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Abstract. At Crypto’15 Fuchsbauer, Hanser and Slamanig (FHS) presented the first standard-

model construction of efficient round-optimal blind signatures that does not require complexity

leveraging. It is conceptually simple and builds on the primitive of structure-preserving signatures

on equivalence classes (SPS-EQ). FHS prove the unforgeability of their scheme assuming EUF-CMA

security of the SPS-EQ scheme and hardness of a version of the DH inversion problem. Blindness

under adversarially chosen keys is proven under an interactive variant of the DDH assumption.

We propose a variant of their scheme whose blindness can be proven under a non-interactive

assumption, namely a variant of the bilinear DDH assumption. We moreover prove its unforgeability

assuming only unforgeability of the underlying SPS-EQ but no additional assumptions as needed

for the FHS scheme.
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1 Introduction

Blind signatures allow a user (or obtainer) to obtain a signature from a signer (or issuer) without
the latter learning the message that is actually signed. They are an important building block
for various privacy and anonymity related applications including e-cash, e-voting, anonymous
credentials and ticketing. Since their invention by Chaum [Cha82], research has led to numerous
blind signature schemes in various settings and models [Oka93, Abe01, Bol03, CKW05]. The
most appealing setting is that of (i) round-optimal schemes, i.e., schemes that require only two
moves (and are thus automatically concurrently secure), that (ii) do not require any heuristic
assumptions (such as random oracles) nor (iii) a setup assumption, such as common reference
strings or honestly generated keys.

Blindness is formalized by a game between a malicious signer and a challenger who asks for
two blind signatures on messages of the signer’s choice, but in random order. If both signature
issuings succeed, the signer is given the resulting signatures and should not be able to tell in
which order they were signed. It is natural to let the malicious signer choose its own key pair
(rather than having the challenger create it), in which case we speak of the malicious-key model.

There are well known efficient round-optimal constructions in the honest-key model with
security proofs in the random oracle model [Cha83, Bol03, BNPS03]; and there are various con-
structions without random oracles and in the malicious-key model, but relying on a trusted
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setup, such as a common reference string (CRS). Among those are constructions using structure-
preserving signatures [AFG+10] and Groth-Sahai (GS) proofs [GS08] instantiating the framework
of Fischlin [Fis06], as well as other approaches in the bilinear group setting [BFPV11, BPV12b,
BPV12a, SC12]. There is also a very recent construction [HK16] without a CRS but relying on
non-falsifiable “knowledge” assumptions with security in the honest-key model. Some construc-
tions [CKW05, GS12] require both a CRS and honestly generated keys.

Round-optimal schemes in the plain model. Until now, only very few schemes [GRS+11,
GG14, FHS15] were proposed that are round-optimal and require neither random oracles nor
setup assumptions, that is, satisfying (i)–(iii). Due to known impossibility results, such construc-
tions are indeed hard to find. Lindell [Lin03] showed that concurrently secure blind signatures are
impossible in the standard model when relying on simulation-based security notions. Later, Fis-
chlin and Schröder [FS10] proved that black-box reductions from unforgeability to non-interactive
assumptions in the standard model are impossible for blind signature schemes satisfying certain
conditions.

Known constructions bypass these impossibility results in several ways: All rely on game-based
security definitions [SU12] instead of simulation-based ones. The constructions due to Garg et
al. [GRS+11] as well as Garg and Gupta [GG14] make use of complexity leveraging in their proofs
and thus do not use black-box reductions. The first scheme [GRS+11] can only be considered
a feasibility result and the second [GG14] is still too inefficient for practical applications. In
contrast, the most recent construction by Fuchsbauer et al. [FHS15], whose signatures consist of
5 elements from a bilinear group, can be considered practical. It is based on the recent concept of
structure-preserving signature schemes on equivalence classes (SPS-EQ) [HS14, FHS14], whose
unforgeability is proven in the generic group model, and commitments. A drawback of the scheme
is that blindness (in the malicious-key model) is proven under an interactive assumption.

The FHS construction. Before looking at the ideas underlying the FHS construction, let us
recall SPS-EQ. Defined over groups equipped with a bilinear map e : G1 × G2 → GT , structure-
preserving signatures [AFG+10] are schemes whose verification keys, signatures and messages all
consist of elements from the base groups G1 and G2 and signatures are verified by evaluating
the bilinear map on these elements. In SPS-EQ the message space, typically G`

1 for some ` > 1,
is partitioned into equivalence classes, where all multiples of a vector belong to one class. These
classes should be indistinguishable, that is, it should be hard to tell whether two messages belong
to the same class or not (which follows from DDH in G1).

Given an SPS-EQ signature on a message, anyone can publicly adapt the signature to a
different representative of the same class. Unforgeability is therefore defined w.r.t. equivalence
classes, that is, after being given signatures on messages of its choice, no adversary should be able
to compute a signature on a message from a different class. SPS-EQ moreover guarantees that
after signing a message, not even the signer is able to distinguish an adaptation of the signature to
another representative of the same class from a fresh signature on a completely random message.

The FHS blind-signature scheme [FHS15] works as follows: the obtainer assembles a repre-
sentative of an equivalence class as a vector containing a commitment to the message and a
normalization element (the group generator). She then blinds this message by changing it to
another representative and sends it to the signer. The signer signs the representative and sends
the signature to the obtainer. Given this signature, the obtainer adapts it to a signature on the
original representative. (Due to the normalization element, the obtainer can only switch back to
the original representative.) The blind signature is then the rerandomized (unlinkable) signature
for the original representative, which contains a commitment to the message, plus an opening of
the commitment.
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The FHS scheme uses a variant of Pedersen commitments that are perfectly hiding and compu-
tationally binding under the co-DHI∗1 assumption (cf. Section 3.1 for a more detailed discussion).
The commitment key is part of the signer’s public key, which guarantees that the obtainer cannot
open commitments to different messages (and thereby break unforgeability). Consequently, un-
forgeability relies on the co-DHI∗1 assumption in addition to EUF-CMA security of the SPS-EQ
scheme. To prove blindness in the malicious-key model (where the reduction has no access to the
adversarially generated signing key), FHS argue that during the blindness game the adversary
must always produce valid SPS-EQ signatures, as otherwise the challenger does not send any
blind signatures in the end, in which case the adversary cannot win the game as all it sees are
perfectly hiding commitments.

Intuitively, blindness follows, since under the DDH assumption the randomization of the rep-
resentative containing the commitment during signature issuing can be replaced by a random
representative of a random class. In the latter case, the order in which the messages are signed
is perfectly hidden and thus the adversary cannot win. However, since the commitment key is
chosen by the adversary, to actually make this replacement, FHS need an interactive assumption.
Moreover, this replacement is only indistinguishable to a simulator that does not know the ran-
domization of the representative used. This however means that the simulator cannot later adapt
back the signer’s SPS-EQ signatures in order to produce the blind signatures. FHS overcome this
by relying on SPS-EQ security, which guarantees that adapted signatures look like fresh ones.
Thus, if the reduction knew the signing key (which is the case in the honest-key model) then it
could simply produce the final blind signatures by itself. In the malicious-key model, the reduction
computes the fresh signatures by using the adversary as a signing oracle: it runs the adversary
to obtain these signatures and then rewinds it. In the second (and actual) run, it embeds an
(interactive) DDH instance and uses the signatures from the first run.

Open questions. As the FHS scheme is the most efficient scheme having all the discussed
properties, it would be desirable to base its security (or that of a related scheme) on weaker
assumptions. The first question we ask is whether one can relate the unforgeability of a blind
signature scheme based on SPS-EQ directly to the EUF-CMA security of the latter without ne-
cessitating any further assumptions. Even more interesting would be whether it is possible to
remove the requirement for an interactive assumption for blindness. To address the first ques-
tion, instead of the perfectly hiding commitment, one could use a perfectly binding one, as then
each SPS-EQ signature from the signer can only be opened in one way, meaning that SPS-EQ
unforgeability would directly imply blind-signature unforgeability. This however means that the
commitment key cannot be chosen by the signer anymore, as knowing the underlying randomness
could allow the signer to break hiding of the commitment and thus blindness of the scheme. But
even if we let the user choose the commitment key, the information-theoretic argument by FHS
that a signer must send valid SPS-EQ signatures does not apply anymore: even when not seeing
the final blind signatures, the signer still obtains information on which message corresponds to
which issuing, as the commitments are only computationally hiding.

Our contribution. We answer the two above questions in the affirmative and reduce the
strength of the required assumptions for both security notions. We construct a variant of the
FHS blind signature scheme and prove unforgeability solely under the EUF-CMA security of the
underlying SPS-EQ scheme. More importantly, we show that our scheme is blind in the malicious-
key model under a non-interactive (and non-“q-type”) assumption, namely an extension of the
bilinear DDH assumption in asymmetric bilinear groups.

Our scheme replaces the perfectly hiding commitments in FHS by perfectly binding ones,
which means unforgeability follows directly from SPS-EQ unforgeability. As there are no trusted
parameters, we let the user choose the commitment key during signature issuing and include it
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in the final signature. Straight-forward implementation of this approach however turns out not
to result in a blind scheme. We therefore “distribute” the commitment key over several group
elements, which enables us to show blindness.

Our blindness proof follows FHS’s idea of rewinding the signer in order to use it as a signing
oracle for signatures which the simulator cannot adapt on its own. The proof is however much
more involved, since we need to consider adversaries that might return invalid SPS-EQ signatures
but still break blindness. Our proof works by rewinding the blindness adversary numerous times
to increase the success probability of the reduction noticeably beyond one half. We moreover
show that these multiple rewinds are necessary by giving a counterexample for the case of only
rewinding once (see Appendix B.1).

Organization. Section 2 discusses preliminaries including signature schemes on equivalence
classes (SPS-EQ). Section 3 discusses blind signatures, the FHS construction and presents our
construction of round-optimal blind signatures and the extension to partially blind signatures.

2 Preliminaries

A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that ε(k) < 1/kc for all
k > k0. By a←R S, we denote that a is chosen uniformly at random from a set S. Furthermore,
we write A(a1, . . . , an; r) if we want to make the randomness r used by a probabilistic algorithm
A(a1, . . . , an) explicit and denote by [A(a1, . . . , an)] the set of points with positive probability of
being output by A. For an (additive) group G we use G∗ to denote G \ {0G}.

