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Abstract. We introduce a tag based encoding, a new generic framework for
modular design of Predicate Encryption (PE) schemes in prime order groups. Our
framework is equipped with a compiler which is adaptively secure in prime or-
der groups under the standard Decisional Linear Assumption (DLIN). Compared
with prior encoding frameworks in prime order groups which require multiple
group elements to interpret a tuple of an encoding in a real scheme, our frame-
work has a distinctive feature which is that each element of an encoding can be
represented with only a group element and an integer. This difference allows us
to construct a more efficient encryption scheme. In the current literature, the most
efficient compiler was proposed by Chen, Gay and Wee (CGW) in Eurocrypt’15.
It features one tuple of an encoding into two group elements under the Symmet-
ric External Diffie-Hellman assumption (SXDH). Compared with their compiler,
our encoding construction saves the size of either private keys or ciphertexts up-to
25 percent and reduces decryption time and the size of public key up-to 50 per-
cent in 128 security level. Several new schemes such as inner product encryption
with short keys, dual spatial encryption with short keys and hierarchical identity
based encryption with short ciphertexts are also introduced as instances of our
encoding.

Key words: encodings, prime order groups, inner product encryption, spatial encryption,
predicate encryption

1 Introduction

Predicate Encryption (PE) is a public key cryptographic system supporting a fine-
grained access control. PE schemes have been proposed to support various types of
predicates, but many of them share similar features in their constructions and security
proofs. Two independent works [2, 32] have been presented by observing the coupling
of PE. They formalized common features of PE schemes in composite order groups by
encoding predicate parts of the schemes. Those encoding frameworks provide a new di-
rection of proving security since one can show security of a PE scheme by only proving
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Decryption
Fig 1: Encoding Frameworks for PE

that an encoding satisfies the syntax required in the framework. Therefore, the encoding
frameworks provide a new insight of properties leading to adaptive security.

Despite the advantage, the usage of encoding frameworks [2, 32] were limited since
they were introduced only in composite order groups. It is well known that composite
order groups significantly harm the efficiency of encryption systems [23, 15, 16]. Ac-
cording to Guillevic [16], to achieve 128 bits security level , the minimum group orders
for prime order and composite order bilinear group are 256 and 2,644 bits, resp. More-
over, a pairing computation in composite order groups is about 254 times slower than
that of prime order bilinear groups. Hence, constructing adaptively secure PE schemes
in prime order groups is desirable to ensure that they are adoptable in practice.

Recently, Chen, Gay and Wee (CGW) presented a dual system attribute based en-
cryption [9] which can be considered as a new compiler in prime order groups for the
predicate encoding [32]. They introduced compilers in prime order groups by adopting
Dual System Groups (DSG) [10]. In the most efficient compiler of theirs, one composite
order group element [32] is represented by two prime order group elements. Indepen-
dently, Attrapadung [3] and Agrawal and Chase [1] also proposed other compilers in
prime order groups, but they showed similar results from an efficiency perspective3. All
existing compilers show a similar behavior from an efficiency perspective. Specifically,
the number of parameters and computation of the resulting scheme in the prime order
group is always bounded below by a multiplicative factor, say n, of their counterparts in
the composite order groups. The best compiler achieves a factor of n = 2 under SXDH
assumption in [9, 1] . Moreover, in [3, 9, 1] n = 3 is achieved under the DLIN assump-
tion which is weaker than the SXDH assumption. This appears to be the lower bound of
the techniques of dual system groups with orthogonal vectors since the size of vectors
must be at least 2 to “simulate” the properties of a composite order group. Therefore, it
remains an interesting research problem to achieve PE schemes in prime order groups
without using vector properties since it may imply more efficient schemes.

1.1 Our Contribution

We introduce a tag based encoding, a new generic framework for PE schemes in prime
order groups. Compared with prior encoding frameworks in prime order groups, our
framework improves the efficiency of prior encodings when the size of an encoding

3 Attrapadung’s compiler [3] needs three group elements for a tuple of an encoding under the
DLIN assumption. Agrawal and Chase’s compiler [1] requires two group elements under the
SXDH assumption and three group elements under the DLIN assumption.



Table 1: An efficiency comparison between our and CGW’s compilers [9].

Assump. PK SK CT
CGW [9] SXDH (2`+3)|G1| + |GT | 2(mk+1)|G2| 2(mc+1)|G1|+ |GT |

DLIN (6`+8)|G1| + 2|GT | 3(mk+1)|G2| 3(mc+1)|G1|+ |GT |
Ours DLIN (`+ 11)|G1| + |GT | (mk+7)|G2| + mk|Zp| (mc+8)|G1|+mc|Zp|+ |GT |

Assump. PK (by bits) SK (by bits) CT (by bits) Decryption
CGW [9] SXDH 3840 + 512 ` 1024 + 1024 mk 3584 + 512 mc 4P + 2 ` E

DLIN 8192 + 1536 ` 1536 + 1536 mk 3840 + 768 mc 6P + 3 ` E
Ours DLIN 5888 + 256 ` 3584+ 768 mk 5120 + 512mc 8P+ ` E

`: a predicate size (the size of common values in an encoding),
mk and mc: the size of encoding schemes used for keys and ciphertexts,
For 128 bits security level [16], we use |G1| = |Zp| = 256 bits, |G2| = 512 bits, |GT | = 3072 bits .

scheme is large. Our encoding framework does not use DPVS, DSG or composite order
groups. Instead, we utilize tags to construct adaptively secure PE schemes. We observe
common properties of PE schemes as other encoding frameworks, but generalize them
as a new encoding framework using tag. The generic construction of our encoding is
adaptively secure under the Decisional Linear assumption.

Tag based encoding. We introduce a tag based encoding. For a predicate R with
input domains X and Y , R : X × Y → {0, 1}, a tag based encoding for R comprises
two algorithms, namely, kE and cE, together with a field Z`p where p is a prime number
and ` is a value allocated for each function R such as the size of predicate vectors for
Inner Product Encryption. We let kE(x,h) and cE(y,h) denote the outputs of kE
taking as inputs x ∈ X and h ∈ Z`p and cE taking as inputs y ∈ Y and h ∈ Z`p,
respectively. The tag based encoding must satisfy three essential properties, namely
Reconstruction, Linearity and h-hiding. Instances of our encoding are interpreted as
PE schemes via our constructions. These constructions are often called compilers since
they compile encodings to form PE schemes (Fig 1).

An improved efficiency Prior to our work, the most efficient compiler in prime order
groups was proposed by Chen, Gay and Wee [9], which is subsequently referred as
CGW in this work. The compiler was proposed for the predicate encoding [32]. Mul-
tiple compilers under the generalized k-linear assumption [14] were also included in
the CGW’s framework. The number of group elements that a compiler in the CGW’s
framework uses to represent a tuple of an encoding (e.g. kE and cE) depends on com-
putational assumptions of which the compiler is based on. More concretely, each tuple
of an encoding scheme is represented by k + 1 group elements in private keys and
ciphertexts. Also, k(k + 1) elements are required for each coordinate of h in public
keys where h is a shared input of kE and cE. The most efficient compiler is under
the SXDH assumption (i.e. when k is equal to 1). Two group elements are used for a
tuple of an encoding in this compiler. Other encoding frameworks [3, 1] were also pro-
posed independently, but they are similar to the CGW’s framework from the efficiency



perspective. Hence, without losing generality, we compare our compiler with CGW’s
compiler to highlight our contribution.

In our compiler, only one group element is required for each entity of h in public
keys. Hence, if the size of h is large, our compiler reduces the size of public key to
50 percent compared with the CGW’s compiler. Also, it reduces decryption time by
50 percent under the same condition. For the other parameters such as private keys
and ciphertexts, our compiler needs a group element and an integer for one tuple of an
encoding scheme. The size of the integer in our compiler is the same as the group order
of the underlying bilinear group. In other words, it is as small as the size of a group
element of G1 but much less than that of G2 due to embedding degree of asymmetric
bilinear maps. Thus, our compiler reduces the size of either private keys or ciphertexts
depending on where G2 is used for. For example, in 128 bits security level, G2 requires
at least 512 bits. It is twice of the size of Zp [16]. It means that only 768 bits are
required to represent a tuple in our compiler. This outperforms CGW’s approach which
require 1024 bits for a tuple. Therefore, our compiler saves the size of private keys
or ciphertexts by 25 percent compared to their compiler under the SXDH assumption
when the size of an encoding is large.

Moreover, the CGW’s framework is also realized under the weaker assumption,
namely the DLIN assumption, in comparison to ours4. It should be noted that in this
setting, 6 group elements are required for public keys for their compiler. It implies
that our compiler outperforms their compiler as well in this setting. More concretely,
under the same assumption at a 128 bits security level, our compiler saves 83 percent
in a public key, 50 percent in private keys, 33 percent in ciphertexts and 66 percent in
decryption time if the size of encodings and their shared input is large. We provide table
1 for the details. To compare the efficiency in practice, we compare our inner product
encryption with short keys and public attribute inner product encryption to those of
other encodings. The instance of Public Attribute Inner Product Encryption (PAIPE)
which is taken from [4] is introduced in the appendix. It should be noted that encodings
for our IPE schemes are slightly different from those of CGW [9] and Wee [32]. Our
instances require one or two fewer elements.

A compiler with symmetric bilinear maps. We also provide a new compiler with
symmetric bilinear maps in the appendix. Prior to our works, with symmetric bilinear
maps, all encodings [2, 32, 9] are secure only in composite order groups. It is because
all prior encodings [9, 3, 1] in prime order groups are based on dual system groups [10]
which require asymmetric pairings to feature different properties of left-hand groups
and right-hand groups in pairings. To the best of our knowledge, our construction is the
only compiler that provides adaptive security for encodings with symmetric pairings
in prime order groups. This gives our framework an additional flexibility when the
encryption scheme is implemented under a special requirement of the pairing type.

