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ABSTRACT
We study practical order-revealing encryption (ORE) with a
well-defined leakage profile (the information revealed about
the plaintexts from their ciphertexts), a direction recently
initiated by Chenette, Lewi, Weis, and Wu (CLWW). ORE,
which allows public comparison of plaintext order via their
ciphertexts, is a useful tool in the design of secure outsourced
database systems. We first show a general construction of
ORE with reduced leakage as compared to CLWW, by com-
bining ideas from their scheme with a new type of“property-
preserving” hash function. We then show how to construct
such a hash function efficiently based on bilinear maps. Our
resulting ORE scheme is fairly practical: for n-bit plain-
texts, ciphertexts consists of about 4n group elements, and
order comparison requires about n2 pairings. The leakage
is, roughly speaking, the “equality pattern” of the most-
significant differing bits, whereas CLWW’s is the location
and values of the most-significant differing bits. We also
provide a generalization of our scheme that improves the
leakage and/or efficiency.

To analyze the quality of our leakage profile, we show sev-
eral additional results. In particular, we show that order-
preserving (OPE) encryption, an important special case of
ORE scheme in which ciphertexts are ordered, cannot be
secure wrt. our leakage profile. This implies that our ORE
scheme is the first one without multilinear maps that is
proven secure wrt. a leakage profile unachievable by OPE.
We also also show that our generalized scheme meets a
“semantically meaningful” one-wayness notion that schemes
with the leakage of CLWW do not.
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An emerging area of cryptography concerns the design
and analysis of “leaky” protocols (see e.g. [28, 31, 11] and
additional references below), which are protocols that delib-
erately give up some security in order to achieve practical
efficiency. A domain of particular practical importance in
which this is being pursued is that of searching on encrypted
data (aka. outsourced database protocols); see [24] for an
excellent overview. In this setting, a client has a database
whose storage it wishes to outsource to an untrusted server.
The question how to construct protocols that allow efficient
query processing by the server but at the same time main-
tain reasonable confidentiality of the client’s data.

In this work, we focus on an important tool in this domain,
order-revealing encryption [7, 8].1 Order-revealing encryp-
tion (ORE) is symmetric encryption with an additional op-
eration Comp, in which plaintexts are numbers from say 1
to M , and for any key K and any plaintexts m0 < m1,
Comp(E(m0), E(m1)) outputs 1. That is, order-revealing
encryption allows public comparison of plaintexts order via
their ciphertexts (note Comp does not take input K). To see
how this could be useful in outsourced database protocols,
consider a client with a simple relational database consisting
of one table supporting range queries. Suppose the server
encrypts the search key value in each row under ORE and
the remainder of the row under a standard (semantically se-
cure) encryption scheme. When the server receives the this
encrypted database it can index it using e.g. a B-tree and
process a client’s encrypted range queries efficiently, as this
only requires comparing search key values.

Constructing ORE is challenging. Initial results (which
actually predated the notion) focused on the special case
of order-preserving encryption (OPE) [1, 6], in which Comp
is simple numerical comparison. Unfortunately, OPE leaks
much more information that just plaintext order (which is
to some extent inherent, see below). Later, Boneh, Lewi,
Raykova, Sahai, Zhandry, and Zimmerman [8] gave a con-
struction of ORE leaking only plaintext order (which is the
“ideal”’ leakage here), based on multilinear maps. While
this is an encouraging feasibility result, it is a far cry from
practical. On the other hand, Chenette, Lewi, Weis and Wu
(CLWW) [15] recently gave a ORE practical construction
leaking the most significant differing-bits of the plaintexts.
We view construction as a valuable data point in the design
space, but it still leaks a lot of information. To what extent
can this leakage be reduced while retaining practicality?

1.1 Our Results
1In [7], it was called efficiently-orderable encryption.



ORE from Property-Preserving Hashing. Our first main
result is a new way to build on the scheme of CLWW to re-
duce the leakage. To explain the idea, we first briefly recall
the scheme of CLWW. In their (basic) scheme, the encryp-
tion key is a key K for a pseudorandom function PRF. To
encrypt a plaintext x of length n, for each prefix pi of x one
computes yi = PRFK(pi) + xi+1 where xi+1 is the (i+ 1)-st
bit of x; the resulting ciphertext is (y1 . . . , yn). Now to
compare two ciphertexts (y1 . . . , yn) and (y′1 . . . , y

′
n), one

finds the smallest index i such that yi 6= y′i, and outputs
1 if y′i − yi = 1. To understand our approach for reduc-
ing the leakage, first consider what happens if we modify
the scheme to not output (y1 . . . , yn) as the ciphertext but
a random permutation of these elements, chosen fresh for
each encryption. We can still compare ciphertexts by ap-
propriately modifying the comparison algorithm: now given
c = (y1 . . . , yn) and c′ = (y′1 . . . , y

′
n) (permuted as above), it

will look for indices i, j such that either y′i−yj = 1, in which
case it outputs 1, or yj − y′i = 1, in which case it outputs 0.
However, the leakage is not reduced: an adversary can still
determine the most significant differing bit by counting how
many elements c and c′ have in common.

To solve this issue, we employ a new notion of property-
preserving hashing (PPH) we introduce. PPH can be seen
as the hashing (meaning, no decryption) analogue of the
notion of property-preserving encryption, a generalization
of order-revealing encryption to arbitrary properties due to
Pandey and Rouselakis [30]. (This can also be seen as a
symmetric-key version of the notion of “relational hash” due
to Mandal and Roy [27].) Specifically, we employ a PPH
for the property P1(x, x′) = 1;x = x′ + 1. (Here x, x′ are
not plaintexts of the ORE scheme, think of them as other
inputs determined below.) Security requires that this is all
that is leaked; in particular, input equality is not leaked
by the hash values (which requires a randomized hashing
algorithm). Now, the idea is to modify the scheme to include
a key KH for such a PPH H, and the encryption algorithm
to not only randomly permute the yi’s but hash them as
well, i.e., output (h1, . . . , hn) where hi = HKH (yi) for the
permuted yi’s.

2 The comparison algorithm can again be
modified appropriately, namely to not to check if y′i−yj = 1
but rather if their h′i and h′j hash values satisfy P1 via the
PPH (and similarly for the check yj − y′i = 1).

Intuitively, the resulting ORE scheme leaks only the equal-
ity pattern of most significant differing bits in addition to
plaintext order, not the values or locations of these bits.
Said another way, for any triple of plaintexts m1,m2,m3, it
leaks whether m2 differs from m1 (in terms of the most sig-
nificant differing bit) before m3 does, meaning the index of
the most significant differing bit is smaller. However, prov-
ing this ORE scheme secure wrt. this leakage based on an
achievable notion of security for the PPH turns out to be
technically challenging. Nevertheless, manage to prove it
“non-adaptively secure,” meaning the adversary is required
to non-adaptively choose the dataset, which is realistic for
a passive adversary in the outsourced database setting.

Property-Preserving Hash from Bilinear Maps. Next
we turn to constructing a practical property-preserving hash

2A minor issue here is that we now lose decryptability for
the resulting ORE scheme; however, this can easily be added
back in a generic way by also encrypting the plaintext sep-
arately under a semantically secure scheme.

(PPH) for the property P1(x, x′) = x = x′ + 1. For this, we
adapt techniques from perfectly one-way hash functions [9,
27] to the symmetric-key setting and use asymmetric bilin-
ear groups. Roughly, in our construction the key for the
hash function is a key K for a pseudorandom function PRF
and, letting e : G1 × G2 → GT be an asymmetric bilinear
map on prime order cyclic groups G1, G2 with generators
g1, g2, the hash of x is

HK(x) = (gr11 , g
r1PRFK(x)
1 , gr22 , g

r2PRFK(x+1)
2 )

for fresh random r1, r2 ∈ Zp. (Thus, the PRF is also pushed
to our PPH construction and can be dropped from from the
higher-level ORE scheme when our hash function is plugged-
in.) The bilinear map allows testing whether P1(x, x′) from
HK(x),HK(x′), and intuitively our use of asymmetric bi-
linear groups prevents testing other relations such as equal-
ity (formally we use the XSDH assumption). We prove the
construction secure under an indistinguishability-based no-
tion in which the adversary has to distinguish between the
hash of a random challenge x∗ and a random hash value,
and can query for hash values of inputs x of its choice as
long as P1(x, x∗) and P1(x∗, x) are both 0. Despite being
restricted,3, this notion suffices in our ORE scheme above.

