
Breaking and Fixing Private Set Inter-
section Protocols
Mikkel Lambæk, 20113601
Concat at: mikkel.lambaek@post.au.dk

Master’s Thesis, Computer Science
June 2016
Advisers: Claudio Orlandi, Ivan Damgård

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY AU

Abstract

A private set intersection protocol consists of two parties, a Sender and a Re-
ceiver, each with a secret input set. The protocol aims to have the Receiver
output an intersection of the two sets while keeping the elements in the sets
secret.

This thesis thoroughly analyzes four recently published set intersection pro-
tocols, where it explains each protocol and checks whether it satisfies its corre-
sponding security definition.

The first two protocols [PSZ14, PSSZ15a] use random oblivious transfer
where [PSSZ15a] is an optimized version of [PSZ14]. In the optimized protocol
a correctness error is identified and prevented at a minor increase in run-time.
An attempt to make [PSSZ15a] secure against a malicious adversary is shown,
where the resulting protocol is proven secure against a semi-honest Sender and
malicious Receiver.

The third protocol [DCW13] is based on Bloom filters combined with obliv-
ious transfer, and proposes protocols for two different security levels. The
semi-honestly secure protocol satisfies its definition, while their proposal for
a maliciously secure protocol is insufficient. This thesis shows two attacks a
malicious Sender is capable of, without finding efficient countermeasures.

The last protocol [DC16] allows computing four different set operations,
where five errors are identified. Each error is explained and a proposal to avoid
the issue is shown.

i

Acknowledgements

First of all I would like to especially thank Claudio Orlandi for helpful guid-
ance and many interesting discussions. Working with him has been a great
experience.

Secondly I would like to Ivan Damgård for standing in for Claudio during
the defence of this thesis, and at last I would like to thank Stefan Lambæk for
reading through my thesis, and providing feedback.

Mikkel Lambæk,
Aarhus, June 29, 2016.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

2 Preliminaries 4
2.1 Notation . 4

2.1.1 Lagrange Interpolation . 4
2.1.2 Secret Sharing Scheme . 5
2.1.3 Random Oracle Model . 6

2.2 Encryption schemes . 7
2.2.1 Symmetric Key Encryption Scheme 7
2.2.2 Partially homomorphic encryption scheme 8

2.3 Hashing and Bloom filters . 11
2.3.1 Simple Hashing . 11
2.3.2 Cuckoo Hashing . 12
2.3.3 Bloom Filter . 15
2.3.4 Inverted and Encrypted Bloom filter 15
2.3.5 Garbled Bloom Filter . 16
2.3.6 A note on hashing failures 18

2.4 Security definitions . 18
2.4.1 Semi-Honest adversary . 20
2.4.2 Malicious adversary . 20
2.4.3 Composability . 22

2.5 Oblivious Transfer . 23
2.6 Private Set Intersection . 24

3 OT-based PSI by [PSZ14] 26
3.1 Intuition behind OT-based PSI 26

3.1.1 Equality test . 26
3.1.2 Inclusion test . 27
3.1.3 Set intersection . 29

3.2 PSI protocol from [PSZ14] . 29
3.3 Protocol of [PSZ14] . 30
3.4 Proof for [PSZ14] . 32

iii

4 Optimizations by [PSSZ15a] 37
4.1 Optimizations . 37

4.1.1 Reducing number of generated masks: 37
4.1.2 h-ary Cuckoo Hashing: . 39
4.1.3 Reducing bit-length: . 39

4.2 Protocol of [PSSZ15a] . 40
4.3 Proof for [PSSZ15a] . 42
4.4 Malicious adversary against [PSSZ15a] 46

4.4.1 Malicious Receiver . 46
4.4.2 Malicious Sender . 52

5 PSI using garbled Bloom filters by [DCW13] 53
5.1 Semi-honestly secure protocol from [DCW13] 53
5.2 Enhanced protocol from [DCW13] 53

5.2.1 Attacks on semi-honestly secure protocol from [DCW13] . 54
5.2.2 Attacks on enhanced protocol from [DCW13]. 55

6 Private Set Operations from [DC16] 58
6.1 PSU protocol . 58
6.2 PSI protocol . 60
6.3 PSU-CA and PSI-CA . 61
6.4 Problems . 61

6.4.1 Security proof . 61
6.4.2 Lacking randomness . 62
6.4.3 Multiplicative homomorphic encryption 62
6.4.4 Cardinality protocols . 63
6.4.5 Size of the Receiver’s input 63

Bibliography 63

iv

Chapter 1

Introduction

Cryptographers have studied multi-party computation for several years by try-
ing to create general protocols that can compute any function. The performance
of these general protocols has been lacking, resulting in the study of special pur-
pose protocols to compute a specific function, to obtain better run-times.

One such function is private set intersection (PSI) which has been studied
by various authors. A private set intersection protocol consists of two parties,
a Sender and a Receiver, each having a set as input, which respectively are de-
noted X and Y . Together they want to compute the intersection of their sets,
X ∩ Y , without revealing elements not contained in the intersection. Usually
the Receiver will learn X ∩Y and |X| without learning X \Y , while the Sender
learns |Y | and nothing else.

There are many real-world applications for PSI, where one example of that
is two national law enforcement bodies each having a list of suspected terrorists.
Due to national laws they may not be allowed to disclose their full lists, even
when collaborating. Using a PSI protocol the two agencies can find targets of
common interest, which their laws might allow.

Equivalently one of the agencies may want to check foreign planes for po-
tential terrorists, again without revealing its confidential list. A PSI protocol
can be used on the terrorist list and passenger list, and if an empty intersection
is returned the plane should be allowed to land. If a non-empty intersection is
returned alternative action may be required.

During the last decade a significant decrease in the run-time of PSI protocols
has been achieved, to the point where several linear-time protocols have been
developed against both semi-honest and malicious adversaries. In this thesis an
in-depth look is taken at four recently proposed PSI protocols. It shows various
issues in three of the papers, and if a proof is not included in the paper one is
created as part of this thesis.

Chapter 2: The preliminaries presents various concepts necessary for the
following chapters. It starts by introducing the general notation used through
this thesis, followed by defining secret sharing schemes and two instantiations of

1

it. Afterwards two types of encryption schemes are defined, namely symmetric-
key encryption and the requirements for it to be secure, followed by defining
homomorphic encryption, and its necessary properties.

The four PSI protocols use multiple different data structures, where all of
them will be explained here. In particular four different Cuckoo hashing al-
gorithms and multiple variants of Bloom filters are being used. Following this
the two standard definitions of security are provided, and oblivious transfer is
explained. At last a section presenting what private set intersection is, and
in particular what leakage it allows and the PSI specific notation used in the
remaining chapters.

Chapter 3: In this chapter an in-depth look will be taken at the semi-honestly
secure private set intersection protocol from [PSZ14]. Due to the protocol’s
complexity this chapter thoroughly explains one way to construct PSI based on
oblivious transfer, where two different hashing schemes are used to increase effi-
ciency. This chapter is partially in preparation for Chapter 4, which introduces
three optimizations to [PSZ14]. At the end a proof of security is also created,
as one was not included in [PSZ14].

Chapter 4: This chapter consists of two parts. The first is understanding the
optimizations provided by [PSSZ15a] to obtain a more efficient semi-honestly
secure PSI protocol. This optimized version is analyzed which results in an
easily fixed correctness error, and the slightly modified protocol is then proven
correct, as the proof was omitted from [PSSZ15a].

Secondly the slightly modified protocol is analyzed with a malicious adver-
sary, which results in identifying three vulnerabilities. Suggestions to prevent
two of these issues are provided, which results in a protocol that is secure against
a semi-honest Sender and a malicious Receiver. At the end this new protocol
is proven secure against a malicious Receiver.

Chapter 5: In this chapter the two protocols from [DCW13] are analyzed,
where both are based on the paper’s new data structure, called garbled Bloom
filters. The first protocol is secure against a semi-honest adversary, and is pri-
marily given as preliminary understanding for the paper’s second protocol - an
enhanced version of the first protocol. The enhanced version is meant to be
secure against a malicious adversary, but as will be shown a corrupt Sender
can perform two different attacks. The first is a selective failure attack, which
causes the Receiver to either abort and output ⊥ or finish the protocol and
output an intersection including a specific element. The second attack makes
the Sender’s input dependant on the Receiver’s input, where no efficient coun-
termeasures have been found to either attack.

Chapter 6: In this chapter the semi-honestly secure set operation protocols
from [DC16] will be analyzed. The four protocols they suggest are based on
partially homomorphic encryption combined with Bloom filters, where five is-
sues will be presented, where potential countermeasures will be suggested for
each issue.

2

The first issue relates to their security proof, which relies on a different prop-
erty than they assert. The second issue relates to lacking randomness, allowing
the Receiver to find the intersection in a set union protocol. The third issue is
their use of multiplicative homomorphic encryption to obtain a PSI protocol.
The fourth issue is leakage during their cardinality protocols, and the last issue
is leaking an upper bound on the Receiver’s input size as their protocol is meant
to hide it.

The papers and their vulnerabilities can be seen in Table 1.1. The authors of
the papers have been notified of most issues, and as such are working on fixing
them. The exact versions analyzed during this thesis are included in references
[PSZ14], [PSSZ15b] (which is the full version of [PSSZ15a]), [DCW13] and
[DC16].

Paper Adversary used Analyzed with Vulnerability Fixed?
[PSSZ15a] Semi-honest Semi-honest Correctness issue Yes
[PSSZ15a] Semi-honest Malicious Three issues Two
[DCW13] Malicious Malicious Selective failure No
[DCW13] Malicious Malicious Input dependence No
[DC16] Semi-honest Semi-honest Proof Yes
[DC16] Semi-honest Semi-honest Lacking randomness Yes
[DC16] Semi-honest Semi-honest PSI protocol Yes
[DC16] Semi-honest Semi-honest Cardinality protocols Yes
[DC16] Semi-honest Semi-honest Upper bound on |Y | Yes

Table 1.1: The papers, their claimed security and the adversary with which it
was analyzed. Includes the identified vulnerabilities and whether it was fixed.

3

Chapter 2

Preliminaries

2.1 Notation
Let the security parameter be κ, and the statistical security parameter be λ.
Throughout this thesis it will be assumed that κ = 128-bit security, and λ = 40.
A function µ(·) is said to be negligible in κ, or just negligible, if for every
positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1/p(κ).
Let PPT be shorthand for probabilistic polynomial time, and let ∈R mean a
uniformly random choice in a specified set. Let ⊥ denote empty output. A
vector v = (v1, . . . , vm) is said to be balanced if for every i, j it holds that
|vi| =

∣∣vj∣∣. The weight of a vector v is denoted HammingWeight(v), and is
the number of indices where vi 6= ⊥. Given an l-bit string s its indices are from
0 to l − 1, and s[m;n] means the bits from m to n− 1, where 0 ≤ m < n ≤ l.

A probability ensemble X = {X(a, κ)}a∈{0,1}∗;κ∈N is an infinite sequence of
random variables indexed by a and κ ∈ N. Two probability ensembles X,Y
are said to be computationally indistinguishable, denoted X

c≡Y , if for every
non-uniform PPT algorithm D there exists a negligible function µ(·) such that
for every a ∈ {0, 1}∗ and every κ ∈ N,∣∣Pr[D(X(a, κ)) = 1]− Pr[D(Y (a, κ)) = 1]

∣∣ ≤ µ(κ)

2.1.1 Lagrange Interpolation

Lagrange interpolation is based on the fundamental theorem of algebra, which
states that given any arbitrary t points on a polynomial of degree t−1 it is pos-
sible to reconstruct the original polynomial, and given t− 1 points on the same
polynomial nothing is known about it. A definition of Lagrange interpolation
is stated in Theorem 2.1, and will be denoted f ← LagrangeInterpolation(v),
where v is a vector of length n ≥ t where each coordinate is either a point or
⊥, to signify no knowledge of this coordinate.