New schemes. We introduce a number of new schemes as instances, namely: Inner
Product Encryption with short keys, Dual Spatial Encryption with short keys and Hi-

4 The DLIN assumption with asymmetric bilinear maps can be featured in various forms since it
expanded from the DLIN assumption originally equipped with symmetric pairing. The DLIN
assumption of the CGW’s compiler is slightly different from our assumption. In particular, it
has two fewer group elements in G2.



Table 2: Efficiency Comparison of Inner Product Encryption (IPE) between encodings.

Scheme Assumption PK SK CT Decryption
Wee [32] SDs `|GN | +|GN,T | 2|GN | (`+ 1)|GN | + |GN,T | 2P + `E
CGW [9] SXDH (2`+ 4)|G1| +|GT | 4|G2| 2(`+ 1)|G1|+ |GT | 4P + 2`E

DLIN (6`+ 8)|G1| +2|GT | 6|G2| 3(`+ 1)|G1|+ |GT | 6P + 3`E

Ours DLIN (11 + `)|G1| +|GT | 8|G2|+ |Zp|
(7 + `)|G1| + 8P + `E

(`− 1)|Zp|+ |GT |

`: the size of a predicate vector (the length of common parameter in the encoding),
P : Pairing computation, E: Exponentiations over a group element,
GN and GN,T : group elements of a composite order N ,
G1, G2 and GT : group elements of order p of e : G1 ×G2 → GT

Table 3: Efficiency Comparison of Public Attribute IPE between encodings.

Scheme Assumption PK SK CT Decryption
CGW [9] SXDH (2`+ 4)|G1| +|GT | (2`+ 4)|G2| 4|G1|+ |GT | 4P + 2`E

DLIN (6`+ 8)|G1| +2|GT | (3`+ 6)|G2| 6|G1|+ |GT | 6P + 3`E

Ours, AL [4] DLIN (11 + `)|G1| +|GT |
(6 + `)|G2| 9|G1|+ |Zp|+ |GT | 8P + `E
+(`− 1)|Zp|

`: the size of a predicate vector (the length of common parameter in the encoding), P : Pairing
computation, E: Exponentiation over a group element,
G1, G2 and GT : group elements of order p of e : G1 ×G2 → GT

erarchical Identity Based Encryption with short ciphertexts. Particularly, dual spatial
encryption is a new primitive. It is a symmetric conversion of a spatial encryption [17].
In this primitive, an affine space and an affine vector are taken to generate ciphertexts
and keys, respectively. Moreover, in the appendix we describe as encodings a number
of existing schemes such as IBE [31], (Public Attribute) Inner Product Encryption [4],
Spatial Encryption and Doubly Spatial Encryption [8] to show the versatility of our
framework.

1.2 Our technique

Our encoding framework generalizes Waters’ dual system encryption methodology [31]
which is widely used to analyze PE schemes. In Waters’ dual system encryption, private
keys and ciphertexts are changed into auxiliary types, namely semi-functional keys and
semi-functional ciphertexts in the security analysis. After converting all keys and the
challenge ciphertext to semi-functional type, proving security becomes much easier in
their methodology since semi-functional keys cannot decrypt semi-functional cipher-
texts. Prior encodings [2, 32] in composite order groups and their compilers [9, 3, 1] in
prime order groups also generalized and utilized the dual system encryption methodol-
ogy. The most distinctive feature of our encoding compared to theirs is our compiler.



Our compiler is constructed for tag based compiler by utilizing and expanding Waters’
IBE [31]. Therefore, our compiler is adaptively secure in prime order groups under the
standard DLIN assumption (which is the same as Water’s IBE).

The critical part of the dual system encryption is proving semi-functional key invari-
ance. In this proof, it is shown that a normal key and a semi-functional key are indistin-
guishable when the challenge ciphertext is already fixed as semi-functional. Therefore,
the key becomes a valid key into an invalid key against the challenge ciphertext since the
semi-functional challenge ciphertext can be decrypted only by a normal key. In Waters’
IBE, tags are used to hide the type of the challenge key against not only the adversary
but also the simulator. The simulator can try to distinguish the type of the challenge key
by generating a valid semi-functional ciphertext to be decrypted only if the key is nor-
mal. This trial must be hindered in the analysis. Tags take an important role to restrict
the simulator’s trial. In Waters’ IBE, tags in the challenge key and the challenge cipher-
text are enforced to share the same values. In particular, they become h1·IDkey+h2 and
h1 · IDct+ h2 where h1 and h2 are values which are initially information theoretically
hidden to the adversary. Therefore, if the simulator generates a ciphertext to test the
challenge key, the simulator can only simulate the challenge key with the same tag as
the ciphertext, such that the self-decryption cannot be used to distinguish the challenge
key because decryption requires two distinct tags. At the same time, since the values
of h1 and h2 are hidden to the adversary, the correlation between tags in the challenge
ciphertext and the challenge key is also hidden since they are pairwise independent. In
other words, tags are randomly distributed to the adversary.

In our framework, tags have structures. We reveal the structures of tags, but they take
as inputs random values (e.g. h1 and h2 in Waters’ IBE). In more detail, in our compiler,
tags are constructed by the encodings kE and cE but take random inputs instead of pub-
lic parameters. Formally, tags in our compiler are generated as kE(x,h′) and cE(y,h′′)
where x and y are predicates and h′ and h′′ are random values. Therefore, our tags are
not random but they retain structures. This approach is actually beneficial for our en-
coding since we describe tags more formally, but it still works for the dual system
encryption methodology. Particularly, in the key invariance proof, those tags must share
the same random values (i.e. h′ = h′′). This enforces the simulator’s trial to fail as in the
Waters’ IBE system during the decryption process. Also, sharing inputs of encodings
can be hidden by utilizing the independence argument such as pairwise independence
for IBE. Requiring independence between tags may be a bit more strict than the similar
property of the previous encodings. For example, we do not know how linear secret
sharing scheme [6] can be utilized into our encoding, but it provides efficiency benefits
for PE and still flexible to capture a number of PE schemes.

Duality Another distinct feature of our encodings is that required properties for kE
and cE are identical. This is useful since without any conversion technique or effi-
ciency loss, one encoding scheme realizes two encryption schemes; one scheme uses
kE for a key and cE for a ciphertext and the other scheme uses cE for a key and kE for
a ciphertext. The previous encodings require a new variable incurring efficiency loss for
symmetric conversion [5]. We introduce several new schemes as instances of our en-
coding. Some of them are generated as the symmetric conversions of existing schemes
(e.g. Dual spatial encryption as the symmetric conversion of spatial encryption [8]).



2 Related Works

Dual system encryption [31] provides a break-through technique of proving the security
of PE. It implements auxiliary types of keys and ciphertexts, namely semi-functional
keys and semi-functional ciphertexts, appearing only in the security proof. Subsequently,
it shows that a security game consisting of semi-functional keys and semi-functional ci-
phertexts is indistinguishable from the original security game. Since semi-functional
keys cannot decrypt semi-functional ciphertexts, the security proof for the transformed
game becomes much easier than that of the original game. Waters showed that dual
system encryption is a powerful tool in public key encryptions and signatures by intro-
ducing a number of adaptive encryption schemes.

Several encryption systems [8, 13, 4] have been introduced in prime order groups
under standard assumption. In particular, all of them share similar constructions and se-
curity proofs. Interestingly, their techniques are quite different from those of dual sys-
tem groups. They are more similar to Waters’ IBE [31], but provide different predicates
for their own purposes. Compared with similar constructions in composite order groups
[32, 19, 4], they are considered to be efficient and secure since they are constructed in
prime order groups and their security depends only on standard assumption.

Encoding frameworks [2, 32] well formalize the core properties that the dual sys-
tem encryption requires. The frameworks consist of syntax and a compiler of encodings.
PE schemes were simply written by encoding instances in the frameworks. Then, the
compiler is applied to instances of encodings to result in encryption schemes. Those
outputs are also adaptively secure since the adaptive security of the compiler is already
proved using properties defined in the syntax. Initially, they [2, 32] were suggested only
in composite order groups. Several techniques [15, 18, 30, 20, 23] to convert encryption
systems in composite order to those in prime order have also been proposed. Neverthe-
less, the techniques in [15, 18, 30] are not applicable to dual system encryption since
they do not hide parameters. It means that it is not applicable to encoding frameworks.

Dual Pairing Vector Spaces (DPVS) [24, 26, 25] have been widely used as a tool
that overcomes the inefficiency of composite order groups. In DPVS, core properties
which are accomplished by subgroups of composite order groups for adaptive security
are featured by orthogonal vectors in prime order groups. DPVS has been used not
only to achieve PE schemes directly [21, 24, 25, 27], but also to convert schemes from
composite order groups to prime order groups [23, 20, 9]. Lewko and Waters suggest
a generic technique in [20] to transform a construction in composite order groups into
prime order groups by utilizing DPVS, but it still incurs a loss in efficiency caused by
the size of vectors. The technique suggested by [20] requires the size of vectors to
increase linearly with a size of predicates when DPVS is used to convert a PE scheme
in composite order groups into prime order groups.

Recently, adaptively secure IPE which has a good efficiency was introduced from
Ramanna [28]. It is adaptively secure with a short ciphertext in prime order groups.
Interestingly, their construction also uses tags as ours although their scheme is not a
generic construction as ours. Also, their scheme has shorter fixed parameters in both
keys and ciphertexts compared to our general construction, but their scheme relies on
the SXDH assumption which is stronger than DLIN assumption in our construction.



Therefore, one may think that their scheme is a trade-off between security and efficiency
compared to IPE scheme in our works.

