
Anonymous Attestation Using the Strong Diffie
Hellman Assumption Revisited ?

Jan Camenisch1, Manu Drijvers1,2, and Anja Lehmann1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,anj}@zurich.ibm.com

2 Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

Abstract. Direct Anonymous Attestation (DAA) is a cryptographic
protocol for privacy-protecting authentication. It is standardized in the
TPM standard and implemented in millions of chips. A variant of DAA is
also used in Intel’s SGX. Recently, Camenisch et al. (PKC 2016) demon-
strated that existing security models for DAA do not correctly capture all
security requirements, and showed a number of flaws in existing schemes
based on the LRSW assumption.

In this work, we identify flaws in security proofs of a number of qSDH-
based DAA schemes and point out that none of the proposed schemes
can be proven secure in the recent model by Camenisch et al. (PKC
2016). We therefore present a new, provably secure DAA scheme that is
based on the qSDH assumption. The new scheme is as efficient as the
most efficient existing DAA scheme, with support for DAA extensions
to signature-based revocation and attributes. We rigorously prove the
scheme secure in the model of Camenisch et al., which we modify to
support the extensions.

As a side-result of independent interest, we prove that the BBS+ sig-
nature scheme is secure in the type-3 pairing setting, allowing for our
scheme to be used with the most efficient pairing-friendly curves.

1 Introduction

Direct anonymous attestation (DAA) is a cryptographic authentication protocol
that lets a platform, consisting of a secure element and a host, create anony-
mous attestations. These attestations are signatures on messages and convince a
verifier that the message was signed by a authorized secure element, while pre-
serving the privacy of the platform. DAA was designed for the Trusted Platform
Module (TPM) by Brickell, Camenisch, and Chen [9] and was standardized in
the TPM 1.2 specification in 2004 [34]. Their paper inspired a large body of
work on DAA schemes [4,10,11,13,16,22–24,26], including more efficient scheme
using bilinear pairings as well as different security definitions and proofs. One
result of these works is the recent TPM 2.0 specification [31, 35] that includes

? An extended abstract of this work was published at TRUST 2016 [15]. This is the full
version. This work has been supported by the ERC under Grant PERCY #321310.

support for multiple pairing-based DAA schemes, two of which are standardized
by ISO [30].

DAA is widely used in the area of trusted computing. Over 500 million TPMs
have been sold3, making DAA probably the most complex cryptographic scheme
that is widely implemented. Additionally, an extension of DAA is used in the
Intel Software Guard Extensions (SGX) [27], the most recent development in
the area of trusted computing.

A number of functional extensions to DAA have been proposed. Brickell and
Li [12, 14] introduced Enhanced Privacy ID (EPID), which extends DAA with
signature-based revocation. This extension allows one to revoke a platform based
on a previous signature from that platform. This is an improvement over the
private key revocation used in DAA schemes, where a TPM cannot be revoked
without knowing its secret key.

Chen and Urian [25] introduced DAA with attributes (DAA-A), in which
the membership credential can also contain attributes. These attributes might
include more information about the platform, such as the vendor or model, or
other information, such as an expiration date of the credential. When signing,
the platform can selectively disclose attributes, e.g., reveal that the signature was
created by a TPM of a certain manufacturer, or create more advanced proofs,
such as proving that the expiration date of the credential lies in the future.

Unfortunately, in spite of being used in practice, many of the existing schemes
are not provably secure. Recently, Camenisch et al. [16] showed that previous
security definitions of DAA are not satisfactory, meaning that security proofs
using these security models do not guarantee security. They further point out
that many of the DAA schemes based on the LRSW assumption [32] are flawed.
They finally provide a comprehensive security model and provide a LRSW-based
scheme that is provably secure in their model. However, there is to date no
scheme based on the qSDH assumption [6] that is secure in their model.

Indeed, in this work we show that also many of the DAA schemes based on
the qSDH assumption are flawed. The most efficient qSDH-based schemes [13,
22, 25] use a credential which is not provably secure against adaptive chosen
message attacks, leaving room for an attacker to forge credentials. Moreover,
these schemes use a flawed proof-of-knowledge of credentials, which in fact does
not prove possession of such a credential. Finally, the security of all existing
qSDH-based schemes has only been analyzed in the type-2 pairing setting [29].
However, these schemes are often used in the more efficient type-3 setting, where
there is no efficient isomorphism from G2 to G1, As the security proofs rely on
such an isomorphism, they do not apply to a type-3 setting, meaning there is no
evidence of security.

Apart from pointing out flaws in the existing qSDH-based DAA schemes,
this paper provides two more main contributions. Second, we fix the issues and
present a qSDH-based DAA scheme with support for attributes and signature-
based revocation. Like previous work, we use the BBS+ signature [1] for creden-
tials, but unlike previous work we move to the more efficient and flexible type-3

3 http://www.trustedcomputinggroup.org/solutions/authentication

pairing setting. Third, we extend the security model by Camenisch et al. [16] to
capture signature-based revocation and support attributes, and rigorously prove
our scheme secure in this model.

2 Flaws in Existing qSDH-based Schemes

The first DAA scheme by Brickell et al. [9] is based on the strong RSA assump-
tion. Due to the large keys required for RSA, this protocol was inefficient and
hard to implement. A lot of research has gone into designing more efficient DAA
schemes using bilinear pairings and improving the security model of DAA. The
work on efficient DAA schemes can be split in two chains of work, one based on
the LRSW assumption [32], and one on the qSDH assumption [6]. The schemes
based on the LRSW assumption have recently been studied by Camenisch et
al. [16]. In this section we now discuss the existing qSDH-based schemes and
their proofs of security. We start by giving an overview of existing security mod-
els for DAA and DAA with extensions, and then show that none of the existing
qSDH-based are efficient and provably secure.

2.1 Security Models for DAA

One of the most challenging tasks in cryptography is to formally define a security
model that allows for rigorous security proofs. Before we discuss security models,
we give some intuition on the required security properties of DAA. First, sig-
natures must be unforgeable, meaning only platforms that the issuer allowed to
join can create signatures. Second, signatures must be anonymous. A basename
is used to control anonymity, and an adversary given two signatures valid with
respect to two distinct basenames must not be able to decide whether the sig-
natures were created by the same platform. Third, we require non-frameability.
When a platform signs with respect to the same basename multiple times, a
verifier can link these signatures, meaning it realizes both signatures stem from
the same platform. No adversary should be able to frame a platform, mean-
ing it cannot create a signature on a message m that links to some platform’s
signatures, while that platform never signed m.

There are multiple ways to define a security model. Property-based defini-
tions are a set of security games, where every game defines a security property,
and a scheme is secure when every property holds. Simulation-based definitions
consist of a trusted third party. In a so-called ideal world, every protocol par-
ticipant hands their inputs to the trusted third party rather than executing the
protocol, and outputs are generated by the trusted third party. As the trusted
third party performs the task in a way secure by design, the ideal world performs
the desired task securely. A protocol is considered secure if the real world, in
which protocol participants execute the protocol, is as secure as the ideal world.

The first security model for DAA as introduced by Brickell et al. [9] follows
the simulation-based paradigm. Therein, signature generation and verification

is modeled as an interactive process, meaning a signature must always be ver-
ified immediately and cannot be used further. Camenisch et al. [16] define a
simulation-based security model for DAA that outputs signatures and allows
them to be used in any way.

In an attempt to simplify the security model of DAA, Brickell et al. [11]
introduce a property-based definition for DAA. Unfortunately, this definition
does not cover non-frameability, and the notion for unforgeability allows forge-
able schemes to be proven secure: A scheme in which one value is a signature
on every message can fulfill the security model, while clearly being insecure.
Chen [22] extends this definition with a property for non-frameability, but the
other issues remain. Brickell and Li create a property-based security model for
enhanced privacy ID (EPID) [14] very similar to the model of Brickell et al. [11],
and containing the same flaws.

Camenisch et al. [16] give a more detailed overview of the security models
for DAA.

2.2 qSDH-based DAA Schemes and Proofs

Chen and Feng [26] introduce the first DAA scheme based on the qSDH as-
sumption. The scheme requires the TPM to work in the target group GT , which
is inefficient and makes implementation more involved. Chen [22] improves the
efficiency of the previous schemes by removing one element of the membership
credential. Brickell and Li [13] further improve the efficiency by changing the
distribution of work between the host and TPM such that the TPM only per-
forms computations in G1. Being the most efficient scheme, it is supported by
the TPM 2.0 standard and ISO standardized [30].

All three schemes come with proofs of security using the security models by
Brickell et al. [11] and Brickell and Li [14]. However, as these models allow one to
prove insecure schemes secure, proofs in these models are not actual evidence of
security. Furthermore, the proofs of the two most efficient schemes [13,22] are in-
valid, as the membership credential is not proven to be existentially unforgeable
against adaptive chosen message attacks. The proof aims to reduce a credential
forgery to breaking the qSDH assumption, meaning that the issuer private key
is an unknown value defined by the qSDH instance. They start by using the
Boneh-Boyen trick [6] to create q − 1 weak BB signatures under the issuer key,
on previously chosen ei values. From every weak BB signature, one membership
credential on a (potentially adversarial) platform key can be created. For one
randomly selected honest platform joining, it returns a credential on a key cho-
sen during the parameter selection of the scheme. It can create this credential
without consuming a BB04 signature due to the special selection of parameters.
Since the key is chosen like an honest platform would, this simulation is valid
for honest platforms. Finally, the authors claim that when a credential forgery
occurs that reuses part of an issued credential, with probability 1

q , it is reusing
part of the specially crafted credential. This is not true, as there may not even
be honest platforms joining, or the adversary may disregard credentials issued

to honest platforms. To fix the proof, one must be able to issue the special cre-
dential also to corrupt platforms, i.e., on a key chosen by the adversary, but this
does not seem possible.

Related to this issue, the proofs of knowledge proving knowledge of a cre-
dential in these schemes do not prove the correct statement. The prover proves
knowledge of TPM secret gsk and of values a, b. The proof only proves knowledge
of a valid credential when b = a · gsk , but this structure of b is not proven. This
means that from a signature that passes verification, one cannot always extract
a valid signature, which prevents proving unforgeability. This could be fixed by
also proving b = a · gsk in zero knowledge.

Finally, the security proofs of all the pairing-based schemes mentioned here
make use of an isomorphism from G2 to G1 in the security proof. This prevents
the schemes from being used with the more efficient type-3 curves [29]. However,
the TPM 2.0 standard [31,35], designed to support the DAA scheme by Brickell
and Li [13], uses such type-3 curves. As there is no efficient isomorphism in this
setting, any security proof requiring an isomorphism is not applicable, leaving
the security of the scheme unproven.

DAA with Extensions. Two extensions of DAA have been proposed. Brickell
and Li [14] present EPID based on the qSDH assumption. This extends DAA
with signature-based revocation, allowing revocation of platforms based on a
signature from that platform. Unfortunately, they do not show how the work
of the platform can be split between a TPM and host. Chen and Urian [25]
introduce DAA with attributes (DAA-A), where the membership credential does
not only contain the TPM key, but also attribute values. This allows for many
new use cases, such as showing that a signature was created by a platform of a
certain vendor, or adding expiration dates to credentials. The authors present
two instantiations, one based on the LRSW assumption and one based on the
qSDH assumption. Unfortunately, the schemes do not come with security proofs.
The qSDH scheme suffers from the same flaws as the most recent qSDH DAA
schemes discussed above, i.e., the credential is not proven to be unforgeable.
Worse, the LRSW scheme is forgeable using the trivial credential A = B = C =
D = E1 = . . . = EL = 1G1

that signs all attributes and keys, so anyone can sign
with respect to any desired set of attributes.