4

Theorem 2.1 (Lagrange Interpolation, [Dem12]) Let {xj , j =
0, . . . , N} be a collection of disjoint numbers in a field F. Let
{yj , j = 0, . . . , N} be a collection of numbers in F. Then there ex-
ists a polynomial fN ∈ FN such that

fN (xj) = yj , j = 0, . . . , N

Its expression is

fN (x) =
N∑
k=0

yk · Lk(x)

where Lk(x) are the Lagrange elementary polynomials

2.1.2 Secret Sharing Scheme

A (t, n)-threshold secret sharing scheme is an algorithm that, given secret input
s, is able to split s into n shares that can be distributed. The output need to be
constructed such that t of these shares can uniquely reconstruct s, while t− 1
shares provide no knowledge of s. This has been formally stated in Definition
2.2.

Definition 2.2 (Secret Sharing Scheme) A (t, n)-threshold secret
sharing scheme encodes the secret s into n shares (s1, . . . , sn) such that
< t shares yield no information about s, and given ≥ t shares s can be
efficiently and uniquely computed.

Shamir’s Secret Sharing Scheme

[Sha79] proposes a (t, n)-threshold secret sharing scheme based on polynomials,
using Lagrange interpolation. The pseudocode for sharing and reconstruction
can be seen in Figure 2.1. Intuitively it assumes, without loss of generality, that
a secret can be represented as an integer denoted s. By finding a uniformly ran-
dom polynomial p of degree t−1 under the constraint that p(0) = s it is possible
to share the n points (p(1), . . . , p(n)), where at least t are required to learn s.
This correctness and secrecy is trivially implied by Lagrange interpolation.

To ensure correctness and security Shamir’s secret sharing scheme has two
requirements to the used field. First of all the field size needs to be a prime
number q, to guarantee proper randomness within the field. Secondly it needs
the prime number q to be larger than n, as p(n) would no longer be a unique
number - two shares p(n) and p(n mod q) would otherwise be equivalent, which
means the reconstruction cannot be done with any ≥ t shares.

5

1: procedure SSSS.Sharet,n(s)
2: Choose polynomial ps(X)∈R Ft[X], where deg(p) = t− 1 and p(0) = s
3: return v = (p(1), . . . , p(n))
1: procedure SSSS.Reconstructt,n(v)
2: if HammingWeight(v) < t then return ⊥
3: p← LagrangeInterpolation(v)
4: return p(0)

Figure 2.1: Pseudocode for Shamir’s Secret Sharing Scheme

XOR-based Secret Sharing Scheme

A simple (n, n)-threshold secret sharing scheme is based upon the XOR opera-
tor. A secret s of length k can be shared by generating n−1 uniformly random
shares (v1, . . . , vn−1), where each vi is of length k, followed by calculating the
last share as vn = s⊕ v1 ⊕ · · · ⊕ vn−1.

Reconstructing s clearly requires knowing all n shares, as even given n− 1
shares nothing is learned of the last share, since the last share is still uniformly
random in {0, 1}k.

The pseudocode for sharing and reconstructing can be seen in Figure 2.2.

1: procedure XOR.Sharen,n(s)
2: Choose (v1, . . . , vn−1) uniformly at random
3: Calculate vn = s⊕ v1 ⊕ · · · ⊕ vn−1
4: return v = (v1, . . . , vn)
1: procedure XOR.Reconstructn,n(v)
2: if HammingWeight(v) < n then return ⊥
3: s = v1 ⊕ · · · ⊕ vn
4: return s

Figure 2.2: Pseudocode for XOR-based Secret Sharing Scheme

2.1.3 Random Oracle Model

The Random Oracle Model (ROM) is formally introduced by [BR93] as an
efficient method to model hash functions that output uniformly random values
while being consistent, meaning invoking it twice on the same input will produce
the same output twice. This is done by viewing the oracle as a black box
with a list of pairs (si, ri), where all si’s are the inputs it has previously been
invoked on and the ri’s are the corresponding k-bit outputs. When the oracle
is invoked on input s it checks whether s is contained in its list, in which case
it outputs the relevant ri, and otherwise it generates a new uniformly random
k-bit value r, saves the pair (s, r) in its list and outputs r. This is denoted
H : {0, 1}j → {0, 1}k for some j and k.

When a random oracle is used in a proof there exists three ways to model
it, the standard version, one with extractability and one with programmability.
In the standard version the adversary knows nothing about the honest party’s

6

queries, as the oracle is used as a third independent party. The two other
properties are related to proofs by reduction, which means a reduction obtains
the queries of the adversary, and either has to forward the query to an oracle
or answer the queries himself. Extractability is being used when the reduction
forwards the query, while obtaining information of the adversary’s queries (and
the results). Programmability is referred to when the reduction answers the
query, under the constraint that the output looks uniformly random.

Extractability and programmability cannot be modelled by any known real-
world hash function, which means those properties provide a weaker sense of
security. All random oracles used in this thesis are in the standard model.

2.2 Encryption schemes
During this thesis two different types of encryption schemes will be used, both
of which will be defined here. First symmetric key, followed by partially homo-
morphic encryption scheme.

2.2.1 Symmetric Key Encryption Scheme

Symmetric key, or secret key, encryption schemes are used as a secure connection
for communication between two parties that have a private piece of information
called the secret key, k. Using this pre-shared key two functions E and D are
defined to map a message m to a ciphertext c and back again, without failure.
Definition 2.3 formally describes this concept, while also defining a generator
algorithm for the key.

Definition 2.3 (Secret-key Encryption Scheme, [Gol04]) A
secret-key encryption scheme is a triple (G,E,D), of PPT algorithms with
the following properties:

• On input 1κ, algorithm G (called the key-generator) outputs a bit
string.

• For every string k in the range of G(1κ), and for every m ∈ {0, 1}∗,
algorithms E (encryption) and D (decryption) satisfy

Pr[D(k,E(k,m)) = m] = 1

where the probability is taken over the internal coin tosses of algo-
rithms E and D

Definition 2.3 says nothing about obfuscating the message m,1 which is why
a second property is required to model indistinguishability of plaintexts.

Obfuscation is obtained through IND-CPA, which can be seen in Definition
2.4. Intuitively it says that the encryption of a message should not leak any

1To see this assume that both E and D are the identity functions, and hence ignoring k.
Clearly that results in D(k, E(k, m)) = m for all m, however everyone is able to efficiently
compute m despite seeing its ciphertext form.

7

information. This is defined by giving an adversary A access to an encryption
oracle, which will encrypt one of two messages he provides. If the adversary
can guess which message is encrypted with non-negligible probability he has
broken IND-CPA of the encryptions scheme.

Definition 2.4 (Secret-key IND-CPA) The following game is used to
define IND-CPA for a (G,E,D) symmetric-key encryption scheme, between
an adversary A and challenger CH:
IND-CPAb(A, κ):

1. CH generates k ← G(1κ)
2. A gives two distinct messages m0,m1 to CH, where |m0| = |m1|
3. CH returns E(k,mb) to A
4. A outputs b′ as result of the game

The encryption scheme is secure against a chosen plaintext attack if for
any κ and any PPT adversary A his advantage is∣∣∣Pr[IND-CPA0(A, κ) = 1]− Pr[IND-CPA1(A, κ) = 1]

∣∣∣ ≤ negl(κ)

A, usually impractical, symmetric encryption scheme is the one-time pad.
It is based on having a long uniformly random key k, where the encryption
algorithm XORs k and the plaintext, to obtain a ciphertext c. The decryption
algorithm does the same, namely XORs k and c to obtain the plaintext. To
ensure security the key is required to be at least the same length of the plaintext,
and it can never be reused.

2.2.2 Partially homomorphic encryption scheme

A homomorphic encryption scheme is a public-key encryption scheme, which
consists of four algorithms (G,E,D,Eval). The algorithms are specified in
Definition 2.5, where intuitively G outputs a pair of keys (pk, sk), where pk is
used with E to encrypt messages, and sk is used with D to decrypt. The new
algorithm Eval is able to compute a function f on message m such that f(m) is
equivalent to encrypting m, using Eval to evaluate f and then decrypting the
resulting ciphertext. In a fully homomorphic encryption scheme f can be any
function, however this thesis requires only a partially homomorphic encryption
scheme, which means f is either addition or multiplication of plaintexts.

8

Definition 2.5 (Homomorphic Encryption Scheme) A homomor-
phic encryption scheme is a tuple (G,E,D,Eval), of PPT algorithms with
the following properties:

• On input 1κ, algorithm G (called the key-generator) outputs two bit
strings (pk, sk).

• For every string pair (pk, sk) in the range of G(1κ), and for every
m ∈ {0, 1}∗, algorithms E (encryption) and D (decryption) satisfy

Pr[D(sk,E(pk,m)) = m] = 1

where the probability is taken over the internal coin tosses of algo-
rithms E and D

• The Eval algorithm satisfies, given function f and for every string
pair (pk, sk) in the range of G(1κ) and vector of messages m,

D(sk,Eval(f,E(pk,m))) = f(m)

This does not specify any sort of security, which is why two extra defini-
tions will be used, namely IND-CPA, in Definition 2.6, and circuit-privacy, in
Definition 2.7.

Intuitively Definition 2.6 says that no PPT algorithm allowed to chose two
plaintexts m0,m1 can distinguish whether it obtained E(pk,m0) or E(pk,m1)
when given (pk,E(pk,mb)) for a uniformly random b∈R {0, 1}.

Definition 2.6 (Public-key IND-CPA, [Gol04]) The following game
is used to define IND-CPA for a (G,E,D,Eval) public-key homomorphic
encryption scheme, between an adversary A and challenger CH:
IND-CPAb(A, κ):

1. CH generates (pk, sk)← G(1κ), and gives pk to A
2. A gives two distinct messages m0,m1 to CH, where |m0| = |m1|
3. CH returns E(pk,mb) to A
4. A outputs b′ as result of the game

The encryption scheme is secure against a chosen plaintext attack if for
any κ and any PPT adversary A his advantage is∣∣∣Pr[IND-CPA0(A, κ) = 1]− Pr[IND-CPA1(A, κ) = 1]

∣∣∣ ≤ negl(κ)

Circuit privacy is defined in Definition 2.7, and defines two probability distri-
butions. The first consists of the secret key and a fresh encryption of f(x), while
the second consists of the secret key and Eval used on f and the encryption of
x. It says that these two distributions are computationally indistinguishable,
which means even given the secret key no PPT algorithm can distinguish be-

9

tween a fresh encryption of an evaluated function f from Eval used on f and
an encrypted message.

Definition 2.7 (Circuit Privacy, [Orl15]) A (G,E,D,Eval) public-
key homomorphic encryption scheme satisfies circuit privacy if

(sk,E(pk, f(m))) c≡(sk,Eval(f,E(pk,m)))

for any PPT distinguisher, where (pk, sk) → G(1κ) and m is a vector of
messages.

For completeness two partially homomorphic encryption schemes will be
shown, namely Paillier’s additive scheme [Pai99] and the multiplicative scheme
based on ElGamal [Gam84]. For each scheme the four algorithms will be defined
however the correctness and security properties are omitted, but can be seen in
their respective papers.

Paillier’s additively homomorphic encryption scheme

Paillier [Pai99] is a variant of RSA, and will be described using the simplified
scheme from [Orl15]. Its key generation algorithm consists of finding two large
primes p, q, and multiplying them to obtain the public key p ·q = N . The secret
key is set to be φ(N) = (p− 1) · (q − 1).