There exist variants of Waters’ IBE from Ramanna, Chatterjee and Sarkar [29] and
Lewko and Waters [22]. Since our encoding framework generalizes Water’s IBE, These
variants may be also applicable to our generic construction. Using those variants one
may achieve PE schemes which have fewer fixed elements in keys and ciphertexts, but
under stronger assumptions as those in Ramanna [28].

3 Background

3.1 Bilinear Maps

We let G1, G2 and GT denote three multiplicative cyclic groups of prime order p.
Also, we let g1 and g2 be generators of G1 and G2, resp., and e be a bilinear map,
e : G1 ×G2 → GT . The bilinear map e has the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g1, g2) 6= 1.

We say that G1 and G2 are bilinear groups if the group operation in G1 and G2 and
the bilinear map e : G1×G2 → GT are efficiently computable. If G1 6= G2, the map e
is an asymmetric bilinear map. Otherwise, we can simply denote G1 and G2 as G and
call e : G×G→ GT a symmetric bilinear map.

3.2 Complexity Assumptions

We expand both the DLIN and the DBDH into asymmetric bilinear maps. Therefore,
we let G1, G2, and GT be prime order groups of order p such that e : G1 ×G2 → GT
where e is an asymmetric bilinear map. Moreover, we use subscripts to denote the type
of groups. For example, g1 denotes a generator of G1, and g2 denotes a generator of
G2.
(Asymmetric) Decisional Bilinear Diffie-Hellman (DBDH) assumption. Let g1 and
g2 be a generator of G1 and of G2, respectively. Let c1, c2 and c3 be selected randomly
from Zp. Given {g1, gc21 , g

c3
1 ∈ G1, g2, g

c1
2 , g

c2
2 ∈ G2, T ∈ GT }, there is no PPT

algorithm that can distinguish whether T is e(g1, g2)c1c2c3 or a random from GT with
a non-negligible advantage.
(Asymmetric) Decisional Linear (DLIN) assumption Let g1 and g2 be random gen-
erators of G1 and G2, respectively. Let yf , yν , c1, c2 be selected randomly from Zp
set f1 = g

yf
1 , ν1 = gyν1 , f2 = g

yf
2 and ν2 = gyν2 . Given {g1, f1, ν1, gc11 , f

c2
1 , T ∈

G1, g2, f2, ν2 ∈ G2}, there is no PPT algorithm can distinguish whether T is νc1+c21 or
a random from G1 with a non-negligible advantage.

It is worth noting that (Asymmetric) DBDH assumption also reduced to (Asymmet-
ric) DLIN assumption.
Proposition 1. Suppose that there exists an algorithm A which breaking (Asymmetric)
DBDH with non-negligible advantage ε. Then, we can build an algorithm B which
breaks (Asymmetric) DLIN assumption with advantage ε.



Proof. B takes {g1, f1, ν1, gc11 , f
c2
1 , T, g2, f2, ν2} as an instance from (Asymmetric) DLIN

assumption. B will simulate (Asymmetric) DBDH from the instance usingAwho breaks
(Asymmetric) DLIN assumption with non-negligible advantage.

If A requests a instance of (Asymmetric) DBDH {g̃1, g̃c̃21 , g̃
c̃3
1 , g̃2, g̃

c̃1
2 , g̃

c̃2
2 , T̃} to

break (Asymmetric) DLIN, the algorithm sets

g̃1 = g1, g̃
c̃2
1 = f1, g̃

c̃3
1 = g1

c̃1 , g̃2 = g2, g̃
c̃1
2 = ν2, g̃

c̃2
2 = f2, T̃ = e(T, f2)/e(f

c2
1 , ν2).

This implicitly sets c̃1 = yν , c̃2 = yf and c̃3 = c1 where yν and yf are the discrete
logarithms of ν1 and f1 to the base g1 modulo p, respectively. If T is νc1+c21 , then
T̃ = e(T, f2)/e(f

c2
1 , ν2) = e(ν1, f2)

c1 = e(g̃c̃11 , g̃
c̃2
2 )c̃3 = e(g̃1, g̃2)

c̃1c̃2c̃3 . Otherwise,
if T is a random element from G1, T̃ is randomized by T .

3.3 Predicate Encryption

PE definition and its adaptive security are adopted from [2, 32].
Definition of Predicate Encryption For a predicate R : X × Y → {0, 1}, our PE
consists of Setup, Encrypt, KeyGen and Decrypt as follows:

Setup (1λ, `)→ (PK,MSK): takes as input a security parameter 1λ and an integer `
allocated to a predicate. The output is a public parameter PK and a master secret
key MSK.

KeyGen (x,MSK,PK) → SK: takes as input a predicate x ∈ X , a master secret
key MSK and a public parameter PK. The output is a private key SK.

Encrypt (y,M,PK) → CT : takes as input a description y ∈ Y , a public parameter
PK and a plaintext M . The output is a ciphertext CT .

Decrypt (x, y, SK,CT )→M : takes as input a secret key SK for x and a ciphertext
CT for y. If R(x, y) = 1, the output is M . Otherwise, ⊥.

Correctness. For all M,x ∈ X , y ∈ Y such that R(x, y) = 1, if SK is the output of
KeyGen(x, MSK, PK) and CT is the output of Encrypt(y,M,PK) where PK and
MSK are the outputs of Setup(1λ, `), then Decrypt(x, y, SK,CT ) outputs M .
Definition of Adaptive Security of Predicate Encryption [2]

With qt private key queries where qt is polynomial, a PE scheme for a predicateR is
adaptively secure if there is no PPT adversary A which has a non-negligible advantage
in the game between A and the challenger C defined below.

Setup: The challenger runs Setup(1λ, `) to create (PK, MSK). PK is sent to A.
Phase 1: The adversary requests a private key for xi ∈ X for i ∈ [1, q1]. For each xi,

the challenger returns SKi created by running KeyGen(xi,MSK,PK).
Challenge: When the adversary requests the challenge ciphertext for y ∈ Y such that

R(xi, y) = 0 ∀i ∈ [1, q1], and submits equal-length messages M0 and M1, the
challenger randomly selects b from {0, 1} and returns the challenge ciphertext CT
created by running Encrypt(y,Mb, PK).

Phase 2: This is identical to Phase 1 except the additional restriction that xi ∈ X
for i ∈ [q1 + 1, qt] such that R(xi, y) = 0;∀i ∈ [q1 + 1, qt].

Guess: The adversary outputs b′ ∈ {0, 1}. If b = b′, then the adversary wins.

We define the advantage of the adversary against a predicateencryption as

AdvPEA (λ) := |Pr[b = b′]− 1/2|.



3.4 Notations

Throughout the paper, we use bold font to denote vectors. Furthermore, vector ex-
ponentiations of group elements imply vector group elements. For example, we let
a = (a1, a2) where a = (a1, a2) ∈ Z2

p. For a group element g, ga is equal to (ga1 , ga2).
In addition, multiplication of vectors in exponents implies component-wise product of
two vectors. For example, gab is equal to (ga1b1 , ga2b2) where b = (b1, b2) ∈ Z2

p. Simi-
larly, a scalar exponentiation to a vector of group elements means a scalar multiplication
to a vector in exponent. For example, (g(a1,a2))r = (g(ra1,ra2)) where r ∈ Zp. Also,
a multiplication of vector groups implies an addition of vectors in their exponents (e.g.
gagb = ga+b). It should be noted that this multiplication is possible only if |a| = |b|.
When it comes to a pairing operation, a pairing with vectors implies multiple pair-
ing computations, that is, e(g, ga) requires two pairing computations e(g, ga1)e(g, ga2)
where a = (a1, a2) ∈ Z2

p, but the same result is achieved only by one pairing since
e(g, ga1ga2) = e(g, ga1)e(g, ga2).

4 Tag based encoding

For a predicate R : X × Y → {0, 1}, tag based encoding TE(R) is a tuple of (`, kE,
cE). In an encoding (`, kE, cE), ` is an integer allocated for a predicateR (e.g. the size
of a universe of attributes in ABE, the dimension of an affine space in spatial encryption)
and used to generate common parameter h ∈ Z`p. Also, kE(x,h) and cE(y,h) are two
deterministic algorithms which take as inputs x ∈ X and y ∈ Y , resp. together with h.

We let `k and `c denote the sizes of kE(x,h) and cE(y,h) (i.e. `k = |kE(x,h)|
and `c = |cE(y,h′)|), resp. Then, tag based encodings satisfy following properties:
Property 1. (Reconstruction) . For all (x, y) such that R(x, y) = 1, there exists an
efficient algorithm to compute non-zero vectors mx ∈ Z`kp and my ∈ Z`cp such that

mxkE(x,h) = mycE(y,h), ∀h ∈ Z`p.

Property 2. (Linearity) For all (x, y,h′,h′′) ∈ X × Y × Z`p × Z`p,

kE(x,h′) + kE(x,h′′) = kE(x,h′ + h′′) and

cE(y,h′) + cE(y,h′′) = cE(y,h′ + h′′).

Property 3. (h-hiding) For all (x, y) ∈ X × Y such that R(x, y) = 0,

(x, y,kE(x,h), cE(y,h)) and (x, y,kE(x,h), cE(y,h′))

are statistically indistinguishable where h and h′ are randomly selected from Z`p,

Remark 1. Reconstruction is necessary for the correctness of our construction. In our
construction, kE(x,h) and cE(y,h) cancel each other out. Hence, the property implies
that there exists an efficient algorithm to make both tuples identical.
An example of tag based encodings. We provide a simple IBE scheme as an instance
of our encoding from Waters’ IBE [31]. This encoding results in an adaptively secure
IBE scheme via our compiler introduced in the next section.
Let X = Y := Zp. For all ID ∈ X and ID′ ∈ Y , R(ID, ID′) = 1 iff ID = ID′.