3 A New Security Model For DAA With Extensions

In this section we present our security model for DAA with attributes and
signature-based revocation, which is defined as an ideal functionality F ldaa+ in
the UC framework [21]. In UC, an environment E passes inputs and outputs
to the protocol parties. The network is controlled by an adversary A that may
communicate freely with E . In the ideal world, the parties forward their inputs
to the ideal functionality F, which then (internally) performs the defined task
and creates outputs that the parties forward to E . Roughly, a real-world protocol
Π is said to securely realize a functionality F, if the real world is indistinguish-
able from the ideal world, meaning for every adversary performing an attack in

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic (i).

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
3. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← request .

– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists (ii).

– Output (JOINPROCEED, sid , jsid ,Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Update the session record 〈jsid ,Mi,Hj , attrs, status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ if Mi and Hj are
honest and attrs ′ ← attrs otherwise.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 (iii) if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 (iv) if Mi is corrupt.

– Insert 〈Mi,Hj , gsk , attrs〉 into Members and output (JOINED, sid , jsid) to Hj .

Fig. 1. The Setup and Join related interfaces of F l
daa+. (The roman numbers are labels

for the different checks made within the functionality and will be used as references in
the analysis of the functionality and the proof.)

the real world, there is an ideal world adversary (often called simulator) S that
performs the same attack in the ideal world.

3.1 Ideal Functionality F l
daa+

We now formally define our ideal functionality F ldaa+, which is a modification of

F ldaa as defined by Camenisch et al. [16]. The modifications extend the function-
ality to support signature-based revocation and attributes.

The UC framework allows us to focus our analysis on a single protocol in-
stance with a globally unique session identifier sid. Here we use session identifiers
of the form sid = (I, sid′) for some issuer I and a unique string sid ′. To allow
several sub-sessions for the join and sign related interfaces we use unique sub-
session identifiers jsid and ssid . Our ideal functionality F ldaa+ is parametrized by
a leakage function l : {0, 1}∗ → {0, 1}∗, that we need to model the information
leakage that occurs in the communication between a host Hi and TPM Mj .
As our functionality supports attributes, we have parameters L and {Ai}0<i≤L,
where L is the amount of attributes every credential contains and Ai the set
from which the i-th attribute is taken. A parameter P is used to describe which

Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′ (v).

• Check that no pair (gsk i,Mi) was found (vi).

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1 (vii), and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1 (viii).

• Check identify(σ,m, bsn, gsk) = 1 (ix) and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1 (x).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found (xi).

• I is honest and no pair (gsk i,Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1 (xii).

• There is an honest Mi but no entry 〈∗,m, bsn,Mi, p, SRL〉 ∈ Signed exists (xiii).

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1 and no pair (gsk i,Mi) for an
honest Mi was found (xiv).

• For some matching gsk i and (σ′,m′, bsn′) ∈ SRL, identify(σ′,m′, bsn′, gsk i) = 1 (xv).

– If f 6= 0, set f ← ver(σ,m, bsn) (xvi).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
12. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅) (xvii).

– For each gsk i in Members and DomainKeys compute bi ← identify(σ,m, bsn, gsk i) and
b′i ← identify(σ′,m′, bsn, gsk i) and do the following:

• Set f ← 0 if bi 6= b′i for some i (xviii).

• Set f ← 1 if bi = b′i = 1 for some i (xix).

– If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 2. The Sign, Verify, and Link related interfaces of F l
daa+

proofs over the attributes platforms can make. This generic approach lets the
functionality capture both simple protocols that only support selective disclosure
and more advanced protocols that support arbitrary predicates. Every element
p ∈ P is a predicate over the attributes: A1 × . . .× AL → {0, 1}.

The full definition of F ldaa+ is presented in Fig. 1 and Fig. 2. Two macros are
used to simplify the presentation of the functionality:

CheckGskHonest(gsk) =

∀〈σ,m, bsn,M〉 ∈ Signed : identify(σ,m, bsn, gsk) = 0 ∧
∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, gsk) = 0

CheckGskCorrupt(gsk) =6 ∃σ,m, bsn :

(
(
〈σ,m, bsn, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults

)
∧

∃gsk ′ :
(

gsk 6= gsk ′ ∧
(
〈∗, ∗, gsk ′〉 ∈ Members ∨ 〈∗, ∗, gsk ′〉 ∈ DomainKeys

)
∧ identify(σ,m, bsn, gsk) = identify(σ,m, bsn, gsk ′) = 1

))
Camenisch et al. [16] give an extensive argumentation of why their function-

ality guarantees the desired properties. We now argue that our changes indeed
allow for attributes and signature-based revocation and that they do not have a
negative impact on the other properties guaranteed by the functionality.

Attributes. The issuer is in charge of the attributes, and must explicitly allow
a platform to be issued certain attributes with the JOINPROCEED output and
input. The verification interface now checks whether the signer has the correct
attributes, fulfilling the attribute predicate (Check (xii)). This guarantees that
no platform can create valid signatures with respect to attribute predicates that
do not hold for the attributes of this platform.

Signature-based Revocation. The sign interface now takes a signature-based re-
vocation list SRL as input. The functionality does not sign for platforms that are
revoked by SRL, which it enforces via Check (vi). Further, the verification in-
terface will reject signatures from platforms revoked in SRL by checking whether
any of those signatures is based on the key gsk from the signature being verified.

Our functionality enforces that every signature matches to only one gsk value.
To ensure this also for the signatures specified in SRL, Check (v) has been added
and the CheckGsk macros have been extended to also take the SRL values into
consideration.

4 Building Blocks

In this section we introduce the building blocks used by our construction. In
addition to the standard building blocks such as bilinear pairings and the qSDH
assumption, we introduce the BBS+ signature without requiring an isomorphism
between the bilinear groups. Up to now, this signature has only been proven
secure using such an isomorphism, limiting the settings in which the signature
can be used.

4.1 Bilinear Maps

Let G1, G2, and GT be groups of prime order p. A map e : G1 × G2 → GT
must satisfy bilinearity, i.e., e(gx1 , g

y
2) = e(g1, g2)xy; non-degeneracy, i.e., for all

generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there
exists an efficient algorithm G(1τ) that outputs the bilinear group (p,G1,G2,
GT , e, g1, g2) and an efficient algorithm to compute e(a, b) for any a ∈ G1, b ∈ G2.

Galbraith et al. [29] distinguish three types of pairings: type-1, in which
G1 = G2; type-2, in which G1 6= G2 and there exists an efficient isomorphism
ψ : G2 → G1; and type-3, in which G1 6= G2 and no such isomorphism exists.

Type-3 pairings currently allow for the most efficient operations in G1 given
a security level using BN curves with a high embedding degree [2]. Therefore it
is desirable to describe a cryptographic scheme in a type-3 setting, i.e., without
assuming G1 = G2 or the existence of an efficient isomorphism from G2 to G1.

4.2 q-Strong Diffie-Hellman Assumption

The q-Strong Diffie-Hellman (qSDH) problem has two versions. The first ver-
sion by Boneh and Boyen is defined in a type-1 and type-2 pairing setting [6].
This version, to which we refer as the Eurocrypt version, is informally stated as
follows:

Given a q+2-tuple (g1, g2, g
x
2 , g

(x2)
2 , . . . , g

(xq)
2) ∈ G1 × Gq+1

2 with g1 =

ψ(g2), output a pair (c, g
1/(x+c)
1) ∈ Z∗p ×G1.

Boneh and Boyen created a new version of the qSDH problem to support type-3
settings [7]. The so-called JOC version is informally stated as follows:

Given a q+3-tuple (g1, g
x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2) ∈ Gq+1

1 ×G2
2, output a

pair (c, g
1/(x+c)
1) ∈ Zp \ {−x} ×G1.

4.3 BBS+ Signatures

We recall the BBS+ signature, as described by Au et al. [1], which is inspired
by the group signature scheme by Boneh et al. [8].

Key Generation Take (h0, . . . , hL)←$ ZL+1
p , x←$ Z∗p, w ← gx2 , and set sk = x

and pk = (w, h0, . . . , hL).

Signature On input message (m1, . . . ,mL) ∈ ZLp and secret key x, pick e, s ←$

Zp and compute A← (g1h
s
0

∏L
i=1 h

mi
i)

1
e+x . Output signature σ ← (A, e, s).

Verification On input a public key (w, h0, . . . , hL) ∈ G2 × GL+1
1 , message

(m1, . . . ,mL) ∈ ZLp , and purported signature (A, e, s) ∈ G1 × Z2
p, check

e(A,wge2) = e(g1h
s
0

∏L
i=1 h

mi
i , g2).

Au et al. prove the BBS+ signature secure under the Eurocrypt version of
the qSDH assumption, making use of the isomorphism between the groups in
the security proof. As in type-3 pairings no such isomorphism exists, this means
the proof is not valid when this isomorphism does not exist and we do not
know whether the signature is secure in this setting. We modify the proof by
Au et al. to use the JOC version of the qSDH assumption and no longer rely on
an isomorphism in the proof, allowing us to use BBS+ signatures with type-3
pairings.

Theorem 1. The BBS+ signature scheme is existentially unforgeable against
adaptive chosen message attacks under the JOC version of the qSDH assump-
tion and the DL assumption, in particular in pairing groups where no efficient
isomorphism between G2 and G1 exists.

The proof is given in Appendix A.

4.4 Proof Protocols

When referring to the zero-knowledge proofs of knowledge of discrete logarithms
and statements about them, we will follow the notation introduced by Camenisch
and Stadler [19] and formally defined by Camenisch, Kiayias, and Yung [17].

For instance, PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-knowledge
proof of knowledge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c

holds,” where y, g, h, ỹ, g̃ and h̃ are elements of some groups G = 〈g〉 = 〈h〉
and G̃ = 〈g̃〉 = 〈h̃〉. Given a protocol in this notation, it is straightforward to
derive an actual protocol implementing the proof [17]. Indeed, the computational
complexities of the proof protocol can be easily derived from this notation: for
each term y = gahb, the prover and the verifier have to perform an equivalent
computation, and to transmit one group element and one response value for each
exponent.

SPK denotes a signature proof of knowledge, that is a non-interactive trans-
formation of a proof with the Fiat-Shamir heuristic [28] in the random oracle
model [3]. From these non-interactive proofs, the witness can be extracted by
rewinding the prover and programming the random oracle. Alternatively, these
proofs can be extended to be online-extractable, by verifiably encrypting the
witness to a public key defined in the common reference string (CRS). A practi-
cal instantiation is given by Camenisch and Shoup [18] using Paillier encryption,
secure under the DCR assumption [33].