To encrypt message m ∈ ZN the encryption algorithm E finds r∈R Z∗N and
computes the ciphertext

c = E(pk,m) = (1 +m ·N) · (rN) mod N2

To decrypt ciphertext c the decryption algorithm D computes

m = D(sk, c) = cφ(N) − 1 mod N2

N
· φ(N)−1 mod N

The Eval algorithm computes the addition of two encrypted plaintexts
m0,m1 by multiplying the two corresponding ciphertexts c0, c1, which means

Eval(+, (c0, c1)) = c0 · c1 mod N2

and is denoted c0 +H c1.
An important aspect of additive homomorphic encryption is being able to

multiply an encrypted plaintext m by a constant w without knowing m. For
[Pai99] this is done by computing cw, where c = E(pk,m), and is denoted c∗w.
This results in D(sk, c ∗ w) = m · w mod N .

Multiplicative homomorphic encryption scheme based on ElGamal

[Gam84] works modulo p, where p is prime and another large prime q divides
p−1. The group G is the subgroup Z∗p which has order q and can be generated
by a generator g ∈ G. The secret key consists of a uniformly random x ∈
{1, . . . , q − 1}. The public key is generated by computing the group element
h = gx mod p, and then defining it as the tuple (G, p, q, g, h).

10

To encrypt message m ∈ G the encryption algorithm finds a uniformly
random r ∈ {1, . . . , q − 1} and outputs the tuple

c = E(pk,m) = (gr mod p,m · hr mod p)

The decryption algorithm is split into two steps, for ciphertext c = (c1, c2).
The first is computing

cx1 = (gr)x = gx·r = s

and the second step inverts s and computes the message

m = c2 · s−1

The Eval algorithm uses two ciphertexts c, c′ = (c1, c2), (c′1, c′2), and com-
putes the multiplication of the group elements corresponding to their plaintexts
by multiplying the ciphertexts:

c · c′ = (gr,m ·hr) · (gr′ ,m′ ·hr′) = (gr ·gr′ ,m ·hr ·m ·hr′) = (gr+r′ ,m ·m′ ·hr+r′)

which decrypts to m · m′ mod p. Since both m and m′ are contained in the
group G so is the product of the m and m′.

2.3 Hashing and Bloom filters

This thesis will use three different data structures based on hash functions,
namely simple hashing, Cuckoo hashing and Bloom filters. This section will
first describe simple hashing, followed by showing the simplest version of Cuckoo
hashing and then explain three optimizations to Cuckoo. Afterwards a basic
Bloom filter will be explained, together with various modifications to obtain
data structures related to Bloom filters. At last hashing failures will briefly be
dealt with.

The two hashing schemes will be used to hash n items to a table T with b bins
using h hash functions modelled as random functions, denoted as {H1, . . . ,Hh}.
Since only the insert function is relevant here the descriptions of lookups and
deletes are omitted.

2.3.1 Simple Hashing

The basic idea of simple hashing is to store each element at all its hashed
positions, resulting in n · h stored elements. In particular when hashing an
element x it stores x in the bin T [Hi(x)] for each 1 ≤ i ≤ h. The bin size is not
limited to 1, so to contain the multiple elements T will be denoted as a double
array T [][]. The insert function, when inserting a single element, can be seen
in Figure 2.3.

The maximum number of elements hashing to the same bin has been esti-
mated in various papers, with different values for n, b and h. One estimate is
made by [PSSZ15a], where b = 2.4n and h = 1 for 2n balls (or b = 2.4n and

11

1: procedure SimpleHashing.Insert(x)
2: for i = 1 to h do
3: if T [Hi(x)].length ≥ maxSize then return fail

4: Insert x in the bucket T [Hi(x)]

Figure 2.3: Pseudocode for simple hashing insert algorithm, when inserting
element x into double array T

1: procedure SimpleHashing.Insert(x)
2: for i = 1 to h do
3: Insert x in the bucket T [Hi(x)]

Figure 2.4: Pseudocode for simple hashing insert algorithm, when inserting
element x into double array T of unlimited size

h = 2 for n balls). They wanted the chance of hashing more than k items to
the same bin to be bounded by λ = 2−40, which is achieved by setting k to be

k ≥ max(6, 2 · e · logn/ log logn)

A secondary version of Simple Hashing is also being used, where the bucket
size is unlimited. This version can, for completeness, be seen in Figure 2.4.

2.3.2 Cuckoo Hashing

Cuckoo hashing, first proposed by [PR01], exists in various variants, and is a
hashing scheme that stores at most one element in each bucket by relocating
elements. The simplest variant uses 2 hash functions, where it stores n elements
in b = 2 · (1 + ε) · n bins, for some small ε, with good probability. The basic
insert function for a single element can be seen in Figure 2.5.

Intuitively an element x is hashed by first using H1 to fix the position
pos = H1(x). If the position is empty x can safely be stored there. Otherwise x
and the element at T [pos] are swapped, and pos is set to use the hash function
that does not hash the new x to pos. The concept of looping with different
elements is done at most size times, where size is the number of elements
currently in the array, at which points one of two things will have happened.
Either an empty position has been found and the algorithm has terminated,
which will happen with good probability, or it has not found an empty position,
in which case two new hash functions will be sampled and all elements will be
rehashed.

Various modifications have been made to Cuckoo hashing, where three are
of particular interest here.

Including a stash In the basic form Cuckoo hashing suffers from having
a small but not negligible probability of failing, if some subset of t elements
all hash to the same t − 1 positions for both hash functions, called a cycle.
[KMW09] proposes to use a constant size stash to avoid this issue, by evicting
one of the t elements and inserting it into the stash, and thus being able to

12

1: procedure CuckooHashing.Insert(x)
2: if T [H1(x)] = x or T [H2(x)] = x then return
3: pos← H1(x)
4: for i = 0 to size do
5: if T [pos] = ⊥ then T [pos]← x; return
6: x↔ T [pos]
7: if pos = H1(x) then pos← H2(x)
8: else pos← H1(x)
9: rehash(); insert(x)

Figure 2.5: Pseudocode for the basic Cuckoo hashing insert algorithm, when
inserting element x into array T with 2 hash functions, [PR01]

1: procedure CuckooHashing.Insert(x)
2: if T [H1(x)] = x or T [H2(x)] = x then return
3: pos← H1(x)
4: for i = 0 to size do
5: if T [pos] = ⊥ then T [pos]← x; return
6: x↔ T [pos]
7: if pos = H1(x) then pos← H2(x)
8: else pos← H1(x)
9: if |stash| < s then stash.add(x); return
10: rehash(); insert(x)

Figure 2.6: Pseudocode for Cuckoo hashing insert algorithm with stash, when
inserting element x into array T with 2 hash functions and stash of size s,
[KMW09]

hash the remaining t− 1 elements into the t− 1 buckets. This approach avoids
rehashing all the elements with new hash functions, at the cost of maintaining
a small stash. Experimental results by [PSSZ15a] concluded that a stash of size
4 to 6 reduces the chance of rehashing to almost zero, when hashing between
212 and 224 elements.

The pseudocode of the modified algorithm can be seen in Figure 2.6, where
the changes have been highlighted in bold, and the stash size is denoted s.

Multiple hash functions A second modification is using more than two
hash functions, which reduces the number of required bins, and thus getting
a better space utilization. This is denoted h-ary Cuckoo hashing, for h hash
functions. Experimental results from [FPSS03] obtains 91% space utilization
with three hash functions and 97% with four hash functions compared to the
50% for two hash functions.

The pseudocode of the modified algorithm can be seen in Figure 2.7, where
the changes have not been highlighted due to most of the pseudocode being
different.

13

1: procedure CuckooHashing.Insert(x)
2: Let set H ← {H1, . . . ,Hh}
3: if T [Hj(x)] = x for some Hj ∈ H then return
4: for i = 0 to size do
5: for Hj ∈ H do
6: if T [Hj(x)] = ⊥ then T [Hj(x)]← x; return
7: Pick random Hj ∈ H
8: Swap x and T [Hj(x)]
9: Set H ← {H1, . . . ,Hh} \Hj

10: if |stash| < s then stash.add(x); return
11: rehash(); insert(x)

Figure 2.7: Pseudocode for Cuckoo hashing insert algorithm with stash, when
inserting element x into array T with h hash functions and stash of size s,
[FPSS03]

Cuckoo hashing with two hash functions is able to determine which hash
function to use, given an element and a position. With three or more hash
functions there are at least two hash functions that can be used to continue,
which has led to different algorithms that decide which hash function to proceed
with. Here the simplest scheme will be shown, which means picking a random
one from the remaining h− 1.

The number of bins b required to hash n elements using h hash functions
will be denoted b = F ′(n, h), as the required number of bins is dependant on
which insertion algorithm is used.

Reducing length of stored elements The last optimization for Cuckoo
hashing is made by [ANS10]. The paper presents a construction that reduces
the bit-length of the stored elements as a way to significantly reduce the number
of bits required to represent the whole cuckoo hash table. [PSSZ15a] uses a
variant that uses slightly more space, while still using the same structure as the
previously mentioned Cuckoo hashing algorithms.

By using h random functions modelled as random oracles, f1, . . . , fh, with
the range [0, b− 1] an element x = xL ‖ xR has xR mapped to bin xL ⊕ f(xR).
As |xL| = log(b) this means the stored elements have their lengths reduced
by log(b), assuming a random function f that is k-wise independent, where
k = polylog(κ).

The correctness of this scheme can be seen if two elements xL ‖ xR and
x′L ‖ xR are hashed to the same bin with the same function while having equal
suffix. This must mean that xL ⊕ f(xR) = x′L ⊕ f(xR). Since f(xR) can be
removed xL = x′L which means that it is the same element.

The pseudocode can be seen in Figure 2.8. Compared to the previous
Cuckoo hashing insert algorithms the hash functions have been replaced by
the random functions.

Of note is Line 11 which assumes it is possible, given xR and an entry

14

1: procedure CuckooHashing.Insert(x)
2: Split x into x = xL ‖ xR where |xL| = log b
3: Let set F = {f1, . . . , fh}
4: if T [xL ⊕ fj(xR)] = xR for some fj ∈ F then return
5: for i = 0 to size do
6: for fj ∈ F do
7: if T [xL ⊕ fj(xR)] = ⊥ then
8: T [xL ⊕ fj(xR)]← xR; return
9: Pick random fj ∈ F

10: Swap xR and T [xL ⊕ fj(xR)]
11: Compute x = F−1(xR)
12: Set F ← {f1, . . . , fh} \ fj
13: if |stash| < s then stash.add(x); return
14: rehash(); insert(x)

Figure 2.8: Pseudocode for Cuckoo hashing insert algorithm with stash, when
inserting element x into array T with h random functions and stash of size s,
[ANS10]

e, to find x. This can be done by calculating xL = fj(xR) ⊕ e. Since it is
not immediately obvious which random function applies to a given element a
secondary array can be stored to remember which of the h random function has
been used for each bin, at the cost of using b · log(h) extra bits. In the same
manner Lines 4, 7 and 8 assume this mapping as well. This notation has been
omitted from Figure 2.8 to ease notation, and Chapter 4 will elaborate on this
point.

2.3.3 Bloom Filter

[Blo70] proposes Bloom filters (BF) as a data structure for testing set member-
ship. A (m,n, h,H)-Bloom filter consists of m buckets using one bit each, to
represent n elements with hash functions H = {H1, . . . ,Hh}, where each hash
function maps to [0;m− 1].

An initially empty Bloom filter will have all m bits equal to 0. To insert
an element x the h hash functions are evaluated to set Hi(x) = 1 for all i ≤ k.
The pseudocode for insertion can be seen in Figure 2.9. Checking whether some
element x is contained in the set represented by a Bloom filter can be done by
verifying whether Hi(x) = 1 for all i. If there exists a position where Hi(x) = 0
it is guaranteed to not be in the set, and if all positions are 1 then it is very
likely to be contained in the set. This can also be stated as there are no false
negatives and the chance of false positive is negligible, with properly chosen
parameters.