When our PPH is plugged-in to our ORE scheme, the
result is fairly practical: Ciphertexts consist of 4n group el-
ements, and order comparison requires n(n−1) pairing com-
putations on average. We leave a detailed implementation
and efficiency analysis to future work, but note that this level
of efficiency is in-line with many schemes based on bilinear
maps (e.g., attribute-based encryption schemes [19]) that are
considered fairly practical. We also note that CLWW gave
an improved version of their scheme is which ciphertexts are
size O(n + λ) rather than O(nλ) for security parameter λ,
however, we have reason to believe this may be difficult for
schemes with our improved leakage profile, see below.

Generalizing our ORE Scheme. In order to further im-
prove the efficiency and/or leakage of our ORE scheme, we
introduce the following generalization. We view plaintexts
as consisting of d-blocks of n/d bits each, and apply our basic
construction “block-wise.” This requires a PPH for the more
general predicate Pd(x, x

′) = x′ ∈ {x + 1, . . . , x + 2d − 1}
and leaks only the equality pattern of most-significant dif-
fering blocks (our basic scheme corresponds to d = 1). We
also show how to extend our PPH construction to support
Pd(x, x

′), where the hash values consist of 2d+1 group ele-
ments, so the construction only supports small d. Interest-
ingly, for d = 2 there is an efficiency improvement in the
resulting ORE scheme as well: Ciphertexts are still 4n ele-
ments but comparison requires (3/4)n(n−1) pairings (rather
than n(n − 1)) on average, and for d = 3 ciphertexts are
slightly larger at (16/3)n elements but comparison only re-
quires (7/9)n(n − 1) pairings on average. For larger d the
leakage continues to reduce but efficiency compared to the
basic scheme (in terms of both ciphertext size and pairings
required for comparison) decreases. Again, we leave a de-
tailed implementation and efficiency analysis to future work.

3More generally, following [30] one could allow the adversary
to choose two challenge inputs and make queries that do not
allow it to trivially distinguish them, but we are unable to
prove our construction secure under this stronger notion.



Analyzing the Leakage. In order to assess the quality of
our leakage, we prove several auxiliary results. First, we
show that an order-preserving encryption (OPE) scheme
cannot be secure wrt. our leakage profile. Previously, [6]
showed that an OPE scheme cannot be secure wrt. the (“ideal”)
leakage profile that only reveals the order of plaintexts. In-
terestingly, our proof uses entirely different techniques and
is based on the observation that for two plaintexts our leak-
age is ideal. We also note that CLWW [15] do show an
OPE scheme with their leakage profile. This in particu-
lar means our results give the first construction of ORE
without multilinear maps secure wrt. a leakage profile not
achievable by OPE. Furthermore, the fact that there is an
OPE scheme with CLWW’s leakage profile is a basis for their
above-mentioned reduction in ciphertext length — in that
CLWW reduce ciphertext length in their basic scheme, or
rather a slight variation thereof, by making it “not OPE” —
suggesting such a reduction in ciphertext length may diffi-
cult for our scheme (since it is already not OPE).

Next, we show that there are distributions on the database
according to which schemes meeting the leakage profile of
our generalized scheme is one-way, but schemes meeting the
leakage of CLWW are not [15]. One-wayness is a “semanti-
cally meaningful” notion (see below) previously considered
for order-preserving encryption in [7]. Finally, we initiate a
combinatorial study of the structure of our leakage, show-

ing that there at most 2m
2 logn possible leakage outputs for

datasets consisting of m plaintexts of length n.
We view these results as only a first step in understanding

our leakage profile, setting the stage for future work. Indeed,
much work remains to be done on how to assess leakage
profiles in the area of leaky cryptography more generally.

1.2 Discussion and Perspective
We follow CLWW in that we study practical ORE wrt. to

a “well-defined” (i.e., concisely reprsented) leakage profile
as a contrast with the of OPE scheme of [6] that does not
have such a leakage profile but rather leaks “whatever a ran-
dom order-preserving function does.” But we stress that
whether a scheme has a “well-defined” leakage profile or not,
additional analysis must be done to analyze the leakage. In
particular, one would like to prove it achieves “semantically
meaningful” notions of security that talk about what infor-
mation about the data the adversary is able to deduce from
the leakage. We have taken some initial steps in that direc-
tion, as explained above. Such analysis is actually possible
in principle regardless, e.g. [7] provide an initial such anal-
ysis for the OPE scheme of [6], but is more tractable when
the leakage profile is well-defined.

Recently, there have been various attacks [21, 22, 3, 17, 26,
23, 10, 29] on specific higher-level outsourced database pro-
tocols (e.g., [31]) based on searchable symmetric encryption
or property-preserving encryption schemes like ORE, even
assuming ideal leakage, using auxiliary information about
the data. We do not claim that our ORE scheme is safe to
use in any specific higher-level protocol, and our analysis of
our leakage profile does not show this.

Our perspective here is that a foundational study of prac-
tical ORE schemes is still warranted. Indeed, it may well be
the case that that such ORE schemes are useful in the de-
sign of efficient and“reasonably secure”outsourced database
protocols, but current proposals of such protocols are using
them in a wrong (less secure) way. Furthermore, ORE may

turn out to be useful in other emerging practical applica-
tions in databases and networking, and has recently found
applications to “private learning” [?]. Overall, we believe
it is a natural and compelling primitive that serves as an
important case study in the area of leaky cryptography.

1.3 Related Work
Work done on“leaky cryptography” includes work on mul-

tiparty computation [28], searchable symmetric and struc-
tured encryption [32, 18, 12, 16, 13, 11, 25], and property-
preserving encryption [5, 6, 30]. In the database community,
the problem of querying an encrypted database was intro-
duced by Hacigümüş, Iyer, Li and Mehrotra [20], leading
to a variety of proposals there but mostly lacking formal
security analysis. Proposals of specific outsourced database
systems based on property-preserving encryption like ORE
include CryptDB [31], Cipherbase [2], and TrustedDB [4].

2. ORE DEFINITIONS
Notation. All algorithms are assume to be polynomial-
time in the security parameter (though we will sometimes
refer to efficient algorithms explicitly). We will denote the
security parameter by λ. If A is a randomized algorithm, we

write y
$← A(x) to denote running A on input x with a fresh

random tape and letting y be the random variable induced
by its output.

We let [M ] = {1, . . . ,M}. If P is a predicate, we write
1(P ) for the function that takes the inputs to P and returns
1 if P holds and 0 otherwise.

PRFs. We use the standard notion of a PRF. A function
F : {0, 1}λ ×D → {0, 1}λ is said to be a PRF with domain
D if for all efficient A we have that

|Pr[AF (K,·)(1λ) = 1] Pr[Ag(·)(1λ) = 1]|

is a negligible function of λ, where K is uniform over {0, 1}λ
and g is uniform over all functions from D to {0, 1}λ.

ORE. The following definition of syntax for an order-revealing
encryption makes explicit that comparison may use helper
information (e.g. a description of a particular group) by
incorporating a comparison key, denote ck.

Definition 2.1 (ORE). A ORE scheme is a tuple of
algorithms Π = (K, E , C) with the following syntax.

• The key generation algorithm K is randomized, takes
inputs (1λ,M), and always emits two outputs (sk, ck).
We refer to the first output sk as the secret key and
the second output ck as the comparison key.

• The encryption algorithm E is randomized, takes in-
puts (sk,m) where m ∈ [M ], and always emits a single
output c, that we refer to as a ciphertext.

• The comparison algorithm C is deterministic, takes in-
puts (ck, c1, c2), and always emits a bit.