5 Construction

In this section, we present our DAA protocol with attributes and signature-
based revocation called Πdaa+. On a high level, it is similar to previous work on
qSDH-based DAA. A platform, consisting of a TPM and a host, must once run
the join protocol before it can create signatures. In the join protocol, the TPM
authenticates to the issuer. The issuer can decide whether the TPM is allowed
to join, and if so, it creates a credential for the platform. The credential is BBS+
signature on a commitment to the TPM chosen secret key gsk , and on attribute
values as determined by the issuer. Note that the issuer can choose the attribute
values, as we expect the issuer to issue only credentials containing attributes
where it knows the ‘correct’ attribute values, such as the model or vendor of
the TPM (which it knows as the TPM authenticated), or an expiration date
of the credential. After receiving a credential, the platform can sign a message
m by creating a signature proof-of-knowledge proving that it has a credential.
A basename bsn controls linkability. Choosing a fresh bsn yields a signature
that cannot be linked to any signature that the platform previously generated,
meaning the platform can be fully anonymous. Only when it chooses to reuse
a basename, the signatures based on the same basename can be linked, i.e., a
verifier can notice that they stem from the same platform. The platform also
chooses which attributes it will disclose to a verifier.

Our protocol is parametrized by L, the amount of attributes a credential
contains, attribute sets A1, . . . ,AL, and l, the leakage of the secure channels
used. For simplicity of the presentation, we describe our construction supporting
only selective disclosure as attribute predicates, although it is simple to see how
the construction can be extended to allow for more advanced predicates using
standard proof techniques. We describe the predicates using a set D ⊆ {1, . . . , L}
indicating which attributes are disclosed, and a tuple I = (a1, . . . , aL) setting the
desired attribute values. For example, the predicate D ← {2}, I = (⊥, 123,⊥)
is only true for platforms with credentials in which the second attribute value
equals 123. Let D̄ = {1, . . . , L} \D be the set of undisclosed attributes.

We assume that a common reference string functionality Fcrs and a certifi-
cate authority functionality Fca are available to all parties. Fcrs will be used
to provide the protocol participants with the system parameters consisting of
a security parameter τ , a bilinear group G1,G2,GT of prime order p with gen-
erators g1, h0, . . . , hL of G1 and g2 of G2 and bilinear map e, generated via
G(1τ). Fca allows the issuer to register his public key. We further use random
oracles H1 : {0, 1}∗ → G1 that is used for the computation of pseudonyms
and H : {0, 1}∗ → {0, 1}τ which is used for the Fiat-Shamir heuristic in the
zero-knowledge proofs.

The TPM and issuer must have an authenticated communication channel in
the join protocol. This can be achieved in multiple ways, we abstract away from
this by using an ideal functionality for this authenticated channel. As the host
forwards messages, it can block the communication, so the standard Fauth does
not capture the desired security. Instead we use Fauth∗ which was introduced
by Camenisch et al. [16] specifically for this type of authenticated channel. The

communication between a TPM and host is modeled using secure message trans-
mission functionality F lsmt. For definitions of the standard functionalities Fcrs,Fca

and F lsmt we refer to [20,21].
For the sake of readability, we will not explicitly call F lsmt for communication

between a TPM and host, nor write down that parties query Fcrs and Fca to
retrieve the system parameters and the issuer public key. When a party receives
an input or message it does not expect, e.g., protocol messages received out of or-
der, or any of the protocol checks fails, the protocol outputs with failure message
⊥. For efficiency, a host should precompute values e(g1, g2) and e(h0, w) after
joining and a verifier should in addition precompute e(hi, g2) for i = 0, . . . , L to
minimize the number of pairing computations, but for readability we write the
full pairing function.

5.1 Our DAA Protocol with Extensions Πdaa+

Setup. In the setup phase, the issuer I creates a key pair of the BBS+-signature
scheme and registers the public key with Fca.

1. I upon input (SETUP, sid) generates his key pair:

– Check that sid = (I, sid ′) for some sid ′.

– Choose x ←$ Zp and set w ← gx2 . Prove knowledge of the private key by
creating π ←$ SPK{x : w = gx2}. Initiate LJOINED ← ∅.

– Register the public key w, π at Fca, and store the secret key x.

– Output (SETUPDONE, sid).

Join. The join protocol runs between the issuer I and a platform, consisting of
a TPM Mi and a host Hj . The platform authenticates to the issuer and, if the
issuer allows the platform to join with certain attributes, obtains a credential
that subsequently enables the platform to create signatures. A unique sub-session
identifier jsid distinguishes several join sessions that might run in parallel.

1. Hj upon input (JOIN, sid , jsid ,Mi) parses sid = (I, sid ′) and sends the mes-
sage (JOIN, sid , jsid) over I.

2. I upon receiving (JOIN, sid , jsid) from a party Hj chooses a fresh nonce
n←$ {0, 1}τ and sends (sid, jsid, n) back to Hj .

3. Hj upon receiving (sid , jsid , n) from I, sends (sid , jsid , n) to Mi.

4. Mi upon receiving (sid , jsid , n) from Hj , generates its secret key:

– Check that no key record exists.

– Choose gsk ←$ Zp and store the key as (sid ,Hj , gsk ,⊥).

– Set Q← hgsk1 and compute π1 ←$ SPK{(gsk) : Q = hgsk1 }(n).

– Store key record (sid ,Hj , gsk).

– Send (Q, π1) via the host to I using Fauth∗.

5. Hj notices Mi sending (Q, π1) over Fauth∗ to the issuer, it appends its own
identity in the unauthenticated part of the message and forwards the full
message to the issuer. It also keeps state as (jsid , Q).

6. I upon receiving (Q, π1) authenticated by Mi and identity Hj unauthen-
ticated over Fauth∗, it verifies π1 and checks that Mi /∈ LJOINED. It stores
(jsid , Q,Mi,Hj) and outputs (JOINPROCEED, sid , jsid ,Mi).

The join session is completed when the issuer receives an explicit input telling
him to proceed with join session jsid and issue attributes attrs = (a1, . . . , aL).

1. I upon input (JOINPROCEED, sid , jsid , attrs) generates the BBS+ credential:
– Retrieve the record (jsid , Q,Mi,Hj) and add Mi to LJOINED.

– Choose random e, f ∈ Zp.
– A← (g1 · hf0 ·Q ·

∏L
i=1 h

ai
i+1)1/(e+x)

– Send the credential to the host by sending (sid , jsid , A, e, f, attrs) to Hj
over Fsmt.

2. Hj upon receiving (sid , jsid , A, e, f, attrs) from I verifies and stores the cre-
dential.
– Check that e(A,wge2) = e(g1 · hf0 ·Q ·

∏L
i=1 h

ai
i+1, g2).

– Store (sid ,Mi, (A, e, f), attrs) and output (JOINED, sid , jsid).

Sign. The sign protocol runs between a TPMMi and a host Hj . After joining,
together they can sign a message m with respect to a basename bsn, attribute
predicate (D, I), and signature-based revocation list SRL. Again, we use a unique
sub-session identifier ssid to allow for multiple sign sessions.

1. Hj upon input (SIGN, sid , ssid ,Mi,m, bsn, (D, I), SRL) checks whether his
attributes fulfill the predicate and randomizes the BBS+ credential:
– Retrieve the join record (sid ,Mi, (A, e, f), attrs).

– Check that the attributes fulfill the predicate: Parse I as (a′1, . . . , a
′
L) and

attrs as (a1, . . . , aL) and check that ai = a′i for every i ∈ D.

– Choose a←$ Zp and set A′ ← A · ha0 .

– Send (sid , ssid ,m, bsn, (D, I), SRL) to Mi and store (sid , ssid , a)
2. Mi upon receiving (sid , ssid ,m, bsn, (D, I), SRL) from Hj asks for permission

to proceed.
– Check that a join record (sid ,Hj , gsk) exists.

– Store (sid , ssid ,m, bsn, (D, I), SRL) and output (SIGNPROCEED, sid , ssid ,
m, bsn, (D, I), SRL).

The signature is completed when Mi gets permission to proceed for ssid .

1. Mi upon input (SIGNPROCEED, sid , ssid) computes the pseudonym nym and
starts the computation of the following zero knowledge proof.

SPK{(gsk , {ai}i∈D̄, e, a, b) :

e(A′, w)

e(g1, g2)
∏
i∈D e(hi+1, g2)ai

= e(A′, g2)−ee(h0, g2)be(h1, g2)gske(h0, w)a·

·
∏
i∈D̄

e(hi+1, g2)ai ∧ nym = H1(bsn)gsk}(m)

– Retrieve join record (sid ,Hj , gsk) and sign record (sid , ssid ,m, bsn, (D, I), SRL).

– Set nym← H1(bsn)gsk .

– Take rgsk ←$ Zp and compute E ← h
rgsk
1 and L← H1(bsn)rgsk .

– Send (sid , ssid , E, L, nym) to Hj .
2. Hj upon receiving (sid , ssid , E, L, nym) fromMi, completes the commitment

phase of the zero-knowledge proof.

– Take rai ←$ Zp for i ∈ D̄, and re, ra, rb ←$ Zp.
– Compute t-value

t← e(A′, g2)ree(h0, g2)rbe(E, g2)e(h0, w)ra
∏
i∈D̄

e(hi+1, g2)rai

= e(A′re · hrb0 · E ·
∏
i∈D̄

h
rai
i+1 , g2)e(h0, w)ra

– Compute c′ ← H(A′, nym, t, L, g1, h0, . . . , hL, w).

– Send (sid , ssid , c′) to Mi.

3. Mi upon receiving (sid , ssid , c′) from Hj .
– Take a nonce n←$ {0, 1}τ .

– Compute c← H(n, c′,m, bsn, (D, I), SRL).

– Set sgsk ← rgsk + c · gsk .

– Send (sid , ssid , sgsk) to Hj .
4. Hj upon receiving (sid , ssid , sgsk) from Mi, completes the zero-knowledge

proof.

– Set b ← f + a · e, sai ← rai + cai for i ∈ D̄, se ← re − ce, sa ← ra + ca,
sb ← rb + cae.

– Set π ← (c, sgsk , {sai}i∈D̄, se, sa, sb, n).

5. As signature-based revocation is used, a revocation list SRL containing tuples
(bsni, nymi) is given, and the platform must prove that H1(bsni)

gsk 6= nymi.
It does so using the Camenisch-Shoup proof of inequality of discrete loga-
rithms [18]: the platform takes a random γ, computes C ← (H1(bsni)

gsk/nymi)
γ ,

and proves SPK{(α, β) : C = H1(bsni)
α(1

nymi
)β ∧ 1 = H1(bsn)α(1

nym
)β}. For

every (bsni, nymi) ∈ SRL, the platform takes the following steps.

(a) Host Hj sends (sid , ssid , bsni) to Mi.

(b) Upon receiving (sid , ssid , bsni), the TPM Mi starts the commitment
phase of this proof of non-revocation.

– Take ri,α ←$ Zp and compute t′i,1 ← H1(bsni)
ri,α , t′i,2 ← H1(bsn)ri,α ,

K ← H1(bsni)
gsk .

– Send (sid , ssid , t′i,1), t′i,2,K) to Hj .
(c) Upon receiving (sid , ssid , t′i,1), t′i,2,K), Hj completes the commitment

phase of the non-revocation proof.

– Take γi ←$ Zp and set Ci ← (K/nymi)
γi .

– Check Ci 6= 1G1 .

– Take ri,β ←$ Zp and set ti,1 ← t′i,βi,1 · (1
nymi

)ri,β and ti,2 ← t′γii,2 · (1
nym

)ri,β .

– Compute c′ ← H(C, bsni, bsn, nymi, nym, n, ti,1, ti,2)

– Send (sid , ssid , c′) to Mi.

(d) Mi upon receiving (sid , ssid , c′) from Hj
– Take nonce ni ←$ {0, 1}τ and compute c← H(ni, c).