• ` = 2 and h = (yu, yh) ∈ Z2
p

• kE(ID, (yu, yh)) := (yuID + yh) ∈ Zp
• cE(ID′, (yu, yh)) := (yuID

′ + yh) ∈ Zp
• Reconstruction: This is an exact cancellation. Therefore, mx = my = 1.

• Linearity: For all h′ = (y′u, y
′
h),

kE(ID, (y′u, y
′
h)) + kE(ID, (ỹu, ỹh)) = y′uID + y′h + ỹuID + ỹh

= kE(ID, (y′u + ỹu, y
′
h + ỹh))

The linearity of cE(ID′, (y′u, y
′
h)) is identical showed with kE(ID, (y′u, y

′
h)).

• h-hiding: Given an instance (ID, ID′, kE(ID, (yu, yh)), cE(ID′, (yu, yh))), be-
cause kE and cE are pairwise independence functions and the values of yu and yh
are hidden. If ID 6= ID′, they do not correlate to each other. Therefore, sharing yu
and yh between kE and cE are statistically hidden.

5 Our Compiler

Our compiler is similar to those of Waters’ IBE [31]. The main differences between
Waters’ IBE and ours are the way of generating tags in KeyGen and Encrypt and the
types of bilinear maps which are equipped with. In particular, tags in our construction
have structures although tags of Waters’ IBE are created randomly.

5.1 The Construction

For a tag based encoding TE(R) for a predicate R where R : X × Y → {0, 1}, with `
which is an integer to associated with R, PEA(TE(R)) is constructed as follows.

• Setup(1λ, `): The algorithm takes ` of the encoding as an input. Then, it randomly
generates three groups G1, G2 and GT from G(λ, p). Next, it generates g1 ∈ G1

and g2 ∈ G2 and exponents α, yu, yv , y′v , yw, a1, a2, b, h1, . . ., h` ∈ Zp. Let

τ1 = gyu+a1·yv1 , τ ′1 = g
yu+a2·y′v
1 and h = (h1, ..., h`). The MSK consists of

(g2, g
α
2 , g

α·a1
2 , gb2, u2 = gyu2 , v2 = gyv2 , v′2 = g

y′v
2 , w2 = gyw2 , gh2 ). It publishes

the public parameters PK as follows

g1, g
b
1, g

a1
1 , ga21 , gb·a11 , gb·a21 , τ1, τ

′
1, τ

b
1 , τ
′
1
b
, w1 = gyw1 , gh1 , e(g1, g2)

α·a1·b

• Keygen(MSK, PK, x): The algorithm chooses randomly r1, r2, z1, z2, h′1, ..., h
′
` ∈

Zp and sets r = r1 + r2 and Tagk = kE(x,h′) where h′ is equal to (h′1, ..., h
′
`).

Then, it sets

D1 = gα·a12 ur2, D2 = g−α2 vr2g
z1
2 , D3 = (gb2)

−z1 , D4 = v′2
r
gz22 , D5 = (gb2)

−z2 ,

D6 = (gb2)
r2 , D7 = gr12 ,K = (g

kE(x,h)
2 w

Tagk
2 )r1 .

It outputs SK = (D1, ..., D7,K,Tagk).



• Encrypt(PK, M , y): The algorithm randomly selects s1, s2, t, h′′1 , ..., h
′′
` ∈ Zp and

set s = s1 + s2, and Tagc = cE(y,h′′) where h′′ is equal to (h′′1 , ..., h
′′
` ). It sets

C =M · (e(g1, g2)αa1·b)s2 , C1 = (gb1)
s, C2 = (gb·a11 )s1 , C3 = (ga11 )s1 ,

C4 = (gb·a21 )s2 , C5 = (ga21 )s2 , C6 = τs11 τ ′1
s2 , C7 = (τ b1)

s1(τ ′1
b
)s2w−t1 , C8 = gt1,

E = (g
cE(y,h)
1 w

Tagc
1 )t.

It outputs CT = (C,C1, ..., C8,E,Tagc)
5.

• Decrypt(x, y, SK, CT , PK): First, the algorithm calculates

A1 = e(C1, D1)e(C2, D2)e(C3, D3)e(C4, D4)e(C5, D5),

A2 = e(C6, D6)e(C7, D7).

SinceR(x, y) = 1, there exist reconstruction vectors mx and my s.t. mxkE(x,h) =
mycE(y,h) (by Property 1). If mxTagk −myTagc is 0, it aborts. Otherwise,

A3 = e(C8,K
mx)/e(Emy , D7) = e(g1, g2)

ywr1t(mxTagk−myTagc).

Therefore, M = C ·A2/(A1 ·A
1/(mxTagk−myTagc)
3 ).

Correctness. Calculating A1/A2 is trivial and can be found in [31]. We only point out
thatA1/A2 = e(g1, g2)

αa1·bs2e(g1, w2)
−r1t. For mx and my such that mxkE(x,h) =

mycE(y,h), the correctness of A3 is calculated as follows

A3 =
e(C8,K

mx)

e(Emy , D7)
=
e(gt1, (g

kE(x,h)
2 w

Tagk
2 )r1·mx)

e((g
cE(y,h)
1 w

Tagc
1 )t·my , gr12 )

=
e(g1, g2)

r1·t·mxkE(x,h)e(g1, w2)
r1·t·mxTagk

e(g1, g2)r1·t·my·cE(y,h)e(g1, w2)r1·t·my·Tagc

= e(g1, w2)
r1t·(mxTagk−myTagc).

Therefore, M = C ·A2/(A1 ·A
1/(mxTagk−myTagc)
3 ).

Remark 2. Alternatively, to reduce the number of pairing computations, we sets m′x =
mx/(mxTagk −myTagc) and m′y = my/(mxTagk −myTagc).

Then, the decryption can be done by calculating

A′1 := e(C1, D1)e(C2, D2)e(C3, D3)e(C4, D4)e(C5, D5)/e(C6, D6),

A′2 := e(C8,K
m′x/a1)/e(Ẽ, D7).

where Ẽ := (C7,E
m′y ). Finally, M is retrieved since M = C/(A′1 ·A′2).

Theorem 1. Suppose there exists a tag based encoding TE, then our PEA(TE) is adap-
tively secure under the (Asymmetric) DLIN assumption.

Proof. This is proved by lemmas 1 to 3.
5 Linearity of kE(x,h) and cE(x,h) implies that kE and cE are linear functions over h when
x and y are given. Therefore, gkE(x,h) and gcE(y,h) can be efficiently computed from gh if x
and y are given.



6 Security Analysis

Semi-functional Ciphertext. By running Encrypt algorithm for a message M and
an input y, the algorithm generates a normal ciphertextCT = (C ′, C ′1, ..., C

′
8,E

′,Tag′c).
Then, it randomly selects κ ∈ Zp and sets

C = C ′, C1 = C ′1, C2 = C ′2, C3 = C ′3, C4 = C ′4g
ba2κ
1 ,

C5 = C ′5g
a2κ
1 , C6 = C ′6v

′
1
a2κ, C7 = C ′7v

′
1
a2bκ, C8 = C ′8, E = E′, Tagc = Tag′c.

Semi-functional Key. The algorithm generates a normal key SK = (D′1, . . ., D′7,
K′, Tag′k) by running Keygen algorithm for an input x. Then, it sets

D1 = D′1g
−a1a2γ
2 , D2 = D′2g

a2γ
2 , D3 = D′3, D4 = D′4g

a1γ
2

D5 = D′5, D6 = D′6, D7 = D′7, K = K′, Tagk = Tag′k.

It should be noted that e(g1, g2)a1a2bκγ will be added to the message to be encrypted if
the semi-functional key is used to decrypt the semi-functional ciphertext.
Security Games

Gamereal: This game is a real game. It is identical to the adaptive security model.
Gamei: This game is identical to Gamereal except the challenge ciphertext and the

first i keys. In this game, the challenge ciphertext and the first i keys are semi-
functional.

Gamefinal: This game is identical to Gameqt except the challenge ciphertext where
qt is the total number of key queries. In this game, the challenge ciphertext is still
semi-functional, but it is an encryption of a random message.

First, we prove that Gamereal and Game0 are indistinguishable (semi-functional
ciphertext invariance) in lemma 1. Then, we show that Gamek−1 is also indistinguish-
able from Gamek (semi-functional key invariance) in lemma 2. Finally, in lemma 3,
we prove the invariance between Gameqt and Gamefinal (semi-functional security).
This completes the security analysis since no attacker has a non-negligible advantage
in Gamefinal.
Lemma 1. (Semi-functional Ciphertext Invariance) Suppose that there exists an algo-
rithm A which distinguishes Gamereal and Game0 with non-negligible advantage ε.
Then, we can build an algorithm B which breaks (Asymmetric) DLIN assumption with
advantage ε.

Proof. Firstly,B takes an {g1, f1, ν1, gc11 , f
c2
1 , T, g2, f2, ν2} as an instance from (Asym-

metric) DLIN assumption. Depending on the value of T , B will simulate Gamereal
or Game0 to take an advantage from A which can distinguish both games with non-
negligible advantage ε.
Setup The algorithm, B, chooses exponents α, b, yu, yv, y′v, yw, h1, ...h` randomly from
Zp. It sets u1 = gyu1 , v1 = gyv1 and v′1 = g

y′v
1 . Then, it publishes public parameters as:

PK := {g1, gb1, g
a1
1 = f1, g

a2
1 = ν1, g

b·a1
1 = f b1 , g

b·a2
1 = νb1, w1 = gyw1 , gh1

1 , ..., gh`1 ,



τ1 = gyu1 fyv1 , τ ′1 = gyu1 ν
y′v
1 , τ b1 , τ

′
1
b
, e(g1, g2)

αba1 = e(g1, f2)
αb}.