If the comparison algorithm C is simple integer comparison
(i.e., if C(ck, c1, c2) is a canonical algorithm that treats its
the ciphertexts and binary representations of integers and
tests which is greater) then the scheme is said to be an order-
preserving encryption (OPE) scheme.



Game REALore
Π (A):

(sk, ck)
$← K(1λ)

b
$← AEnc(ck)

Return b

Enc(m):

Return E(sk,m)

Game SIMore
Π,L(A,S):

i← 0 ; st` ← ⊥
(ck, sts)

$← S(1λ)

b
$← AEnc(ck)

Return b

Enc(m):

i← i+ 1 ; mi ← m

(L, st`)
$← L(st`,mi)

(c, sts)
$← S(L, sts)

Return c

Figure 1: Games REALoreΠ(A) (left) and SIMore
Π,L(A,S)

(right), where Π = (E , C) is an ORE scheme, L is a leak-
age profile, A is an adversary, and S is a simulator.

Correctness of ORE schemes. Intuitively, an ORE scheme
is correct if the comparison algorithm returns 1 whenever c2
is generated with a message that is greater than the message
used to generate c1. Thus the comparison algorithm can be
used to tell which message is greater.

Our constructions will only be computationally correct,
i.e. correct with overwhelming probability when the in-
put messages are provided by an efficient process, under
hardness assumptions. Formally, we define correctness us-
ing the game CORore

Π (A), which is defined as follows: The

game starts by running (sk, ck)
$← K(1λ,M), and it gives

(sk, ck) to A. The adversary A then outputs two mes-

sages x, y ∈ [M ]. The game computes c1
$← E(sk, x) and

c2
$← E(sk, y), outputs 1 if x < y but C(ck, c1, c2) = 0.

We say that an ORE scheme Π is computationally cor-
rect if for all efficient adversaries A, all M = poly(λ), we
have that Pr[CORore

Pi(A) = 1] is a negligible function in the
security parameter.

Security of ORE schemes. The following simulation-
based security definition is due to Chenette et al. [14]. Here
a leakage profile is any randomized algorithm. The defini-
tion refers to games given in Figure 1, which we review now.
In the real game, key generation is run and the adversary
is given the comparison key and oracle access to the en-
cryption algorithm with the corresponding secret key. The
adversary eventually outputs a bit that the game uses as its
own output. In the ideal simulation game, the adversary is
interacting with the same oracle, but the comparison key is
generated by a stateful simulator, and the oracle responses
are generated by the simulator which receives leakage from
the stateful leakage algorithm L.

Definition 2.2 (L-simulation-security for ORE).
For an ORE scheme Π, an adversary A, a simulator S,
and leakage profile L, we define the games REALore

Π (A) and
SIMore

Π,L(A) in Figure 1. The advantage of A with respect to
S is defined as Advore

Π,L,A,S(λ) =∣∣Pr[REALore
Π (A) = 1]− Pr[SIMore

Π,L(A,S) = 1]
∣∣ .

We say that Π is L-simulation-secure if for every efficient
adversary A there exists an efficient simulator S such that
Advore

Π,L,A,S(λ) is a negligible function.
We also define non-adaptive variants of the games where
A gets a single query to an oracle that accepts a vector of
messages of unbounded size. In the real game REALore-na

Π (A),
the oracle returns the encryptions applied to sequentially to

each message. In the ideal game SIMore-na
Π (A), the leakage

function gets the entire vector of messages as input and pro-
duces and output L that is then given to S which produces a
vector of ciphertexts, which are returned by the oracle.

We define the non-adaptive advantage of A with respect to
S analogously, and denote it Advore-na

Π,L,A,S(λ). Non-adaptive
L-simulation security is defined analogously.

3. ORE CONSTRUCTION
We start by defining the security we target via a leakage

function. Then we recall a primitive for our construction
called a property-preserving hash (PPH) function, and state
and analyze our ORE construction using a PPH. In a later
section we instantiate the PPH to complete the construction.

3.1 Leakage Function
We first define some notation. For m1,m2 ∈ {0, 1}n,

the most significant different bit of m1 and m2, denoted
msdb(m1,m2), is defined to be the index of first bit where
m1 and m2 differ, or n + 1 if m1 = m2. More precisely,
msdb(m1,m2) = min{i : m1[i] 6= m2[i]} ∪ {n+ 1}.

Then We define the non-adaptive version of the our leak-
age definition of an ORE scheme. The leakage profile takes
in input a vector of messages ~m = (m1, . . . ,mn) and pro-
duces the following:

Lf (m1, . . . ,mt) :=

 1(mi < mj),
1(msdb(mi,mj) = msdb(mi,mk))
for 1 ≤ i, j, k ≤ q

 .

The profile can be represented by two matrices D ∈ {0, 1}n×n,
M ∈ {0, 1}n×n×n, where Dij = 1(mi < mj) for i, j ∈ [n],
and Mijk = 1 (msdb(mi,mj) = msdb(mi,mk)), for i, j, k ∈
[q].

Example. Let n = 3, and consider

m1 = 000, m2 = 100, m3 = 101

and

m′1 = 000, m′2 = 100, m′3 = 110.

The leakage on (m1,m2,m3) will be the same as the leakage
on (m′1,m

′
2,m

′
3), and thus these tuples will be indistinguish-

able when our construction is used. Under the leakage pro-
file of [15], however, these tuples are distinguishable because
msdb(m2,m3) 6= msdb(m′2,m

′
3).

3.2 Property Preserving Hash
Our construction will depend on a tool we term a prop-

erty preserving hash (PPH), which is essentially a property-
preserving encryption scheme [30] without a decryption al-
gorithm. In this section we recall the syntax and security of
a PPH.

Definition 3.1. A property-preserving hash (PPH) scheme
is a tuple of algorithms Γ = (Kh,H, T ) with the following
syntax:

• The key generation algorithm Kh is randomized, takes
as input 1λ and emits two outputs (hk, tk) that we refer
to as the hash key hk and test key tk. These implicitly
define a domain D and range R for the hash.



Game INDpph
Γ,P (A):

(hk, tk)
$← Kh(1λ)

x∗
$← D ; h0

$←H(hk, x∗)

h1
$← R ; b

$← {0, 1}
b′

$← AHash(tk, x∗, hb)

Return (b
?
= b′)

Hash(x):

If P (x∗, x) = 1 or P (x, x∗) = 1
Then h← ⊥
Else h

$←H(hk, x)
Return h

Figure 2: Game INDpph
Γ,P (A).

• The evaluation algorithm H is randomized, takes as
input the hash key hk, an input x ∈ D, and emits a
single output h ∈ R that we refer to as the hash of x.

• The test algorithm T is deterministic, takes as input
the test key tk, and two hashes h1, h2, and emits a bit.

Correctness of PPH schemes. Let P be a predicate
on pairs of inputs. We define correctness of a PPH Γ via
game CORpph

Γ,P (A), which is as follows: It starts by running

(hk, tk)
$← Kh(1λ) and gives A tk. Then A outputs x, y. The

game computes h
$← H(hk, x), h′

$← H(hk, y) and outputs 1
if T (tk, h, h′) 6= P (x, y). We say that Γ is computationally
correct if for all efficient A,

Pr[CORpph
Γ,P (A) = 1]

is a negligible function of λ.

Security of PPH schemes. We recall a simplified version
of the security definition for PPH that is a weaker version
of PPE security defined by Pandey and Rouselakis [30].

Definition 3.2. Let P be some predicate and Γ = (Kh,H, T )
be a PPH scheme with respect to P . For an adversary A we
define the game INDpph

Γ,P (A) in Figure 2. The restricted-
chosen-input advantage of A is defined to be

Advpph
Γ,P,A(λ) = 2 Pr[INDpph

Γ,P (A) = 1]− 1.

We say that Γ is restricted-chosen-input secure if for all
efficient adversaries A, Advpph

Γ,P,A(λ) is negligible.