– Set s′i,α ← ri,α + c · gsk and send (sid , ssid , s′i,α, ni) to Hj .
(e) Upon receiving (sid , ssid , s′i,α, ni) from Mi, host Hj finishes the non-

revocation proof.

– Compute c← H(ni, c
′).

– Set si,α ← γ · s′i,gsk and si,β ← ri,β + c · γ.

– Set πi ← (c, ni, Ci, si,α, si,β).

6. The host outputs (SIGNATURE, sid , ssid , (A′, nym, π, {πi})).

Verify. The verify algorithm allows one to check whether a signature σ on
message m with respect to basename bsn, attribute disclosure (D, I), private
key revocation list RL, and signature revocation list SRL is valid.

1. V upon input (VERIFY, sid ,m, bsn, σ, (D, I), RL, SRL) verifies the signature:

– Parse σ as (A′, nym, π, {πi}).
– Verify π with respect to A′ and nym:

• Parse π as (c, sgsk , {sai}i∈D̄, se, sa, sb, n).

• Set L̂← h
sgsk
1 · nym−c and

t̂← e(A′, gse2 · w−c)e(h0, g2)sbe(h1, g2)sgsk e(h0, w)sa
∏
i∈D̄

e(hi+1, g2)sai ·

· e(g1, g2)c
∏
i∈D

e(hi+1, g2)ai·c

• Check c = H(n,H(A′, nym, t, L, g1, h0, . . . , hL, w),m, bsn, (D, I), SRL).

– For every (bsni, πi) ∈ SRL:

• Parse πi as (c, ni, Ci, si,α, si,β).

• Check C 6= 1G1
.

• Set t̂i,1 ← H(bsni)
si,α 1

nymi

si,β and t̂i,2 ← H(bsn)si,α 1
nym

si,β .

• Check c = H(ni, H(C, bsni, bsn, nymi, nym, n, t̂i,1, t̂i,2)).

– If all tests pass, set f ← 1, otherwise f ← 0.

– Output (VERIFIED, sid , f).

Link. The verify algorithm allows one to check whether two signatures σ, σ′,
on messages m,m′ respectively, that were generated for the same basename bsn

were created by the same TPM.

1. V upon input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) verifies the signa-
tures and compares the pseudonyms contained in σ, σ′:

– Check that both signatures σ, σ′ are valid with respect to m, bsn, p, SRL and
m′, bsn, p′, SRL′ respectively. Output ⊥ if they are not both valid.

– Parse the signatures as (A′, nym, π, {πi})← σ, (A′′, nym′, π′, {π′i})← σ′.

– If nym = nym′, set f ← 1, otherwise f ← 0.

– Output (LINK, sid , f).

5.2 Comparison with Previous DAA Schemes

Our protocol is very similar to the most recent qSDH-based DAA schemes [13,
22,25]. However, a few key changes were needed to achieve provable security and
address the problems mentioned in Sect. 2. First, we use a BBS+ signature for
the membership credential, instead of the simplified credential where the s-value
is ommited as used in the recent schemes [13,22,25]. The BBS+ is proven to be
unforgeable, and with this extra element, the proof of knowledge which is part
of DAA signatures allows one to extract valid credentials, whereas in the most
recent schemes one could not.

Compared to the most recent EPID scheme by Brickell and Li [14], we intro-
duce a way to split the workload between a TPM and host, and add basenames
steering linkability. The usage of basenames is required to prevent the TPM from
serving as a static Diffie-Hellman oracle towards the host. For non-revocation
proofs, the platform must prove that its pseudonym nym = Bgsk is based on a
different key than a pseudonym in a revoked signature nym′ = B′gsk

′
. A host

proving the inequality of the keys with the help of a TPM using the method by
Camenisch and Shoup will learn B′gsk , for any B′ of its choosing. By requiring
basenames, i.e., B = H1(bsn), learning B′gsk = H1(bsn)gsk does not give a cor-
rupt host any information, as in the random oracle model this can be simulated
without knowing gsk .

For the reason mentioned above, the fully anonymous option bsn = ⊥ from
previous DAA schemes is not supported by our scheme, but we argue that this
does not affect privacy: A platform can choose a fresh basename it only uses once
to be fully anonymous. Any verifier that accepts fully anonymous signatures can
simply accept signatures with respect to any basename.

Compared to the existing DAA-A scheme [25], we store all attributes except
the secret key on the host for efficiency. This still guarantees unforgeability with
an honest TPM and corrupt host. Anonymity is not affected either, as in either
case, the host must be trusted for anonymity.

In Table 1 we compare the computational efficiency of our scheme with the
other qSDH-based DAA schemes. In particular, we show the computational cost
for the TPM in the sign algorithm, for the host in the sign algorithm, and for
the verifier in the verify algorithm, as these are the algorithms that will be used
frequently. We denote k exponentiations in group Gi by kGi, kGji denotes k j-
multi-exponentiations, and kP denotes k pairing operations. Table 2 we compare
the size of credentials and signatures with other DAA schemes. Here, kG denotes
the bits required to represent k elements of G, and H denotes the bit length of
the hash output. CU15-1 denotes the LRSW-based DAA-A scheme by Chen

M Sign H Sign Verify

CF08 [26] 2G1, 1GT 1G1, 2G2
1, 1GT , 1P 1G2

1, 2G3
1, 1G5

T , 3P
Che10 [22] 2G1, 1GT 1G1,G3

T 1G2
1, 1G2

2, 1G4
T , 1P

BL10 [13] 3G1 1G1, 1G2
1, 1GT , 1P 1G2

1, 1G2
2, 1G4

T , 1P
CPS10 [24] 3G1 4G1 2G2

1, 2P
CU15-1 [25] 3G1 (4 + L+ U)G1 2G1, 2GL

1 , 2GD
1 , 2GU

1 , 6P

CU15-2 [25] 3G1 2G1, 1GU+2
1 , 2P 1G2

1, 1G4+L
1 , 2P

CDL16 [16] 5G1 4G1 2G2
1, 4P

This work 3G1 1G1, 1G2+U
1 , 1GT , 1P 1G2

1, 1G2
2, 1G4+L

T , 1P
Table 1. A comparison of the efficiency of DAA schemes.

Cred. Size Signature Size

CF08 [26] 2Zp 1G1 6Zp 2G1 2GT 1H
Che10 [22] 1Zp 1G1 4Zp 3G1 1H
BL10 [13] 1Zp 1G1 4Zp 3G1 1H

CPS10 [24] 4G1 1Zp 4G1 1H
CU15-1 [25] (5 + L)G1 (2 + U)Zp (7 + L)G1 1H
CU15-2 [25] 1Zp 1G1 (5 + U)Zp 3G1 1H
CDL16 [16] 4G1 1Zp 4G1 1H
This work 2Zp 1G1 (5 + U)Zp 2G1 1H

Table 2. A comparison of the credential and signature size of DAA schemes.

and Urian [25], and CU15-2 the qSDH-based instantiation. We analyzed both
schemes for signatures with only the secret key on the TPM, which is used to
create a pseudonym, and all other attributes held by the host. We let L denote
the amount of attributes, with D the amount of disclosed attributes and U
the amount of undisclosed attributes. Revocation lists and revocation checks are
omitted for these efficiency numbers. To compare this scheme with previous DAA
schemes, we consider the efficiency without attributes, i.e., L = D = U = 0. In
computation, our scheme is as efficient as the scheme by Brickell and Li [13],
which is currently the most efficient DAA scheme. Our credentials contain one
extra element of Zp to achieve provable security. Signatures in our scheme are
one element of G1 smaller than signatures in the Brickell and Li scheme, which
follows from the fact that we always use a basename, so we do not need to
transmit the base for the computation of the pseudonym.

We stress that many of the listed schemes are not provably secure, whereas
we rigorously prove our scheme secure.

6 Security Analysis

Theorem 2. The protocol Πdaa+ presented in Section 5 securely realizes F ldaa+
in the (Fauth∗,Fca,F lsmt,FDcrs)-hybrid model using random oracles and static cor-
ruptions, if the DL, DDH and JOC version of the qSDH assumptions hold, and
the proofs-of-knowledge are online extractable.

We prove this theorem in Appendix C.

7 Conclusion

DAA is one of the most complex cryptographic protocols deployed in practice.
It is implemented in multiple platforms for trusted computing, including the
Trusted Computing Group’s TPM and Intel’s SGX. A number of functional ex-
tensions to DAA have been proposed, including signature-based revocation and
embedding of attributes. However, as we have shown in this paper, the security
models and security proofs of the proposed DAA schemes based on the qSDH
assumptions are not satisfactory. This includes the extended DAA schemes and
the standardized DAA schemes. Bleichenbacher’s attack [5] on PKCS#1 demon-
strates the importance of rigorous security proofs, in particular for cryptographic
standards. It remains as future work, to revisit the concerned standards to elim-
inate the schemes’ flaws and ensure that they are provably secure.

As a first step towards this, we have in this paper proposed a new DAA
scheme with support for attributes and signature-based revocation. Our scheme
is as efficient as the most efficient existing DAA scheme. While the existing
schemes do not have valid security proofs, our scheme is proven secure in the
model by Camenisch et al. [16], extended to support attributes and signature-
based revocation. As a side result, we have proven the BBS+ signature scheme
to be secure in type-3 pairing settings, meaning our scheme can be used with
the most efficient pairing-friendly elliptic curve groups.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-taa. In: Prisco, R., Yung,
M. (eds.) Security and Cryptography for Networks: 5th International Confer-
ence, SCN 2006, Maiori, Italy, September 6-8, 2006. Proceedings. pp. 111–125.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006), http://dx.doi.org/10.

1007/11832072_8

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) Selected Areas in Cryptography: 12th International
Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Se-
lected Papers. pp. 319–331. Springer Berlin Heidelberg, Berlin, Heidelberg (2006),
http://dx.doi.org/10.1007/11693383_22

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. pp. 62–73. CCS ’93, ACM, New York, NY, USA (1993),
http://doi.acm.org/10.1145/168588.168596

4. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N., Warinschi, B.: Anonymous
attestation with user-controlled linkability. International Journal of Information
Security 12(3), 219–249 (2013), http://dx.doi.org/10.1007/s10207-013-0191-z

5. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs #1. In: Krawczyk, H. (ed.) Advances in Cryptology –
CRYPTO ’98: 18th Annual International Cryptology Conference Santa Barbara,

California, USA August 23–27, 1998 Proceedings. pp. 1–12. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1998)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin,
C., Camenisch, J.L. (eds.) Advances in Cryptology - EUROCRYPT 2004:
International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings. pp. 56–73.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004), http://dx.doi.org/10.