Definition 1 (Bilinear map). Let G1, G2 and GT be cyclic groups of prime order p, where G1

and G2 are additive and GT is multiplicative. Let P and P̂ be generators of G1 and G2, resp. We
call e : G1 ×G2 → GT a bilinear map or pairing if it is efficiently computable and it is:

bilinear: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp,
non-degenerate: e(P, P̂ ) 6= 1GT , i.e., e(P, P̂ ) generates GT .

If G1 = G2 then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For Type-2
pairings there is an efficiently computable isomorphism Ψ : G2 → G1; for Type-3 pairings no such
isomorphism is known. Type-3 pairings are currently the optimal choice in terms of efficiency for
a given security level [CM11].

Definition 2 (Bilinear-group generator). A bilinear-group generator BGGen is a (possibly
probabilistic4) polynomial-time algorithm that takes a security parameter 1κ and outputs a bi-
linear group description BG = (p,G1,G2,GT , e, P, P̂ ) consisting of groups G1 = 〈P 〉, G2 = 〈P̂ 〉
and GT of prime order p with log2 p = dκe and an asymmetric pairing e : G1 ×G2 → GT .

Definition 3 (DDH). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,G2,
GT , e, P1 = P, P2 = P̂ ). For i ∈ {1, 2} the decisional Diffie-Hellman assumption holds in Gi for
BGGen if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG←R BGGen(1κ), r, s, t←R Zp
b∗←R A(BG, rPi, sPi, ((1− b) · t+ b · rs)Pi)

: b∗ = b

]
− 1

2
≤ ε(κ) .

The next assumption is in the spirit of the bilinear Diffie-Hellman assumption (BDDH)
[Jou00], which in symmetric bilinear groups states that given rP, uP, vP , the element ruvP looks
random. In asymmetric groups, we can additionally give uvP , uP̂ and vP̂ . We therefore call the
assumption ABDDH+.

4 For BN-curves [BN06], the most common choice for Type-3 pairings, group generation is deterministic.
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Definition 4 (ABDDH+). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,
G2,GT , e, P1 = P, P2 = P̂ ). The ABDDH+ assumption holds for BGGen if for all PPT algorithms
A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG←R BGGen(1κ), r, u, v, t←R Zp
b∗←RA

(
BG, rP, uP, uvP, uP̂ , vP̂ , ((1−b)·t+ b·ruv)P

) : b∗= b

]
− 1

2
≤ ε(κ) .

In the generic group model, in order to distinguish ruvP from random, one basically needs to
construct this element in the target group. It is easily seen that this cannot be done from the
remaining elements, which we now make formal:

Proposition 1. The assumption in Definition 4 holds in generic groups and reaches the optimal,
quadratic simulation error bound.

We prove the above proposition in Appendix C. Moreover, note that given an ABDDH+ instance
(BG, R, U,W, Û , V̂ , T ), we could use a DDH oracle to decide it: simply query (BG, R,W, T ) to the
oracle and return the result. We thus have:

Lemma 1. If ABDDH+ holds for a bilinear-group generator BGGen then DDH in G1 also holds
for it.

2.1 Structure-Preserving Signatures on Equivalence Classes

Structure-preserving signatures (SPS) [Fuc09, AHO10, AFG+10, AGHO11, ACD+12, AGOT14a,
AGOT14b, BFF+15, KPW15, Gha16] can handle messages that are elements of a bilinear group,
without requiring any prior encoding. In such a scheme public keys, messages and signatures
consist only of group elements and the verification algorithm evaluates a signature by deciding
group membership of signature elements and by evaluating pairing-product equations (PPEs).

The notion of SPS on equivalence classes (SPS-EQ) was introduced by Hanser and Sla-
manig [HS14]. Their initial instantiation was only secure against random-message attacks, but
together with Fuchsbauer [FHS14] they subsequently presented a scheme that they proved EUF-
CMA-secure in the generic group model.

The idea is as follows. For a prime p, Z`p is a vector space. Thus, if ` > 1 we can define a

projective equivalence relation on it, which propagates to G`
i and partitions G`

i into equivalence
classes. Let ∼R be this relation, i.e., for M,N ∈ G`

i we have M ∼R N ⇔ ∃ s ∈ Z∗p : M = sN . An

SPS-EQ scheme signs an equivalence class [M ]R for M ∈ (G∗i )` by actually signing a represen-
tative M of [M ]R. It then allows to switch to other representatives of [M ]R and to update the
corresponding signature without having access to the secret key. If the DDH assumption holds
on the message space, then a random representative of a given class [M ]R is indistinguishable
from a message vector outside of [M ]R. Moreover, the malicious-key perfect adaptation property
(defined in Definition 9) guarantees that updated signatures are random elements in the cor-
responding space of signatures. The combination of both properties implies the unlinkability of
message-signature pairs (under the same pk) corresponding to the same class.

The abstract signature scheme. Here, we discuss the abstract model, the security model
of such a signature scheme [HS14, FHS14, FHS15] and a concrete construction, as presented
in [FHS14].

Definition 5 (SPS-EQ). A structure-preserving signature scheme for equivalence relation R
over Gi with i ∈ {1, 2} is a tuple SPS-EQ of the following PPT algorithms:

BGGenR(1κ) is a (probabilistic) bilinear-group generation algorithm which on input a security
parameter 1κ outputs a prime-order bilinear group BG.
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KeyGenR(BG, 1`) is a probabilistic algorithm which on input a bilinear group BG and a vector
length ` > 1 (in unary) outputs a key pair (sk, pk).

SignR(M, sk) is a probabilistic algorithm which on input a representative M ∈ (G∗i )` of an equiv-
alence class [M ]R and a secret key sk outputs a signature σ for the equivalence class [M ]R.

ChgRepR(M,σ, µ, pk) is a probabilistic algorithm, which on input a representative M ∈ (G∗i )` of
an equivalence class [M ]R, a signature σ for M , a scalar µ and a public key pk returns an
updated message-signature pair (M ′, σ′), where M ′ = µ ·M is the new representative and σ′

its updated signature.

VerifyR(M,σ, pk) is a deterministic algorithm which given a representative M ∈ (G∗i )`, a signa-
ture σ and a public key pk outputs 1 if σ is valid for M under pk and 0 otherwise.

VKeyR(sk, pk) is a deterministic algorithm which given a secret key sk and a public key pk checks
their consistency and returns 1 on success and 0 otherwise.

An SPS-EQ scheme SPS-EQ defined on message-space Gi is secure if the DDH assumption holds
in Gi, if SPS-EQ is correct, EUF-CMA secure and if it perfectly adapts signatures.

Definition 6 (Correctness). An SPS-EQ scheme SPS-EQ over Gi with i ∈ {1, 2} is correct if
for all security parameters κ ∈ N, for all ` > 1, all bilinear groups BG = (p,G1,G2,GT , e, P, P̂ ) ∈
[BGGenR(1κ)], all key pairs (sk, pk) ∈ [KeyGenR(BG, 1`)], all messages M ∈ (G∗i )` and all scalars
µ ∈ Zp∗ we have:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR(M, SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), µ, pk), pk) = 1

]
= 1 .

In contrast to the standard unforgeability definition for signatures, EUF-CMA security for SPS-
EQ is defined with respect to equivalence classes, i.e., a forgery is a signature on a message from
an equivalence class from which the adversary has not asked any messages to be signed.

Definition 7 (EUF-CMA). An SPS-EQ scheme SPS-EQ over Gi with i ∈ {1, 2} is existentially
unforgeable under adaptive chosen-message attacks if for all ` > 1 and all PPT algorithms A
having access to a signing oracle SignR(·, sk), there is a negligible function ε(·) such that:

Pr

[
BG←R BGGenR(1κ), (sk, pk)←R KeyGenR(BG, 1`),

(M∗, σ∗)←R ASignR(·,sk)(pk)
:

[M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

]
≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle.

The next two definitions were introduced in [FHS15]. They formalize the notion that signatures
output by ChgRepR are distributed like fresh signatures on the new representative.

Definition 8 (Signature adaptation). Let ` > 1. An SPS-EQ scheme SPS-EQ on (G∗i )` with
i ∈ {1, 2} perfectly adapts signatures if for all tuples (sk, pk,M, σ, µ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗

ChgRepR(M,σ, µ, pk) and (µM,SignR(µM, sk)) are identically distributed.

The following definition demands that this even holds for maliciously generated verification
keys. As for such keys there might not even exist a corresponding secret key, we require that
adapted signatures are random elements in the space of valid signatures.
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Definition 9 (Signature adaptation under malicious keys). Let ` > 1. An SPS-EQ scheme
SPS-EQ on (G∗i )` with i ∈ {1, 2} perfectly adapts signatures under malicious keys if for all tuples
(pk,M, σ, µ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗ (1)

we have that ChgRepR(M,σ, µ, pk) outputs (µM, σ′) such that σ′ is uniformly random in the
space of signatures, conditioned on VerifyR(µM, σ′, pk) = 1.

In Figure 1, we restate the SPS-EQ construction from [FHS14]. It is EUF-CMA secure in the
generic group model and satisfies Definitions 8 and 9.

BGGenR(1κ): On input a security parameter 1κ, output BG←R BGGen(1κ).

KeyGenR(BG, 1`): On input a bilinear-group description BG and vector length ` > 1 (in unary), choose

(xi)i∈[`]←R (Zp∗)`, set secret key sk← (xi)i∈[`], compute public key pk← (X̂i)i∈[`] = (xiP̂ )i∈[`] and

output (sk, pk).

SignR(M, sk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R and a secret

key sk = (xi)i∈[`] ∈ (Zp∗)`, choose y←R Zp∗ and output σ ← (Z, Y, Ŷ ) with

Z ← y
∑
i∈[`]

xiMi Y ← 1
yP Ŷ ← 1

y P̂ .

VerifyR(M,σ, pk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R, a

signature σ = (Z, Y, Ŷ ) ∈ G1 ×G∗1 ×G∗2 and public key pk = (X̂i)i∈[`] ∈ (G∗2)`, check whether∏
i∈[`]

e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ )

and if this holds output 1 and 0 otherwise.

ChgRepR(M,σ, µ, pk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R, a

signature σ = (Z, Y, Ŷ ), µ ∈ Zp∗ and public key pk, return ⊥ if VerifyR(M,σ, pk) = 0. Otherwise

pick ψ←R Zp∗ and return (µ ·M,σ′) with σ′ ← (ψµZ, 1
ψY,

1
ψ Ŷ ).