3.3 ORE from PPH
Construction. Let F : K × ([n] × {0, 1}n) → {0, 1}λ be
a secure PRF. Let P (x, y) = 1(x = y + 1) be the relation
predicate that outputs 1 if and only if x = y + 1, and let
Γ = (Kh,H, T ) be a PPH scheme with respect to P . In our
construction, we interpret the output of F as a λ-bit integer,
which is also the input domain of the PPH Γ. We define our
ORE scheme Π = (K, E , C) as follows:

• K(1λ): On input the security parameter, the algorithm
chooses a key k uniformly at random for F , and runs
the Setup algorithm of the relational hash function
Γ.Kh to obtain the hash and test keys (hk, tk). It sets
ck← tk, sk← (k, hk) and outputs (ck, sk).

• E(sk,m): On input the secret key SK and a message
m, the algorithm computes the binary representation
of m = (b1, . . . , bn), and then calculates:

ui = F (k, (i, b1b2 · · · bi||0n−i)) + bi, ti = Γ.H(hk, ui).

Then the algorithm chooses a random permutation π,
applies it on (t1, . . . , tn), and gets (v1, . . . , vn), where
vi = tπ(i). The algorithm outputs CT = (v1, . . . , vn).

• C(ck, CT1, CT2): on input the public parameter, two
ciphertexts CT1,CT2 where

CT1 = (v1, . . . , vn);CT2 = (v′1, . . . , v
′
n),

the algorithm runs Γ.T (tk, vi, v
′
j) and Γ.T (tk, v′i, vj)

for every i, j ∈ [n]. If there exists a pair (i∗, j∗) such
that Γ.T (tk, vi∗ , v

′
j∗) = 1, then the algorithm outputs

1, meaning m1 > m2; else if there exists a pair (i∗, j∗)
such that Γ.T (tk, v′i∗ , vj∗) = 1, then the algorithm out-
puts 0, meaning m1 < m2; otherwise it outputs it out-
puts ⊥, meaning m1 = m2.

Correctness of ORE. For two messages m1,m2, let (b1,
. . . bn) and (b′1, . . . , b

′
n) be their binary representations. We

know that if m1 > m2, then there must exists a unique index
i∗ ∈ [n] such that the prefixes of their binary representations
up to i∗, say u = (b1, . . . , bi∗), u

′ = (b′1, . . . , b
′
i∗), satisfy the

following relation: u = u′ + 1. By the correctness of the
PPH, we know that Γ.T (Γ.H(hk, u),Γ.H(hk, u′)) = 1, with
overwhelming probability. We can use the same argument
for the case m1 < m2.

For the case m1 = m2, we know that all prefixes of the
two messages are identical. For this case, the test algorithm
of Γ outputs ⊥ (for all possible pairs) with overwhelming
probability. This proves the correctness of our ORE scheme.

Security. Next analyze the security of our construction.

Theorem 3.3. The ORE scheme Π is Lf-non-adaptively-
simulation secure, assuming F is a secure PRF and Γ is
restricted-chosen-input secure.

Proof. Fix a security parameter λ, and let A be the ad-
versary for the ORE game, to prove the security, we give an
efficient simulator S for which the outputs of the distribu-
tions REALore

Π (A) and SIMore
Π,Lf

(A,S) are computationally
indistinguishable.

We use a sequence of hybrid argument to prove the in-
distinguishability, and present that for each hybrid we have

Hi
comp
≈ Hi+1. Here are the definitions of hybrid experiments:

• Hybrid H0: This is the real experiment REALore
Π (A);

• Hybrid H∗0 : Same as H0, except during Setup, a ran-

dom function F1
$← Funs([n]× {0, 1}n, {0, 1}λ) is cho-

sen. In all invocations of E , the function Fk(·) is re-
placed by F1;

• Hybrid Hi×q+j. We define these hybrids inductively.
H1 is exactly the same as H∗0 . Then for any k ∈ [2, qn],
let k = i × q + j. If Event Switch(i,j) = 0, then Hk is
set exactly the same as Hk−1. Otherwise, the hash of
the prefix ui of message mj (i.e. ti) is replaced with
a random string ri ∈ {0, 1}λ. We define these events
below.



It’s easy to see that H0

comp
≈ H∗0 by the security of PRF

F and H∗0 = H1. We will show that for any i ∈ [1, qn − 1],

Hi

comp
≈ Hi+1. Then it suffices to state that there exists a simu-

lator S, satisfying the distribution of outputs in Hqn is com-
putationally indistinguishable from SIMore

Π,Lf
(A,S). Next we

proceed to define the events we mentioned above.

Definition 3.4. For fixed messages m1, . . . ,mq, we de-
fine binary events Event Switch(i,j) for i ∈ [n], j ∈ [q] as
follows: Event Switch(i,1) is set to 0 for every i ∈ [n]. For
j > 1, Event Switch(i,j) = 1 if and only if for every k ∈ [n],
k 6= j, we have inddiff(mj ,mk) 6= i. Otherwise, the event is
set to 0.

Intuitively, Event Switch(i,j) = 1 means that the i-th bit
of message mj is not leaked by the leakage profile. Next
we prove the adjacent hybrids are computationally indistin-
guishable.

Lemma 3.5. For any k ∈ [0, qn − 1], where k + 1 = i ×
q + j(i ∈ {0, . . . n − 1}, j ∈ [q]), Hk

comp
≈ Hk+1, if the Γ is a

secure PPH with respect to the predicate P .

Proof. If Event Swithi,j = 0 happens, then Hk+1 is ex-
actly the same as Hk. Therefore, it suffices to show that the
two hybrids are computational indistinguishable in the case
Swithi,j = 1. Suppose A can distinguish Hk from Hk+1 with
some non-negligible advantage ε, then we are going to build
a simulator B that breaks the security of the PPH scheme
Γ with advantage ε. This suffices to prove the lemma. We
define B as follows.

Firstly B picks a random function F1 (using the lazy sam-
pling technique), and plays the ORE game with A. In the
initial phase, A sends a sequence of messages (m1,m2, . . . ,mq)
to B, and B calculates X∗ = F1(i, b1b2 · · · bi||0n−i) + bi,
and uses X∗ as the challenge value in the PPH security
game. Here we use a natural order for tuples (i, j) where
(i, j) > (i′, j′) if iq+ j > i′q+ j′. Then B does the following:

• Init B submits X∗ to the PPH challenger C, where X∗

is the input value B intends to attack.

• For any (i′, j′) 6= (i, j), if Switchi′,j′ = 0, B calculates

ui′,j′ = F1(i′, bj′,1bj′,2, · · · bj′,i′ ||0n−i
′
) + bj′,i′ , where

bj′,1, . . . bj′,n is the binary representation of mj′ , and
query the hash oracle Γ.H(hk, ui′j′) and sets ti′,j′ =
Γ.H(ui′j′). Since F1 is a random function, the proba-
bility that ui′,j′ = X∗ ± 1 is negligible, B is permitted
to query the hash value in overwhelming probability.
For (i′, j′) 6= (i, j) and Switchi′,j′ = 1, B picks a ran-
dom element R in the range of the hash function and
sets ti′,j′ = R.

• The relational hash challenger C gives B a challenge
term T which is either Γ.H(hk, X∗) or a random ele-
ment from the range.

• Guess After receiving T , B sets ti,j = T . Then for any
j ∈ [q], choose a random permutation πj and sets the
ciphertext CTj = (v1,j , . . . , vn,j) where vi,j = tπj(i),j .
B sets (CT1, CT2, . . . , CTq) to A, and outputs what-
ever A outputs.

We recall that we analyze the case where Switchi,i = 1.
Therefore, when T = Γ.H(hk, X∗), then B properly simu-
lates Hk(k + 1 = iq + j), and when T is a random element

in the range of the hash function, then B properly simulates
Hk+1. Hence, if A has advantage ε to distinguish Hk and
Hk+1, B can break the restricted-chosen-input secure of Γ
with advantage ε.

Next, we will present that there exists a simulator S such
that the distribution of outputs in Hqn is computationally
indistinguishable from SIMore

Π,Lf
(A,S)

Description of the simulator. For fixed a message set
M = {m1, . . . ,mq}, the simulator S is given the leakage
information Lf (m1, . . . ,mq). The task is to construct sim-
ulated ciphertexts that are indistinguishable from the ones
in the hybrid Hqn. Without loss of generality, we assume
that m1 > m2, · · · > mq, as the order is revealed from the
leakage profile.