1007/978-3-540-24676-3_4

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh
assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2007),
http://dx.doi.org/10.1007/s00145-007-9005-7

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
Advances in Cryptology – CRYPTO 2004: 24th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 2004. Proceedings. pp.
41–55. Springer Berlin Heidelberg, Berlin, Heidelberg (2004), http://dx.doi.org/
10.1007/978-3-540-28628-8_3

9. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM conference on Computer and communications security. pp.
132–145. ACM (2004)

10. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.R., Koch, K.M. (eds.) Trusted Comput-
ing - Challenges and Applications, Lecture Notes in Computer Science, vol. 4968,
pp. 166–178. Springer Berlin Heidelberg (2008), http://dx.doi.org/10.1007/

978-3-540-68979-9_13

11. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. International Journal of Information
Security 8(5), 315–330 (2009), http://dx.doi.org/10.1007/s10207-009-0076-3

12. Brickell, E., Li, J.: Enhanced privacy id: A direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society. pp. 21–30. WPES ’07, ACM, New York, NY, USA
(2007), http://doi.acm.org/10.1145/1314333.1314337

13. Brickell, E., Li, J.: A pairing-based daa scheme further reducing tpm resources.
Cryptology ePrint Archive, Report 2010/067 (2010), http://eprint.iacr.org/

14. Brickell, E., Li, J.: Enhanced privacy id from bilinear pairing for hardware authen-
tication and attestation. International Journal of Information Privacy, Security
and Integrity 1(1), 3–33 (2011), pMID: 43729

15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
diffie hellman assumption revisited. In: Trust and Trustworthy Computing: 9th In-
ternational Conference, TRUST 2016, Vienna, Austria, August 29-30, 2016, Pro-
ceedings. Springer (2016)

16. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
Public-Key Cryptography – PKC 2016: 19th IACR International Conference on
Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part II. pp. 234–264. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016), http://dx.doi.org/10.1007/978-3-662-49387-8_10

17. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, Lecture
Notes in Computer Science, vol. 5479, pp. 425–442. Springer Berlin Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-01001-9_25

18. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, Lecture
Notes in Computer Science, vol. 2729, pp. 126–144. Springer Berlin Heidelberg
(2003), http://dx.doi.org/10.1007/978-3-540-45146-4_8

19. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski, BurtonS., J. (ed.) Advances in Cryptology CRYPTO ’97, Lecture Notes
in Computer Science, vol. 1294, pp. 410–424. Springer Berlin Heidelberg (1997),
http://dx.doi.org/10.1007/BFb0052252

20. Canetti, R.: Universally composable signature, certification, and authentication.
In: Computer Security Foundations Workshop, 2004. Proceedings. 17th IEEE. pp.
219–233 (June 2004)

21. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000), http://eprint.
iacr.org/

22. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Information Security and Cryptology, Lecture Notes in
Computer Science, vol. 6151, pp. 350–365. Springer Berlin Heidelberg (2010), http:
//dx.doi.org/10.1007/978-3-642-16342-5_26

23. Chen, L., Morrissey, P., Smart, N.: Pairings in trusted computing. In: Galbraith,
S., Paterson, K. (eds.) Pairing-Based Cryptography Pairing 2008, Lecture Notes
in Computer Science, vol. 5209, pp. 1–17. Springer Berlin Heidelberg (2008)

24. Chen, L., Page, D., Smart, N.: On the design and implementation of an efficient
daa scheme. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart Card
Research and Advanced Application, Lecture Notes in Computer Science, vol.
6035, pp. 223–237. Springer Berlin Heidelberg (2010), http://dx.doi.org/10.

1007/978-3-642-12510-2_16

25. Chen, L., Urian, R.: DAA-A: Direct anonymous attestation with attributes. In:
Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust and Trustworthy Computing:
8th International Conference, TRUST 2015, Heraklion, Greece, August 24-26, 2015,
Proceedings. pp. 228–245. Springer International Publishing, Cham (2015), http:
//dx.doi.org/10.1007/978-3-319-22846-4_14

26. Chen, X., Feng, D.: Direct anonymous attestation for next generation tpm. Journal
of Computers 3(12) (2008)

27. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive, Report
2016/086 (2016), http://eprint.iacr.org/

28. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A. (ed.) Advances in Cryptology CRYPTO
86, Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer Berlin
Heidelberg (1987), http://dx.doi.org/10.1007/3-540-47721-7_12

29. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113 – 3121 (2008), http://www.sciencedirect.
com/science/article/pii/S0166218X08000449, applications of Algebra to Cryp-
tography

30. International Organization for Standardization: ISO/IEC 20008-2: Information
technology - Security techniques - Anonymous digital signatures - Part 2: Mecha-
nisms using a group public key (2013)

31. International Organization for Standardization: ISO/IEC 11889: Information tech-
nology - Trusted platform module library (2015)

32. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H., Adams, C. (eds.) Selected Areas in Cryptography, Lecture Notes in Computer

Science, vol. 1758, pp. 184–199. Springer Berlin Heidelberg (2000), http://dx.

doi.org/10.1007/3-540-46513-8_14

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99: In-
ternational Conference on the Theory and Application of Cryptographic Tech-
niques Prague, Czech Republic, May 2–6, 1999 Proceedings. pp. 223–238.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999), http://dx.doi.org/10.

1007/3-540-48910-X_16

34. Trusted Computing Group: TPM main specification version 1.2 (2004)

35. Trusted Computing Group: Trusted platform module library specification, family
“2.0” (2014)

A Proof of BBS+ Signature in Type 3 setting

We reduce the security of the BBS+ signature to the (JOC version) qSDH as-
sumption, by defining an adversary A′ that breaks the qSDH assumption or the
DL assumption given a BBS+ forger A. The reduction does not assume G1 = G2

or the existence of an efficient isomorphism ψ : G2 → G1, meaning that the proof
also holds in type 3 pairing settings. This proof is based on the proof by Au et
al. [1], which does rely on such an isomorphism.

A’ receives (d0 = g1, d1 = gx1 , d2 = gx
2

1 , . . . , dq = gx
q

1 , g2, w = gx2) ∈ Gq+1
1 ×G2

2

and chooses q−1 values ei ←$ Zp. We use the Boney-Boyen technique [7] to create
weak BB signatures by defining polynomial

f(X) =

q−1∏
i=1

(X + ei) =

q−1∑
i=0

αiX
i(for some easily computable αi) (1)

A’ defines g′1, d′1 as follows.

g′1 =

q−1∏
i=0

dαiθi = g
θf(x)
1 (2)

d′1 =

q−1∏
i=0

di+1
αiθ =

q−1∏
i=0

(di
x)αiθ = (g′1)x (3)

We will need d′1 = g′1
x

later in the proof. Note that in the computation of
d′1, we use gx

q

1 , while for the computation of g′1, we only need the d-values up

to gx
q−1

1 . This means we can only simulate q − 1 rather than q signatures under
the q-SDH assumption. Previous works considered a type 2 pairing which has a
isomorphism ψ that lets you compute this element without requiring an higher
q.

A’ now creates weak BB signatures on every ei by taking polynomial

fi(X) = f(X)/(X + ei)

=

q−1∏
j=1,j 6=i

(X + ei)

=

q−1∑
j=0

βjX
j(for some easily computable βj)

(4)

and computing weak BB signature

Bi =

q−2∏
j=0

d
βjθ
j = g

θfi(x)
1 = g′1

1/(x+ei) (5)

Now A’ must answer the adaptive signing queries from A. A’ chooses e, a, k ←$

Z∗p and computes

h0 = ((d′1g
′
1
e
)kg′1

−1
)1/a

= ((g′1
x
g′1
e
)kg′1

−1
)1/a (by (3))

= g′1
(e+x)k−1

a

(6)

The other generators h1, . . . , hl are set by taking (µ1, . . . , µl)←$ Zlq and setting

hi ← hµi0 (7)

A’ outputs public key g′1, h0, . . . , hl, g2, w and lets A make q signing queries.
A’ picks α←$ Zq, and the α-th query will be treated in a special way.

The special query on message (mα,1, . . . ,mα,l) is treated as follows. A’ sets

sα ← a−
l∑

j=1

µj ·mα,j (8)

and outputs signature (Aα ← g′1
k
, e, sα). This is a valid signature:

Aα = g′1
k

= (g′1
(e+x)k

)
1
e+x

= (g′1 · g′1
(e+x)k−1

)
1
e+x

= (g′1 · ha0)
1
e+x (by (6))

= (g′1 · h
sα+

∑l
j=1 µj ·mα,j

0)
1
e+x (by (8))

= (g′1 · h
sα
0 ·

l∏
j=1

h
mα,j
j)

1
e+x

(9)

All other signing queries are handled by consuming one of the BB signatures.
On a message (mi,1, . . . ,mi,l), C takes a BB signature (Bi, ei) and chooses a

random si ←$ Zq. A’ computes Ai ← Bi · (B
(e−ei)·k−1

a
i · g′1

k
a)si+

∑l
j=0 µj ·mi,j and

outputs signature (Ai, ei, si). This is a valid signature:

Ai = Bi ·
(
B

(e−ei)·k−1

a
i · g′1

k
a

)si+∑l
j=0 µj ·mi,j

= Bi ·
(
B

(e−ei)·k−1

a
i ·B

(x+ei)k

a
i

)si+∑l
j=0 µj ·mi,j

(by (5))

= Bi ·
(
B

(e+x)·k−1
a

i

)si+∑l
j=0 µj ·mj

= Bi ·B
(si+

∑l
j=0 µj ·mi,j)·(e+x)·k−1

a
i

= Bi ·

(
g′1

(si+
∑l
j=0 µj ·mi,j)·(e+x)·k−1

a

) 1
x+ei

= Bi ·
(
h
si+

∑l
j=0 µj ·mi,j

0

) 1
x+ei

= Bi ·

hsi0 · l∏
j=1

h
mi,j
j

 1
x+ei

= g′1
1

x+ei ·

hsi0 · l∏
j=1

h
mi,j
j

 1
x+ei

(by (5))

=

g′1 · hsi0 · l∏
j=1

h
mi,j
j

 1
x+ei

(10)

Finally, with non-negligible probability A submits a valid forgery (A∗, e∗, s∗)
on message (m∗1, . . . ,m

∗
l). We distinguish three cases.

– Case e∗ /∈ {ei}0<i≤q,i6=α ∪ {e}: By setting y ← s∗ + m∗1µ1 + . . . + m∗LµL and

B∗ ← (A∗g′1
−ky
a)

a
a−y−ky(e∗−e) , A’ gets an extra SDH pair.

B∗ = (A∗g′1
−ky
a)

a
a−y−ky(e∗−e)

= A∗
a

a−y−ky(e∗−e) g′1
−ky

a−y−ky(e∗−e)

= (g′1h
y
0)

a
(e∗+x)(a−y−ky(e∗−e)) g′1

−ky
a−y−ky(e∗−e)

= (g′1g
′
1

y(e∗+x)k−y
a)

a
(x+e∗)(a−y−ky(e∗−e)) g′1

−ky
a−y−ky(e∗−e)

= (g′1
y(e∗+x)k−y+a

a)
a

(x+e∗)(a−y−ky(e∗−e)) g′1
−ky

a−y−ky(e∗−e)

= g′1
y(e∗+x)k−y+a

(x+e∗)(a−y−ky(e∗−e)) g′1
−ky

a−y−ky(e∗−e)

= g′1
y(e∗+x)k−y+a+−ky(x+e∗)

(x+e∗)(a−y−ky(e∗−e))

= g′1
a−y−ky(e∗−e)

(x+e∗)(a−y−ky(e∗−e))

= g′1
1

x+e∗

(11)

From an extra SDH pair A’ can break the qSDH assumption as shown in [7].

– Case e∗ = ei and A∗ = Ai but (m∗1, . . . ,m
∗
L) 6= (mi,1, . . . ,mi,L), then A’ can

break the DL assumption. For some i′, A finds m∗i′ 6= mi′,j with nonnegligible
probability. We set a discrete logarithm instance as our hi′ generator and, from

this forgery, learn logh0(hi′) =
s−s∗+

∑
j=1,...,L,j 6=i′ µi(mi,j−m

∗
j)

m∗
i′−mi,i′

.