This implicitly sets a1 = yf and a2 = yν where yf and yν are the discrete loga-
rithms of ν1 and f1 to the base g1 modulo p, respectively. It sets MSK := {g2, gα2 , g

α·a1
2 =

fα2 , g
b
2, u2 = gyu2 , v2 = gyv2 , v′2 = g

y′v
2 , w2 = gyw2 , gh1

2 , ..., gh`2 }.
Phase I and II Because B knows the public parameters and the master secret key, it can
generate normal keys using Keygen.
Challenge Ciphertext When the adversary requests the challenge ciphertext for y∗ with
messages M0,M1, B randomly selects β from {0, 1}. B runs the encryption algorithm
to generate a normal ciphertext CT ′ = (C ′, C ′1, ..., C

′
8,E

′,Tag′c) for y∗ and Mβ . We
denote the random exponents of CT ′ as s′1, s

′
2, t
′. Then it sets the challenge CT as:

C = C ′ ·(e(gc11 , f2) ·e(g1, f
c2
2 ))b·α, C1 = C ′1 ·(g

c1
1 )b, C2 = C ′2 ·(f

c2
1 )−b, C3 = C ′3f

c2
1 ,

C4 = C ′4(T )
b, C5 = C ′5 · T, C6 = C ′6 · (g

c1
1 )yu · (f c21 )−yv · T y′v ,

C7 = C ′7 · ((g
c1
1 )yu · (f c21 )−yv · T y′v )b, C8 = C ′8, E = E′, Tagc = Tag′c.

This implicitly sets s1 = −c2+s′1, s2 = s′2+c1+c2 and s = s1+s2 = c1+s
′
1+s

′
2.

If T = νc1+c21 , the challenge ciphertext is a normal ciphertext, and Gamereal has been
simulated properly. Otherwise, if T is a random, and is denoted as νc1+c21 νκ1 , this is a
properly distributed semi-functional key, and Game0 has been simulated properly.

Lemma 2. (Semi-functional Key Invariance) Suppose that there exists an algorithm A
which distinguishes Gamek−1 and Gamek with a non-negligible advantage ε. Then,
we can build an algorithm B which breaks (Asymmetric) DLIN assumption with ε.

Proof. G1 and G2 of (Asymmetric) DLIN are reversed. Therefore, B takes {g1, f1, ν1,
g2, f2, ν2, g

c1
2 , f

c2
2 , T} as an instance from (Asymmetric) DLIN assumption. Depending

on the value of T , B will simulate Gamek−1 or Gamek to take an advantage from A
which can distinguish. It should be noted that T is in G2 in the reversed assumption.
Setup B chooses exponents α, a1, a2, yv, y′v, yw, h

′
1, ...h

′
`, h̃1, ...h̃`, randomly from Zp.

It sets

e(g1, g2)
α·a1b = e(f1, g2)

α·a1 , g1 = g1, g
b
1 = f1, g

b·a1
1 = fa11 , gb·a21 = fa21 ,

u1 = ν−a1a21 , v1 = νa21 ·g
yv
1 , v′1 = νa11 ·g

y′v
1 , τ1 = u1v

a1
1 = gyva11 , τ ′1 = u1v

′a2
1 = g

y′va2
1 ,

τ b1 = f
yv1a1
1 , τ ′1

b
= f

y′va2
1 , w1 = f1g

yw
1 , {ghi1 = f

−h′i
1 gh̃i1 ;∀i ∈ [1, `]}

Then, it publishes the public parameters

g1, g
b
1, g

a1
1 , ga21 , gb·a11 , gb·a21 , τ1, τ

′
1, τ

b
1 , τ
′
1
b
, w1, g

h
1 , e(g1, g2)

α·a1·b

where h = (h1, ..., h`). B sets MSK = {g2, gα2 , g
α·a1
2 , gb2 = f2, u2 = ν−a1a22 , v2 =

νa22 gyv2 , v′2 = νa12 g
y′v
2 , w2 = f2g

yw
2 , {ghi2 = f

−h′i
2 gh̃i2 ;∀i ∈ [1, `]}}.

In the setting, h is implicitly set by h̃ − yfh
′ where h′ = (h′1, ...h

′
`) and h̃ =

(h̃1, ...h̃`) if we write f1 = g
yf
1 . B calculates gh1 because it knows g1, f1, h̃,h′. It



should be noted that the values of {h′i;∀i ∈ [1, `]} are not revealed. It means that they
are initially information theoretically hidden because, for all i ∈ [1, `], h̃i is uniquely
added where h′i appears.

Phase I and II For the first k − 1 semi-functional keys, B generates a normal key and
selects γ randomly from Zp. It then adds semi-functional parts to the normal key . This
is possible because B knows a1, a2 and MSK. Similarly, for the rest keys except kth

key (i > k), B can generate normal keys using the key generation algorithm, KeyGen,
for the same reason.

For the kth key, B sets Tag′k = kE(x,h′). Then, with Tag′k, it generates a normal
key SK ′ = (D′1, ..., D

′
7,K

′,Tag′k) using the key generation algorithm. Then, it reuses
Tag′k in the kth key (i.e. Tagk = Tag′k) and sets the other elements as follows

D1 = D′1T
−a1a2 , D2 = D′2T

a2(gc12 )yv , D3 = D′3(f
c2
2 )yv , D4 = D′4T

a1(gc12 )y
′
v ,

D5 = D′5(f
c2
2 )y

′
v , D6 = D′6f

c2
2 , D7 = D′7(g

c1
2 ),K = K′(gc12 )kE(x,h̃+ywh′), .

We let r′1, r
′
2, z
′
1, z
′
2 denote the random exponents of SK ′. Then, it implicitly sets

z1 = z′1 − yvc2 and z2 = z′2 − y′vc2. Also, by linearity property,

g
kE(x,h)
2 = g

kE(x,−yfh′+h̃)
2 = g

kE(x,−yfh′)
2 g

kE(x,h̃)
2 = f

−kE(x,h′)
2 g

kE(x,h̃)
2

Therefore, the value of K′ can be represented as follows:

K′ = (f
−kE(x,h′)
2 g

kE(x,h̃)
2 (f2g

yw
2 )kE(x,h′))r

′
1 = (g

kE(x,h̃+ywh′)
2 )r

′
1 .

This implies that K = K′(gc12 )kE(x,h̃+ywh′) = (g
kE(x,h̃+ywh′)
2 )r

′
1+c1 .

If T is equal to νc1+c22 , then the kth key is a normal key with r1 = r′1 + c1 and
r2 = r′2+ c2. Otherwise, if T is νc1+c22 gγ2 , which means a random group element, then,
the kth key is a properly distributed semi-functional key.

Challenge Ciphertext When the adversary requests the challenge ciphertext for y∗ with
messages M0,M1, B randomly selects β from {0, 1}. With Tag′c = cE(y∗,h′), B
runs the encryption algorithm to generate a normal ciphertext CT ′ = (C ′, C ′1, ..., C ′8,
E′, Tag′c) for y∗ and Mβ . We let s′1, s

′
2, t
′ denote the random exponents of CT ′. To

make the semi-functional challenge ciphertext, it randomly selects κ ∈ Zp and sets
C = C ′, C1 = C ′1, C2 = C ′2, C3 = C ′3. Additionally, it sets

C4 = C ′4f
a2·κ
1 , C5 = C ′5 · g

a2·κ
1 , C6 = C ′6 · v′1

a2κ, C7 = C ′7 · f
y′v·κ·a2
1 ν−a1·κ·yw·a21

C8 = gt
′

1 · ν
a1a2κ
1 , E = E′ · (νcE(y∗,h̃+ywh′)

1 )a1a2κ, Tagc = Tag′c

This implicitly sets gt1 = gt
′

1 · ν
a1a2κ
1 . Also, ν1a1a2bκ of v′1

a2bκ is cancelled out by w−t1

in C7.
The fact that Tagc and Tagk share the same vector h′ is hidden to the adversary

by h-hiding property since R(x, y∗) = 0. Therefore, Tagc with correlated h′ can be
switched to Tagc with a random vector from Z`. Also, E is valid since

E′ = (f
−cE(y∗,h′)
1 g

cE(y∗,h̃)
1 (f1g

yw
1 )cE(y∗,h′))t

′
= (g

cE(y∗,h̃+ywh′)
1 )t

′
.



The second equality of the above equation holds by linearity property.
B cannot test whether the kth key is normal or semi-functional by creating a cipher-

text which can be decrypted only by a normal key because Tagk and Tagc share h′. It
means that mxTagk−my∗Tagc is equal to 0 if the simulator creates a semi-functional
ciphertext such that R(x, y) = 1. Hence, the decryption algorithm will abort.

Lemma 3. (Semi-functional Security) Suppose that there exists an algorithm A which
distinguishes Gameqt and Gamefinal with non-negligible advantage ε. Then, we can
build an algorithm B which breaks (Asymmetric) DBDH assumption with advantage ε.

Proof. B takes an {g1, gc21 , g
c3
1 , g2, g

c1
2 , g

c2
2 , T} as an instance from (Asymmetric) DBDH

assumption. Depending on the value of T , B will simulate Gameqt or Gamefinal to
take an advantage from A which can distinguish both games.

Setup B chooses exponents b, a1, yu, yv, y′v, yw, h1, ...h`, randomly from Zp, and sets

g1, g
b
1, g

a1
1 , ga21 = gc21 , g

b·a1
1 , gb·a21 = (gc21 )b, w1 = gyw1 , {ghi1 ; ∀i ∈ [1, `]}

τ1 = gyu+yva11 , τ ′1 = gyu1 (gc21 )y
′
v , τ b1 , τ

′
1
b
, e(g1, g2)

α·a1b = e(gc21 , g
c1
2 )ba1 .