2.3.4 Inverted and Encrypted Bloom filter

[DC16] uses two small changes to Bloom filters, namely inverting and encrypting

15

1: procedure BloomFilter.Insert(x)
2: for i = 1 to h do
3: BF [Hi(x)]← 1

Figure 2.9: Insertion algorithm for Bloom filter, when inserting element x with
h hash functions H = {H1, . . . ,Hh}, [Blo70]

them. An inverted Bloom filter IBF made from BF will have the following
entries:

IBF [i] =

0 if BF [i] = 1
1 otherwise

[DC16] also uses another variant of Bloom filters, the Encrypted Bloom
filters (EBF). This is closely related to ordinary Bloom filters, as the insert
algorithm looks exactly like Figure 2.9. After all elements have been inserted
the entries will be encrypted using a homomorphic encryption key pk, to obtain
the Encrypted Bloom filter

EBF [i] = E(pk,BF [i])

for each 1 ≤ i ≤ m.
At last [DC16] also combines them, to obtain an encrypted inverted Bloom

filter (EIBF), which is a Bloom filter that has been inverted and then encrypted.

2.3.5 Garbled Bloom Filter

[DCW13] introduces a variant of Bloom filters called garbled Bloom filters
(GBF). The primary difference lies in using κ bits to represent each of the
m entries, compared to the one bit Bloom filters use. The κ bits are used to
hide whether an element is hashed to the position, by using the XOR-based
secret sharing scheme to insert uniformly random κ-bit values. The new pa-
rameterization is (m,n, h,H, κ)-garbled Bloom filter, where m,n, h and H are
defined as previously and κ is the security parameter.

The pseudocode when inserting an element can be seen in Figure 2.10.
Intuitively it manages two variables, finalShare← x and emptySlot← −1.

For each hash functionHi the algorithm finds e = GBF [Hi(x)], and one of three
things happen:

• If e is equal to ⊥ and emptySlot = −1 it updates emptySlot to be position
Hi(x)

• If e is equal to ⊥ and emptySlot 6= −1 a uniformly random value is
inserted into position Hi(x) and finalShare is XORed with the newly
inserted value: finalShare← finalShare⊕GBF [Hi(x)]

• If e is not equal to ⊥ it updates finalShare as before, namely by com-
puting finalShare← finalShare⊕ e

16

1: procedure GarbledBloomFilter.Insert(x)
2: emptySlot← −1, finalShare← x
3: for i = 1 to h do
4: j ← Hi(x)
5: if GBF [j] = ⊥ then
6: if emptySlot = −1 then
7: emptySlot← j
8: else
9: GBF [j]∈R {0, 1}κ

10: finalShare← finalShare⊕GBF [j]
11: else
12: finalShare← finalShare⊕GBF [j]
13: GBF [emptySlot]← finalShare

Figure 2.10: Insertion algorithm for garbled Bloom filter, when inserting ele-
ment x with h hash functions H = {H1, . . . ,Hh}, copied with modifications
from [DCW13]

After all hash functions have been used finalShare is inserted into the
position emptySlot, which results in the equation

x =
h⊕
i=1

GBF [Hi(x)]

being true for all inserted elements.

When all n elements have been inserted a final GBF is produced by in-
serting uniformly random κ-bit values into all empty positions, thus making
it impossible for a PPT algorithm to distinguish whether the GBF has any
elements hashed to a given position or not, given one entry. To reduce the
chance of failures to be negligible [DCW13] uses h = κ hash functions, and sets
m = log(e) · h · n ≈ 1.44 · κ · n. Proofs of correctness for GBF can be seen in
[DCW13].

[DCW13] proposes to use κ hash functions (and κ-bit long entries) for their
data structure to ensure the probability that anyone obtaining half of the gar-
bled Bloom filter will learn nothing, except with negligible probability, or care-
fully chosen indices which will be described in Chapter 5. To see this assume
an adversary is given m/2 random entries of a garbled Bloom filter GBF with
m entries. To check whether some element x is contained in the GBF he needs
to get all entries at GBF [Hk(x)], for 1 ≤ k ≤ κ, to verify whether the entries
XOR to x. The probability he has any one of them is 1/2, and extending it to
all hash functions results in 2−κ probability of not missing any entries for x,
which is negligible, and thus the adversary learns nothing.

17

2.3.6 A note on hashing failures

The constructions of both hashing schemes and the Garbled Bloom filters have a
chance of failing. The simple hashing scheme can fail if a bin is overpopulated2,
which in particular means that more than t elements are hashed to a bin, which
can contain at most t elements.

The Cuckoo hashing scheme can fail if (with no stash) there is a cycle, which
means that t elements hash to the same t− 1 spots, or, with a stash of size s,
if there are more than s cycles.

The garbled Bloom filters can fail in two scenarios. First if some element
hashes to taken positions for each of the κ hash functions which might be
possible to fix by rehashing all elements, starting with the failed one. The
second, and more extreme, is if two different elements x0, x1 hash to the same
positions for all hash functions. This means it is impossible to satisfy

xb =
κ⊕
i=0

GBF [Hi(xb)]

for both elements, as that would imply

x0 =
κ⊕
i=0

GBF [Hi(x0)] =
κ⊕
i=0

GBF [Hi(x1)] = x1

A protocol that hashes using public or shared hash functions has to handle
these failures, as it cannot trivially change hash functions without leaking in-
formation. Outside of reducing the chance of failures to be negligible [PSZ14]
mentions two ways of handling this, either by requesting new hash functions
or calculate an approximation of the functionality, which means leaving out
elements that cause the hashing to fail and thus having at most statistical
correctness. Note that the correctness issue here means removing potential
elements, rather than including false positives.

The first strategy leaks that the party’s input cannot be properly hashed
with the shared hash functions, which makes it possible to check whether a given
set is the other party’s input. The second possibility can leak information if the
protocol is run multiple times, since these approximations might be detected.

Deciding which strategy is superior must be checked on a case-by-case basis.

2.4 Security definitions

This section will primarily focus on the definitions of a secure protocol, and how
to prove a given protocol is secure. However first some variants of adversaries
will be explained, followed by the description of what a functionality is.

Adversarial powers: Cryptography models adversarial powers by defining
different variables, where the most relevant ones will be outlined here.

2if the bucket size is limited, otherwise it clearly cannot become overpopulated.

18

Usually two types of adversaries are considered, to model the behaviour of
a corrupt party. The first case is the semi-honest adversary, sometimes men-
tioned as passive or honest-but-curious. A semi-honest adversary will complete
a protocol as it is specified, while trying to obtain extra information from the
received messages. Secondly a malicious, or active, adversary is allowed to
behave arbitrarily.

Protocols that are secure against a malicious adversary clearly provide a
stronger sense of security, however the notion of semi-honest adversaries is rel-
evant for various reasons. One reason is the efficiency of semi-honestly secure
protocols, which usually is significantly higher than their equivalent maliciously
secure protocols.

In some cases sophisticated software can force the protocol to be used in
a black-box manner, making it impossible for a user to choose inputs, or in
some other way is forced to behave correctly. Alternatively a leaked transcript
of messages forces the adversary to behave nicely, as he cannot influence the
protocol.

Another feature is the time of corruption, which can be either adaptive or
static. In the adaptive case an adversary can choose to corrupt either party at
any time during the execution of a protocol, while a static adversary will corrupt
a party prior to the protocol starting. The work done here only considers static
adversaries.

As the focus is on two-party protocols the threshold number of parties that
will be corrupted is at most one, which means either the Sender, the Receiver
or neither will be corrupted.

A last distinction is the computing power of an adversary. A computation-
ally bounded adversary is allowed to compute any PPT algorithm, while an
unconditional adversary can spend as much time as he requires. The focus here
will be on computationally bounded adversaries.

Functionality: A protocol consists of four parts, namely the input, auxiliary
input, a random-tape and the received messages, from which the output can
be calculated. To prove that a protocol is secure reduces to showing that
the received message leak no unintended information. To do this a comparison
between the protocol and something that is secure by definition, a functionality,
is made.

A functionality can be viewed as a trusted third party calculating a defined
function. This is done by having both parties send their inputs’ to the func-
tionality, which calculates the outputs and returns them, which is described
as f(x, y) = (f1(x, y), f2(x, y)). A functionality only outputs the result of the
computation, meaning it cannot leak any unintended information, and hence is
secure per definition.

2.4.1 Semi-Honest adversary

A formal definition of security against semi-honest adversaries in two party
protocols was shown by [HL10], which can be seen in Definition 2.8. It is
defined for parties P1 and P2 with, respectively, input x and y. They wish to

19

perform the protocol π which computes the PPT functionality f = (f1, f2).
The used notation is as follows:

viewi, for i ∈ {1, 2}, is the view of the i’th party during π when computed
with inputs x, y and security parameter κ. The view is presented as a tuple
(w, ri,mi

1, . . . ,m
i
t) where w is the input (x or y), ri is the random tape and

(mi
1, . . . ,m

i
t) are the t messages Pi receives.

outputπi (x, y, κ) denotes the output of party i when running protocol π on
inputs x and y with security parameter κ. The joint output of both parties
is denoted outputπ(x, y, κ) = (outputπ1 (x, y, κ), outputπ2 (x, y, κ)). Note that the
output of a party can be computed from its view.

Definition 2.8 (Security - Semi-Honest Formulation, [HL10])
Let f = (f1, f2) be a deterministic functionality. We say that π securely
computes f in the presence of a static semi-honest adversary if

{outputπ(x, y, κ)}x,y∈{0,1}∗;κ∈N
c≡{f(x, y)}x,y∈{0,1}∗ (2.1)

and there exists PPT algorithms S1, S2 such that

{S1(1κ, x, f1(x, y))}x,y∈{0,1}∗,κ∈N
c≡{viewπ1 (x, y, κ)}x,y∈{0,1}∗,κ∈N,

{S2(1κ, y, f2(x, y))}x,y∈{0,1}∗,κ∈N
c≡{viewπ2 (x, y, κ)}x,y∈{0,1}∗,κ∈N (2.2)

Intuitively Definition 2.8 requires two separate things to be proven. First
Formula 2.1 says the output of the functionality has to be computationally
indistinguishable from the output of the protocol, on the same inputs. This in
practice means that the outputs have to be equivalent, except with negligible
probability.

Secondly Formula 2.2 requires two simulators to be constructed. For party
i the simulator Si needs to, given Pi’s input and output, construct a view
of the protocol that is computationally indistinguishable from the view when
computing the protocol. This means simulating the messages received from the
other party so that it cannot be distinguished from the real protocol, while
being consistent with the input and output.

2.4.2 Malicious adversary

To model the behaviour of a party that is allowed to behave arbitrarily there
are three weaknesses that need to be addressed, when comparing it to the semi-
honest adversary.