To simulate the ciphertexts, the simulator first keeps a
matrix B of dimension q × n. Then it runs FillMatrix(1, 1, q)
to fill in the entries, where FillMatrix(i, j, k) can be described
as the following recursive algorithm:

• If j = k, then for every i′ ∈ [i, n] sample a (new)
random string r and set B[i′][j] = (1||r).

• Else, the algorithm proceeds as follows:

– Find the smallest j′ ∈ [j, k] such that P (mj ,mj′) =
P (mj ,mk).

– Sample a new random string r′, and set B[i][j′] =
(0||r′) for j′ ∈ [j, j′−1] and set B[i][′′j] = (0||r′−
1) for j′′ ∈ [j′, j].

– Recursively call FillMatrix(i+ 1, j, j′ − 1) and
FillMatrix(i+ 1, j′, k).

We observe that these recursive subroutines will never
write on the same entry twice. Since there are only qn en-
tries of the matrix, the recursive algorithm will terminates
in at most qn steps.

Finally, S runs Γ.Kh(1λ) and gets the keys tk, hk, then
S, for every i ∈ [n], j ∈ [q], parses B[i][j]) = (bi,j ||ri,j) (a
bit along with a string). If bi,j = 0, set ti,j = ri,j , and
otherwise ti,j = Γ.H(hk, ri,j). Finally S permutes all the
ti,j ’s randomly as the encryption algorithm, and outputs
the permuted ciphertexts CT1, . . . ,CTq.

We note that in the hybrid Hqn, ui,j and ui,j′ have re-
lation (ui,j = ui,j′ + 1 ∪ ui,j = ui,j′ ∪ ui,j = ui,j′ − 1) if
and only if the i-th bit of mj and mj′ are both leaked bits.
Otherwise hash values of ui,j ’s are replaced completely by
random numbers. And for the simulator, S only preserves
the relationship between ui,j and ui,j′ when the i-th bit are
both leaked bits, and for other ui,j ’s hash value, S also just
sets random bits. Regarding the randomness of permuta-
tion, the distribution of ciphers in Hq and S are statistically
indistinguishable. This completes the proof of the theorem.

4. PPH FROM BILINEAR MAPS
In this section, we present a PPH scheme for the predicate

P , required in our ORE construction. That is, P (x, y) = 1 if
and only if x = y+ 1. Our construction uses an asymmetric
bilinear map and a PRF F . Below, we let F be a PRF
and e : G × Ĝ → GT be a bilinear pairing over groups
(G, Ĝ) of prime order p, with generators g ∈ G and ĝ ∈ Ĝ
respectively. Let F : {0, 1}λ × ({0, 1}λ) → {0, 1}λ and in



the following we will sometimes view the output of F as the
binary representation of a λ-bit integer.

Construction. We now define our PPH Γ = (Kh,H, T ).

• Kh(1λ) This algorithm takes the security parameter as

input, generates a bilinear groups map e : G × Ĝ →
GT with the generators g, ĝ, and chooses k

$← {0, 1}λ.
Then it sets the hash key hk ← (k, g, ĝ), the test key

tk ← (G, Ĝ,GT , e), a description of the bilinear map
and groups, and outputs (hk, tk).

• H(hk, x) This algorithm takes as input the hash key
hk, an input x, picks two random non-zero r1, r2 ∈ Zp
and outputs

H(hk, x) = (gr1 , gr1·F (k,x), ĝr2 , ĝr2·F (k,x+1)).

• T (tk, h1, h2) To test two hash values (A1, A2, B1, B2)
and (C1, C2, D1, D2), T outputs 1 if

e(A1, D2) = e(A2, D1),

and otherwise it outputs 0.

Hence the domain D is {0, 1}λ and the range R is (G2, Ĝ2)

Correctness. The condition tested is equivalent to F (k, y+
1) = F (k, x) If x = y + 1 then this is obviously true. If not,
then it is easily shown that finding x, y with this property
with non-negligible probability leads to an adversary that
contradicts the assumption that F is a PRF.

Security Proof. We prove that PPH is restricted-chosen-
input secure, assuming that F is a PRF and that a pairing-
based assumption holds. We recall the assumption first.

Definition 4.1. Let G, Ĝ,GT be prime-order p groups, g
be generator of G and ĝ be a generator of Ĝ, tand e : G×Ĝ→
GT be a bilinear pairing. We say the symmetric external
Diffie-Hellman assumption holds with respect to these groups
and pairing if for all efficient A,

|Pr[A(g, ga, gb, gab) = 1] Pr[A(g, ga, gb, T ) = 1]|

and

|Pr[A(ĝ, ĝa, ĝb, ĝab) = 1] Pr[A(ĝ, ĝa, ĝb, T ) = 1]|

are negligible functions of λ, where a, b, c are uniform over
Zp and T is uniform over GT .

We can now state and prove our security theorem.

Theorem 4.2. Our PPH Γ is restricted-chosen-input se-
cure, assuming F is a PRF and the SXDH assumption hold
with respect to the appropriate groups and pairing.

Proof. The proof proceeds by a hybrid argument across
a number of games. Let (A1, A2, B1, B2 ∈ G2 × Ĝ2 denotes
the challenge hash value given to the adversary during the
real game INDpph

Γ,P (A), which we rename Game 0 here .

Additionally, letR be a random element of G, R̂ be a random
element of Ĝ, both independent of the rest of the random
variables under consideration. Then we define the following
hybrid experiments:

• Game 0 The challenge hash value is (A1, A2, B1, B2),
which is the real game in sCHA security;

• Game 1 During the setup procedure, a uniformly ran-

dom function F ∗
R← Funs[{0, 1}λ, {01, }λ] is sampled

instead of the PRF key K, the rest remain unchanged.

• Game 2 The challenge hash value is (A1, R,B1, B2);

• Game 3 The challenge hash value is (A1, R,B1, R̂)

We note that Game 0 is exactly the real game, and in
Game 3, the adversary is given a random element from the
range R. Therefore,

Advpph
Γ,P,A(λ) = |Pr[AGame 0 = 1]− Pr[AGame 3 = 1]|

To prove Game 0 is indistinguishable from Game 3, we
show that each step of the hybrid is indistinguishable from
the next. Firstly, it’s apparent that Game 0 and Game 1 are
computational indistinguishable by the PRF security, then:

Lemma 4.3. Game 1 ≈ Game 2 under the SXDH as-
sumption.

Let A be an adversary playing the PPH security game, and
let A

ε = |Pr[AGame 1 = 1]− Pr[AGame 2 = 1]|.

Then we can build a simulator B to SXDH assumption with
advantage ε. B is given as input (g, ĝ, gb, gc) and the chal-
lenge term T either gbc or R, then B works by interacting
with A in the PPH security game as follows:

• Initial A randomly chooses x∗ ∈ {0, 1}λ and sends it to
B.

• Setup B runs the Setup algorithm, sends the test key e
to A and sets g, ĝ as the secret key.

• Phase1 In this phase, B will answers the hash query
of input x ± 1 6= x∗, firstly B forms a table, empty as
initial, to record the value of F ∗(x), where B computes
F ∗(x)(x 6= x∗) as follows:

– If there is a entry (x, k) in the table, returns k;

– Otherwise, chooses a random k
$← {0, 1}λ, return

it, and store (x, k) in the table

and implicitly sets F ∗(x∗) = b. When A calls a hash
query for x 6= x∗, B calculates F ∗(x) and F ∗(x + 1)
(it’s doable due to x, x+1 6= x∗), picks r1, r2 randomly
and computes:

H(x) = gr1 , gr1·F
∗(x), ĝr2 , ĝr2·F

∗(x+1);

If A runs a call for x∗, B calculate F ∗(x∗ + 1), picks
r′1, r

′
2 randomly and computes:

H(x∗) = gr
′
1 , gr

′
1·b, ĝr

′
2 , ĝr

′
2·F
∗(x∗+1);

And it’s obvious that those hashes are properly dis-
tributed.