It implicitly sets u1 = gyu , v1 = gyv , v′1 = gy
′
v , α = c1 · c2, a2 = c2. It should be noted

that MSK cannot be explicitly calculated because B does not know gα1 .

Phase I and II For semi-functional keys, if the adversary requests a private key for x,
it randomly generates r1, r2, z1, z2, γ′, h′1, ..., h

′
` from Zp and sets Tagk = kE(x,h′)

where h′ = (h′1, .., h
′
`). It, then, creates semi-functional key as follows:

D1 = (gc22 )−γ
′a1ur2, D2 = (gc22 )γ

′
vr2g

z1
2 , D3 = (gb2)

−z1 , D4 = (gc12 )a1ga1·γ
′

2 v′2
r
gz22 ,

D5 = (gb2)
−z2 , D6 = gr2·b2 , D7 = gr12 , K = (g

kE(x,h)
2 w

Tagk
2 )r1 , Tagk.

where h = (h1, .., h`). This implicitly sets γ = c1 + γ′ and r = r1 + r2.

Challenge Ciphertext When the adversary requests the challenge ciphertext for y∗ with
messages M0,M1, B randomly selects β from {0, 1}. Then it generates random values
κ′, s1, t, h

′′
1 , ...h

′′
` from Zp and sets Tagc = cE(y∗,h′′) where h′′ = (h′′1 , ...h

′′
` ). It,

then, creates the challenge ciphertext as follows:

C =MβT
a1b, C1 = gs1·b1 + (gc31 )b, C2 = gb·a1·s11 , C3 = ga1·s11 , C4 = (gc21 )κ

′·b,

C5 = (gc21 )κ
′
, C6 = τs11 (gc31 )yu(gc21 )y

′
v·κ
′
, C7 = (τ b1)

s1(gc31 )yu·b(gc21 )y
′
v·κ
′·bw−t1 ,

C8 = gt1, E = g
cE(y∗,h′′)
1 w

Tagc
1 ,Tagc.

This implicitly sets s2 = c3 and κ = κ′ − c3.
If T = e(g1, g2)

c1c2c3 , this has properly simulated Gameqt . Otherwise, if T is ran-
dom, a random value is added into Mβ . Hence, it has properly simulated Gamefinal.



7 New Schemes

We provide instances for our encoding to achieve new PE schemes. The instances of In-
ner Product Encryption (IPE) with short keys, Dual Spatial Encryption (Dual SE) with
short keys and HIBE with short ciphertexts will be presented. Inner Product Encryp-
tion (IPE) with short keys and Dual Spatial Encryption (Dual SE) are new instances.
HIBE with short ciphertexts is also found in [32], [12], but applying this instance to our
compilers results in new schemes both in asymmetric and symmetric bilinear maps. It
should be noted that security analysis of each scheme is replaced by showing that the
corresponding instance satisfies the properties that tag based encoding requires.

Inner Product Encryption with short keys
Let define X = Y := Z`p. For all, x ∈ X and y ∈ Y , R(x, y) = 1 iff 〈x,y〉 = 0.

• ` is the size of a predicate and h ∈ Z`p.
• kE(x,h) := 〈h,x〉 ∈ Zp
• cE(y,h) := (−h1(y2/y1) + h2, ...,−h1(y`/y1) + h`) ∈ Z`−1p

• Reconstruction: mx = 1 and my = (x2, ..., x`).
• Linearity: Firstly, the linearity of kE holds trivially since 〈h,x〉 + 〈h′,x〉 = 〈h +

h′,x〉. Also, cE(y,h) + cE(y,h′) = cE(y,h+ h′) since, for all i ∈ [1, `− 1],
−h1(yi+1/y1)+hi+1−h′1(yi+1/y1)+h

′
i+1 = −(h1+h′1)(yi+1/y1)+hi+1+h

′
i+1.

• h-hiding: In the following equation, the first ` − 1 coordinates of the right hand
vector in the above equation are independent from the last coordinate by `-wise
independence [4]. Hence, sharing h between kE, cE is hidden to the adversary.

−y2/y1 1
...

. . .
−y`/y1 1
x1 x2 x3 · · · x`




h1
...

h`−1
h`

 =


−h1(y2/y1) + h2

...
−h1(y`/y1) + h`

〈h,x〉


Dual Spatial Encryption with short keys

For a matrix M ∈ Z(`−1)×d
p and a vector c ∈ Z`−1p , it defines the affine space

Aff(M, c) = {Mw + c|w ∈ Zdp}. Then, R(x,Aff(M, c)) = 1 iff there exists w ∈ Zdp
such that Mw + c = x.

• ` is the number of rows of an affine matrix (+1) and h = (u0,u) ∈ Z`p.
• kE(x,h) := u0 + xᵀu ∈ Zp.
• cE(Aff(M, c),h) := (u0 + cᵀu,Mᵀu) ∈ Zd+1

p

• Reconstruction: mx = 1 and my = (1, w̃ᵀ) where w̃ ∈ Zdp s.t. Mw̃ + c = x.
• Linearity: All coordinates of kE(x,h) and cE(Aff(M, c),h) are linear over h.
• h-hiding: In the following equation, for x ∈ X , there is no w such thatMw+c = y

since R(x,Aff(M, c)) = 0. Hence, the last row of the matix on the left is linearly
independent from the other rows. Hence, it is hidden that they share u0 and u.1 cᵀ

0Mᵀ

1 xᵀ

(u0
u

)
=

u0 + cᵀu
Mᵀu

u0 + xᵀu





HIBE with short ciphertexts [32, 12]
For a vector IDd := (id1, ..., idd) ∈ Zdp and a vector ID′d′ := (id′1, ..., id

′
d′) ∈ Zd′p ,

R(IDd, ID
′
d′) = 1 iff d ≤ d′ and idi = id′i ∀i ∈ [1, d].

• ` is the maximum depth of an identity (+1) and h = (h0, ..., h`) ∈ Z`p.
• kE(IDd,h) := (h0 + h1(id1) + ...+ hd(idd), hd+1, ..., h`) ∈ Z`−dp

• cE(ID′d′ ,h) := h0 + h1(id
′
1) + ...+ hd′(id

′
d′) ∈ Zp

• Reconstruction: mx = (1, id′d+1, ..., id
′
d′ , 0, ..., 0) ∈ Z`−dp and my = 1.

• Linearity: All coordinates of kE(IDd,h) and cE(ID′d,h) are linear over h.
• h-hiding: In the following equation, the first `− d+1 rows are linearly independent

with the last row of matrix on the left since idd 6= id′d and h0, ..., h` appear at most
twice. Therefore, the sharing h between the first `+ 1 coordinates of the vector of
the right hand of the equation with the last coordinate of the vector is hidden.

1 id1 · · · idd
1

. . .
1

1 id′1 · · · id′d · · · id′d′




h0
...

h`−1
h`

 =


h0 + h1(id1) + ...+ hd(idd)

hd+1

...
h`

h0 + h1(id
′
1) + ...+ hd′(id

′
d′)



8 Conclusion

In this paper, we proposed a new encoding framework for PE schemes. Our frame-
work provides an encryption scheme having a better efficiency when the size of their
encoding is large compared with prior encoding frameworks. We provided two generic
constructions for our framework as compilers of encodings. They are adaptively secure
under the standard assumption. Consequently, we showed that our encoding is versatile
by proposing a number of new instances that are applicable to our encodings.
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A Our Compiler with Symmetric Bilinear maps

A.1 Complexity Assumptions under Symmetric Bilinear maps

The adaptive security of our framework relies on both DBDH and DLIN whose defini-
tions are reviewed below.
Decisional Bilinear Diffie-Hellman (DBDH) assumption. Let g be a generator of G
and c1, c2, c3 be selected randomly from Zp. Given {g, gc1 , gc2 , gc3 ∈ G,T ∈ GT },
there is no PPT algorithm that can distinguish whether T is e(g, g)c1c2c3 or a random
from GT with a non-negligible advantage.
Decisional Linear (DLIN) assumption Let g, f, ν be random generators of G and
c1, c2 be selected randomly from Zp. Given {g, f, ν, gc1 , f c2 , T ∈ G}, there is no
PPT algorithm can distinguish whether T is νc1+c2 or a random from G with a non-
negligible advantage.

We remark that the DBDH assumption can be reduced to the DLIN assumption [11,
7]. This implies that our construction is secure under the DLIN assumption.

A.2 The Construction

For a tag based encoding TE for a predicateRwhereR : X×Y → {0, 1}, with `which
is an integer to associated with R, PE(TE) is constructed by four algorithms following:

• Setup(1λ,`): The algorithm randomly generates two groupsG andGT from G(λ, p).
Next, it generates g, v, v1, v2, w ∈ G and exponents α, a1, a2, b, h1, . . ., h` ∈ Zp.
Let τ1 = vva11 , τ2 = vva22 and h = (h1, ..., h`). It publishes the public parameters
PK as follows

(g, gb, ga1 , ga2 , gb·a1 , gb·a2 , τ1, τ2, τ
b
1 , τ

b
2 , w, g

h, e(g, g)α·a1·b)

The MSK consists of (gα, gα·a1 , v, v1, v2).
• Keygen(MSK, PK, x): The algorithm chooses randomly r1, r2, z1, z2, h′1, ..., h

′
` ∈

Zp and sets r = r1 + r2 and Tagk = kE(x,h′) where h′ is equal to (h′1, ..., h
′
`).

Then, it creates SK as follows

D1 = gα·a1vr, D2 = g−αvr1g
z1 , D3 = (gb)−z1 , D4 = vr2g

z2 , D5 = (gb)−z2 ,

D6 = gr2·b, D7 = gr1 ,K = (gkE(x,h)wTagk)r1 .