– Case e∗ ∈ {ei}0<i≤q,i6=α ∪ {e}: With probability 1
q , e∗ = e. We can derive an

extra SDH pair (B∗, e∗) in the exact same way as in the first case.

B Proving Knowledge of a BBS+ Signature

We now show that from the zero knowledge proof

SPK{(gsk , {ai}i∈D̄, e, a, b) :
e(A′, w)

e(g1, g2)
∏
i∈D e(hi+1, g2)ai

=

= e(A′, g2)−ee(h0, g2)be(h1, g2)gske(h0, w)a
∏
i∈D̄

e(hi+1, g2)ai}

proves knowledge of a BBS+ signature. From the proof we can extract
(gsk , {ai}i∈D̄, e, a, b) fulfilling the proof equation. This means we have

A′x+e = g1h
b+x·a
0 hgsk1

L∏
i=1

haii+1

Note that (A′, e, b + x · a) is a valid signature on gsk , a1, . . . , aL. However,
computing this signature requires knowledge of issuer secret key x. Instead,

compute f ′ ← b− a · e. Rewriting b = f ′ + a · e gives

(A′ · ha0)x+e = g1h
f+f ′

0 hgsk1

L∏
i=1

haii+1

showing that (A′ · ha0 , e, f + f ′) is a valid BBS+ signature on gsk , a1, . . . , aL.

C Security Proof

We now prove Theorem 2.

Proof. We have to prove that our scheme realizes F ldaa+, which means prov-
ing that for every adversary A, there exists a simulator S such that for every
environment E we have EXECΠ,A,E ≈ IDEALF,S,E .

To show that no environment E can distinguish the real world, in which it
is working with Πdaa+ and adversary A, from the ideal world, in which it uses
F ldaa+ with simulator S, we use a sequence of games. We start with the real
world protocol execution. In the next game we construct one entity C that runs
the real world protocol for all honest parties. Then we split C into two pieces, a
functionality F and a simulator S, where F receives all inputs from honest parties
and sends the outputs to honest parties. We start with a dummy functionality,
and gradually change F and update S accordingly, to end up with the full F ldaa+
and a satisfying simulator. First we define all intermediate functionalities and
simulators, and then we prove that they are all indistinguishable from each other.

C.1 Functionalities and Simulators

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Output (FORWARD, (SETUP, sid),V) to S.

Join
1. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.

2. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),Hj) to S.

2. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, p, RL, SRL),V) to S.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V..

– Output (FORWARD, (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn),V) to S.

Output
1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 3. F for Game 3

When any simulated party “P” outputs a message m, S sends (OUTPUT,P,m) to F.
KeyGen

– Upon receiving (FORWARD, (SETUP, sid), I) from F.

• Give “I” input (SETUP, sid).

Join

– Upon receiving input (FORWARD, (JOIN, sid , jsid,Mi),Hj) from F.

• Give “Hj” input (JOIN, sid , jsid,Mi).

– Upon receiving input (FORWARD, (JOINPROCEED, sid , jsid), I) from F.

• Give “I” input (JOINPROCEED, sid , jsid).

Sign

– Upon receiving (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) from F.

• Give “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving FORWARD, (SIGNPROCEED, sid , ssid),Mi) from F.

• Give “Mi” input (SIGNPROCEED, sid , ssid).

Verify

– Upon receiving (FORWARD, (VERIFY, sid ,m, bsn, σ, RL),V) from F.

• Give “V” input (VERIFY, sid ,m, bsn, σ, RL).

Link

– Upon receiving (FORWARD, (LINK, sid , lsid, σ,m, σ′,m′, bsn),V) from F.

• Give “V” input (LINK, sid , lsid, σ,m, σ′,m′, bsn).

Fig. 4. Simulator for Game 3

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
1. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),V) to S.

2. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs),V) to S.

Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),V) to S.

2. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),V) to S.

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, p, RL, SRL),V) to S.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V..

– Output (FORWARD, (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn),V) to S.

Output
1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 5. F for Game 4

When any simulated party “P” outputs a message m, S sends (OUTPUT,P,m) to F.
KeyGen
– On input (SETUP, sid) from F.

• Parse sid as I, sid ′.

• Give “I” input (SETUP, sid).

• When “I” outputs (SETUPDONE, sid), S takes its private key x.

• Define sig(gsk ,m, bsn, p, SRL, attrs) as follows: First, create a BBS+ sig on gsk and
attrs. Next, the algorithm performs the real world signing algorithm (performing
both the tasks from the host and the TPM).

• Define ver(σ,m, bsn, p, SRL) as the real world verification algorithm, except that
the private-key revocation check is ommitted.

• Define link(σ,m, σ′,m′, bsn) as follows: Parse the signatures as (A′, nym, π, {πi})←
σ, (A′′, nym′, π′, {π′i})← σ′, and output 1 iff nym = nym′.

• Define identify(σ,m, bsn, gsk) as follows: parse σ as (A′, nym, π, {πi}) and check
gsk ∈ Zp and nym = H1(bsn)gsk . If so, output 1, otherwise 0.

• Define ukgen as follows: take gsk ←$ Zp and output gsk .

• S sends (KEYS, sid , sig, ver, link, identify, ukgen) to F.

Corrupt I

– S notices this setup as it notices I registering a public key with “Fca” with sid =
(I, sid ′).

• If the registered key is of the form w, h0, . . . , hL, π and π is valid, S extracts x from
π.

• S defines the algorithms sig, ver, link, identify, ukgen as before, but now depending
on the extracted key.

• S sends (SETUP, sid ′) to F on behalf of I.

– On input (KEYGEN, sid) from F.

• S sends (KEYS, sid , sig, ver, link, identify, ukgen) to F.

– On input (SETUPDONE, sid) from F
• S continues simulating “I”.

Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 6. Simulator for Game 4

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
1. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),V) to S.

2. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs),V) to S.

Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),V) to S.

2. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),V) to S.

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Output
1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 7. F for Game 5

When any simulated party “P” outputs a message m, S sends (OUTPUT,P,m) to F.
KeyGen
Unchanged.
Join
– Upon receiving input (FORWARD, (JOIN, sid , jsid,Mi),Hj) from F.

• Give “Hj” input (JOIN, sid , jsid,Mi).

– Upon receiving input (FORWARD, (JOINPROCEED, sid , jsid), I) from F.

• Give “I” input (JOINPROCEED, sid , jsid).

Sign
– Upon receiving (FORWARD, (SIGN, sid , ssid,Mi,m, bsn),Hj) from F.

• Give “Hj” input (SIGN, sid , ssid,Mi,m, bsn).

– Upon receiving FORWARD, (SIGNPROCEED, sid , ssid),Mi) from F.

• Give “Mi” input (SIGNPROCEED, sid , ssid).

Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 8. Simulator for Game 5

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
1. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← request .

– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

2. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists.

– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Update the session record 〈jsid ,Mi,Hj , attrs, status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ if Mi and Hj are
honest and attrs ′ ← attrs otherwise.

4. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Insert 〈Mi,Hj , gsk , attrs〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p, SRL),V) to S.

2. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),V) to S.

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Output
1. On input (OUTPUT,P,m) from S.

– Output (m) to P.

Fig. 9. F for Game 6

When any simulated party “P” outputs a message m, S sends (OUTPUT,P,m) to F.
KeyGen
Unchanged.
Join
Honest H, I:

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F.

• It simulates the real world protocol by giving “Hj” input (JOIN, sid , jsid ,Mi) and
waits for output (JOINPROCEED, sid , jsid ,Mi) from “I”.

• IfMi is corrupt, S extracts gsk from proof π1 stores it. IfMi is honest, it already
knows gsk as it is simulating Mi.

• S sends (JOINSTART, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid , attrs) from F.

• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs),
and waits for output (JOINED, sid , jsid) from “Hj”.

• Output (JOINCOMPLETE, sid , jsid , gsk) to F.

Honest H, Corrupt I:

– On input (JOINSTART, sid , jsid ,Mi,Hj) from F.

• S simulates the real world protocol by giving “Hj” input (JOIN, sid , jsid ,Mi) and
waits for output (JOINED, sid , jsid) from “Hj”. Simulating “Hj”, S knows which
attributes attrs the corrupt issuer issued to “Hj”.

• S sends (JOINSTART, sid , jsid) to F.

– Upon receiving (JOINPROCEED, sid , jsid) from F.

• S sends (JOINPROCEED, sid , jsid , attrs) to F on behalf of I
– Upon receiving (JOINCOMPLETE, sid , jsid) from F.

• Send (JOINCOMPLETE, sid , jsid ,⊥) to F.

Honest M, I, Corrupt H:

– S notices this join as “Mi” receives a (sid , jsid , n) from Hj

• S makes a join query on Hj ’s behalf by sending (JOIN, sid , jsid ,Mi) to F.

– Upon receiving (JOINSTART, sid , jsid ,Mi,Hj) from F.

• S continues the simulation of “Mi” until “I” outputs
(JOINPROCEED, sid , jsid ,Mi).

• S sends (JOINSTART, sid , jsid) to F.

– Upon receiving (JOINCOMPLETE, sid , jsid , attrs) from F.

• S sends (JOINCOMPLETE, sid , jsid , gsk) to F, where gsk is taken from simulating
“Mi”.

– Upon receiving (JOINED, sid , jsid) from F as Hj is corrupt.

• S gives “I” input (JOINPROCEED, sid , jsid , attrs).

Fig. 10. First part of simulator for Game 6

Honest I, Corrupt M, H:

– S notices this join as “I” receives (SENT, sid ′, jsid , (Q, π1),Hj) from Fauth∗.

• Parse sid ′ as (Mi, I, sid). S extracts gsk from π1.

• Note that S does not know the identity of the host that initiated this join, so
it chooses some corrupt Hj and proceeds as if this is the host that initiated the
join protocol. Even though this probably is not the correct host, it will only put
a different host in Members, and the identities of hosts in this list are only used
while creating signatures for platforms with an honest TPM or host, so for a fully
corrupt platform it does not matter.

• S makes a join query with Mi by sending (JOIN, sid , jsid ,Mi) to F on behalf of
Hj .

– Upon receiving (JOINSTART, sid , jsid ,Mi,Hj) from F.

• S continues simulating “I” until it outputs (JOINPROCEED, sid , jsid ,Mi).

• S sends (JOINSTART, sid , jsid) to F.

– Upon receiving (JOINCOMPLETE, sid , jsid , attrs) from F.

• S sends (JOINCOMPLETE, sid , jsid , gsk) to F.

– Upon receiving (JOINED, sid , jsid) from F as Hj is corrupt.

• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs).

Honest M, Corrupt H, I:

– S notices this join as “Mi” receives a message (sid , jsid , n) from Hj

– S simply simulatesMi honestly, there is no need to involve F asMi does not receive
inputs or send outputs in the join procedure.

Sign
Unchanged.
Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 11. First part of simulator for Game 6

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid ,m, bsn, p, SRL,Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ←
ukgen()and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 12. F for Game 7

KeyGen
Unchanged.
Join
Unchanged.
Sign
Honest M, H:

– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p, SRL,Mi,Hj) from F.

• S starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL).

• When “Mi” outputs (SIGNPROCEED, sid , ssid ,m′, bsn′, p, SRL), send
(SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

• When “Mi” outputs (SIGNATURE, sid , ssid , σ), send
(SIGNCOMPLETE, sid , ssid ,⊥) to F.