• Challenge In the phase, B calculate F ∗(x∗ + 1), picks
r∗ randomly, computes

A1 = gc, A2 = T,B1 = ĝr
∗
, B2 = ĝr

∗F∗(x∗+1)

and sends it to A.



• Phase2 Same as Phase1.

• Guess B outputs whatever A outputs.

We note that in A’s view, without querying A(x∗ − 1), B
simulates the RCI game properly. If T = gbc, then B simu-
lates Game 1, and if T = R then Game 2. Hence if A has
an advantage ε to distinguish Game 1 and Game 2, B has
the same advantage to break SXDH assumption.

By symmetry, we also have the following lemma:

Lemma 4.4. Game 2 ≈ Game 3 under the SXDH as-
sumption.

The proof is symmetrically same as the one in lemma 4.3, ex-
cept B sets A1, A2 as two random elements in G in Challenge,
so we skip it here due to the space limit.

Combining them together, we have Game 0
comp
≈ Game

3, which completes the proof of Theorem 4.2.

5. IMPROVING LEAKAGE AND EFFICIENCY

5.1 Improved Leakage Profile
In this section, we show how to construct an ORE scheme

with a better leakage profile and better efficiency. Intu-
itively, we encrypt the plaintext d-bit by d-bit, rather than
bit by bit as our basic ORE. For the set of n-bit positive
integers with the following leakage function:

LR(m1, . . . ,mq) := {1(mi < mj), 1(P (mi,mj), P (mi,mk))}

where P (mi,mj) is the most significant differ-block ofmi,mj .
For example, n = 10, d = 2, we setm1 = (0010010101)2,m1 =
(0010111100)2, then P (m1,m2) = 3 since every block con-
tains 2 bits, and m1,m2 differs in the third block.

5.2 Generalized ORE
Comparing to the basic ORE, our generalized ORE en-

crypts the plaintext d-bit by d-bit. Here is the descrip-
tion of the scheme. Fix a security parameter λ ∈ N, let
F : K × ([n] × {0, 1}n) → {0, 1}λ be a secure PRF. Let
Pd(x1, x2) = x1 ∈ {x2+1, . . . , x2+2d−1} let Γ = (Kh,H, T )
be a generalized PPH scheme with respect to predicate Pd.
In our construction, we interpret the output of F as a λ-bit
integer, which is also the input domain of Γ. We define our
ORE scheme Π = (K, E , C) as follows:

• K(1λ): on input the security parameter λ, the algo-
rithm picks a uniform key k ∈ K for the PRF F and
runs the Setup algorithm of the generalized PPH Γ.Kh
to obtain the hash and test keys (hk, tk). It sets the
comparison key ck = tk and secret key sk = k, hk.

• E(sk,m): on input a secret key sk and a message m =
(b1|| . . . ||bn/d)(later we denote ` = n/d for short), where
bi is d-bit block, this algorithm calculates:

ui = F (k, (i, b1b2 · · · b(i−1)d||0n−(i−1)d)) + bi

ti = Γ.H(hk, ui)

(Here we abuse the notation bi as an integer value ac-
cording to its binary representation.) Then it chooses
a random permutation π, applies it on (t1, . . . , t`) and
gets (v1, . . . , v`), where vi = tπ(i). The algorithm out-
puts CT = (v1, . . . , v`).

• C(ck, CT1, CT2): on input the public parameter, two
ciphertexts CT1,CT2 where

CT1 = (v1, . . . , v`);CT2 = (v′1, . . . , v
′
`),

the algorithm runs the test algorithm Γ.T (tk, vi, v
′
j)

and Γ.T (tk, v′i, vj) for every i, j ∈ [`]. If there exists
a pair (i∗, j∗) such that Γ.T (tk, vi∗ , v

′
j∗) = 1, then the

algorithm outputs 1, meaning m1 > m2; else if there
exists a pair (i∗, j∗) such that Γ.T (tk, v′i∗ , vj∗) = 1,
then the algorithm outputs 0, meaning m1 < m2; oth-
erwise it outputs it outputs ⊥, meaning m1 = m2.

Correctness of the generalized ORE. For two mes-
sages m1,m2, let (b1, . . . b`) and (b′1, . . . , b

′
`) be their d-bit

block representations. We know that if m1 > m2, then
there must exists a unique index i∗ ∈ [`] such that the
prefixes of their d-bit block representations up to i∗, say
u = (b1, . . . , bi∗), u

′ = (b′1, . . . , b
′
i∗), satisfy the following re-

lation: u = u′ + i, i = 1, . . . , 2d. By the correctness of the
generalized PPH, we know that, with overwhelming proba-
bility:

Γ.T (Γ.H(hk, u),Γ.H(hk, u′)) = 1

We can use the same argument for the case m1 < m2.
For the case m1 = m2, we know that all prefixes of the two

messages are identical. For this case, the Test of Γ outputs ⊥
(for all possible pairs) with overwhelming probability. This
proves the correctness of our ORE scheme.

Theorem 5.1. The generalized ORE scheme Π is Lf-non-
adaptively-simulation secure, assuming F is a secure PRF
and Γ is augmented-restricted-chosen-input secure.

The proof this theorem is very similar to that of Theo-
rem 3.3, using a sequence of hybrid argument, and it is
omitted from this version of the paper to save space.

5.3 Generalized PPH
In this section, we present a PPH for a family of predicts

Pd, d ≥ 1 that generalizes the predicate P above as follows.
We let Pd(x, y) = 1 if x ∈ {y + 1, . . . , y + 2d − 1}(later we
denote T = 2d− 1 for short), and 0 otherwise. For technical
reasons we will need to achieve a slightly stronger definition
that is given after the construction.

Construction. As before, we use a PRF F : {0, 1}λ ×
{0, 1}λ → {0, 1}λ, and we will sometimes view the output of
F as the binary representation of a λ-bit integer. We now
describe our PPH Γd = (Kdh,Hd, T d) for the generalized
predicate Pd, where d ≥ 1 is a parameter to adjusted.

• Kdh(1λ). This algorithm is identical to Kh given in Γ.

• Hd(hk, x) This algorithm takes as input the hash key
hk, an input x. For i = 0, . . . , T it picks random ri ←
Zp, then it samples a random permutation π on [T ] ,
and then it computes

(A,B) = (gr0 , gr0·F (K,x)) ∈ G×G.

Then, for i = 1, . . . , T it computes

(Xi, Yi) = (ĝri , ĝri·F (K,x+π(i))) ∈ Ĝ× Ĝ.

It outputs (A0, B0, X1, Y1, . . . , XT , YT ).



Game INDpph−aug
Γ,P (A):

(hk, tk)
$← Kh(1λ)

x∗1
$← D ; x∗2

$← {x : P (x∗1, x) = 1}
y∗1

$← D ; y∗2
$← {x : P (y∗1 , x) = 1}

h1
0

$←H(hk, x∗1), h
2
0

$←H(hk, x∗2)

h1
1

$←H(hk, y∗1), h
2
1

$←H(hk, y∗2)

b′
$← AHash(tk, x∗1, x

∗
2, y
∗
1 , y
∗
2 , h

1
b , h

2
b)

Return (b
?
= b′)

Hash(x):

If ∃z ∈ {x∗1, x∗2, y∗1 , y∗2}
P (z, x) = 1 or P (x, z) = 1
Then h← ⊥
Else h

$←H(hk, x)
Return h

Figure 3: Game INDpph−aug
Γ,P (A).

• T d(tk, h1, h2). The test algorithm parses each hj as

(Aj , Bj , Xj
1 , Y

j
1 , . . . , X

j
T , Y

j
T )

Then it tests if there exists an i ∈ {1, . . . , T} such that

e(A1, Y 2
i ) = e(B1, X2

i ).

If it finds such an i it outputs 1, and otherwise it out-
puts 0.

And the domain D is {0, 1}λ and the range R is G2 ×
Ĝ2d+1−2.

Correctness. It is easy to show that Γd is computationally
correct for the predicate Pd, via the same methods as with
Γ, assuming that F is a PRF.