It sets SK = (D1, ..., D7,K,Tagk).
• Encrypt(PK, M , y): The algorithm selects s1, s2, t, h′′1 , ..., h

′′
` ∈ Zp and set s =

s1 + s2, and Tagc = cE(y,h′′) where h′′ is equal to (h′′1 , ..., h
′′
` ). It creates the

ciphertext, CT as follows

C =M · (e(g, g)αa1·b)s2 , C1 = (gb)s, C2 = (gb·a1)s1 , C3 = (ga1)s1 , C4 =
(gb·a2)s2 ,

C5 = (ga2)s2 , C6 = τs11 τs22 , C7 = (τ b1)
s1(τ b2)

s2w−t, C8 = gt,E =
(gcE(y,h)wTagc)t



It sets CT = (C,C1, ..., C8,E,Tagc).
• Decrypt(x, y, SK, CT , PK): First, the algorithm calculates

A1 = e(C1, D1)e(C2, D2)e(C3, D3)e(C4, D4)e(C5, D5), A2 =
e(C6, D6)e(C7, D7).

SinceR(x, y) = 1, there exist reconstruction vectors mx and my such that mxkE(x,h) =
mycE(y,h). If mxTagk −myTagc is 0, it aborts. Otherwise,

A3 = e(C8,K
mx)/e(Emy , D7) = e(g, w)r1t·(mxTagk−myTagc).

Therefore, M = C ·A2/(A1 ·A
1/(mxTagk−myTagc)
3 ).

Correctness of the construction is almost identical to that of the construction with
asymmetric pairing in the main contents. The number of pairing computations of this
construction also can be reduced as the construction with asymmetric pairing does.

Theorem 2. Suppose there exists Tag based Encoding TE, then our PE(TE) is adap-
tively secure under DLIN assumption.

Proof. This is proved by lemmas 4, 5 and 6.

A.3 Security Analysis

Semi-functional Ciphertext. By running Encrypt algorithm for a message M and
an input y, the algorithm generates a normal ciphertextCT = (C ′, C ′1, ..., C

′
8,E

′,Tag′c).
Then, it randomly selects κ ∈ Zp and sets

C = C ′, C1 = C ′1, C2 = C ′2, C3 = C ′3, C4 = C ′4g
ba2κ,

C5 = C ′5g
a2κ, C6 = C ′6v

a2κ
2 , C7 = C ′7v

a2bκ
2 , C8 = C ′8, E = E′, Tagc = Tag′c.

Semi-functional Key. The algorithm generates a normal key SK = (D′1, . . ., D′7,
K′, Tag′k) by running Keygen algorithm for an input x. Then, it sets

D1 = D′1g
−a1a2γ , D2 = D′2g

a2γ , D3 = D′3, D4 = D′4g
a1γ

D5 = D′5, D6 = D′6, D7 = D′7, K = K′, Tagk = Tag′k.

It should be noted that e(g, g)a1a2bκγ will be added to the message to be encrypted if
the semi-functional key is used for decrypting the semi-functional ciphertext.

Security Games The definitions of security games and the strategy to prove adaptive
security are identical to those of the compiler in asymmetric pairings.

Lemma 4. (Semi-functional Ciphertext Invariance) Suppose that there exists an algo-
rithm A which distinguishes Gamereal and Game0 with non-negligible advantage ε.
Then, we can build an algorithm B which breaks DLIN assumption with advantage ε.



Proof. Firstly, B takes an {g, f, ν, gc1 , f c2 , T} as an instance from DLIN assumption.
Depending on the value of T ,B will simulate Gamereal or Game0 to take an advantage
from A which can distinguish both games with non-negligible advantage ε.

Setup Algorithm B chooses exponents α, b, yv, yv1 , yv2 , yw, h1, ...h` randomly from Zp
and group elements w, g. Then, it publishes public parameters as:

PK := {g, gb, ga1 = f, ga2 = ν, gb·a1 = f b, gb·a2 = νb, w = gyw , gh1 , ..., gh` ,

τ1 = gyvfyv1 , τ2 = gyvνyv2 , τ b1 , τ
b
2 , e(g, g)

αba1 = e(g, f)αb}

it implies that v = gyv , v1 = gyv1 , v2 = gyv2 . It sets MSK := {gα, gα·a1 = fα}.
Phase I and II Because B knows the public parameters and the master secret key, it can
generate normal keys using Keygen.

Challenge Ciphertext When the adversary requests the challenge ciphertext for y∗ with
messages M0,M1, B randomly selects β from {0, 1}. B runs the encryption algorithm
to generate a normal ciphertext CT ′ = (C ′, C ′1, ..., C

′
8,E

′,Tag′c) for y∗ and Mβ . We
denote the random exponents of CT ′ as s′1, s

′
2, t
′. Then it sets the challenge CT as:

C = C ′ ·(e(gc1 , f)·e(g, fc2))b·α, C1 = C ′1 ·(gc1)b, C2 = C ′2 ·(f c2)−b, C3 = C ′3f
c2 ,

C4 = C ′4(T )
b, C5 = C ′5 · T, C6 = C ′6 · (gc1)yv · (f c2)−yv1 · T yv2 ,

C7 = C ′7 · ((gc1)yv · (f c2)−yv1 · T yv2 )b, C8 = C ′8, E = E′, Tagc = Tag′c.

This implicitly sets s1 = −c2+s′1, s2 = s′2+c1+c2 and s = s1+s2 = c1+s
′
1+s

′
2.

If T = νc1+c2 , the challenge ciphertext is a normal ciphertext, and Gamereal has been
simulated properly. Otherwise, if T is a random, and is denoted as νc1+c2νκ, this is a
properly distributed semi-functional key, and Game0 has been simulated properly.

Lemma 5. (Semi-functional Key Invariance) Suppose that there exists an algorithm A
which distinguishes Gamek−1 and Gamek with a non-negligible advantage ε. Then,
we can build an algorithm B which breaks DLIN assumption with ε.

Proof. Firstly, B takes an {g, f, ν, gc1 , f c2 , T} as an instance from DLIN assumption.
Depending on the value of T , B will simulate Gamek−1 or Gamek to take an advan-
tage fromA which can distinguish between both games with non-negligible advantage.

Setup Algorithm B chooses exponents α, a1, a2, yv1 , yv2 , yw, h
′
1, ...h

′
`, h̃1, ...h̃`, ran-

domly from Zp. Then, it sets

g = g, gb = f, gb·a1 = fa1 , gb·a2 = fa2 , v = ν−a1a2 , v1 = νa2 · gyv1 , v2 = νa1 · gyv2 ,

τ1 = vva11 = gyv1a1 , τ2 = vva21 = gyv2a2 , τ b1 = fyv1a1 , τ b2 = fyv2a2 ,

w = fgyw , ghi = f−h
′
igh̃i∀i ∈ [1, `], e(g, g)α·a1b = e(f, g)α·a1 .

It publishes the public parameters following

(g, gb, ga1 , ga2 , gb·a1 , gb·a2 , τ1, τ2, τ
b
1 , τ

b
2 , w, g

h, e(g, g)α·a1·b)



where h = (h1, ..., h`). In the setting, h is implicitly set by h̃ − yfh
′ where h′ =

(h′1, ...h
′
`) and h̃ = (h̃1, ...h̃`) if we write f = gyf . Because B does not know yf ,

it cannot calculate the values of h, but it calculates gh because it knows g, f, h̃,h′. It
should be noted that, initially, the values of {h′i;∀i ∈ [1, `]} are not revealed, which
means that they are initially information theoretically hidden because, for all i, h̃i is
uniquely added where h′i appears. B knows all MSK = (gα, gα·a1 , v, v1, v2) since it
knows α and a1.
Phase I and II For the first k − 1 semi-functional keys, B generates a normal key and
selects γ randomly from Zp. It then adds semi-functional parts to the normal key . This
is possible because B knows all public parameters and MSK. Similarly, for the rest
keys except kth key (i > k), B can generate normal keys using the key generation
algorithm, KeyGen, as the same reasons.

For the kth key, B sets Tagk = kE(x,h′). Then, with Tag′k, it generates a normal
key SK ′ = (D′1, ..., D

′
7, K

′,Tagk) using the key generation algorithm. Then, it sets
the kth key as follows

D1 = D′1T
−a1a2 , D2 = D′2T

a2(gc1)yv1 , D3 = D′3(f
c2)yv1 , D4 = D′4T

a1(gc1)yv2 ,

D5 = D′5(f
c2)yv2 , D6 = D′6f

c2 , D7 = D′7(g
c1),K = K′(gc1)kE(x,h̃+ywh′),Tagk.

We let r′1, r
′
2, z
′
1, z
′
2 denote the random exponents of SK ′. Then, it implicitly sets

z1 = z′1 − yv1c2 and z2 = z′2 − yv2c2. Also, by linearity property,

gkE(x,h) = gkE(x,−yfh′+h̃) = gkE(x,−yfh′)gkE(x,h̃) = f−kE(x,h′)gkE(x,h̃)

Therefore, the value of K′ can be represented as follows:

K′ = (f−kE(x,h′)gkE(x,h̃)(fgyw)kE(x,h′))r
′
1 = (gkE(x,h̃+ywh′))r

′
1 .

This implies that K = K′(gc1)kE(x,h̃+ywh′) = (gkE(x,h̃+ywh′))r
′
1+c1 .

