2, β0 is computed as in the real world,
and {ui}i∈[`], {vj}j∈[t] and {β1i}i∈[k] are derived from β0. The analysis of the elements {ui}i∈[`],
{vj}j∈[t] is exactly as in Lemma 5.3. It remains to argue about the distribution of {β1i}i∈[k], which
we do here.

Now, in Hybrid 1, we have:
β1i = PT

i s + e′i + b

In Hybrid 1, we have
β1i = (Ki)

Tβ0 + e′′i + b

Note that A Ki = Pi mod q and β0 = ATs + e, hence

(Ki)
Tβ0 + e′′i + b = PT

i s + b +
(

KTe + e′′i
)

By choosing

e′i
s
≈
(

KTe + e′′i
)

we have that the two worlds are statistically indistinguishable.

Lemma 8.3. Hybrids 2 and 3 are statistically indistinguishable.

Proof. For the case of 0-queries, the argument is the same as in Lemma 5.3. For the case of
1-queries, note that in Hybrid 1, P∗i are sampled uniformly, and K∗i are sampled using SampleLeft
to satisfy:

[A | A
Ĉ∗i ◦IP

+ γi ·G] K∗i = P∗i (mod q)

whereas in Hybrid 2, K∗i are sampled as (DZ2m,s)
m and P∗ are set as

P∗i = [A | A
Ĉ∗i ◦IP

+ γi ·G] K∗i (mod q)

By Section 3.4.2, these two distributions are statistically indistinguishable.

Indistinguishability between Hybrids 3 and 4 follows from LWE exactly as in Lemma 5.5, between
Hybrids 4 and 5 is analogous to the argument in Lemma 8.3, between Hybrids 5 and 6 is as in
Lemma 5.7 and between Hybrids 6 and 7 is as in Lemma 8.1.

8.5 Full Security for Single Key Linear FE

Definition 8.4 (FULL-SIM security). Let FE be a single key functional encryption scheme for a
circuit family C. For every p.p.t. adversary Adv and a stateful p.p.t. simulator Sim, consider the
following two experiments:

ExprealFE,A(1κ): ExpidealFE,Sim(1κ):

1: (PK,MSK)← FE.Setup(1κ)

2: (a, st) ←AFE.Keygen(MSK,·)
1 (PK)

3: CT← FE.Enc(PK,a)
4: α ← A2(CT, st)
5: Output (a, α)

1: PK← Sim(1κ)

2: (a, st)← A
Sim(·)
1 (PK)

3: CT← Sim
(
C,C(a)

)
4: α← A2(CT, st)
5: Output (a, µ, α)
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The functional encryption scheme FE is then said to be FULL-SIM-secure if there is a stateful p.p.t.
simulator Sim such that for every p.p.t. adversary A = (A1, A2), the following two distributions are
computationally indistinguishable.{

ExprealFE,A(1κ)

}
κ∈N

c
≈
{
ExpidealFE,Sim(1κ)

}
κ∈N
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