Security. Our ORE construction will require a slightly
stronger version of PPH security where the adversary is
given, in addition to the hash of a random challenge element
x∗, the hash of another element y∗ such that P (x∗, y∗) = 1.
For this definition we must assume P allows for easy sam-
pling of such a y∗, which is the case for our predicate P ∗.
We call this version of PPH security augmented-restricted-
chosen-input security, and define the advantage of an adver-
sary A against PPH scheme Γ via

Advpph−aug
Γ,P,A (λ) = 2 Pr[INDpph−aug

Γ,P = 1]− 1.

We say that Γ is augmented-restricted-chosen-input secure if
for all efficient adversaries A, Advpph−aug

Γ,P,A (λ) is negligible.

Theorem 5.2. For each d ≥ 1, our PPH Γd is augmented-
restricted-chosen-input secure, assuming F is a PRF and
the SXDH assumption hold with respect to the appropriate
groups and pairing.

The proof of this theorem is very similar to that of Theo-
rem 4.2, despite the augmented security definition. It follows
via standard game transitions using the SXDH assumptions,
and is omitted from this version of the paper to save space.

5.4 Efficiency Analysis
In this part, we will show the efficiency, including the ci-

phertext size and computational efficiency of order compar-
ison, for the basic ORE (d = 1) and the generalized 0ORE
(d = 2 and d = 3). We measure the ciphertext size in terms

of group elements, and we use the expected pairing opera-
tion count to measure the computational efficiency of order
comparison.

Efficiency Ciphertext Size Pairing Operation
d = 1 4n n(n− 1)
d = 2 4n 3

4
· n(n− 1)

d = 3 4
3
× 4n 7

9
· n(n− 1)

Table 1: Efficiency comparison of the three cases

We note that when d = 2, the ciphertext size is the same
as for d = 1, and when d = 3 the ciphertext size is just 1.33
times larger than for d = 1. On the other hand, d = 2 is 3

4
times better than d = 1 in terms of pairing operations, and
d = 3 is 7

9
times better than d = 1. Thus, we see that d = 2

is strictly better than d = 1, and d = 3 has some trade-off in
ciphertext size and pairing operation with d = 1. For larger
d, the leakage continues to improve but efficiency compared
to d = 1 decreases.

6. ANALYZING THE LEAKAGE

6.1 Impossibility Result for Order-Preserving
Encryption

Our impossibility result applies to the weaker non-adaptive
indistinguishability version of ORE security, so we recall it
here (using the weakest definition makes our result more
general). For an ORE scheme Π = (K, E , C), an adversary
A, leakage function L, and bit b, the game INDore

b,Π,L(A) is

defined as follows: The game runs (sk, ck)
$← K(1λ) and

gives ck to A. Eventually A responds with two vectors of
messages m0,m1 of the same length. If L(m0) 6= L(m1)
then the game outputs ⊥. Otherwise the game computes

c[i]
$← E(sk,mb[i]) for each i, and gives c to A, who finally

outputs a bit b′. The game also outputs b′.
We define Advore-ind

Π,L (A) =

1

2
|Pr[INDore

0,Π,L(A) = 1]− Pr[INDore
1,Π,L(A) = 1]

Definition 6.1. An ORE scheme Π is (t, ε)-non-adaptively-
indistinguishable with leakage L if for all adversaries run-
ning in time at most t, we have

Advore-ind
Π,L (A) ≤ ε.

Theorem 6.2. Let Π be an order-preserving encryption
scheme with domain [M ], range [N ], and suppose that Π is
(t0, ε)-non-adaptively-indistinguishable with leakage Lf (de-
fined in Section 3.1), where 0 < ε < 1, and t0 is the maxi-
mum runtime of a family of explicit adversaries given in the
proof. Then we have

N ≥ (
M − 1

2
)

1
8ε (M − 1).

Proof. Observe that for any two pairs of messages (m1,m2)
and (m′1,m

′
2), we have that Lf(m1,m2) = Lf(m

′
1,m

′
2). Be-

low we will limit ourselves to adversaries that always submit
two pairs of messages, and thus they will never cause the
game to output ⊥.

Next, let us define some notation for the proof. For each i
define a random variable Xi = E(sk, i), where sk is a random
output from K(1λ) (all of the Xi are defined with the same
random key). We also define the random variables ∆ :=
XM −X1, and δi = Xi+1 −Xi for i ∈ [M − 1].



Lemma 6.3. Let Π be an ORE meeting the hypothesis of
the theorem, and let ∆ be as defined above, and let Sj =
(M − 1)(M−1

2
)j. Then for j ∈ {1, . . . , 1

8ε
}, we have

Pr[Sj−1 ≤ ∆ < Sj ] ≤ 4ε.

Proof. We denote p = Pr[∆ < Sj−1].
We claim that Pr[Sj−1 ≤ ∆ < Sj ] ≤ 4ε. Supposing

not for contradiction, we construct an adversary Aj to play
INDore

b,Π,Lf
as follows:

1. Upon receiving ck, Aj selects i← [M−1] and responds
with two pairs of messages m0 = (1,M) and m1 =
(i, i+ 1).

2. Upon receiving c = (c1, c2), A outputs 1 if

c2 − c1 < Sj−1.

Otherwise Aj outputs 0.

We consider Pr[INDore
b,Π,Lf

(Aj) = 1] for b = 0, 1. First, it is
apparent that

Pr[INDore
0,Π,Lf

(Aj) = 1] = Pr[∆ < Sj−1] = p.

Next we have Pr[INDore
1,Π,Lf

(Aj) = 1] =

Pr[δi < Sj−1]

= Pr[δi < Sj−1|∆ < Sj−1] Pr[∆ < Sj−1] (1)

+ Pr[δi < Sj−1|Sj−1 ≤ ∆ < Sj ] Pr[Sj−1 ≤ ∆ < Sj ]
(2)

+ Pr[δi < Sj−1|∆ ≥ Sj ] Pr[∆ ≥ Sj ]. (3)

We consider (1-3) individually. First, (1) is at least Pr[∆ <
Sj−1] = p. Second, for (2), we have

Pr[δi < Sj−1|Sj−1 ≤ ∆ < Sj ] ≥ 1/2

because when ∆ is bounded by Sj , at most half of the δi
can be at least Sj−1 = Sj/(M − 1). By the assumption for
contradiction, we also have

Pr[Sj−1 ≤ ∆ < Sj ] > 4ε,

we gives that (2) is at least 2ε. Finally (3) is at least 0
trivially. Putting these together we get that Pr[δ < Sj−1] >
p+ ε.

We now get that the advantage of A is strictly greater
than

1

2
|p− p− 2ε| = ε.

When we take t0 in the theorem to be larger than the run-
ning time of Aj , we get the desired contradiction and the
lemma is proved.

We can now complete the proof of Theorem 6.2. Using
the above lemma with all j = 1, , . . . , 1

8ε
, along with a union

bound, we get

Pr[∆ < (M − 1)(
M − 1

2
)

1
8ε ] =≤ 1

8ε
· 4ε = 1/2

Since the probability that ∆ is greater than this bound is
non-zero, we must that N satisfies the conclusion of the
theorem.

Game χ-OWORE
Π (A):

(sk, ck)
$← K(1λ)

~m← χ
~c = E(sk, ~m)
m′ = A(ck, ~c)
Return 1 if m′ hits one of the mes-
sages in ~m.

Figure 4: Game χ-OWORE
Π (A).

6.2 One-Wayness Analysis
In this section, we illustrate a new security notion to ana-

lyze quality of ORE schemes under leakage. First, we define
the notion χ-one-way security where χ is an efficiently sam-
plable distribution that outputs a vector of messages as the
plaintexts. This notion captures how easy/hard the adver-
sary can recover any plaintext given encryptions of the plain-
texts sampled by χ. Under this notion, we can paraphrase
an analysis in CLWW as that their scheme is uniform-one-
way secure, e.g. setting χ to be the uniform distribution.
Next, we define a different yet natural distribution χ∗ and
showed a separation between CLWW (and our first construc-
tion) and our more generalized construction. That is, both
CLWW and our basic ORE are not χ∗-one-way-secure, but
our generalized ORE is χ∗-one-way-secure.