VKeyR(sk, pk): On input sk = (xi)i∈[`] ∈ (Zp∗)` and pk = (X̂i)i∈[`] ∈ (G∗2)`, output 1 if ∀i ∈ [`] :

xiP̂ = X̂i and 0 otherwise.

Fig. 1: Scheme 1, an EUF-CMA secure SPS-EQ scheme

3 Blind Signatures

Before we discuss the construction from [FHS15] and then present our new blind signature con-
struction, we give the abstract model and the security properties of blind signature schemes.
These are correctness, unforgeability and blindness and were initially studied in [PS00, JLO97]
and later on rigorously treated in [FS09, SU12].

Definition 10 (Blind signature scheme). A blind signature scheme BS consists of the fol-
lowing PPT algorithms:

KeyGenBS(1κ), on input κ, returns a key pair (sk, pk). The security parameter κ is also an (implicit)
input to the following algorithms.
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(UBS(m, pk),SBS(sk)) are run by a user and a signer, who interact during execution. UBS gets
input a message m and a public key pk and SBS has input a secret key sk. At the end UBS
outputs σ, a signature on m, or ⊥ if the interaction was not successful.

VerifyBS(m,σ, pk) is deterministic and given a message-signature pair (m,σ) and a public key pk
outputs 1 if σ is valid on m under pk and 0 otherwise.

A blind signature scheme BS is secure if it is correct, unforgeable and blind.

Definition 11 (Correctness). A blind signature scheme BS is correct if for all security pa-
rameters κ ∈ N, all key pairs (sk, pk) ∈ [KeyGenBS(1

κ)], all messages m and all signatures
σ ∈ [(UBS(m, pk),SBS(sk))] it holds that VerifyBS(m,σ, pk) = 1.

Definition 12 (Unforgeability). BS is unforgeable if for all PPT algorithms A having access
to a signer oracle, there is a negligible function ε(·) such that:

Pr

[
(sk, pk)← KeyGenBS(1κ),

(m∗i , σ
∗
i )
k+1
i=1 ←A(·,SBS(sk))(pk)

:
m∗i 6= m∗j ∀i, j ∈ [k+1], i 6= j ∧

VerifyBS(m∗i , σ
∗
i , pk)=1 ∀i ∈ [k+1]

]
≤ ε(κ) ,

where k is the number of completed interactions with the oracle.

There are several different kinds of blindness, where the strongest (and arguably most natural)
definition is blindness in the malicious-key model [ANN06, Oka06]. In this case, the public key
is generated by the adversary, whereas in the weaker honest-key model the key pair is initially
set up by the environment, i.e., it requires a trusted setup. We use the stronger notion to prove
the blindness of our construction—as also done by other existing round-optimal standard-model
constructions [GRS+11, GG14, FHS15]:

Definition 13 (Blindness). A blind signature scheme BS is called blind in the malicious-key
model if for all PPT algorithms A having one-time access to two user oracles, there is a negligible
function ε(·) such that:

Pr


b←R {0, 1}, (pk,m0,m1, st)←R A(1κ),

st←R A(UBS(mb,pk),·)1,(UBS(m1−b,pk),·)1(st),
Let σb and σ1−b be the resp. outputs of UBS,
If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1)← (⊥,⊥),
b∗←R A(st, σ0, σ1)

: b∗= b

− 1

2
≤ ε(κ) .

3.1 The FHS Construction

The construction in [FHS15] uses unconditionally hiding commitments to the messages and SPS-
EQ to sign these commitments. The latter allows for blinding and unblinding, as it implies the
ability to derive a signature for arbitrary representatives of this class (without knowing the private
signing key). The construction is unforgeable under the EUF-CMA security of the SPS-EQ and
an asymmetric-group variant of the Diffie-Hellman inversion assumption. It is blind under an
interactive DDH variant in the malicious-key model without requiring any trusted setup. Its
design principle is as follows.

A signer public key consists of an SPS-EQ verification key pk and two elements (Q = qP,
Q̂ = qP̂ ) for some random q ∈ Zp∗. When asking for a signature on a message m, the user picks
r←R Zp∗ and creates a Pedersen commitment C = mP + rQ and forms a vector (C,P ), which is a
representative of equivalence class [(C,P )]R. Then she chooses a randomizer s←R Zp∗ and uses it
to randomize (C,P ) to another representative (sC, sP ), thereby blinding the vector, and sends
(sC, sP ) to the signer. When the signer returns an SPS-EQ signature on (sC, sP ), the user is
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able to derive a signature for the unblinded (original) message (C,P ), using SPS-EQ’s changing
of representatives. Verification of the blind signature will only accept messages whose second
component is P . Together with SPS-EQ unforgeability, this means that the only such message
for which the user can derive a signature is (C,P ).

The Pedersen commitment C = mP + rQ has a tweaked opening, which is (m, rP ) instead of
(m, r), and which lets one check the well-formedness of C via the pairing equation e(C−mP, P̂ ) =
e(rP, Q̂). This can be thought of as showing knowledge of the discrete logarithm r without
revealing it (revealing r would lead to attacks against blindness). Under the co-DHI∗1 assumption
commitments with opening of this form are binding, meaning the user can open a commitment
only to one message, which is required for blind-signature unforgeability. The user includes the
values T ← C −mP and R← rP in the blind signature to allow the verification of the opening.

Blindness intuitively follows from the fact that the message (sC, sP ) = (smP + srQ, sP ) that
the signer sees during issuing looks unrelated to the message m and the resulting blind signature
(which contains rP ): under DDH, given sP and rP , the element srP looks random. However,
the blinding factor in the randomized commitment is not srP but srQ, with Q chosen by the
signer. This is what forced FHS to introduce an interactive variant of DDH, where the adversary
chooses Q and Q̂ and then gets an instance rP, rQ, sP, tQ and needs to decide whether t = rs.

3.2 Construction

In previous round-optimal blind-signature schemes (using a related approach involving commit-
ments) the commitment is done w.r.t. a commitment key contained in the CRS. Since we aim at
constructing a scheme in the standard model where there is no CRS, we could add the commit-
ment key to the signer’s public key—as done in [FHS15]. In this case the commitment must be
perfectly hiding and can thus only be computationally binding. (Binding protects the signer from
a user generating signatures on more messages than signatures issued by the signer.) We choose
a different approach, namely to let the user choose the commitment key. To prevent forgeries, the
commitment now needs to be perfectly binding, which we achieve by using an encryption scheme.
We then show that, together with the properties of the used SPS-EQ scheme, computational
hiding of the commitment implies blindness of our construction.

In our signing protocol the user chooses a public key Q for ElGamal encryption and then
commits to the message m by encrypting mP as (C,R) = (mP + rQ, rP ). The user then forms
a vector (C,R,Q, P ), consisting of the ciphertext, the public key and the group generator P .
(Note that this vector uniquely defines m.) Next, to blind the message, the user transforms this
tuple to a random element of the equivalence class [(C,R,Q, P )]R: she picks s←R Zp∗, computes
M ← (sC, sR, sQ, sP ), and sends M to the signer. When the signer returns an SPS-EQ signature
on (sC, sR, sQ, sP ), the user derives a signature for the unblinded (original) message (C,R,Q, P ).
For unforgeability, this unblinding must be unambiguous, which is why verification only accepts
tuples whose last component is P .

Finally, the user needs to “open” (C,R,Q=qP ) to the actual message m. This could be done
by publishing Z = rQ and Q̂ = qP̂ : then for a message m we could check whether the signature
is valid on (mP +Z,R,Q, P ) and whether Z is of the correct form, by checking e(Q, P̂ ) = e(P, Q̂)
and

e(Z, P̂ ) = e(R, Q̂) . (2)

This is basically the opening that FHS use (where Q̂ is part of the commitment key). In their
scheme R is only given in the final signature; here however, the signer also sees sR, which leads
to the following attack: The signer can check whether M = (sC, sR, sQ, sP ) received during the
signing protocol corresponds to a particular m, by testing e(M1 − mM4, P̂ ) = e(M2, Q̂), since
this corresponds to the pairing equation e(srQ, P̂ ) = e(srP, Q̂).
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To prevent this attack, we “split” the logarithm ofQ and defineQ = uvP . Instead of publishing
Q̂, we publish X = ruP and V̂ = vP̂ and replace the RHS of (2) with e(X, V̂ ) = e(r · uvP, P̂ ).
Now we additionally need to enable a check that X and V̂ are correctly formed, which we do by
publishing U = uP and Û = uP̂ . As in [FHS14, FHS15], we assume the bilinear group generation
algorithm of the SPS-EQ scheme to be deterministic and to produce one bilinear group per security
parameter. We then show that assuming ABDDH+ for such a group generation algorithm, our
scheme satisfies malicious-key blindness. Our blind-signature scheme is detailed in Figure 2.

KeyGenBS(1
κ): Given a security parameter κ > 0 (in unary), compute BG ← BGGenR(1κ); compute

(sk, pk)←R KeyGenR(BG, 14) and output (sk, pk).

U (1)
BS (m, pk): Given pk and a message m ∈ Zp, compute BG← BGGenR(1κ);

choose r, s, u, v←R Zp∗ s.t. m+ ruv 6= 0 and output

M ← (s(mP + ruvP ), srP, suvP, sP ) st← (pk,M, r, s, u, v)

SBS(M, sk): Given M ∈ (G∗1)4 and a secret key sk, output π←R SignR(M, sk).

U (2)
BS (st, π): Parse st as (pk,M, r, s, u, v). If VerifyR(M,π, pk) = 0 then return ⊥.

Else run ((mP + ruvP, rP, uvP, P ), σ)←R ChgRepR(M,π, 1s , pk);

output τ ← (σ, Y = ruvP,Q = uvP,R = rP, U = uP,X = ruP, Û = uP̂ , V̂ = vP̂ ).

VerifyBS(m, τ, pk): Given message m ∈ Zp, blind signature τ = (σ, Y,Q,R,U,X, Û , V̂ ) and public key

pk, output 1 if the following holds and 0 otherwise.

VerifyR((mP + Y,R,Q, P ), σ, pk) = 1 e(Q, P̂ ) = e(U, V̂ ) (3)

e(U, P̂ ) = e(P, Û) e(X, P̂ ) = e(R, Û) e(Y, P̂ ) = e(X, V̂ ) (4)

Fig. 2: A Blind Signature Scheme from SPS-EQ.

3.3 Security

The correctness of the scheme in Figure 2 follows by inspection.