First of all a party can refuse to participate, leading to a very short protocol
without a correct output. Secondly a malicious party is not guaranteed to
use his predefined input, meaning simulating a protocol given the input and
output is no longer valid, as the input might not even be well-defined. Lastly
a malicious party can refuse participating in the protocol at any given point,
leaving an honest party with a partially finished protocol. This in general means

20

Execution in the ideal model
1. Inputs: Let x denote the input of P1, y the input of P2. Let adversary
A get auxiliary input denoted z.
2. Send inputs to trusted party: The honest party Pj sends its received
input to the trusted party. The corrupted party Pi controlled by A may
either abort (by replacing the input with a special aborti message), send its
received input, or send some other input of the same length to the trusted
party. This decision is made by A and may depend on the input value of
Pi and the auxiliary input z. Denote the pair of inputs sent to the trusted
party by (x′, y′).
3. Early abort option: If the trusted party receives an input of the
form aborti for some i ∈ {1, 2}, it sends aborti to all parties and the ideal
execution terminates. Otherwise, the execution proceeds to the next step.
4. Trusted party sends output to adversary: At this point the trusted
party computes f1(x′, y′) and f2(x′, y′) and sends fi(x′, y′) to party Pi,
which is the corrupt party.
5. Adversary instructs trusted party to continue or halt: A sends
either continue or aborti to the trusted party. If it sends continue, the
trusted party sends fj(x′, y′) to party Pj , the honest party. Otherwise, if A
sends aborti, the trusted party sends aborti to party Pj .
6. Outputs: The honest party always outputs the output value it ob-
tained from the trusted party. The corrupted party outputs nothing. The
adversary A outputs any arbitrary (PPT computable) function of the initial
input of the corrupted party, the auxiliary input z, and the value fi(x′, y′)
obtained from the trusted party.

Figure 2.11: Functionality Ff , copied almost verbatim from [HL10]

that a two-party protocol is never guaranteed fairness, as there is no mechanism
to prevent a party from stopping.

[HL10] defines security with a statically corrupted malicious adversary by
comparing what he can do in the real world to what he is capable of in the ideal
model.

The ideal model is specified by having a trusted third party calculate the
functionality without revealing anything, leading it to per definition be secure.
For a functionality f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ the ideal execution
can be seen in Figure 2.11.

Intuitively Figure 2.11 models an ideal world where the three weaknesses are
integrated as parts of it. This can be seen in the second step, where a corrupt
Pi is allowed to abort the protocol or change his input. An important note
about Pi’s input to the trusted party is that it cannot depend on Pj ’s input,
but it can depend on any other arbitrary decision. In the fourth step A obtains
his output, and afterwards he is allowed to stop the protocol, which models the
lack of fairness with a malicious adversary.

A formal definition of how the ideal world has to be able to simulate the

21

real world can be seen in Definition 2.9.
IDEALf,A(z),i(x, y, κ) is referred to as the execution of the ideal model on

functionality f with adversary A on auxiliary input z, where party Pi is corrupt,
on the inputs are x and y and security parameter κ.

REALπ,A(z),i(x, y, κ) is the real execution of protocol π with adversary A
on auxiliary input z, where party Pi is corrupt, on the inputs x and y and
security parameter κ.

Definition 2.9 (Security - Malicious Formulation, [HL10]) Let
f be as in Figure 2.11 and π be a two-party protocol for computing f .
Protocol π is said to securely compute f in the presence of malicious
adversaries if for every non-uniform PPT adversary A for the real model,
there exists a non-uniform PPT adversary S for the ideal model, such that
for every i ∈ {1, 2},

{IDEALf,S(z),i(x, y, κ)}x,y,z,κ
c≡{REALπ,A(z),i(x, y, κ)}x,y,z,κ

where x, y ∈ {0, 1}∗ under the constraint that |x| = |y| , z ∈ {0, 1}∗ and
κ ∈ N.

Intuitively the definition says that for any strategy an adversary uses in the
real world there exists a strategy in the ideal world where the adversary obtains
the same information. Since the ideal world is secure by definition the strategy
is not an attack on the protocol.

2.4.3 Composability

An important aspect of cryptography protocols is composability, which means
that a protocol proven secure in some environment can be used as a primitive
for other protocols in the same environment. This includes reusing a specific
subprotocol, or using multiple protocols in succession.

There are two reasons composability is important. First proving that a pro-
tocol is composable provides security in itself, since that means running some
protocol multiple times in sequence does not weaken security - in fact that is
exactly as secure as running it once. Secondly it is possible to create compli-
cated protocols using various subprotocols. When proving security for such a
construction every subprotocol can be proven secure by itself, and the primary
protocol can be proven secure where each subprotocol is abstracted away, by
replacing them with a trusted party providing the resulting computation, and
thus significantly reducing the complexity of the proof. This is often referenced
as the hybrid world.

In [Gol04] composability is proven for both semi-honest and maliciously
secure protocols, and will thus not be included. The theorems have for com-
pleteness been included, see Theorem 2.10 and 2.11.

22

Theorem 2.10 (Composition Theorem - Semi-honest, [Gol04])
Suppose that g is privately reducible to f and that there exists a protocol
for privately computing f . Then there exists a protocol for privately
computing g.

Theorem 2.11 (Composition Theorem - Malicious, [Gol04])
Suppose that g is securely reducible to f and that there exists a protocol for
securely computing f . Then there exists a protocol for securely computing
g.

2.5 Oblivious Transfer
Oblivious Transfer (OT) is a cryptographic primitive which is a two-party pro-
tocol consisting of a Sender and a Receiver. In its most basic form the Sender’s
input consists of two values x0, x1, and the Receiver’s input is a single bit b.
An OT-protocol then aims to implement the functionality

fOT ((x0, x1), b) = (⊥, xb)

without revealing neither x1−b to the Receiver, nor b to the Sender. This version
of OT is denoted 1-out-of-2 OT or

(2
1
)
-OT, where a generalization is t-out-of-N

OT, denoted
(N
t

)
-OT, where the Sender has N values and the Receiver has to

learn t of them.
The efficiency of OT protocols has been researched extensively, as perform-

ing a large number of basic OTs is expensive. [IKNP03] showed one of the
largest improvements to the running-time of OTs, by presenting a general con-
struction which extends a few expensive OTs to efficiently obtain many cheap
OTs. Their construction is called OT-extensions and is secure in the random
oracle model against a semi-honest adversary.

[KK13] proposes two modifications to OT-extensions. Their first result was
a new construction called Rand-

(N
1
)
-OTik. This is an OT protocol resulting in

N random strings to the Sender, and the Receiver is able to choose 1 of these
strings. The strings are of length k, and the protocol is repeated i times. Com-
pared to [IKNP03] this construction performs fewer computations and sends
less messages. Their second improvement reduces the running-time of both
the basic OT-extension and their random OT-extension, where both of their
constructions are secure in the random oracle model, against a semi-honest
adversary.

[ALSZ15] proposes a protocol that is secure in a malicious setting. Their
resulting OT is a

(2
1
)
-OT, which is only slightly less efficient than what was

shown in [IKNP03], while using the optimization from [KK13].
To show the efficiency they implemented and compared various OT-extension

constructions, leading to the Table 2.1, where only the most relevant running
times have been included here. The results are with 128-bit security, are aver-
aged over 226 runs and use the notation 1KB = 8.192bit. Their results show
only a slight decrease in performance to obtain security against malicious ad-
versaries.

23

Prot Security Run-Time Communication
Local Cloud Local Cloud

[IKNP03] Passive 0.3s+ 1.07µs · t 0.7s+ 4.24µs · t 4KB + 128bit · t
[ALSZ15] Active 0.7s+ 1.29µs · t 1.3s+ 6.92µs · t 24KB + 191bit · t 22KB + 175bit · t

Table 2.1: Table 1 taken almost verbatim from [ALSZ15]. Run times of different
OT extensions.

2.6 Private Set Intersection

Before analyzing the four private set intersection protocols the usefulness of PSI
protocols and its definition will be provided, followed by some related work.

Efficient PSI protocols have various real-world applications, and thus pro-
vide an interesting study. Example include, but are not limited to:

• Comparing a list of known terrorists to a foreign flight’s passenger man-
ifest. If both lists are confidential PSI protocols can be used to avoid
breaking privacy laws, while ensuring no known terrorists are being trans-
ported.

• Companies that have signed exclusive deals with some number of cus-
tomers. Without breaking confidentiality these lists can be compared
between companies, to avoid dishonest customers.

• Multiple hospitals that want to use their private patient data for medical
research, without breaking confidentiality.

The PSI protocols analyzed in this thesis consist of two parties, the Sender
and the Receiver, where the Sender’s input consists of the setX = {x1, . . . , xn1}
and the Receiver’s input is Y = {y1, . . . , yn2}. The functionality being imple-
mented is fPSI(X,Y) = (⊥, X ∩ Y), meaning the Sender outputs nothing and
the Receiver outputs the intersection. Usually both set sizes are leaked, result-
ing in the Receiver learning n1 and the Sender learning n2.

At the end of a PSI protocols the Receiver knows n1 and X ∩Y , from which
he can compute

∣∣X \ Y ∣∣ = |X ∩ Y | − |n1|, which means he knows the number
of elements in the Sender’s set that is not contained in the intersection. What
he does not learn is which elements, meaning excluding the elements in Y , the
Receiver is not supposed to learn whether any other elements are contained in
X.

Various types of PSI protocols have been defined, outside of the standard
two-party case sketched above. One such type is the server-aided PSI, which
is based on having two or more computationally weak parties, and a server
which has significantly better hardware. [KMRS14] shows two protocols of
this type. The first is a semi-honestly secure protocol for n parties and one
server, where the server is assumed to not collude with any of the parties. The
second is a maliciously secure two-party PSI protocol. Both are based on using
pseudorandom permutations to hide the parties inputs, after which the server
computes the intersection and sends it to the parties.

24

A third type of PSI protocols is Authenticated PSI (APSI) which uses a
somewhat trusted third party to verify and commit to the input of some party.
This notion has been used in [CT10], which based on RSA and the trusted party
computes PSI in linear time, where the Receiver is allowed to be malicious while
the Sender and trusted third party have to be semi-honest.

APSI is also used in [DC16] to modify its semi-honestly secure protocol to
be maliciously secure. The semi-honestly secure protocol will be analyzed as
part of this thesis, while the maliciously secure protocol is omitted.

A fourth way to compute PSI is using generic protocols like Yao’s garbled
circuits [Yao86] and optimize them for PSI. [HEK12] proposes three protocols
to compute PSI, where the third protocol has an overhead of Θ(n · log(n)) in the
semi-honest model. Despite not being linear [HEK12] reports fairly competitive
running times during experimental evaluation.

25

Chapter 3

OT-based PSI by [PSZ14]

In this chapter one method to compute PSI based on random OTs will be
explained. Due to the complexity of the protocol this will be done through a
series of smaller protocols, where at the end the full OT-based PSI protocol
from [PSZ14] will be explained. At the end a proof of security will be given, as
it was omitted from their paper.

3.1 Intuition behind OT-based PSI

The exact mechanics in the protocol of [PSZ14] are complicated so the basic idea
behind the protocol will be thoroughly explained through a series of protocols
that are secure against a static semi-honest adversary, where each protocol
partially compute private set intersection. As their purpose purely is to explain
OT-based PSI no proofs will be included, though an argument for correctness
and security will be included.

3.1.1 Equality test

In a basic equality test two parties, the Sender and the Receiver, want to know
if their input elements x and y, with bit-length σ, are equivalent, which means
computing the functionality f(x, y) = (⊥, x ?= y). The final version of the
equality test can be seen in Figure 3.1.

The functionality can be computed by using σ Rand-
(2

1
)
-OTs to create two

masks that can be used to compare the elements. Both parties will split up their
element into σ 1-bit pieces, denoted x = x[1] ‖ · · · ‖x[σ] and y = y[1] ‖ · · · ‖ y[σ].
For each 1 ≤ k ≤ σ OTs the Sender will obtain two random strings (mk

0,m
k
1),

while the Receiver will input the bit y[k] to the OT and obtain the random
string mk

y[k]. At the end the Sender and Receiver will, respectively, compute

mx =
σ⊕
k=1

mk
x[k] and my =

σ⊕
k=1

mk
y[k]

The Sender then sends mx to the Receiver, who will output mx
?= my.