6.2.1 χ-One-wayness
We first introduce the notion of χ-one-way-security. Let χ

be an efficiently samplable distribution that outputs a vector
of messages ~m. Then we define the security notion as follow:

Definition 6.4. Let Π = (K, E , C) be an ORE scheme.
For an adversary A we define the game χ-OWORE

Π (A) in Fig-
ure 4. The advantage of A is defined as:

AdvORE
Π,A(λ) = Pr[χ-OWORE

Π (A) = 1].

We say that Π is χ-one-way if for all efficient adversaries
A, AdvORE

Π,A(λ) is negligible.

Next we introduce a natural distribution χ∗ samples from

domain D = {0, 1}n: χ∗ takes 1n as input, samples m0
$← D

uniformly at random. Then it samples mi
$← D uniformly

at random conditioned on MSDB(m0,mi) = i for i ∈ [n].
After that χ∗ picks a random permutation π and outputs
(m0,mπ(1), . . . ,mπ(n)).

Theorem 6.5. Neither CLWW nor our basic ORE is χ∗

secure.
Proof. According to CLWW’s construction, given two

ciphers (E(m1), E(m2)), the attacker will know the exact
value of i-th bit, where i = MSDB(m1,m2). Hence, by the
definition of χ∗, it’s apparent that the adversary can recover
one message. Thus the construction of CLWW is not χ∗-one
way secure.

For our basic ORE, we describe an attack illustrated in
figure 5:

According to the attack, we note that for the first bit b, in
S = {c1, . . . cn}, there exist only one cipher c∗ encrypted by
a message m∗ with first bit 1−b, hence according to the ORE
construction, for any other c′ ∈ S\{c∗}, P (c∗, c) = P (c∗, c′).
And if C(c, c∗) = 1, which means that m > m∗, referring to
b = 1, and vice verse. For the i-th bit, due to in each step,
S will rule out one cipher, the plaintext of the cipher in S
shares the same prefix of length i − 1, so we can view the
i-th bit as the first one. Recursively, the attack works.



Attack on χ-OWORE
Π (A):

Given c, (c1, . . . , cn)
S ← {c1, . . . , cn}
For i← 1 to n
c∗ ← S s.t. ∀c′ ← S \ {c∗}
P (c∗, c) = P (c∗, c′)
S ← S \ {c∗}
If C(c, c∗) = 1, bi = 1
Else bi = 0
Return b1|| . . . ||bn

Figure 5: Attack on χ-OWORE
Π (A).

Theorem 6.6. The generalized ORE Π with D = {0, 1}n
is χ∗-one way secure if Π is simulation based secure with
respect to leakage profile Lf .

Proof. If Π is simulation based secure with respect to
leakage profile Lf , then given adversary a vector of ciphers
~c encrypted by ~m, the entropy of any m∗ ∈ ~m, computa-
tionally, we have:

H(m∗|~c) = H(m∗|Lf(~m)).

Hence, the problem can be reduced to the problem of calcu-
lating the entropy by given leakage profile.

For our generalized ORE, which encrypts d-bit by d-bit
(d > 1 and we denote ` = n/d, T = 2d − 1 for short), we
have each cipher contains ` PPH hash values, where PPH
testing Pd. And for two d-bit blocks B1, B2, we define B1, B2

have the same weight, if they contain the same number of
“1” in their binary representation, for instance, (010) and

(100) have the same weight. If ~m
$← χ∗(1n), then we denote

m̄ as the first message in ~m, then:

Lemma 6.7. Let ~m1, ~m2
$← χ∗(1n) and m̄1 are m̄2 are the

same except one d-bit block, and the differ block D1, D2 has
the same weight, then Lf ( ~m1) and Lf ( ~m2) are statistically
identical.

Proof. Without loss of generality, we assume m̄1 and
m̄2 are differ in the first block, then in ~m1 and ~m2 there
are only t message have distinct first block, and we de-
note them as s1, . . . , sd and s′1, . . . , s

′
d respectively. And

we denote sd+1, . . . , sn and s′d+1, . . . , s
′
n as the rest mes-

sages in ~m1 and ~m2. Hence the leakage profile is, for any
i, k ∈ [d], l1, l2 ∈ [d+ 1, n], j, k 6= i:

P (si, m̄1) = P (si, sj), P (m̄1, si) = P (m̄1, sk)

P (s′i, m̄2) = P (s′i, s
′
j), P (m̄2, s

′
i) = P (m̄2, s

′
k)

P (si, sl1) = P (si, sl2), P (s′i, s
′
l1) = P (s′i, s

′
l2)

SinceD1, D2 have the same weight, the counting on 1(si, m̄1)
and 1(s′im̄2) are the same. Besides, m̄1 are m̄2 are the same
except one d-bit block, it’s obvious that the rest of the leak-
age profile are exactly the same.

Thus, due to the randomness of permutation used in χ∗,
the leakage profile Lf ( ~m1) and Lf ( ~m2) are statistically iden-
tical

Applying the result of Lemma 6.7, we see that given the
leakage profile Lf (~m), the m̄ can be any message, as long
as the corresponding block has the same weight. Hence the
entropy:

H(m̄|Lf (~m)) = (
d∑
i=0

Cid
2d

n

d
log(Cid))n =

d∑
i=0

Cidlog(Cid)n

d · 2d

For mj
$← ~m where MSDB(m̄,mj) = j, j ∈ [n], within the

same analysis we have:

H(mj |Lf (~m)) = n− j +

d∑
i=0

Cid · log(Cid)j

d · 2d ≥ H(m̄|Lf (~m))

Specifically d = 2 then the entropy is 0.25n, d = 3 the en-

tropy is
log2(3)n

4
≈ 0.39n, and it increase as d increases.

6.3 Combinatorial Analysis
Here we initiate the study of the combinatorial structure

of our leakage profile. This gives a qualitative feel for the
improvement in the leakage and may be useful in future
work. For simplicity, we focus on the leakage profile of the
basic scheme.

Given n encryptions of plaintext values that each have
length m, we view the leakage on these ciphertexts as a

function Lf : {0, 1}mn → {0, 1}n
3

, and we give an upper
bound on the number of possible outputs from the leakage

function. A naive upper bound is 2O(n3); we show that this

can be tightened to 2m
2 logn. Note that each output bit of

Lf depends on only 3 of plaintext values, so we will abuse
notation in the rest of the section and treat Lf : {0, 1}3n →
{0, 1}, once we’ve fixed three input values.

Consider the number of ways that we can partition n or-
dered values into m buckets while preserving their order.
This value is

(
n+1
m

)
, because we can place each of the ”bucket

lines” in one of the n + 1 gaps between the plaintext. We
partition our plaintext values by placing value x in bucket
k whenever 2k < x < 2k+1 (for k ∈ {0, . . .m− 1}). We will
use b(x) to denote the bucket that element x is assigned to.
Consider the output of Lf in each of the following cases.

case 1: b(x1) ≤ b(x2) < b(x3). In this case, Lf (x1, x2, x3) =
1, since the most significant 1 in x3 comes before the most
significant 1 in either x1 or x2.

case 2: b(x1) < b(x2) = b(x3). In this case, Lf (x1, x2, x3) =
0.

case 3: b(x1) = b(x2) = b(x3). In this case, the value of
Lf (x1, x2, x3) is still undetermined.

In the first two cases, we stress that the output of Lf is
fully determined by any triplet satisfying those cases, so fix-
ing the partition of elements to buckets suffices for fixing the
output of Lf on all such inputs. For all triplets satisfying
the final case, we can recurse, stripping off the most signifi-
cant bit, and partitioning again into m− 1 buckets. Clearly
after m − 2 recursive steps, all remaining input values will
satisfy the first 2 cases, since the inputs are only 2 bits long.
Since there are O(nm) = O(2m logn) possible partitions in
the first step, and we recurse at most m times, we have that

there are at most O(2m
2 logn) possible input configurations,

each mapping to a unique output of Lf .
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