Theorem 1. If the underlying SPS-EQ scheme is EUF-CMA secure, then the scheme in Figure 2
is unforgeable.

Unforgeability of the SPS-EQ scheme guarantees that after k signing queries the adversary pos-
sesses only signatures on k tuples of the form (Ci, Ri, Qi, P ). (Since the last component fixes each
equivalence class to one representative.) It remains to show that each such tuple can only be
opened to one message m: let (C,R,Q, P ) and σ be such a valid message-signature pair. Then
we show that any choice of (Y, U,X, Û , V̂ ) that satisfies verification together with (σ,Q,R) leads
to the same m. Let u, v be such that Û = uP̂ and V̂ = vP̂ . Then by (3.2), the 2nd equation in
(3): Q = uvP ; and (4.1) implies U = uP . With r s.t. R = rP , we have X = ruP by (4.2) and
Y = ruv = rQ by (4.3). This means that R and Q uniquely determine Y , which together with
C = mP + Y uniquely determines m.

The formal proof is given in Appendix A. The reduction has a natural security loss determined
by the number of signing queries by the adversary, since the reduction has to guess which of the
k + 1 valid signatures is the forgery.
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Blindness. In Lemma 2 in Appendix B, we first show that ABDDH+ (Def. 4) implies that
when given rQ,Q,R,U,X, Û , V̂ (the elements which the signer sees in the final signature), the
elements srQ (the blinding factor of the message in the issuing protocol), and sQ, srP and sP (the
remaining components seen during issuing) are indistinguishable from random. This intuitively
means that what the adversary sees during issuing looks unrelated to the derived blind signature.

We start with the basic idea to prove blindness. Given an instance of the decision problem
just described (BG, R, S = sP, U = uP,X = uR,Q = uvP, Y = rQ, Û = uP̂ , V̂ = vP̂ , T,W,Z),
where either (a) T = sR, W = sQ and Z = sY or (b) T , W and Z are random, in the blindness
game the challenger could compute the message sent to the signer during issuing as

M ← (m · S + Z, T,W, S) , (5)

which is correctly distributed in case (a) but independent of m (and the resulting blind signature)
in case (b). In the blindness game, the challenger next receives an SPS-EQ signature on M , which
it needs to adapt to the unblinded message in order to construct a blind signature.

Overall, we distinguish two behaviors of blindness adversaries. Type I does not return correct
SPS-EQ signatures during issuing. As in this case the adversary does not obtain blind signatures
at the end, the above simulation already works and we are done.

However, if the adversary returns valid signatures (Type II) then the simulator, after embed-
ding the instance when creating M as in (5), does not know the blinding factor s, meaning the
simulator cannot adapt the SPS-EQ signature to the unblinded message. By perfect adaptation
however, the distribution of an adapted signature is the same as that of a fresh signature on
the unblinded message. In the honest-key model, where the simulator knows the signing key,
it could therefore compute a signature σ on (m · P + Z,R,Q, P ) and return the blind signa-
ture (σ, Y,Q,R,U,X, Û , V̂ ). Blindness follows, since during issuing the signer obtained a random
quadruple; thus the game is independent of bit b.

For blindness in the malicious-key model, we do not have access to the adversarially generated
signing key, meaning we cannot recompute the signature on the unblinded message. Instead, we
use the adversary A as a signing oracle by rewinding it. (This is similar to Coron’s [Cor02] meta-
reduction strategy, which was extended to randomizable signatures by Hofheinz et al. [HJK12].)
The idea is to first run the adversary to obtain a signature on (s′(mP + Y ), s′R, s′Q, s′P ) for
a known s′, which we can therefore transform into a signature on (mP + Y,R,Q, P ). We then
rewind the adversary to the point after it output the public key and the messages, and then run
it again (using a new random bit b), this time setting M as in (5), thus not knowing s. In the
second run we are not able to transform the signature, but we can use the signature from the
first run, which is distributed identically, thanks to the property of the SPS-EQ scheme.

Making this approach actually work turns out quite tricky. In the proof in [FHS15] it is argued
that an adversary must always output two valid signatures, as otherwise the bit b is perfectly
hidden due to the perfectly hiding commitments. For such adversaries if the original blindness
game is won with some probability then the game that rewinds the adversary will yield valid
signatures in the first run and in the second run the adversary wins with the same probability as
in the original (non-rewinding) game.

This is not true anymore for our scheme, as an aborting adversary (one that returns invalid
SPS-EQ signatures) can still win the game. In particular, we show that rewinding once is not
enough: in Appendix B.1, we give an example of an adversary’s coin distribution (before and after
the point of rewinding) that leads to the original blindness game being won with non-negligible
probability, while the game with rewinding (which outputs a random bit if it receives invalid
signatures in the first run) is won with probability less than one half.

However, if we rewind more than once then it suffices to obtain valid signatures in at least one
of the rewinds. We therefore consider a game where we rewind the adversary λ times and abort
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if all runs yield invalid signatures (outputting a random bit); otherwise, we run the adversary a
final time and check if it wins or not.

In Claim 3 in Appendix B we show the following: suppose the adversary wins the blindness
game with non-negligible advantage, that is, for some polynomial p and infinitely many security-
parameter values κ, the probability of winning the blindness game is greater than 1

2 + 1
p(κ) . Then

if we rewind the adversary λ = κ · p(κ) times, the probability that at least one of the λ runs
yields valid SPS-EQ signatures and the adversary wins the final run is greater than 1

2 + 1
2·p(κ) for

infinitely many κ’s. We make this formal in the following theorem, which is proved in Appendix B.

Theorem 2. If the underlying SPS-EQ scheme has perfect adaptation of signatures under mali-
cious keys and ABDDH+ holds for BGGen then the scheme in Figure 2 satisfies blindness in the
malicious-key model.

Efficiency of the construction. When instantiating our blind signature construction with the
SPS-EQ scheme from [FHS14], we obtain a public key size of 4G2, a communication complexity
of 6G1 + 1G2 and a signature size of 7G1 + 3G2 elements. We will now contrast this to the FHS
construction [FHS15] and to the DLIN construction from [GG14].

Instantiating the FHS construction with the SPS-EQ scheme from [FHS14] yields a blind
signature scheme having a public key size of 1G1+3G2, a communication complexity of 4G1+1G2

and a signature size of 4G1 + 1G2 elements. While being more efficient, we recall that blindness
of the FHS construction is based on an interactive and, thus, much stronger assumption.

Ignoring the increase of the security parameter due to complexity leveraging for the construc-
tion from [GG14], it has a public key size of 43G1 elements, a communication complexity of
18 log2 q + 41G1 elements (where, for instance, we have log2 q = 155 when assuming that the
adversary runs in at most 280 steps) and a signature size of 183G1 elements.

Extension to partially blind signatures. We note that analogously to the extension of the
round-optimal blind signature construction in [FHS15], it is possible to derive a partially blind
signature scheme from the scheme in Figure 2. To include a common information γ ∈ Zp∗, the
underlying SPS-EQ scheme is set up for ` = 5 (instead of ` = 4) and the additional vector
component is being used to include γ. In contrast to the blind signature scheme in Figure 2,
the signer on receiving M ← (s(mP + ruvP ), srP, suvP, sP ) computes an SPS-EQ signature for
vector (s(mP + ruvP ), srP, suvP, γ(sP ), sP ). In the verification of the partially blind signature,
the SPS-EQ signature is verified on (mP + Y,R,Q, γP, P ).
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A Proof of Theorem 1

Proof. We assume that there is an efficient adversary A winning the unforgeability game with
non-negligible probability ε(κ) and construct an adversary B that uses A to break the EUF-CMA
security of the underlying SPS-EQ scheme.

We are now going to describe the setup, the initialization of the environment, the reduction
and the abort conditions.

B obtains pk of the SPS-EQ scheme with ` = 4 from the challenger C of the EUF-CMA
security game and runs A(pk). Whenever A queries the (·,SBS(·, sk)) oracle with message M , B
queries the SPS-EQ signing oracle O(·, sk) with identical message M and forwards its response
to A. If A outputs ((m1, τ1), . . . , (mk+1, τk+1)) with τi = (σi, Yi, Qi, Ri, Ui, Xi, Ûi, V̂i) after k
successful queries to (·,SBS(·, sk)) with mi 6= mj ∀i, j ∈ [k+ 1], i 6= j and VerifyBS(mi, τi, pk) = 1
∀i ∈ [k + 1], then we have that (Ci = miP + Yi, Ri, Qi, P ) 6= (Cj = mjP + Yj , Rj , Qj , P ) for
all i, j ∈ [k + 1], i 6= j. This follows from the fact that any choice of (Y, U,X, Û , V̂ ) satisfying
verification together with (σ,Q,R) leads to the same m: Let u, v be such that Û = uP̂ and
V̂ = vP̂ . Then by e(Q, P̂ ) = e(U, V̂ ), the 2nd equation in (3): Q = uvP ; and (4.1), that is
e(U, P̂ ) = e(P, Û), implies U = uP . With r s.t. R = rP , we have X = ruP by e(X, P̂ ) = e(R, Û)
in (4.2) and Y = ruv = rQ by e(Y, P̂ ) = e(X, V̂ ) in (4.3). This means that R and Q uniquely
determine Y , which together with C = mP + Y uniquely determines m.