If T is equal to νc1+c2 , then the kth key is a normal key with r1 = r′1 + c1 and
r2 = r′2+ c2. Otherwise, if T is νc1+c2gγ , which means a random group element, then,
the kth key is a properly distributed semi-functional key.
Challenge Ciphertext When the adversary requests the challenge ciphertext for y∗ with
messagesM0,M1, B randomly selects β from {0, 1}. With Tagc = cE(y∗,h′), B runs
the encryption algorithm to generate a normal ciphertextCT ′ = (C ′, C ′1, ..., C

′
8,E

′,Tagc)
for y∗ andMβ . We let s′1, s

′
2, t
′ denote the random exponents ofCT ′. To make the semi-

functional challenge ciphertext, it randomly selects κ ∈ Zp and sets C = C ′, C1 =
C ′1, C2 = C ′2, C3 = C ′3. Additionally, it sets

C4 = C ′4f
a2·κ, C5 = C ′5 · ga2·κ, C6 = C ′6 · v

a2κ
2 , C7 = C ′7 · fyv2 ·κ·a2ν−a1·κ·yw·a2

C8 = gt
′ · νa1a2κ, E = E′ · (νcE(y∗,h̃+ywh′))a1a2κ, Tagc

This implicitly sets gt = gt
′ · νa1a2κ. It should be noted that νa1a2bκ of va2bκ2 is can-

celled out by w−t in C7. The fact that Tagc in the challenge ciphertext and Tagk in the
kth key share the same vector h′ is hidden to the adversary by h-hiding property since
R(x, y∗) = 0. Also, E is a valid ciphertext elements since



E′ = (f−cE(y∗,h′)gcE(y∗,h̃)(fgyw)cE(y∗,h′))t
′
= (gcE(y∗,h̃+ywh′))t

′
.

The second equality of the above equation holds by linearity property.
In the simulation, B cannot test whether the kth key is normal or semi-functional

by generating a ciphertext which can be decrypted only by a normal key because Tagk
and Tagc must share h′. In our simulation, mxTagk −my∗Tagc = 0 if the simu-
lator generates a valid semi-functional ciphertext such that R(x, y) = 1. Hence, the
decryption algorithm will abort.

Lemma 6. (Semi-functional Security) Suppose that there exists an algorithm A which
distinguishes Gameqt and Gamefinal with non-negligible advantage ε. Then, we can
build an algorithm B which breaks DBDH assumption with advantage ε.

Proof. First, B takes an {g, gc1 , gc2 , gc3 , T} as an instance from DLIN assumption. De-
pending on the value of T , B will simulate Gameqt or Gamefinal to take an advantage
from A which can distinguish both games with non-negligible advantage ε.

Setup B chooses exponents b, a1, yv, yv1 , yv2 , yw, h1, ...h`, randomly from Zp, and sets

g = g, gb, ga1 , ga2 = gc2 , gb·a1 , gb·a2 = (gc2)b, w = gyw , {ghi ; ∀i ∈ [1, `]}

τ1 = gyv+yv1a1 , τ2 = gyv (gc2)yv2 , τ b1 , τ
b
2 , e(g, g)

α·a1b = e(gc1 , gc2)ba1 .

It implicitly sets v = gyv , v1 = gyv1 , v2 = gyv2 , α = c1 · c2, a2 = c2. It should be
noted that MSK cannot be explicitly calculated because B does not know gα.

Phase I and II For semi-functional keys, if the adversary requests a private key for x,
it randomly generates r1, r2, z1, z2, γ′, h′1, ..., h

′
` from Zp and sets Tagk = kE(x,h′)

where h′ = (h′1, .., h
′
`). It, then, creates semi-functional key as follows:

D1 = (gc2)−γ
′a1vr, D2 = (gc2)γ

′
vr1g

z1 , D3 = (gb)−z1 , D4 = (gc1)a1ga1·γ
′
vr2g

z2 ,

D5 = (gb)−z2 , D6 = gr2·b, D7 = gr1 , K = (gkE(x,h)wTagk)r1 , Tagk.

where h = (h1, .., h`). This implicitly sets γ = c1 + γ′ and r = r1 + r2.

Challenge Ciphertext When the adversary requests the challenge ciphertext for y∗ with
messages M0,M1, B randomly selects β from {0, 1}. Then it generates random values
κ′, s1, t, h

′′
1 , ...h

′′
` from Zp and sets Tagc = cE(y∗,h′′) where h′′ = (h′′1 , ...h

′′
` ). It,

then, creates the challenge ciphertext as follows:

C =MβT
a1b, C1 = gs1·b + (gc3)b, C2 = gb·a1·s1 , C3 = ga1·s1 , C4 = (gc2)κ

′·b,

C5 = (gc2)κ
′
, C6 = τs11 (gc3)yv (gc2)yv2 ·κ

′
, C7 = (τ b1)

s1(gc3)yv·b(gc2)yv2 ·κ
′·bw−t,

C8 = gt, E = (gcE(y∗,h′′)wTagc),Tagc.

This implicitly sets s2 = c3 and κ = κ′ − c3.
In this simulation, if T = e(g, g)c1c2c3 , then this has properly simulated Gameqt .

Otherwise, if T is random, a random value is added into Mβ . Hence, it has properly
simulated Gamefinal.



B Instances from Existing Schemes

In this section, we extracts instances from literature. New instances that result Identity
based encryption (IBE) [31], Public Attribute Inner Product Encryption (PAIPE) with
short ciphertexts [4], Spatial Encryption (SE) [8] and Doubly Spatial Encryption (DSE)
[32] are derived from previous works. It should be noted that the schemes created by
applying those instances to our compiler with symmetric bilinear maps are identical to
the original constructions of their literature.

Waters’ IBE is a good example to describe our framework due to its simplicity.
Identity Based Encryption [31]

Let X = Y := Zp. For all ID ∈ X and ID′ ∈ Y , R(ID, ID′) = 1 iff ID = ID′.

• `=2 and h = (yu, yh) ∈ Z2
p

• kE(ID, (yu, yh)) := (yuID + yh) ∈ Zp
• cE(ID′, (yu, yh)) := (yuID

′ + yh) ∈ Zp
• Reconstruction: This is an exact cancellation. Therefore, mx = my = 1.

• Linearity: For all h′ = (y′u, y
′
h),

kE(ID, (y′u, y
′
h)) + kE(ID, (ỹu, ỹh)) =y

′
uID + y′h + ỹuID + ỹh

=kE(ID, (y′u + ỹu, y
′
h + ỹh)).

The linearity of cE(ID′, (y′u, y
′
h)) is identical showed with kE(ID, (y′u, y

′
h)).

• h-hiding: yuID+yh and yuID′+yh are pair-wise independent sinceR(ID, ID′) =
0 (i.e. ID 6= ID′). Hence, for given yuID + yh, the value of yuID′ + yh is uni-
formly distributed from Zp. Therefore, it is not distinguishable from y′uID

′ + y′h
where (y′u, y

′
v) is randomly selected from Z2

p.

Public Attribute Inner Product Encryption with short ciphertexts and Spatial En-
cryption with short ciphertexts are the symmetric conversion of IPE with short keys and
Dual SE which short keys which were introduced in the previous section. If we let kE′

and cE′ denote the encodings of the original schemes (e.g. IPE with short keys), then
we define kE = cE′ and cE = kE′. All properties are identically proved with the
schemes in previous sections.
Public Attribute Inner Product Encryption with short ciphertexts [4]

Let X = Y := Z`p. For all, x ∈ X and y ∈ Y , R(x, y) = 1 iff 〈x,y〉 = 0

• ` is the size of a predicate and h ∈ Z`p
• kE(x,h) := ({−h1(xi/x1) + hi}i=2,...`) ∈ Z`−1p

• cE(y,h) := 〈h,y〉 ∈ Zp
• All properties are proved similarly with our IPE with short keys.

Spatial Encryption with short ciphertexts [8]
For a matrix M ∈ Z(`−1)×d

p and a vector c ∈ Z`−1p , it defines the affine space
Aff(M, c) = {Mw + c|w ∈ Zdp}. Then, R(Aff(M, c),y) = 1 iff there exists w ∈ Zdp
such that Mw + c = y.



• ` is the number of rows of an affine matrix (+1) and h = (u0,u) ∈ Z`p.
• kE(Aff(M, c),h) := (u0 + cᵀu,Mᵀu) ∈ Zd+1

p

• cE(y,h) := (u0 + yᵀu) ∈ Zp
• All properties are proved similarly with our Dual SE with short keys.

Doubly Spatial Encryption [8]
For affine matricesX ∈ AffM(Z`×dp ) and Y ∈ AffM(Z`×fp ),R(X,Y ) = 1 iff there

exist w ∈ AffM(Zdp) and z ∈ AffM(Zfp) such that wXᵀ = zY ᵀ

• ` is the number of rows of affine matrices, X and Y and h ∈ Z`p.
• kE(X,h) := (Xᵀhᵀ) ∈ Zdp.
• cE(Y,h) := (Y ᵀhᵀ) ∈ Zfp .
• Reconstruction:

Since wXᵀ = zY ᵀ, w · kE(X,h) = z · cE(Y,h) (i.e. mx = w, and my = z).
• Linearity: For all h and h′ from Z`p,

kE(X,h) + kE(X,h′) = Xᵀhᵀ +Xh′
ᵀ
= Xᵀ(hᵀ + h′ᵀ) = kE(X,hᵀ + h′ᵀ)

cE(Y,h) + cE(Y,h′) = Y ᵀhᵀ + Y h′
ᵀ
= Y ᵀ(hᵀ + h′ᵀ) = cE(Y,hᵀ + h′ᵀ).

• h-hiding: In the following equation, there exist no w and z such that wXᵀ = zY ᵀ

since R(X,Y ) = 0. Hence, the last f rows of matrix on the left are linearly inde-
pendent from the first d rows. Therefore, it is hidden that they share h.(

Xᵀ

Y ᵀ

)(
hᵀ
)
=

(
Xᵀhᵀ

Y ᵀhᵀ

)