Honest H, Corrupt M:

– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F.

• Send (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) from F as Mi is corrupt.

• Starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL).

• When “Hj” outputs (SIGNATURE, sid , ssid , σ), sends (SIGNPROCEED, sid , ssid)
to F on behalf of Mi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send SIGNCOMPLETE, sid , ssid , σ) to F.

Honest M, Corrupt H:

– S notices this sign as “Mi” receives sid , jsid ,m, bsn, p, SRL from Hj .

• Make a sign query on Hj ’s behalf by sending (SIGN, sid , ssid ,Mi,m, bsn, p, SRL).

– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F.

• Continue the simulation of “Mi” until it outputs
(SIGNPROCEED, sid , ssid ,m, bsn, p, SRL).

• Sends (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send (SIGNCOMPLETE, sid , ssid ,⊥) to F.

– As the host is corrupt, the platform may not have successfully joined, even when the
TPM thinks it did. Therefore, the simulator either receives (SIGNATURE, sid , ssid , σ)
from F when they joined, or ⊥ as the membership check resulted in an error. On
either one of those inputs:

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 13. Simulator for Game 7

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ←
ukgen()and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 14. F for Game 8

KeyGen
Unchanged.
Join
Unchanged.
Sign
Honest M, H:

– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F.

• It takes dummy m′, bsn′, p, SRL such that l(m′, bsn′, p, SRL) = l, making sure that
p holds for the platform’s attributes (which S learnt in the join protocol) and that
SRL does not contain a signature matching the platform’s gsk (again from the join
protocol).

• S starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL).

• When “Mi” outputs (SIGNPROCEED, sid , ssid ,m′, bsn′, p, SRL), send
(SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

• When “Mi” outputs (SIGNATURE, sid , ssid , σ), send
(SIGNCOMPLETE, sid , ssid ,⊥) to F.

Honest H, Corrupt M:

– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F.

• Send (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) from F as Mi is corrupt.

• Starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL).

• When “Hj” outputs (SIGNATURE, sid , ssid , σ), sends (SIGNPROCEED, sid , ssid)
to F on behalf of Mi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send SIGNCOMPLETE, sid , ssid , σ) to F.

Honest M, Corrupt H:

– S notices this sign as “Mi” receives sid , jsid ,m, bsn, p, SRL from Hj .

• Make a sign query on Hj ’s behalf by sending (SIGN, sid , ssid ,Mi,m, bsn, p, SRL).

– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F.

• Continue the simulation of “Mi” until it outputs
(SIGNPROCEED, sid , ssid ,m, bsn, p, SRL).

• Sends (SIGNSTART, sid , ssid) to F.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F.

• Send (SIGNCOMPLETE, sid , ssid ,⊥) to F.

– As the host is corrupt, the platform may not have successfully joined, even when the
TPM thinks it did. Therefore, the simulator either receives (SIGNATURE, sid , ssid , σ)
from F when they joined, or ⊥ as the membership check resulted in an error. On
either one of those inputs:

• Continue the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
Nothing to simulate.
Link
Nothing to simulate.

Fig. 15. Simulator for Game 8

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , sig, ver, link, identify, ukgen) from S
– Check that ver, link and identify are deterministic.

– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ←
ukgen()and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 16. F for Game 9

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 17. Simulator Game 9

Setup
Unchanged.
Join
1. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← request .

– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

2. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists.

– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Update the session record 〈jsid ,Mi,Hj , attrs, status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ if Mi and Hj are
honest and attrs ′ ← attrs otherwise.

4. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 if Mi is corrupt.

– Insert 〈Mi,Hj , gsk , attrs〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL).

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
Unchanged.
Link
Unchanged.

Fig. 18. F for Game 10

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 19. Simulator Game 10

Setup
Unchanged.
Join
1. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← request .

– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

2. Join Request Delivery. On input (JOINSTART, sid , jsid) from S
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists.

– Output (JOINPROCEED, sid , jsid ,Mi) to I.

3. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I, with attrs ∈ A1× . . .×
AL

– Update the session record 〈jsid ,Mi,Hj , attrs, status〉 to status ← complete.

– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ if Mi and Hj are
honest and attrs ′ ← attrs otherwise.

4. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete.

– If Mi and Hj are honest, set gsk ← ⊥.

– Else, verify that the provided gsk is eligible by checking

• CheckGskHonest(gsk) = 1 if Hj is corrupt and Mi is honest, or

• CheckGskCorrupt(gsk) = 1 if Mi is corrupt.

– Insert 〈Mi,Hj , gsk , attrs〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
Unchanged.
Link
Unchanged.

Fig. 20. F for Game 11

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 21. Simulator Game 11

Setup
Unchanged.
Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found.

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 22. F for Game 12

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 23. Simulator Game 12

Setup
Unchanged.
Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found.

• I is honest and no pair (gsk i,Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1.

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 24. F for Game 13

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 25. Simulator Game 13

Setup
Unchanged.
Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found.

• I is honest and no pair (gsk i,Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi, p, SRL〉 ∈ Signed exists.

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 26. F for Game 14

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 27. Simulator Game 14

Setup
Unchanged.
Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found.

• I is honest and no pair (gsk i,Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi, p, SRL〉 ∈ Signed exists.

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1 and no pair (gsk i,Mi) for an
honest Mi was found.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 28. F for Game 15

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 29. Simulator Game 15

Setup
Unchanged.
Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found.

• I is honest and no pair (gsk i,Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi, p, SRL〉 ∈ Signed exists.

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1 and no pair (gsk i,Mi) for an
honest Mi was found.

• For some matching gsk i and (σ′,m′, bsn′) ∈ SRL, identify(σ′,m′, bsn′, gsk i) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 30. F for Game 16

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 31. Simulator Game 16

Setup
Unchanged.
Join
Unchanged.
Sign
1. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p, SRL) from Hj with p ∈ P

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status ← request .

– Output (SIGNSTART, sid , ssid , l(m, bsn, p, SRL),Mi,Hj) to S.

2. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.

– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 to status ← delivered .

– Output (SIGNPROCEED, sid , ssid ,m, bsn, p, SRL) to Mi.

3. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Look up record 〈ssid ,Mi,Hj ,m, bsn, p, status〉 with status = delivered .

– Output (SIGNCOMPLETE, sid , ssid) to S.

4. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.

– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p(attrs) = 1 exists in Members.

– For every (σ′,m′, bsn′) ∈ SRL, find all (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and
〈Mi, ∗, gsk i〉 ∈ DomainKeys where identify(σ′,m′, bsn′, gsk i) = 1.

• Check that there are no two distinct gsk values matching σ′.

• Check that no pair (gsk i,Mi) was found.

– If Mi and Hj are honest, ignore the adversary’s signature and internally generate the
signature for a fresh or established gsk :

• Find gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys. If no such gsk exists, set gsk ← ukgen(),
check CheckGskHonest(gsk) = 1, and store 〈Mi, bsn, gsk〉 in DomainKeys.

• Compute signature σ ← sig(gsk ,m, bsn, p, SRL), check ver(σ,m, bsn, p, SRL) = 1.

• Check identify(σ,m, bsn, gsk) = 1 and that there is no M′i 6= Mi with key gsk ′

registered in Members or DomainKeys with identify(σ,m, bsn, gsk ′) = 1.

– If Mi is honest, store 〈σ,m, bsn,Mi〉 in Signed.

– Output (SIGNATURE, sid , ssid , σ) to Hj .

Verify
1. Verify. On input (VERIFY, sid ,m, bsn, σ, p, RL, SRL) from some party V.

– Retrieve all pairs (gsk i,Mi) from 〈Mi, ∗, gsk i〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈
DomainKeys where identify(σ,m, bsn, gsk i) = 1. Set f ← 0 if at least one of the fol-
lowing conditions hold:

• More than one key gsk i was found.

• I is honest and no pair (gsk i,Mi) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈
Members exists with p(attrs) = 1.

• There is an honest Mi but no entry 〈∗,m, bsn,Mi, p, SRL〉 ∈ Signed exists.

• There is a gsk ′ ∈ RL where identify(σ,m, bsn, gsk ′) = 1 and no pair (gsk i,Mi) for an
honest Mi was found.

• For some matching gsk i and (σ′,m′, bsn′) ∈ SRL, identify(σ′,m′, bsn′, gsk i) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).

– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
1. Link. On input (LINK, sid , σ,m, p, SRL, σ′,m′, p′, SRL′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn, p, SRL) or (σ′,m′, bsn, p′, SRL′) is not
valid (verified via the verify interface with RL = ∅).

– For each gsk i in Members and DomainKeys compute bi ← identify(σ,m, bsn, gsk i) and
b′i ← identify(σ′,m′, bsn, gsk i) and do the following:

• Set f ← 0 if bi 6= b′i for some i.

• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, Set f ← link(σ,m, σ′,m′, bsn).

– Output (LINK, sid , f) to V.

Fig. 32. F for Game 17

KeyGen
Unchanged.
Join
Unchanged.
Sign
Unchanged.
Verify
Unchanged.
Link
Unchanged.

Fig. 33. Simulator Game 17

C.2 Indistinguishability of games

We now show that every game hop is indistinguishable from the previous. Note
that although we separate F and S, in reductions we can consider them to be
one, as this does not affect A and E .

Game 1: This is the real world protocol.

Game 2: C receives all inputs for honest parties and simulates the real world
protocol for honest parties. By construction, this is equivalent to the real world.

Game 3: We now split C into two pieces, F and S. We let F evolve to become
F ldaa+ and S to become the simulator. F behaves as an ideal functionality, so the
messages it sends are authenticated and immediate, A will not notice them. F
receives all the inputs, who forwards them to S. S will simulate the real world
protocol for all honest parties, and sends the outputs to F, who forwards them
to E . Outputs generated by parties simulated by S are not sent anywhere, only
S notices them. S sends an equivalent output to F using an OUTPUT message,
such that F will generate the same output.

This game is simply Game 2 but structured differently, so Game 3 = Game
2.

Game 4: We now change the behavior of F in the setup interface, and store
algorithms in F. Note that F now checks the structure of sid for honest issuer
I, and aborts when it is not of the expected form. This abort will not change
the view of E , as I performs the same check upon receiving this input.

The simulated real world does not change, as I gives “I” the correct input.
For corrupt I, S also extracts the secret key and calls the setup interface on I’s
behalf, but clearly this does not change E ’s view, so Game 4 = Game 3.

Game 5: F now handles verification and link queries instead of forwarding
them to S. There are no protocol messages, so we only have to make sure the
output is equal.

The verification algorithm F uses is almost equal to the real world protocol.
The only difference is the that the ver algorithm that F uses does not contain the
private-key revocation check. F performs this check separately, so the outcomes
are equal.

The linking protocol outputs ⊥ when it is called with invalid signatures. F
does the same, it verifies the signatures and outputs ⊥ when one of the signatures
is not valid. The protocol then checks the pseudonyms for equality, which is
exactly what F does, showing that the outputs will be equal. F requires link to
be symmetrical and outputs ⊥ when it notices that it is not. This algorithm is
symmetrical, so this abort will not happen and we have Game 5 = Game 4.

Game 6: The join interface of F is now changed. It stores which members
joined, and if I is honest, stores the key gsk with which corrupt TPMs joined.
S extracts this from proof π in the simulated real world.