A has made k valid signing queries, but ((miP + Yi, Ri, Qi, P ), σi)i∈[k+1] are valid message-
signature pairs under the SPS-EQ scheme for distinct classes. Consequently, there exists n ∈ [k+1]
such that the message-signature pair ((mnP + Yn, Rn, Qn, P ), σn) represents a class that has not
been queried to C’s signing oracle. Hence, one of these k + 1 message-signature pairs enables B
to break the EUF-CMA security of the SPS-EQ scheme. Due to blindness, however, B is not
able to link these message-signature pairs to the messages Mi = (si(miP + Yi), siRi, siQi, siP )
which A has queried to the (·,SBS(·, sk)) oracle. Thus, B has no efficient means to determine the
correct index n of the output that lets B break the EUF-CMA security of the SPS-EQ scheme.
Consequently, B guesses an index n∗ ∈ [k + 1] and outputs ((mn∗P + Yn∗ , Rn∗ , Qn∗ , P ), σn∗) as
a forgery to C. If A wins the unforgeability game, then B breaks the EUF-CMA security of the
underlying SPS-EQ scheme incurring a polynomial loss of 1/(k + 1). ut

B Proof of Theorem 2

We start with showing that under the assumption in Definition 4 two distributions are indistin-
guishable, which we will use in the proof of blindness:
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Lemma 2. If ABDDH+ (Def. 4) holds for BGGen then the following two distributions are indis-
tinguishable by all PPT adversaries:

D1 :≡
[
BG← BGGen(1κ), r, s, u, v←R Zp :

(BG, sP, rP, uP, ruP, uvP, ruvP, uP̂ , vP̂ , srP, suvP, sruvP )
]

D2 :≡
[
BG← BGGen(1κ), r, s, u, v, t, w, z←R Zp :

(BG, sP, rP, uP, ruP, uvP, ruvP, uP̂ , vP̂ , tP, wP, zP )
]

Proof. We first consider an intermediate distribution:

D3 :≡
[
BG← BGGen(1κ), r, s, u, v←R Zp :

(BG, sP, rP, uP, ruP, uvP, ruvP, uP̂ , vP̂ , tP, suvP, tuvP )
]

Under DDH in G1 (which by Lemma 1 follows from ABDDH+) it is indistinguishable from D1,
since given a DDH instance (BG, R, S, T ), we can choose u, v←R Zp and compute (BG, S,R, uP, uR,
uvP, uvR, uP̂ , vP̂ , T, uvS, uvT ), which when given a DDH instance is distributed as D1, and when
given a random instance is distributed as D3.

Next we consider another distribution and show that it is indistinguishable from D3 under
ABDDH+:

D4 :≡
[
BG← BGGen(1κ), r, s, u, v←R Zp :

(BG, sP, rP, uP, ruP, uvP, ruvP, uP̂ , vP̂ , tP, wP, tuvP )
]

Given an instance (BG, S = sP, U = uP,Q= uvP, Û = uP̂ , V̂ = vP̂ ,W ), where either W = suvP
or W is random, we can choose r, t←R Zp and compute (BG, S, rP, U, rU,Q, rQ, Û , V̂ , tP,W, tQ),
which, if W = suvP , is distributed as D3 and if W is random, it is distributed as D4.

Finally, D4 is indistinguishable from D2, again by ABDDH+: Given an instance (BG, T = tP,
U = uP,Q = uvP, Û = uP̂ , V̂ = vP̂ , Z), we can choose r, s, w←R Zp and compute (BG, sP, rP, U,
rU,Q, rQ, Û , V̂ , T, wP,Z), which if Z = tuvP is distributed as D4 and if Z is random, it is
distributed as D2. ut

In the subsequent proof of blindness of our blind signature scheme, we will use the following
implication of Definition 9:

Corollary 1. Let SPS-EQ be an SPS-EQ scheme on (G∗i )` that satisfies Definition 9. If for a
tuple (pk,M, s0, s1, σ0, σ1) we have VerifyR(s0M,σ0, pk) = 1 and VerifyR(s1M,σ1, pk) = 1 then
ChgRepR(s0M,σ0,

1
s0
, pk) and ChgRepR(s1M,σ1,

1
s1
, pk) are identically distributed.

Proof. The statement follows, since for b = 0, 1 the tuple (pk, sbM,σb,
1
sb

) satisfies Equation (1),

and for (M,σb)←R ChgRepR(sbM,σb,
1
sb
, pk), by Definition 9, σb is random conditioned on the fact

that VerifyR(M,σb, pk) = 1. Thus σ0 and σ1 are identically distributed. ut

Proof (of Theorem 2). Consider the blindness game (with adversarially generated public keys)
for the scheme in Figure 2 and a PPT adversary A. W.l.o.g. we assume that A calls both its
oracles. Written out, we have:
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Expblind
A,BS(κ):

1: b←R {0, 1}
2: (pk,m0,m1, stA)←R A(1κ)
3: BG← BGGenR(1κ)
4: r0, s0, u0, v0←R Zp
5: r1, s1, u1, v1←R Zp
6: M0 ← (s0(m0P + r0u0v0P ), s0r0P, s0u0v0P, s0P )
7: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
8: (πb, stA)←R A(stA,Mb)
9: (π1−b, stA)←R A(stA,M1−b)

10: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then b∗←R A(stA,⊥,⊥)
11: else
12: (N0, σ0)←R ChgRepR(M0, π0,

1
s0
, pk)

13: (N1, σ1)←R ChgRepR(M1, π1,
1
s1
, pk)

14: b∗←R A
(
stA, (σ0, r0u0v0P, u0v0P, r0P, u0P, r0u0P, u0P̂ , v0P̂ ),

(σ1, r1u1v1P, u1v1P, r1P, u1P, r1u1P, u1P̂ , v1P̂ )
)

15: end if
16: return (b∗ = b)

We have slightly modified the game, in that (for i = 0, 1) we allowed ri, si, ui, vi to also take
the value 0 and be such that mi + riuivi = 0. However, these events only happen with negligible
probability (thus if the original game returned 1 with probability one half plus non-negligible then
this is still the case in the above game). We now distinguish two cases, depending on whether the
adversary returns an invalid π0 or an invalid π1, or whether they are both valid.

Case I: A Returns an Invalid Signature

Consider the following game, where if the adversary returns two valid signatures then the exper-
iment outputs a random bit:

Exp
blind-(I)
A, BS (κ):

1: b←R {0, 1}
2: (pk,m0,m1, stA)←R A(1κ)
3: BG← BGGenR(1κ)
4: r0, s0, u0, v0←R Zp
5: r1, s1, u1, v1←R Zp
6: M0 ← (s0(m0P + r0u0v0P ), s0r0P, s0u0v0P, s0P )
7: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
8: (πb, stA)←R A(stA,Mb)
9: (π1−b, stA)←R A(stA,M1−b)

10: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then
11: b∗←R A(stA,⊥,⊥)
12: return (b∗ = b)
13: else return b′←R {0, 1}
14: end if

We now define another variant Expblind-(I)-(0), where we replace line 6 in Expblind-(I) with the
following line:

t0, w0, z0←R Zp ; M0 ← (s0m0P + z0P, t0P,w0P, s0P ) .
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Claim 1. If ABDDH+ holds for BGGen then for all PPT A we have:
∣∣Pr[Exp

blind-(I)
A,BS = 1] −

Pr[Exp
blind-(I)-(0)
A,BS = 1]

∣∣ is negligible.

Proof. Assume that for some adversary A, the probability of the two experiments outputting 1
is non-negligibly different. Then we can construct an adversary B that can distinguish D1 from
D2 in Lemma 2, that is, decide whether (T,W,Z) = (srP, suvP, sruvP ) or whether it is random.

Reduction B
(
BG, sP, rP, uP, ruP, uvP, ruvP, uP̂ , vP̂ , T,W,Z

)
:

1: b←R {0, 1}
2: (pk,m0,m1, stA)←R A(BG)
3: r1, s1, u1, v1←R Zp
4: M0 ← (m0(sP ) + Z, T,W, (sP ))
5: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
6: (πb, stA)←R A(stA,Mb)
7: (π1−b, stA)←R A(stA,M1−b)
8: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then
9: b∗←R A(stA,⊥,⊥)

10: return (b∗ = b)
11: else return b′←R {0, 1}
12: end if

It is immediate that if (T,W,Z) = (srP, suvP, sruvP ) then B simulates Expblind-(I), while if
(T,W,Z) is random in G3

1 then B simulates Expblind-(I)-(0). ut

We next define a further game Expblind-(I)-(1), where in Expblind-(I) we additionally replace
line 7 by

t1, w1, z1←R Zp ; M1 ← (s1m1P + z1P, t1P,w1P, s1P ) .

By an argument analogous to the proof of Claim 1, we have:

Claim 2. If ABDDH+ holds for BGGen then for all PPT A we have:
∣∣Pr[Exp

blind-(I)-(0)
A,BS = 1]−

Pr[Exp
blind-(I)-(1)
A,BS = 1]

∣∣ is negligible.

Now in Expblind-(I)-(1) the elements z0 and z1 perfectly hide m0 and m1, meaning the bit b is

information-theoretically hidden from A; thus Pr[Exp
blind-(I)-(1)
A,BS (κ) = 1] = 1

2 . Lemma 2, Claims 1

and 2 together yield: If ABDDH+ holds then for all PPT A:

Pr[Exp
blind-(I)
A,BS (κ) = 1] ≤ 1

2 + ν(I)(κ) for some negligible ν(I)(·) . (6)

Case II: A Returns Two Valid Signatures

We now consider the “dual” game of Expblind-(I), where we output a random bit if the adversary
does not return two valid signatures (see below). We show that if D1 and D2 from Lemma 2 are
indistinguishable then game Expblind-(II) cannot be won with a non-negligible advantage. To do

so, we define a series of intermediate games Exp
blind-(II)-(i)
A,BS for i = 0, 1, 2, 3. These intermediate

games involve multiple rewindings of the adversary A.
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Exp
blind-(II)
A,BS (κ)

1: BG← BGGenR(1κ)
2: (pk,m0,m1, stA)←R A(BG)
3: r0, u0, v0←R Zp, r1, u1, v1←R Zp
4: (?) s0, s1←R Zp ; b←R {0, 1}
5: M0 ← (s0(m0P + r0u0v0P ), s0r0P, s0u0v0P, s0P )
6: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
7: (πb, stA)←R A(stA,Mb)
8: (π1−b, stA)←R A(stA,M1−b)
9: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then return b′←R {0, 1} . Aborting run

10: else
11: (N0, σ0)←R ChgRepR(M0, π0,

1
s0
, pk)

12: (N1, σ1)←R ChgRepR(M1, π1,
1
s1
, pk)

13: b∗←R A
(
stA, (σ0, r0u0v0P, u0v0P, r0P, u0P, r0u0P, u0P̂ , v0P̂ ),

(σ1, r1u1v1P, u1v1P, r1P, u1P, r1u1P, u1P̂ , v1P̂ )
)

14: return (b∗ = b)
15: end if

Game Exp
blind-(II)-(0)
A,BS . The description of this game is given below; it consists of λ + 1 runs

of the adversary A forked from the point (?) in Expblind-(II). A particular run is considered to
be “non-aborting” if both the signatures that A generates (viz., (Mi, πi) for i = 0, 1) are valid. If
there exists a non-aborting run among the first λ runs, we run the adversary for one final time. We
relate the probability of success of the forking to that of the underlying experiment Expblind-(II).