26

Figure 3.1: Semi-honestly secure equality test protocol

Clearly if x = y it follows that

mx =
σ⊕
k=1

mk
x[k] =

σ⊕
k=1

mk
y[k] = my

If x 6= y the chance of a collision has to be negligible, which is achieved by
having the OT output strings of length λ, the statistical security parameter. If
x differs from y there is going to be at least one bit which is different, which
results in the computation of mx and my to XOR different random masks. It
follows that the probability of mx being equal to my is 2−λ, which means the
chance of a false positive is negligible in the statistical security parameter.

The protocol hides the inputs of both parties. Clearly the Sender cannot
learn y, as he does not obtain any messages from the Receiver, and the Receiver
only learns x in the case where x = y, otherwise the maskmx will be a uniformly
random value leaking no information about x.

The equality test can be optimized by reducing the number of OTs, which
means using a Rand-

(N
1
)
-OTtλ, where t = dσ/ log(N)e. This means x and y will

be split into t blocks of size µ, where 2µ = N (or µ = dlog(N)e) that can be used
as input to the OT. In particular x will be split into t µ-bit pieces which will be
denoted x = x[1] ‖ · · · ‖ x[t]. The OT output is now an N -tuple (mk

1, . . . ,m
k
N)

and the generated mask is computed as mx =
⊕t
k=1m

k
x[k]. Equivalent steps are

done to split y and generate my. This optimization follows as a result of [KK13]
which proposes a Rand-

(N
1
)
-OT which outperforms doing log(N) Rand-

(2
1
)
-OT,

when N is not too large.
The running time for an equality test is, assuming constant-time OT, only

dependant on the length of the elements.

3.1.2 Inclusion test

The same concept of generating masks can be extended to test inclusion of an
element in a set. The Sender has a set X = {x1, . . . , xn1} and the Receiver

27

Figure 3.2: Semi-honestly secure inclusion test protocol

has an element y, where the two parties want to compute the functionality
f(X, y) = (⊥, y

?
∈ X). The inclusion test protocol can be seen in Figure 3.2.

Extending the equality test concept to testing inclusion can be done by
increasing the length of the values output by the OT, and only using parts of
the longer output to generate a given mask. The OT output length will be
increased from λ to n1 · l, where l will be defined shortly, which results in using
a Rand-

(N
1
)
-OTtn1·l, for t = dσ/ log(N)e. The algorithm for testing inclusion is

as follows:
The Sender will at first shuffle his set X, followed by both parties engag-

ing in t Rand-
(N

1
)
-OTn1·l, where the Sender will obtain the output strings

(mk
1, . . . ,m

k
N) and the Receiver will obtain the string mk

y[k], for 1 ≤ k ≤ t.
The Sender will compute a mask array V1 as1

V1[j] =
t⊕

k=1
mk
x[k][(j − 1) · l; j · l]

for the j’th element, where V1 has size n1. The Sender will then send V1 to the
Receiver who will compute the XOR of all his strings and then check if

V1[j] = my[(j − 1) · l; j · l] for 1 ≤ j ≤ n1

If a match is found y is contained in X, except with negligible probability.
During the protocol n1 comparisons will be computed, which means that

the element length has to be increased, to ensure a negligible chance of failure.
This results in l = λ+ log(n1)-bit elements.

The protocol succeeds due to, assuming y is equal to the j’th element in X
after shuffling,
t⊕

k=1
mk
y[k][(j − 1) · l; j · l] = my[(j − 1) · l; j · l] = V1[j] =

t⊕
k=1

mk
x[k][(j − 1) · l; j · l]

1For some string m remember that the notation m[(j − 1) · l; j · l] will refer to taking the
j’th substring of length l.

28

The protocol is secure against a corrupt Sender due to never receiving anything,
and a corrupt Receiver cannot learn anything from the masks he obtains, since
they are random l-bit strings.

Assuming a constant-time OT, and using that the bit-length is constant the
running-time of the algorithm is linear in n1, as the Sender computes n1 masks,
and the Receiver makes n1 comparisons.

3.1.3 Set intersection

In the basic OT-based private set intersection protocol the Sender will have set
X = {x1, . . . , xn1} and the Receiver will have a set Y = {y1, . . . , yn2}, and the
two parties want to compute the functionality f(X,Y) = (⊥, X ∩ Y).

The simplest way of extending the set inclusion protocol to a private set
intersection protocol is having the Receiver shuffle his elements at the beginning
of the protocol, and then compute the set inclusion protocol n2 times, once for
each element in Y . This once again increases the bit-length of the masks,
to l = λ + log(n1) + log(n2). However this also results in a running-time of
O(n1 · n2), which is prohibitive for larger sets.

3.2 PSI protocol from [PSZ14]

The asymptotic running-time of the basic OT-based PSI protocol described
in Subsection 3.1.3 is too slow for practical use, which made [PSZ14] propose
various optimizations, resulting in a fairly efficient protocol. The primary result
of [PSZ14] is using two different hashing schemes to reduce the number masks
being created and compared.

Intuitively the idea consists of having two parties with one set each, a Sender
with set X = {x1, . . . , xn1} and a Receiver with set Y = {y1, . . . , yn2}. As part
of the input two hash functions H1, H2 are shared, mapping to β = 2·(1+ε)·n2,
which is the size required for n2 elements to be hashed using Cuckoo hashing.

The Sender will hash his set X with H1, H2 using simple hashing (see Figure
2.3) to obtain a two-dimensional array T1[][] containing two copies of each
element in X. To hide the number of elements hashed to a given bucket the
Sender will insert a dummy element d1 until each bucket has size maxβ, a value
roughly logarithmic in n1, followed by shuffling the elements in the bucket.

Meanwhile the Receiver will use Cuckoo hashing (see Figure 2.5) to obtain
a roughly half full array T2[] with one copy of each of his elements, and insert
the dummy element d2 into all empty positions. As both parties use the same
hash functions an element z ∈ X ∩ Y will be hashed to position posz = Hb(z)
in T2 by the Receiver, and it will be contained in the posz’th bucket in the
Sender’s array T1.

By engaging in β set inclusion algorithms, one for each bucket, both the
Sender and Receiver will create β ·maxβ masks where the Sender will find all
masks corresponding to his input elements, insert them in a set V1 and shuffle
V1. He then sends V1 to the Receiver, who will find the intersection of the masks
and output the corresponding intersection of elements.

29

3.3 Protocol of [PSZ14]
The exact protocol proposed by [PSZ14] follows the previously outlined idea,
however various details were omitted. An important aspect is the use of a stash
for Cuckoo hashing, to reduce the chance of failing the hashing to be negligible,
which results in a secondary OT being used to mask the elements contained in
the stash. The full protocol can be seen in Figure 3.3, and its three steps will
be explained in details now.

Hashing the elements: To efficiently force a random ordering on the input
sets X and Y the elements will be hashed using two shared hash functions
H1, H2 : {0, 1}σ → {1, . . . , β}.

The Sender will use simple hashing, Figure 2.3, to obtain a two-dimensional
array T1[][] containing all his elements. To hide the ordering of his elements
he will for each of the β buckets T1[] insert dummy element d1 until the size
of T1[] is maxβ, followed by randomly permuting the elements contained in
the buckets. maxβ is a shared value which ensures that the simple hashing
algorithm fails with at most negligible probability, determined by the function
F (n1, β) estimated in [PSZ14], and if n1 = n2 is roughly logarithmic in n1.

The Receiver will use the Cuckoo hashing algorithm from Figure 2.6 to
obtain a roughly half full array T2[] and a small stash S containing some ele-
ments. To hide how his elements are hashed P2 inserts the dummy element d2
into every empty position in T2[] and fills up S until it has size s, followed by
randomly permuting the elements in S.

Masking the elements via OT: Equivalently to the basic OT-based PSI
protocol the elements will be masked by using random OT, however due to
the hashing less masks are generated. The masks will be saved in two two-
dimensional arrays M1,h,M2,h which have the same size as T1 (β ·maxβ), and
two two-dimensional arrays M1,s,M2,s of size s ·n1. The 1, 2 is used to describe
whose array it is, that is the Sender uses M1,h and M1,s while the Receiver uses
M2,h and M2,s. The h and s is used to describe whether the array is for masks
corresponding to the hashed or stashed elements, which means M2,h contains
masks for elements hashed to T2 while M2,s contains masks for elements in S.

To mask the elements in T1 the Sender loops through 1 ≤ i ≤ β, where he
engages in a Rand-

(N
1
)
-OTtmaxβ ·l with the Receiver. From this he obtains the

t ·N strings
(mi,k

1 , . . . ,mi,k
N), where 1 ≤ k ≤ t

Looping through 1 ≤ j ≤ maxβ he will then let x = T1[i][j], which is split
into t µ-bit pieces, denoted x = x[1]‖· · ·‖x[t]. Using x and the strings obtained
from the OT he can generate a mask like in the basic OT-PSI

M1,h[i][j] =
t⊕

k=1
mi,k
x[k][(j − 1) · l; j · l]

The Receiver’s computations are roughly equivalent, namely looping through
1 ≤ i ≤ β he will let y = T2[i] which he divides into t µ-bit characters

30

Figure 3.3: Protocol of [PSZ14], copied mostly verbatim from the full paper of
[PSSZ15a]

31

y = y[1] ‖ · · · ‖ y[t]. The Receiver will then, while looping through 1 ≤ k ≤ t,
input y[k] to the OT and obtain the string mi,k

y[k]. After obtaining t strings the
Receiver can use them to compute masks equivalently to the Sender, namely
looping through 1 ≤ j ≤ maxβ to compute

M2,h[i][j] =
t⊕

k=1
mi,k
y[k][(j − 1) · l; j · l]

In the same manner both parties will compute masks for the elements in the
stash, by looping through 1 ≤ i ≤ s and 1 ≤ k ≤ t to do a Rand-

(N
1
)
-OT1

n1·l,
where the Receiver obtains his input by using S[i]. Then by looping through
1 ≤ j ≤ n1 the Sender will compute the masks, using X[j] = x = x[1]‖· · ·‖x[t],
as

M1,s[i][j] =
t⊕

k=1
mi,k
x[k][(j − 1) · l; j · l]

The Receiver will use S[i] = y = y[1] ‖ · · · ‖ y[t] to compute the masks

M2,s[i][j] =
t⊕

k=1
mi,k
y[k][(j − 1) · l; j · l]

Thus through a Rand-
(N

1
)
-OTβ·tmaxβ ·l, a Rand-

(N
1
)
-OTs·tn1·l and some XOR op-

erations the two parties will have computed masks for their inputs. In particular
the Sender has computed 2 · n1 + s · n1 masks, and the Receiver has computed
n2 ·maxβ + s · n1 masks.2

Finding the intersection: The last step requires the Sender to send all
relevant masks to the Receiver. The masks are defined as two sets, namely

V1 = {M1,h[i][j] | ∀i, j : T1[i][j] 6= d1}, V2 = {M1,s[i][j] | 1 ≤ i ≤ s, 1 ≤ j ≤ n1}

V1 corresponds exactly to the masks of the elements in X, and has size 2 · n1.
V2 corresponds to, for each entry in the stash, the mask of each element in X,
and has size s ·n1. The Sender randomly permutes the elements and sends both
sets to the Receiver. After obtaining V1, V2 he will compute

{T2[i] | ∃j s.t. M2,h[i][j] ∈ V1} ∪ {S[i] | ∃j s.t. M2,s[i][j] ∈ V2}

which he outputs as the intersection.

3.4 Proof for [PSZ14]
In the paper [PSZ14] no proof of security was included, and thus a proof has
been created as part of this thesis.

Proof: Definition 2.8 states two requirements for a protocol to be secure
against a static semi-honest adversary. It has to be correct, which means the

2Note that neither party is required to compute the masks for the dummy elements, as
they will not be compared.