If extraction by rewinding is used, a fresh nonce must be included in the
proof, guaranteeing that this proof is fresh and we can extract from it. Note

that we can rewind here as the honest I only allows a logarithmic number of
simultaneous join sessions, so there is no risk of requiring exponential time to
rewind every join session.

S always has enough information to simulate the real world protocol, except
when only the issuer is honest. It then does not know which host initiated this
join, so it cannot make a join query with F on that host’s behalf. However, it is
sufficient to take any corrupt host, as this will only result in a different identity
in Members, and in F ldaa+ this identity only matters for honest hosts.

We must argue that F does not prevent an execution that was allowed in the
previous game. F only has one check that may cause it to abort, if M already
registered and I is honest. Since in the protocol, I checks this before outputting
JOINPROCEED, F will never abort.

As S can simulate the real world protocol and keep everything in sync with
F, the view of E does not change, Game 6 = Game 5.

Game 7: F now creates pseudonymous signatures for honest platforms using
the algorithms defined in setup. The difference is that signatures made by F will
be based on fresh gsk values for every basename, whereas before all signatures
were based on the same gsk . To show that E cannot notice that signatures are
now made in a different way by F, we make this change gradually.

In Game 7.k.k′, F forwards all signing inputs with Mi, i > k to S, and
S creates signatures as before. Inputs with Mi, i < k are handled by F using
the algorithms. For signing inputs with Mk, signing queries with the first k′

basenames that are hashed are handled by F, and later inputs will be forwarded
to S. We now have Game 7.0.0 = Game 6. When increasing k′, in polynomially
many steps Game 7.k,k′ will be equal to Game 7.k + 1.0, as there can only be
polynomially many basenames hashed. Repeating this process will make k large
enough to include all TPMs, so for some k, k′, we have Game 7 = Game 7.k.k′.
Therefore, to show that Game 7 = Game 6, it suffices to show that increasing
k′ by one is indistinguishable.

We now show that anyone distinguishing Game 7.k.k′ from Game 7.k.k′+1
can solve DDH. We modify S working with F parametrized by k, k′ such that if it
receives a DDH tuple, it is equivalent to Game 7.k.k′, and otherwise equivalent
to Game 7.k.k′ + 1.

S receives a DDH instance g̃, α, β, γ ∈ G1 and must answer whether logg̃(α) ·
logg̃(β) = logg̃(γ). S sets h1 ← g̃, which it can do as it simulates Fcrs. S answers
H1 queries on basenames bsni with hri1 for some ri ←$ Zp, maintaining consis-
tency, except the k′-th query, in which it returns β. S simulates Mk using the
unknown discrete logarithm of α as its gsk by setting Q ← α, simulating proof
π1 in join. Signing queries are handled as follows. When F signs on behalf ofMi

with i < k, the query is forwarded to S who handles it as before using the real
world protocol. If i > k, F handles the signing using the algorithms supplied
by S and fresh gsk values per basename. When F signs on behalf of Mk with
basename bsni and i < k′, it sets nym← αri . If i = k′, S sets nym← γ. If i > k′,
S takes gsk i ←$ Zp and sets nym ← H1(bsni)

gski , reusing this gsk i for further
signing queries of Mk with bsni. In either case, Mk′ simulates π.

When the DDH instance is a DDH tuple, this game is Game 7.k.k′, and when
it is not, this game is Game 7.k.k′+1. Therefore, any distinguisher distinguishing
these two games can break DDH, so Game 7 ≈ Game 6.

Game 8: F no longer leaksm, bsn, p, SRL to S, but only the leakage l(m, bsn, p, SRL).
All the adversary notices is the leakage of the secure channel between the TPM
and host. S can still simulate this by taking dummy values that result in the
same leakage. As S makes sure the dummy attribute predicate still holds and
the signature revocation list does not revoke the platform, any signing query
that would previously succeed will still succeed, so Game 8 ≈ Game 7.

Game 9: F now only allows platforms that joined with attributes fulfilling the
attribute predicate to sign when I is honest. This check will not change the view
of E . Before signing with some Mi in the real world, an honest host will check
whether it joined with Mi and abort otherwise, so for honest hosts there is no
difference. An honest TPMMi only signs when it has joined with that host, and
when an honestMi performs the join protocol with a corrupt Hj and honest I,
the simulator will make a join query with F, ensuring that Mi and Hj are in
Members. Since F still allows any signing that could take place in the real world,
Game 9 = Game 8.

Game 10: When storing a new gsk , F checks CheckGskCorrupt(gsk) = 1 or
CheckGskHonest(gsk) = 1. We now show that these checks will never fail.

Note that we only consider valid signatures from VerResults, and Signed

only contains valid signatures (added for honest TPM and host) and ⊥ (added
for honest TPM with corrupt host). As identify(⊥) = 0, we only have to consider
valid signatures.

Any signature that passes verification has nym = H1(bsn)gsk . With over-
whelming probability, H1(bsn) 6= 1, meaning it generates G1 and there is only
one gsk ∈ Zp that has nym = H1(bsn)gsk . From this property, it follows that
CheckGskCorrupt can never fail.

The gsk values that enter CheckGskHonest are taken uniformly at random
from Zp, which has exponential size, meaning that the probability that one of
the existing signatures contains that gsk is negligible. Therefore we have Game
10 ≈ Game 9.

Game 11: F now performs some checks on honestly generated signatures. First,
it checks that these signatures verify. This check will always pass, as sig creates
valid signatures.

Second, it makes sure identify(σ,m, bsn, gsk) = 1. F running sig sets nym such
that nym = H1(bsn)gsk , so identify(σ,m, bsn, gsk) = 1.

Third, it checks that no honest user is already using gsk . We reduce this
check happening with non-negligible probability to solving the DL problem. F
receives an instance α ∈ G1 of the DL problem and must answer logh1

(α). Only
polynomial many gsk values are created in signing requests, F chooses one of
those at random. Instead of setting gsk ← ukgen, F creates a credential on α,
determines the nym using the power S has over random oracle, and simulates
the π. When F would reuse this key, it repeats the same process. When a key

matching any of these signatures is found in Members or DomainKeys, this must
be the discrete log of α, as there is only one gsk matching a signature (assuming
H1(bsn) 6= 1).

As every check passes with overwhelming probability, we have Game 11 ≈
Game 10.

Game 12: In verification, F now checks whether it finds multiple distinct gsk
values matching the purported signature. We now show that this check triggers
with negligible probability.

A matching key means nym = H1(bsn)gsk , which can only hold for multiple
keys if H1(bsn) = 1, which happens with negligible probability. Therefore Game
12 ≈ Game 11.

Game 13: When I is honest, F now only accepts signatures on gsk and attrs
values on which I issued a credential. Under the existential unforgeability of the
BB+ signature, this check changes the verification outcome only with negligible
probability.

C receives a BBS+ public key, which it registers with a simulated proof. When
I must create a credential in the join protocol, it takes the extracted gsk and the
attribute values attrs and sends it to the signing oracle to receive (A, e, f). When
F must sign on behalf of an honest platform, it also uses the signing oracle to
create the signature, but now it uses the attrs the platform joined with, instead
of dummy values for undisclosed attribute values. This change is not noticable,
as the proofs-of-knowledge will be indistinguishable.

When F sees a valid signature with respect to predicate p, but no matching
gsk has been found for a TPM with attributes matching p, this means we can
extract a credential on gsk , attrs with p(attrs) = 1 as shown in Appendix B.
I never issued such a credential, so C wins the unforgeability game. As the
BBS+ signature is unforgeable under the qSDH and DL assumption (as shown
in Appendix A), we have Game 13 ≈ Game 12.

Game 14: F now prevents forging signatures using an honest TPM’s gsk . We
make this change gradually, and in Game 14.i.i′, we do this check for the first i
TPMs, and forMi we do this for the i′ first basenames that are hashed. We show
that any environment able to distinguish Game 14.i.i′ and Game 14.i.i′ + 1
can break the DL assumption.

S receives an DL instance α. When Mi signs with basename bsni′ , instead
of picking a fresh basename, F uses the unknown discrete logarithm of α as
the TPMs gsk . The credential can be created without knowledge of the discrete
logarithm of α, and by its power over the random oracle it knows some r such
that H1(bsni′) = hr1, and can set the pseudonym as αr. The proof π can be
simulated.

In verification, F does not know the discrete logarithm of α, so it cannot
directly check whether a signature matches this key. However, instead it can
check nym1/ri for signatures with bsni and H1(bsni) = hri1 .

When F finds a signature matchingMi valid with respect to m, bsn, p, SRL,
but Mi never signed this, we can rewind the proof to extract gsk , which must

be the discrete logarithm of α. This breaks the DL assumption, so Game 14 ≈
Game 13.

Game 15: F now prevents honest TPMs from being revoked. Any environment
that can put a gsk on the revocation list that matches an honest TPMs signature
can break the DL assumption. Note that for honest TPMs, there are only pairs
(Mi, gsk) in DomainKeys that have gsk 6= ⊥.

If this check aborts for a pair found in Members, E can solve the DL problem.
S receives an instance α ∈ G1 of the DL problem and must answer logh1

(α). S
chooses an honest TPM at random and sets Q← α with a simulated proof in the
join protocol, When a gsk from Members matching one of this TPMs signatures
is found in the revocation list this must be the discrete log of h, as there is only
one gsk matching a signature.
F receives an instance α ∈ G1 of the DL problem and must answer logh1(α).

Whenever F would choose a new gsk value when signing for an honest platform,
instead it takes r ←$ Zp and creates a signature with gsk equal to r times the
discrete log of α. It can do this as described in Game 14. When a key matching
any of these signatures is found in the revocation list this must be r times the
discrete log of α. This breaks the DL assumption, so Game 15 ≈ Game 14.

Game 16: F now performs the signature revocation check. If it found a match-
ing key gsk that also matches some revoked signature, the signature will be re-
jected. This cannot change the verification outcome, as the ver algorithm checks
that the platform proved that its gsk is unequal to the key used in the revoked
signatures. Therefore Game 16 = Game 15.

Game 17: F now puts requirements on the link algorithm. These requirements
do not change the output.

With overwhelming probability, we have H1(bsn) 6= 1, so thre is one unique
gsk ∈ Zp with identify(σ,m, bsn, gsk). If one gsk matches one of the signatures
but not the other, then by soundness of the proof, nym 6= nym′ and link would also
output 0. If both signatures match some gsk , then by soundness of the proof, we
have nym = nym′ and link would also output 1. Therefore we have Game 17 =
Game 16.

The functionality in Game 17 is equal to F ldaa+, completing our security
proof.

C.3 Extraction from Zero-Knowledge Proofs

Theorem 2 is about the setting where we use online extractable zero-knowledge
proofs. Instead of relying on online extractable SPKs one could also use ex-
traction by rewinding, which would yield a more efficient scheme. However, one
needs to take special care that the rewinding does not require exponential time
in the security proof. The only SPK we constantly have to extract from in our
security proof is π1 used in the join protocol. Thus, we can avoid the exponential
blow-up by letting the issuer limit the number of simultaneous join sessions to
be logarithmic in the security parameter. Since we keep the way in which the

simulator extracts witnesses abstract in the proof of Theorem 2, the very same
simulator proves the scheme with extraction by rewinding secure. Note though,
that the UC framework does not allow rewinding at all, i.e., this only proves the
instantiation using extraction by rewinding secure in a stand-alone fashion, but
one cannot claim composability guarantees.