Exp
blind-(II)-(0)
A,BS (κ, λ)

1: BG← BGGenR(1κ)
2: (pk,m0,m1, stA)←R A(BG)
3: r0, u0, v0←R Zp, r1, u1, v1←R Zp
4: for j = 1, . . . , λ: do . Run λ times from ?
5: s

(j)
0 , s

(j)
1 ←

R Zp ; b
(j)←R {0, 1}

6: M
(j)
0 ← (s

(j)
0 (m0P + r0u0v0P ), s

(j)
0 r0P, s

(j)
0 u0v0P, s

(j)
0 P )

7: M
(j)
1 ← (s

(j)
1 (m1P + r1u1v1P ), s

(j)
1 r1P, s

(j)
1 u1v1P, s

(j)
1 P )

8: (π
(j)

b(j)
, st

(j)
A )←R A(stA,M

(j)

b(j)
); (π

(j)

1−b(j) , st
(j)
A )←R A(st

(j)
A ,M

(j)

1−b(j))

9: if VerifyR(M
(j)
0 , π

(j)
0 , pk) = 0 or VerifyR(M

(j)
1 , π

(j)
1 , pk) = 0 then a(j) ← ⊥ . Event At

10: end if
11: end for
12: if ∃j ∈ [λ] : (a(j) 6= ⊥) then . Event ¬(A1 ∧ . . . ∧Aλ)
13: s0, s1←R Zp ; b ←R {0, 1} . Final run
14: M0 ← (s0(m0P + r0u0v0P ), s0r0P, s0u0v0P, s0P )
15: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
16: (πb, stA)←R A(stA,Mb); (π1−b, stA)←R A(stA,M1−b)
17: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then return b′←R {0, 1} . Event A
18: else
19: (N0, σ0)←R ChgRepR(M0, π0,

1
s0
, pk)

20: (N1, σ1)←R ChgRepR(M1, π1,
1
s1
, pk)

21: b∗←R A
(
stA, (σ0, r0u0v0P, u0v0P, r0P, u0P, r0u0P, u0P̂ , v0P̂ ),

(σ1, r1u1v1P, u1v1P, r1P, u1P, r1u1P, u1P̂ , v1P̂ )
)

22: b′ ← (b∗ = b)
23: end if
24: else return b′←R {0, 1} . Event A1 ∧ . . . ∧Aλ
25: end if
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We now relate the probability that this game outputs 1 to the probability that the game
without rewinding outputs 1.

Claim 3. There exists a function λ such that the following holds. If Pr[Exp
blind-(II)
A,BS (κ) = 1] ≥

1
2 + ϕ(κ) for a non-negligible function ϕ(·) then Pr[Exp

blind-(II)-(0)
A,BS (κ, λ(κ)) = 1] ≥ 1

2 + ψ(κ)

for a non-negligible function ψ(·). Moreover, if Exp
blind-(II)
A,BS (·) is polynomial-time then so is

Exp
blind-(II)-(0)
A,BS (·, λ(·)).

Proof. Consider the random coins used in the experiment Exp
blind-(II)
A,BS . Let X denote the coins

it uses before the point (?); that is, X consists of the internal coins of A (before (?)) and
((r0, u0, v0), (r1, u1, v1)). Similarly, Y denotes the coins used after (?): the internal coins of A
(after (?)), coins used in ChgRepR and (s0, s1), b. Moreover, let A (for “abort”) be the set of coins
(X,Y ) which lead to π0 or π1 being invalid and let W (“winning”) be the set of coins where π0

and π1 are valid and b∗ = b, that is, the final output is 1. Let X and Y be the (efficient) sampling

algorithms for X and Y . Exp
blind-(II)-(0)
A,BS can be abstracted to the following forking experiment:

Expfork(X ,Y, κ, λ)

X←R X , Y, Y1 . . . Yλ←R Y
if ∀i : (X,Yi) ∈ A then return b←R {0, 1} . Event A1 ∧ . . . ∧Aλ
else

if (X,Y ) ∈ A then return b←R {0, 1} . Event A
else if (X,Y ) ∈W then return 1 . Event W
else return 0
end if

end if

From the assumption made in the claim, we have

1

2
Pr[A] + Pr[W ] ≥ 1

2
+ ϕ , (7)

Since by assumption ϕ is non-negligible, there exists a polynomial p such that for infinitely
many κ:

ϕ(κ) ≥ 1

p(κ)
, (8)

Let 1/2 +ψ denote the probability with which 1 is output in experiment Expfork—and hence

in Exp
blind-(II)-(0)
A,BS . Our goal is to show that ψ is a non-negligible function of ϕ—to be precise, we

show that ψ ≥ ϕ/2 up to a negligible term. From the definition of Expfork we have

1

2
+ ψ =

1

2
Pr[A1 ∧ . . . ∧Aλ]︸ ︷︷ ︸

= Pr[(A1∧...∧Aλ)∧A] + Pr[(A1∧...∧Aλ)∧Ā]

+
1

2
Pr[¬(A1 ∧ . . . ∧Aλ) ∧A] + Pr[¬(A1 ∧ . . . ∧Aλ) ∧W ]

=
1

2
Pr[A] +

1

2
Pr[Ā ∧ (A1 ∧ . . . ∧Aλ)] + Pr[W ∧ ¬(A1 ∧ . . . ∧Aλ)]

≥ 1

2
Pr[A] + Pr[W ∧ ¬(A1 ∧ . . . ∧Aλ)] . (9)

Next, we follow the line of argument similar to that in [LW14]. Let U ⊆ W denote the subset of
winning coins for which the probability of aborting when rewinding is below some threshold ρ,
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which we set later; that is

U := {(X,Y ) ∈W : Pr
Y ′

R←−Y
[(X,Y ′) ∈ A] < ρ} . (10)

It is possible to upper bound the size of the set W \U , in a similar vein to the heavy-row lemma
[OO98].

Claim. Pr[W \ U ] < ρ.

Proof. Let P (X) := Pr[(X,Y ) ∈ Ā], where the probability is over the choice of Y ←R Y. Similarly,
let P ′(X) := Pr[(X,Y ) ∈W ]; note that P ′(X) ≤ P (X) since W ⊆ Ā. By definition,

Pr[W \ U ] =
∑

X:P ′(X)<ρ

Pr[X] · P ′(X) ≤
∑

X:P (X)<ρ

Pr[X] · P (X) ≤ ρ ·
∑

X:P (X)<ρ

Pr[X] < ρ ut

Now, we re-write (9) in terms of U :

1

2
+ ψ ≥ 1

2
Pr[A] + Pr[U ∧ ¬(A1 ∧ . . . ∧Aλ)] (As U ⊆W )

=
1

2
Pr[A] + Pr[U ] · (1− Pr[A1 ∧ . . . ∧Aλ|U ])

=
1

2
Pr[A] + Pr[U ] · (1−Πi∈[λ] Pr[Ai|U ]) (By independence of Ai’s on fixing X)

≥ 1

2
Pr[A] + Pr[U ]− Pr[U ] · (1− ρ)λ (By definition of U ; see (10))

=
1

2
Pr[A] + Pr[W ]− Pr[W \ U ]− Pr[U ] · (1− ρ)λ

≥ 1

2
+ ϕ− ρ− (1− ρ)λ. (By (7) and the bounds Pr[W \ U ] < ρ,Pr[U ] ≤ 1) (11)

For the rest of the analysis, let κ be an arbitrary value (of infinitely many) that satisfies (8).
We thus have

ψ(κ) ≥ 1

p(κ)
− ρ− (1− ρ)λ .

Setting ρ = 1
4p(κ) and λ = κ · p(κ), we have

ψ(κ) ≥ 3

4p(κ)
−
(

1− 1

4p(κ)

)κ·p(κ)
=

3

4p(κ)
−
( (

1− 1

4p(κ)

)4p(κ)

︸ ︷︷ ︸
≤1/e

)κ/4
≥ 3

4p(κ)
− 1

eκ/4
,

where the last term is greater than 1
2p(κ) for infinitely many κ. This shows that ψ(·) is a non-

negligible function, which proves the first statement of the claim. The second statement is also

satisfied, as λ(κ) = κ · p(κ) is a polynomial, and thus Exp
blind-(II)-(0)
A,BS (·, λ(·)) runs in polynomial

time if Exp
blind-(II)
A,BS (·) does. ut

We move now to the next intermediate game.

Game Exp
blind-(II)-(1)
A,BS . We now modify lines 19 and 20 in game Exp

blind-(II)-(0)
A,BS to the follow-

ing:

(N0, σ0)←R ChgRepR(M
(j∗)
0 , π

(j∗)
0 , 1

s
(j∗)
0

, pk)

(N1, σ1)←R ChgRepR(M
(j∗)
1 , π

(j∗)
1 , 1

s
(j∗)
1

, pk) .
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That is, we use the signatures π
(j∗)
0 , π

(j∗)
1 from one of the (arbitrarily chosen) non-aborting runs

j∗, adapt them to signatures on Ni and give them to A as part of our blind signatures in the final

run. We now argue that the probability of games Exp
blind-(II)-(0)
A,BS and Exp

blind-(II)-(1)
A,BS outputting

1 is the same. For i = 0, 1 we have the following. Since

VerifyR
(
s

(j∗)
i · (miP + riuiviP, riP, uiviP, P ), π

(j∗)
i , pk

)
= 1 and

VerifyR
(
si · (miP + riuiviP, riP, uiviP, P ), πi, pk

)
= 1 ,

the tuple
(
pk, (miP + riuiviP, riP, uiviP, P ), s

(j∗)
i , si, π

(j∗)
i , πi

)
satisfies the premise of Corollary 1

and therefore the outputs σ
(j∗)
i of ChgRepR(M

(j∗)
i , π

(j∗)
i , 1

s
(j∗)
i

, pk) and σi of ChgRepR(Mi, πi,
1
si
, pk)

are identically distributed—hence so are Exp
blind-(II)-(0)
A,BS and Exp

blind-(II)-(1)
A,BS . Let us write down

Exp
blind-(II)-(1)
A,BS :

Exp
blind-(II)-(1)
A,BS (κ, λ)

1: BG← BGGenR(1κ)
2: (pk,m0,m1, stA)←R A(BG)
3: r0, u0, v0←R Zp, r1, u1, v1←R Zp
4: for j = 1, . . . , λ: do . Run λ times from ?
5: s

(j)
0 , s

(j)
1 ←

R Zp ; b
(j)←R {0, 1}

6: M
(j)
0 ← (s

(j)
0 (m0P + r0u0v0P ), s

(j)
0 r0P, s

(j)
0 u0v0P, s

(j)
0 P )