32

output of a functionality computing f(X,Y) = (⊥, X ∩ Y) has to be compu-
tationally indistinguishable from the protocol. Secondly two PPT simulators
that, given the input and output of a single party, have to produce views that
are computationally indistinguishable from the real protocol. The simulator for
a corrupt Sender can be seen in Figure 3.4, and for a corrupt Receiver in Figure
3.5.

Correctness Assuming existence of some element z ∈ X ∩ Y :
There are two cases, namely that the Receiver hashes z to his Cuckoo array

T2 or to the stash S.
z is hashed to T2: Without loss of generality assume that z is hashed to

position v by the Receiver (T2[v] = z), and the Sender’s v’th bin will include a
copy of z at position w (T1[v][w] = z).

At some point both parties will compute the mask of the v’th bucket and
w’th element in bucket v, meaning that both parties will use z to determine
the mask. The Sender will compute

M1,h[v][w] =
t⊕

k=1
mv,k
z[k][(w − 1) · l;w · l]

while the Receiver will input substrings of z to the OT, and obtain the mask

M2,h[v][w] =
t⊕

k=1
mv,k
z[k][(w − 1) · l;w · l]

As these are equivalent both parties will generate the same mask, denoted mz.
During the third step the Sender will include the mask mz in the set V1,

since T1[v][w] 6= d1, and send it to the Receiver. When he compares mz with
the elements in his mask array M2,h he will find that mz = M2,h[v][w] and
include the element T2[v] = z in his output.

Otherwise if z is hashed to the stash by the Receiver equivalent steps will
be computed, and a mask mz for z will be included in V2 by the Sender. An
equivalent mask will be computed by the Receiver, and included in M2,s. This
again results in the Receiver outputting z as part of the intersection.

Hence correctness is satisfied.

Using a sequence of hybrid games a number of simulators will be shown,
starting with the simulators shown in the Figures 3.4 and 3.5. By making small
changes it will be proven that the simulators are computationally indistinguish-
able from the real protocol.
Simulating the view of corrupt Sender

Game H0: The simulated execution.
Game H1: The simulator S1 no longer uses the functionality fOT , and is

instead replaced with the protocol πOT . Given that a simulator exists for πOT
the output is guaranteed to be computationally indistinguishable, and thus H0
and H1 are indistinguishable.

Game H2: In this game the trusted party and honest Receiver are removed,
and the simulator S2 is given the Receiver’s input Y . S2 computes the Cuckoo

33

PSZ14.Sim1(1κ, X,⊥)

Masking: The simulator S starts by computing the double array like the real
protocol, namely T1[][] = SimpleHashing(X, {H1, H2}, β), adds dummy
elements and randomly permutes each bin.

OT-phase: For 1 ≤ i ≤ β and 1 ≤ k ≤ t S uses the OT’s simulator to
obtain N random messages of length maxβ · l as OT output, denoted
(mi,k

1 , . . . ,mi,k
N), and includes them in the view.

For each bin and for 1 ≤ j ≤ maxβ let each element in the i’th bin
T1[i][j] = x = x[1] ‖ · · · ‖ x[t] be used to compute the mask

M1,h[i][j] =
t⊕

k=1
mi,k
x[k][(j − 1) · l; j · l]

In the same manner for 1 ≤ i ≤ s and 1 ≤ k ≤ t S uses the OT’s
simulator to obtain N random messages of length n1 · l as OT output,
denoted (mi,k

1 , . . . ,mi,k
N).

For each bin and for 1 ≤ j ≤ s and for each element x ∈ X, where
x = x[1] ‖ · · · ‖ x[t], be used to compute a mask

M1,s[i][j] =
t⊕

k=1
mi,k
x[k][(j − 1) · l; j · l]

Intersection: The two sets V1 = {M1,h[i][j] | ∀i, j : T1[i][j] 6= d1} and
V2 = {M1,s[i][j] | 1 ≤ i ≤ s, 1 ≤ j ≤ n1} are computed, and randomly
permuted. Both are included in view as message to the Receiver.

Figure 3.4: Simulator for Sender in [PSZ14]

34

PSZ14.Sim2(1κ, Y,X ∩ Y)

Masking: The simulator S starts by computing the array like the real proto-
col, namely T2[] = CuckooHashing(Y, {H1, H2}, β), and inserts dummy
elements into empty spots. The stash is padded with dummy elements
until it has size s, and randomly permuted.

OT-phase: For 1 ≤ i ≤ β element T2[i] = y = y[1] ‖ · · · ‖ y[t] is found. For
1 ≤ k ≤ t y[k] is used as OT input, and 1 random string of length maxβ · l
is obtained from the OT’s simulator as OT output, denoted mi,k

y[k].
For each bin and for 1 ≤ j ≤ maxβ the masks

M2,h[i][j] =
t⊕

k=1
mi,k
y[k][(j − 1) · l; j · l]

are computed, and if y ∈ X ∩ Y one random mask from M2,h[i] is saved
in V1.
Equivalently for 1 ≤ i ≤ s element S[i] = y = y[1] ‖ · · · ‖ y[t] is found. For
1 ≤ k ≤ t yk is used as OT input, and 1 random string of length n1 · l is
obtained from the OT’s simulator as OT output, denoted mi,k

y[k].
For each bin and for 1 ≤ j ≤ n1 the masks

M2,s[i][j] =
t⊕

k=1
mi,k
y[k][(j − 1) · l; j · l]

are computed, and if y ∈ X ∩ Y the mask M2,s[i][r] for one
r∈R{1, . . . , n1} \ R is saved in V2, and r is saved in R (The set X is
not shuffled at any point, so to ensure the i’th element is not used to
generate masks for two elements this extra step is required).

Intersection: Uniformly random l-bit values are added to V1 until |V1| = 2·n1,
and V1 is randomly permuted. Equivalently uniformly random l-bit values
are added to V2 until |V2| = s ·n1 and V2 is randomly permuted. The sets
V1, V2 are included in view as message from the Sender, and S outputs
X ∩ Y .

Figure 3.5: Simulator for Receiver in [PSZ14]

35

hash of Y to obtain T2, S including dummy elements, which it uses as OT input.
The Receiver’s input to the OT cannot be distinguished by the Sender, and as
such cannot be used to distinguish H1 and H2.

Note that game H2 is identical to the real protocol.
Simulating the view of a corrupt Receiver

Game H0: The simulated execution.
Game H1: The simulator S1 no longer uses the functionality fOT , and is

instead replaced with the protocol πOT . Given that a simulator exists for πOT
the output is guaranteed to be computationally indistinguishable, and thus H0
and H1 are indistinguishable.

Game H2: The trusted party and honest Sender are removed, while the
simulator S2 is given the Sender’s input X. From this S2 computes T1 as the
real protocol, which it uses to generate masks during the OT-phase. These
masks are used to compute the sets V1 and V2, and are included in view as
messages to the Receiver. As the Rand-OT used does not allow the Sender to
input anything the only change in transmitted messages are the sets V1 and
V2. The only meaningful masks for the Receiver are the ones contained in the
intersection, and the remaining masks in the sets are uniformly random strings.
As he cannot distinguish the two distributions H1 and H2 are indistinguishable.

Game H3: Instead of outputting the intersection obtained as input the
Receiver computes the output like the real protocol. As the chance of collisions
of elements not contained in the intersection is negligible the two games H2 and
H3 are indistinguishable.

Note that H3 is identical to the real protocol.
�

36

Chapter 4

Optimizations by [PSSZ15a]

[PSSZ15a] proposes three optimizations to the semi-honestly secure PSI proto-
col of [PSZ14], resulting in significantly better running-times, both asymptoti-
cally and in practice.

First the optimizations will be explained, where an easily fixed correctness
issue with the third optimization will be shown, followed by showing the full
protocol of [PSSZ15a] and then proving it is secure against a static semi-honest
adversary. At last the protocol will be analyzed with a malicious adversary
which results in three vulnerabilities, where two will be prevented and the new
protocol will be proven secure against a malicious Receiver.

The full version of the paper can be seen in [PSSZ15b], which links to the
version studied during this thesis.

4.1 Optimizations

The paper suggests three optimizations that reduces the number of masks be-
ing generated, increases the number of hash functions and changes the hash
functions to a Feistel-like structure, which reduces the bit-length of the hashed
elements.

4.1.1 Reducing number of generated masks:

The protocol of [PSZ14] will, for each of the β bins, create maxβ = O(log(n1))
masks per bin, resulting in the Receiver creating β · maxβ + s · n1 masks in
total. To avoid that [PSSZ15a] proposes a scheme that on average creates a
constant number of masks per bin, resulting in 2 ·n1 +s ·n1 masks by the Sender
and n2 + s masks for the Receiver. The basic idea behind the optimization is
reducing the OT-output length to l, and obtaining an intermediate value by
XORing all relevant strings together for a given element. To obtain the neces-
sary randomness this intermediate value is hashed using a third hash function,
which will give the final mask.

The exact change is as follows. The Sender will use the hashing scheme of
Figure 2.4, which no longer limits the number of elements that can be hashed
to a single entry. When creating masks for the non-stashed elements the two

37

parties will engage in a Rand-
(N

1
)
-OTβ·tl , instead of a Rand-

(N
1
)
-OTβ·tmaxβ ·l, where

the Sender obtains t ·N random strings of length l, while the Receiver obtains
t random strings of length l.

To compute the masks let the t ·N strings the Sender obtains during the i’th
Rand-

(N
1
)
-OTtl be denoted (mi,k

1 , . . . ,mi,k
N), where 1 ≤ k ≤ t. Let ui elements

be hashed to the i’th bucket, denoted x1, . . . , xui , where the j’th element can
be split as T1[i][j] = x = x[1] ‖ · · · ‖ x[t]. Then an intermediate value

Si,j1 =
t⊕

k=1
mi,k
x[k]

is computed, which is then hashed with hash function H to obtain the mask

M1,h[i][j] = H(Si,j1)

Equivalently the Receiver has one element hashed to the bucket T2[i] = y,
which can be split as y = y[1] ‖ · · · ‖ y[t] and will be used to obtain the t
OT-outputs (mi,1

y[1], . . . ,m
i,t
y[t]). These will be XORed to an intermediate value

Si2 =
t⊕

k=1
mi,k
y[k]

which will be hashed with H to obtain the final mask for bin i

M2,h[i] = H(Si2)

Note that the Receiver computes exactly one mask for bin i, where he
previously computed maxβ.

An equivalent computation will be done for the elements in the stash, namely
instead of using a Rand-

(N
1
)
-OTs·tn1·l they will use a Rand-

(N
1
)
-OTs·tl , compute

intermediate masks and hash these masks. This will reduce the number of
masks the Receiver has to compute to s, while the Sender is still required to
compute s · n1 masks for the stash elements.

Correctness Compared to [PSZ14] each mask is now required to be hashed,
as they are now dependant on each other. To see this consider the somewhat
artificial case where the length of the elements is 2, that is σ = 2, and where
each element will be split into two one-bit pieces, meaning there will be two
outputs from each of the two OTs per bin. For a single bin let the four random
strings obtained from the OT be denoted r0

0, r
0
1, r

1
0 and r1

1, where ri0, ri1 will be
the two outputs in the i’th execution of the OT. These strings can be used to
generate four valid masks, namely mb,b′ = r0

b ⊕ r1
b′ .

The primary issue with these dependant masks can be seen in the following
equation: m0,0⊕m0,1⊕m1,0⊕m1,1 = 0. This makes it possible for the Receiver
to check whether four given unhashed strings are contained in the same bucket,
since the chance that four random masks XOR to 0 is negligible in the statistical
security parameter. This also means that if the Receiver obtains three masks
he knows are from one bin he can efficiently compute the last - which should

38

not be possible. Naturally this issue persists when µ and N grow, however
the number of strings required increases as well. In particular it is possible to
verify whether Nµ elements are contained in the same bucket, and from Nµ−1
elements to find the last element.