7: M
(j)
1 ← (s

(j)
1 (m1P + r1u1v1P ), s

(j)
1 r1P, s

(j)
1 u1v1P, s

(j)
1 P )

8: (π
(j)

b(j)
, st

(j)
A )←R A(stA,M

(j)

b(j)
)

9: (π
(j)

1−b(j) , st
(j)
A )←R A(st

(j)
A ,M

(j)

1−b(j))

10: if VerifyR(M
(j)
0 , π

(j)
0 , pk) = 0 or VerifyR(M

(j)
1 , π

(j)
1 , pk) = 0 then a(j) ← ⊥ . Event At

11: end if
12: end for
13: if ∃j ∈ [λ] : (a(j) 6= ⊥) then . Event ¬(A1 ∧ . . . ∧Aλ)
14: Pick (arbitrarily) j∗ ∈ [λ] such that a(j

∗) 6= ⊥
15: s0, s1←R Zp ; b ←R {0, 1} . Final run
16: M0 ← (s0(m0P + r0u0v0P ), s0r0P, s0u0v0P, s0P )
17: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
18: (πb, stA)←R A(stA,Mb)
19: (π1−b, stA)←R A(stA,M1−b)
20: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then return b′←R {0, 1} . Event A
21: else
22: (N0, σ0)←R ChgRepR(M

(j∗)
0 , π

(j∗)
0 , 1

s
(j∗)
0

, pk)

23: (N1, σ1)←R ChgRepR(M
(j∗)
1 , π

(j∗)
1 , 1

s
(j∗)
1

, pk)

24: b∗←R A
(
stA, (σ0, r0u0v0P, u0v0P, r0P, u0P, r0u0P, u0P̂ , v0P̂ ),

(σ1, r1u1v1P, u1v1P, r1P, u1P, r1u1P, u1P̂ , v1P̂ )
)

25: b′ ← (b∗ = b)
26: end if
27: else return b′←R {0, 1} . Event A1 ∧ . . . ∧Aλ
28: end if

Game Exp
blind-(II)-(2)
A,BS . We define the next intermediate game by replacing line 16 in experi-

ment Exp
blind-(II)-(1)
A,BS with the following

t0, w0, z0←R Zp ; M0 ← (s0m0P + z0P, t0P,w0P, s0P ) (12)
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That is, in the definition of M0 we replaced the values s0r0u0v0 as well as s0u0v0 and s0r0 with
a random elements z0, w0 and t0.

Claim 4. If ABDDH+ holds for BGGen then Expblind-(II)-(1) and Expblind-(II)-(2) are indistin-
guishable.

Proof. Assume that the probability that (b∗ = b) is noticeably different in games Exp
blind-(II)-(1)
A,BS

and Exp
blind-(II)-(2)
A,BS . Then we construct an adversary B that can distinguish D1 from D2 in

Lemma 2, which is impossible under ABDDH+. Given an instance with randomness (r, s, u, v)
and challenge (T,W,Z), B implicitly sets r0 ← r, u0 ← u, v0 ← v and s0 ← s and simulates

Exp
blind-(II)-(1)
A,BS setting s0r0u0v0P ← Z and s0u0v0P ←W and s0r0P ← T .

Reduction B
(
BG, sP, rP, uP, ruP, uvP, ruvP, uP̂ , vP̂ , T,W,Z

)
1: (pk,m0,m1, stA)←R A(BG)
2: r0 ← r, u0 ← u, v0 ← v (implicitly), r1, u1, v1←R Zp
3: for j = 1, . . . , λ: do . Run λ times from ?
4: s

(j)
0 , s

(j)
1 ←

R Zp ; b
(j)←R {0, 1}

5: M
(j)
0 ← (s

(j)
0 (m0P + r0u0v0P ), s

(j)
0 r0P, s

(j)
0 u0v0P, s

(j)
0 P )

6: M
(j)
1 ← (s

(j)
1 (m1P + r1u1v1P ), s

(j)
1 r1P, s

(j)
1 u1v1P, s

(j)
1 P )

7: (π
(j)

b(j)
, st

(j)
A )←R A(stA,M

(j)

b(j)
)

8: (π
(j)

1−b(j) , st
(j)
A )←R A(st

(j)
A ,M

(j)

1−b(j))

9: if VerifyR(M
(j)
0 , π

(j)
0 , pk) = 0 or VerifyR(M

(j)
1 , π

(j)
1 , pk) = 0 then a(j) ← ⊥ . Event At

10: end if
11: end for
12: if ∃j ∈ [λ] : (a(j) 6= ⊥) then . Event ¬(A1 ∧ . . . ∧Aλ)
13: Pick (arbitrarily) j∗ ∈ [λ] such that a(j

∗) 6= ⊥
14: s0 ← s (implicitly), s1←R Zp ; b ←R {0, 1} . Final run
15: M0 ← (m0(s0P ) + Z, T,W, s0P )
16: M1 ← (s1(m1P + r1u1v1P ), s1r1P, s1u1v1P, s1P )
17: (πb, stA)←R A(stA,Mb)
18: (π1−b, stA)←R A(stA,M1−b)
19: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then return b′←R {0, 1} . Event A
20: else
21: (N0, σ0)←R ChgRepR(M

(j∗)
0 , π

(j∗)
0 , 1

s
(j∗)
0

, pk)

22: (N1, σ1)←R ChgRepR(M
(j∗)
1 , π

(j∗)
1 , 1

s
(j∗)
1

, pk)

23: b∗←R A
(
stA, (σ0, r0u0v0P, u0v0P, r0P, u0P, r0u0P, u0P̂ , v0P̂ ),

(σ1, r1u1v1P, u1v1P, r1P, u1P, r1u1P, u1P̂ , v1P̂ )
)

24: b′ ← (b∗ = b)
25: end if
26: else return b′←R {0, 1} . Event A1 ∧ . . . ∧Aλ
27: end if

The probability that B outputs 1 when T = rsP , W = suvP and Z = rsuvP is the probability

that Exp
blind-(II)-(1)
A,BS outputs 1; and the probability that B outputs 1 when given random T , W ,

and Z is the probability that Exp
blind-(II)-(2)
A,BS outputs 1. ut

Game Exp
blind-(II)-(3)
A,BS . In the final game, we replace line 17 of Exp

blind-(II)-(1)
A,BS with random

values as well: s1r1u1v1, s1u1v1 and s1r1 in the definition of M1 are replaced with z1, w1 and t1.

t0, w0, z0←R Zp ; M0 ← (s0m0P + z0P, t0P,w0P, s0P )

t1, w1, z1←R Zp ; M1 ← (s1m1P + z1P, t1P,w1P, s1P )
(13)
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Claim 5. If ABDDH+ holds for BGGen then Exp
blind-(II)-(2)
A,BS and Exp

blind-(II)-(3)
A,BS are indistin-

guishable.

The proof to the claim is analogous to that of Claim 4: we construct an adversary B which
implicitly sets s1, r1, u1, v1 to the values from a challenge. We omit the details.

Perfect hiding. Finally, let us consider Exp
blind-(II)-(3)
A,BS (detailed below). We now see that for

i = 0, 1, since si, ti, wi and zi are uniformly random and used nowhere other than in the definition
of Mi, the latter is a uniform random element from G4

1. Since b is only used to determine the order
in which M0 and M1 (which are both random elements) are sent to A, the bit b is information-
theoretically hidden. We thus have that the probability that (b∗ = b) in the game is exactly 1

2 .
Combining this with Claims 3, 4 and 5, we have that if ABDDH+ holds for BGGen then for all
PPT A:

Pr[Exp
blind-(II)
A,BS (κ) = 1] ≤ 1

2 + ν(II)(κ) for some negligible ν(II)(·) . (14)

Exp
blind-(II)-(3)
A,BS (κ, λ)

1: BG← BGGenR(1κ)
2: (pk,m0,m1, stA)←R A(BG)
3: r0, u0, v0←R Zp, r1, u1, v1←R Zp
4: for j = 1, . . . , λ: do . Run λ times from ?
5: s

(j)
0 , s

(j)
1 ←

R Zp ; b
(j)←R {0, 1}

6: M
(j)
0 ← (s

(j)
0 (m0P + r0u0v0P ), s

(j)
0 r0P, s

(j)
0 u0v0P, s

(j)
0 P )

7: M
(j)
1 ← (s

(j)
1 (m1P + r1u1v1P ), s

(j)
1 r1P, s

(j)
1 u1v1P, s

(j)
1 P )

8: (π
(j)

b(j)
, st

(j)
A )←R A(stA,M

(j)

b(j)
)

9: (π
(j)

1−b(j) , st
(j)
A )←R A(st

(j)
A ,M

(j)

1−b(j))

10: if VerifyR(M
(j)
0 , π

(j)
0 , pk) = 0 or VerifyR(M

(j)
1 , π

(j)
1 , pk) = 0 then a(j) ← ⊥ . Event At

11: end if
12: end for
13: if ∃j ∈ [λ] : (a(j) 6= ⊥) then . Event ¬(A1 ∧ . . . ∧Aλ)
14: Pick (arbitrarily) j∗ ∈ [λ] such that a(j

∗) 6= ⊥
15: s0, s1←R Zp ; b ←R {0, 1} . Final run
16: t0, w0, z0←R Zp, M0 ← (s0m0P + z0P, t0P,w0P, s0P )
17: t1, w1, z1←R Zp, M1 ← (s1m1P + z1P, t1P,w1P, s1P )
18: (πb, stA)←R A(stA,Mb)
19: (π1−b, stA)←R A(stA,M1−b)
20: if VerifyR(M0, π0, pk) = 0 or VerifyR(M1, π1, pk) = 0 then return b′←R {0, 1} . Event A
21: else
22: (N0, σ0)←R ChgRepR(M

(j∗)
0 , π

(j∗)
0 , 1

s
(j∗)
0

, pk)

23: (N1, σ1)←R ChgRepR(M
(j∗)
1 , π

(j∗)
1 , 1

s
(j∗)
1

, pk)

24: b∗←R A
(
stA, (σ0, r0u0v0P, u0v0P, r0P, u0P, r0u0P, u0P̂ , v0P̂ ),

(σ1, r1u1v1P, u1v1P, r1P, u1P, r1u1P, u1P̂ , v1P̂ )
)

25: b′ ← (b∗ = b)
26: end if
27: else return b′←R {0, 1} . Event A1 ∧ . . . ∧Aλ
28: end if

Bringing It All Together

Consider an adversary A in the original blindness game Expblind
A,BS. We let E(I) denote the event

that A outputs at least one invalid signature and E(II) denote its complement, that is, both π0
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and π1 are valid. By (6) we have

1
2 + ν(I)(κ) ≥ Pr[Exp

blind-(I)
A,BS (κ) = 1] = Pr[E(I)] Pr[Exp

blind-(I)
A,BS (κ) = 1 |E(I)]

+ Pr[E(II)] Pr[Exp
blind-(I)
A,BS (κ) = 1 |E(II)] .

Conditioned on E(I), Expblind-(I) is the same as Expblind, and conditioned on E(II), the probability
that Expblind-(I) outputs 1 is 1

2 . We therefore get:

Pr[E(I)] Pr[Expblind
A,BS(κ) = 1 |E(I)] ≤ 1

2 −
1
2 Pr[E(II)] + ν(I)(κ) . (15)

Completely analogously we get from (14):

Pr[E(II)] Pr[Expblind
A,BS(κ) = 1 |E(II)] ≤ 1

2 −
1
2 Pr[E(I)] + ν(II)(κ) . (16)

Adding Equations (15) and (16), we obtain

Pr[Expblind
A,BS(κ) = 1] ≤ 1− 1

2

(
Pr[E(I)] + Pr[E(II)]

)
+ ν(I)(κ) + ν(II)(κ)

= 1
2 + ν(κ) ,

where ν(κ) ← ν(I)(κ) + ν(II)(κ) is a negligible function. We have thus proved that BS satisfies
blindness. ut

B.1 On the value of λ

We show that the value of λ cannot be 1 in Claim 3 (as was the case in the proof of the FHS

scheme [FHS15]). In this case, the probability of success of the forking experiment Exp
blind-(II)-(0)
A,BS

is
1

2
Pr[A1] +

1

2
Pr[¬A1 ∧A] + Pr[¬A1 ∧W ].

Now consider experiment carried out on the probability spaces described in Figure 3. Figure 3a
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+ ϕ 2
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2
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1
6
− ϕ1

6
− ϕ
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2

1
2

(a) The tipping point
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0.9
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6

0.9
6
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6
− ϕ

1
2

1
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(b) A counter-example

W

A

V

W

ϕ 4
6

2
6
− ϕ

(c) The worst case

Fig. 3: The structure of the probability space for counter-examples for λ = 1. The x and y axes
represent the measures of the spaces X and Y, respectively. The set of winning coins (W ) is
shaded in green, the aborting ones (A) in blue, whereas the rest (V ) is in red.

shows a probability space for which the lower bound just about holds; tipping this probability
space by a bit yields a counter-example: Figure 3b; Figure 3c shows the worst counter-example
that we could come up with (using the same approach). Amplification, using rewinding and
repeated executions, was a means for bypassing these counter-examples. The calculations of the
success probability are detailed below.
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1. The tipping point: 1
2 ·

1
3 + 1

2 · 2 · (
2
6 ·

1
2 ·

1
2) + (2

6 ·
1
2 ·

1
2 + 1

6 + ϕ) = 6
12 + ϕ

2. A counter example: 1
2 ·

1
3 + 1

2 · (
2.2
6 ·

1
2 ·

1
2 + 1.8

6 ·
1
2 ·

1
2) + (2.2

6 ·
1
2 ·

1
2 + 0.9

6 + ϕ) = 5.9
12 + ϕ

3. The worst case: 1
2 ·

1
3 + 1

2 · (
4
6 ·

1
2 ·

1
2) + (ϕ+ 4

6 ·
1
2 ·

1
2) = 5

12 + ϕ.

C Proof of Assumption 4

Proof. Let A be a generic PPT adversary and let σ : G1 → {0, 1}m1 , σ̂ : G2 → {0, 1}m2 and
τ : GT → {0, 1}mT be random encoding functions with w.l.o.g. m1 < m2 < mT . A cannot
work directly with group elements, but is forced to work with their image under σ, σ̂ and τ .
Furthermore, A is given oracle access to perform generic bilinear group operations (operations
in G1, G2 and GT and pairings). Since A is given access to the group element encodings, it can
perform equality checks on its own through string equality tests. At last, we require that A can
only submit already queried encodings to the group oracles. (Note that we can enforce this by
choosing m1,m2 and mT large enough making the probability of guessing bitstrings in the image
of σ, σ̂ and τ , respectively, negligible.)

Now, let B be an algorithm interacting with A as follows. B picks a random bit b, picks
σ0, σ1, σ2, σ3, σ4←R {0, 1}m1 as encodings of G1 elements and assigns them to the polynomials
1, R, U, UV, (1−b)T+b ·RUV . Likewise, B picks σ̂0, σ̂2, σ̂5←R {0, 1}m2 as encodings of G2 elements
and assigns them to the polynomials 1, U, V .
B stores (1, σ0), (R, σ1), (U, σ2), (UV, σ3), ((1−b)T+b·RUV, σ4) in a list L1 and (1, σ̂0), (U, σ̂2),

(V, σ̂5) in a list L2 and gives the respective encodings to A. Furthermore, it initializes a list LT
to manage elements of GT .

Then, B simulates the group oracles as follows.

Group action in G1: Given two bitstrings σ, σ′ representing elements in G1, B recovers the
corresponding polynomials f, f ′ ∈ Zp[R, T, U, V ] and computes f + f ′. In case L1 already
contains f +f ′, B returns its associated bitstring. Otherwise, B chooses σ←R {0, 1}m1 , returns
σ and stores (f + f ′, σ) in L1.

Inversion in G1: Given a bitstring σ representing an element in G1, B recovers the correspond-
ing values f ∈ Zp[R, T, U, V ] and computes −f . In case L1 already contains −f , B returns its
associated bitstring. Otherwise, B chooses σ′←R {0, 1}m1 , returns σ′ and stores (−f, σ′) in L1.

Group action in G2: Given two bitstrings σ̂, σ̂′ representing elements in G2, B recovers the
corresponding values f̂ , f̂ ′ ∈ Zp[U, V ] and computes f̂ + f̂ ′. In case L2 already contains f̂ + f̂ ′,
B returns its associated bitstring σ̂. Otherwise, B chooses σ̂←R {0, 1}m2 , returns σ̂ and stores
(f̂ + f̂ ′, σ̂) in L2.

Inversion in G2: Given a bitstring σ̂ representing an element in G2, B recovers the correspond-
ing values f̂ ∈ Zp[U, V ] and computes −f̂ . In case L2 already contains −f̂ , B returns its

associated bitstring σ̂′. Otherwise, B chooses σ̂′←R {0, 1}m2 , returns σ̂′ and stores (−f̂ , σ̂′) in
L2.

Pairing: Given two bitstrings σ, σ̂ representing elements in G1 and G2, B recovers the corre-
sponding values f ∈ Zp[R, T, U, V ] from L1 and f̂ ∈ Zp[U, V ] from L2. In case LT already

contains f · f̂ ∈ Zp[R, T, U, V ], B returns its associated bitstring τ . Otherwise, B chooses

τ ←R {0, 1}mT , returns τ and stores (f · f̂ , τ) in LT .

The group action and inversion oracles for GT are simulated analogously to those for G1

and G2. Observe that the simulation of all oracles is consistent and thus perfect.
When A has finished querying the group oracles, A outputs a bit b∗. Then, B chooses

r, t, u, v←R Zp and substitutes the formal variables by setting R← r, T ← t, U ← u, V ← v.
We now prove the following: (1) if the simulation before the substitution was consistent, no

information about b was revealed and hence A can only guess b with probability 1/2 and (2) the
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probability for the simulation to be inconsistent after the substitution (i.e., if two distinct poly-
nomials in L1, L2 or LT evaluate to the same value after choosing concrete values for R, T, U, V )
is negligible.

For (1) we need to prove that such a collision in L1, L2 and LT cannot be caused by A itself:
The polynomials contained in L1 consist of terms in 1, R, U, UV and, additionally, of

– terms in T iff b = 0;
– terms in RUV iff b = 1.

The G1 group oracles do not change the degree of input polynomials and, thus, do not allow A
to form polynomials containing term RUV out of lower-degree polynomials. Therefore, A cannot
purposely produce collisions in L1 that reveal bit b.

The substitutions in the formal variables in list L2 are independent and moreover independent
of the choice of b and so A cannot purposely produce collisions in L2 that reveal bit b.

The polynomials contained in LT arise from the multiplication of polynomials in L1 (hav-
ing terms in 1, R, U, UV, (1 − b)T + bRUV ) and L2 (having terms in 1, U, V ) using the pairing
oracle. The substitutions in the formal variables in list LT give polynomials having terms in
1, U, V,R,RU,RV,U2, UV, U2V,UV 2 and, additionally having terms in

– T (using T ∈ L1 and 1 ∈ L2), TU (using T ∈ L1 and U ∈ L2) and TV (using T ∈ L1 and
V ∈ L2) – only if b = 0;

– (i) RUV (using RUV ∈ L1 and 1 ∈ L2),
(ii) RU2V = RUV · U (using RUV ∈ L1 and U ∈ L2), and
(iii) RUV 2 = RUV · V (using RUV ∈ L1 and V ∈ L2),

– only if b = 1.

As in the other cases, the GT group oracles do not allow any further increase of polynomial
degrees and the pairing oracle does not allow any further multiplicative combination of terms.
Thus, A cannot purposely produce collisions in LT that reveal b, i.e., forming polynomials in
RUV out of lower-degree terms other than described in (i); polynomials in RU2V out of lower-
degree terms other than described in (ii); and polynomials in RUV 2 out of lower-degree terms
other than described in (iii).

What remains to be shown is (2) that the probability of a collision due to the concrete choice
of values r, s, t, u is negligible, i.e., that two distinct polynomials in L1, L2 and LT accidentally
evaluate to the same value after the substitution (or alternatively that their difference polynomial
evaluates to 0). Suppose that A has issued q queries to the group oracles. Let |L1| = O(q),
|L2| = O(q) and |LT | = O(q), then there are O(

(
q
2

)
) possibilities of colliding polynomials. Then,

by the Schwartz-Zippel lemma and the collision argument, the probability of such an error in

the simulation of the generic bilinear group is O( q
2

p ) and is therefore negligible in the security
parameter. ut
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