Hashing the values ensures that the generated masks are no longer depen-
dant on each other, and instead uniformly random l-bit strings leaking no in-
formation.

Efficiency gain This optimization results in reducing the work done by both
the Sender and the Receiver from β ·maxβ to β, which is roughly a logarith-
mic improvement. When benchmarking each optimization [PSSZ15b] reports
a factor 10 improvement from reducing the number of masks computed, when
testing with n1 = n2 = 220.

4.1.2 h-ary Cuckoo Hashing:

The second optimization is varying the number of shared hash functions, namely
using the Cuckoo hashing algorithm from Figure 2.7 which uses h hash func-
tions.

As noted during the explanation of Figure 2.7 the 2-ary Cuckoo hashing al-
gorithm requires about 50% of the array to be empty, while 3-ary Cuckoo hash-
ing requires about 9% to be empty, as shown by [FPSS03]. The running-time
is dependant on β, which is reduced as the number of hash functions increases.
Increasing the number of hash functions also increases the computational over-
head of doing Cuckoo hashing for the Receiver and increases the number of
masks the Sender is required to both compute and send to the Receiver, thus
resulting in a trade-off.

Experimental results by [PSSZ15a] showed that using 3-ary cuckoo hashing
was optimal when n1 = n2, and when n1 � n2 2-ary cuckoo hashing was
optimal. The run-time reduction, according to [PSSZ15a], is roughly a factor
1.2− 1.3 when testing sets of equal size.

For the remainder the function F ′(n2, h) will be used to determine the size
of β, rather than explicitly writing the size.

4.1.3 Reducing bit-length:

For the last optimization the description given by [PSSZ15a] will be shown,
followed by identifying a correctness issue, and a simple fix proposed by the
authors of [PSSZ15a] during an e-mail correspondence.

This optimization replaces Cuckoo hashing from Figure 2.7 to that of Figure
2.8, which uses parts of the results from [ANS10] to use Feistel-like functions
instead of the hash functions. This makes it possible, for non-stashed element,
to reduce the bit-length from σ to σ′ = σ− log β, which results in reducing the
number of OTs performed per bin from t = dσµe to t

′ = dσ′µ e = dσ−log β
µ e.

It is important to note that this optimization does not apply to elements
in the stash, as the Feistel-like structure requires that the placement of an
element is part of its identifier, which is not applicable in the stash. Instead

39

mask generation for elements in the stash will continue using bit-length σ and
splitting each element into t µ-bit pieces.

The simple hashing algorithm used by the Sender will also use the Feistel-
like functions, which is simply done by replacing the hash functions.

[PSSZ15a] reported roughly a factor 1.1 − 2 improvement from replacing
the hash functions, when keeping the number of elements constant at 220, while
varying σ. As they also kept the numer of OT outputs constant at N = 28 the
reduction was always blog(n)/8c = 2 less OTs per bin, clearly resulting in less
performance increase as σ grows. When σ = 32 the number of OTs was reduced
from t = 4 to t′ = 2, while having σ = 128 only reduced t = 10 to t′ = 8.

Correctness issue The method used by [ANS10] to reduce the bit-length of
hashed elements uses exactly one random function, which means the correctness
argument sketched when defining Figure 2.8 holds. However as part of this
thesis it was discovered that using two or more random functions breaks the
correctness, which is necessary for Cuckoo hashing.

For simplicity assume two random functions are used, f1, f2. Then f1 can
be used to hash x = xL ‖ xR to pos = xL ⊕ f1(xR), where xR is stored at
position pos. From this it is possible to find another left-part of an element by
computing pos⊕ f2(xR) = x′L such that x′L ‖ xR is hashed correctly while also
storing xR at position pos. Hence when using xR as input to the OT the parties
obtain a valid mask for both xL‖xR and x′L‖xR, which breaks the correctness of
the protocol. Extending this to h random functions clearly results in obtaining
one valid mask that checks whether one of h elements are hashed to position
pos.

In an email correspondence with the authors of [PSSZ15a] this issue was
brought up, where the authors acknowledged the issue and said they were made
aware of it after their paper was accepted. At the same time they suggested
fixing it by using an additional log(h) bits for each element to identify which
hash function is being used. This in particular means the stored element is
xR ‖ k at position pos when computing pos = xL ⊕ fk(xR). As log(h) is small
this is only a minor decrease in efficiency.

When using the Feistel-like structure to hash elements this trick of concate-
nating the hash function identifier at the end will be assumed to be a part of
the hashing, and hence will not be mentioned explicitly. Note that this means
Figure 2.8 is not an exact match of what happens, and instead a simplifica-
tion. Also note that when referencing the Feistel-like structures they will not
be explicitly written, and are referenced as {H1, . . . ,Hh}.

4.2 Protocol of [PSSZ15a]

The full protocol of [PSSZ15a] can be seen in Figure 4.1. It uses the same
idea as [PSZ14] with the optimizations sketched above, and as such no further
explanations will be included.

40

Figure 4.1: Protocol of [PSSZ15a]

41

4.3 Proof for [PSSZ15a]

A proof of security was not included in [PSSZ15a], but has been created as part
of this thesis.

Proof:
Definition 2.8 states two requirements for a protocol to be secure against a

static semi-honest adversary. It has to be correct, which means the output of
the functionality f∩ computing f∩(X,Y) = (⊥, X ∩ Y) has to be computation-
ally indistinguishable from the protocol. Secondly two PPT simulators need to
be constructed such that they produce a view that is computationally indistin-
guishable from the real protocol, given the input and output of a single party.
The simulator for the Sender can be seen in Figure 4.2, and for the Receiver in
Figure 4.3

Correctness Assuming existence of some element z ∈ X ∩ Y :
Correctness is split into two cases, either the Receiver hashes z into the

cuckoo hash table, or it is placed in the stash. The two cases will be treated
separately.

Assume that z = zL ‖ zR is hashed to the Cuckoo table where it will be at
position v = Hg(z) = zL ⊕ fg(xR) for some random function fg ∈ F , meaning
that T2[v] = zR for the Receiver1. The Sender will have zR as the w’th element
in bin v, resulting in T1[v][w] = zR.

During mask creation the content of bin v will at some point be used to
determine the masks. The Receiver will use the substrings of zR to determine
his input to the OT, resulting in t′ masks mv,k

zR[k] for 1 ≤ k ≤ t′. To create the
mask of z he will XOR all the obtained masks together, resulting in

Sv2 =
t′⊕
k=1

mv,k
zR[k]

This element will be hashed to obtain the final mask

M2,h[v] = H(Sv2)

Meanwhile the Sender will obtain the t′ ·N masks denoted (mv,k
1 , . . . ,mv,k

N)
for 1 ≤ k ≤ t′. When creating masks he will eventually use the w’th element,
which is zR. This will result in obtaining the value

Sv,w1 =
t′⊕
k=1

mv,k
zR[k]

which will be hashed to obtain the mask

M1,h[v][w] = H(Sv,w1)
1Remember that the identifier for g is required which means what is actually stored is

T2[v] = zR ‖ g, however to ease notation this has been omitted. This applies for the Sender as
well.

42

When the Sender sends his masks he will include M1,h[v][w] in V1 and send
it to the Receiver. When he compares M2,h[v] to the elements in V1 he will be
guaranteed to find M2,h[v] ∈ V1, resulting in the Receiver outputting z as part
of the intersection.

If z is inserted into the stash let the Receiver have it at position v, such
that S[v] = z.

When creating masks for the stashed elements at some point both parties
will use the v’th stash element. This result in the Receiver inputting substrings
of z to the OT, and thus obtaining the t masks mv,k

z[k] for 1 ≤ k ≤ t. These will
be XORed and then hashed to obtain the mask

M2,s[v] = H(
t⊕

k=1
mv,k
z[k])

At the same time the Sender will create n1 masks per stash element. In par-
ticular he will for the v’th stash element obtain the t ·N masks (mv,k

1 , . . . ,mv,k
N)

for 1 ≤ k ≤ t. As z is contained in his set he will compute the mask

M1,s[v][j] = H(
t⊕

k=1
mv,k
z[k])

for some j less than n1.
When sending masks for stashed elements the Sender will send M1,s[v][j],

which the Receiver will find equivalent to M2,s[v], which means he will output
z as part of the intersection.

View of PSSZ15.Sim1 The view of PSSZ15.Sim1 is computationally indis-
tinguishable from the real protocol:

To prove indistinguishability of PSSZ15.Sim1 it needs to be proven that
the OT output is distributed uniformly random, and used together with X to
generate the sets V1, V2, that as a result consists of h · n1 and s · n1 uniformly
random l-bit strings.

The simulated OT output is generated by the simulator guaranteed to exist
for the OT, which means it is computationally indistinguishable from the real
protocol, as otherwise the OT would not be secure. This can be seen when
generating β ·N · t′ random l-bit values, for the hashed elements, and s ·N · t
random l-bit values for the elements in the stash.

The masks are computed equivalently to the real protocol, and since the
computation uses the masks generated by the OT’s simulator they are compu-
tationally indistinguishable from the real protocol. Since this is true for both
the masks in V1 and V2 the simulator for a corrupt Sender is computationally
indistinguishable from the real protocol.

View of PSSZ15.Sim2 The view of PSSZ15.Sim2 is computationally indis-
tinguishable from the real protocol:

To prove indistinguishability of PSSZ15.Sim2 three kinds of messages need
to be distributed correctly, namely the OT input, the OT output and the sets
V1, V2.

43

PSSZ15.Sim1(1κ, X,⊥)

Masking: Use simple hashing to obtain the two-dimensional array like the real
protocol, T1[][] = SimpleHashing(X, {H1, . . . ,Hh}, β).

OT-phase: For 1 ≤ i ≤ β and 1 ≤ k ≤ t′ use the OT’s simulator to obtain N
random messages of length l as OT output, denoted (mi,k

1 , . . . ,mi,k
N), and

include them in the view.
For each bin and for 1 ≤ j ≤ ui set T1[i][j] = x = x[1] ‖ · · · ‖ x[t′], and use
it to generate the mask M1,h[i][j] = H(

⊕t′
k=1m

i,k
x[k]).

Equivalently for 1 ≤ i ≤ s and 1 ≤ k ≤ t use the OT’s simulator to obtain
N random messages of length l as OT output, denoted (mi,k

1 , . . . ,mi,k
N),

and include them in the view.
For each possible stash element and for 1 ≤ j ≤ n1 find the j’th element
X[j] = x = x[1] ‖ · · · ‖ x[t], and compute M1,s[i][j] = H(

⊕t
k=1m

i,k
x[k]).

Intersection: Compute the sets V1 = {M1,h[i][j] | 1 ≤ i ≤ β, 1 ≤ j ≤ ui} and
V2 = {M1,s[i][j] | 1 ≤ i ≤ s, 1 ≤ j ≤ n1}, randomly permute them and
include them in view as message to the Receiver.

Figure 4.2: Simulator for Sender in [PSSZ15a]

The OT input needs to consist of the elements in Y and the dummy element
d, mixed together. This is done by using the same hashing as the real protocol,
namely by using Cuckoo hashing followed by inserting d into all empty spots,
and filling up the stash S until it contains s elements, and shuffle it. This
results in the simulator doing exactly as the real protocol, and hence cannot be
distinguished from it.

In the real protocol the OT output is β · t′ + s · t uniformly random strings
of length l that are computationally indistinguishable from the OT output in
PSSZ15.Sim2, due to the OT’s simulator.

The two sets V1, V2 need to be of the correct size, namely h · n1 for V1 and
s · n1 for V2. They also need to contain the masks corresponding to the inter-
section, with the remainder of the elements being uniformly random elements.
The elements contained in the intersection are included as they are computed,
and the remaining elements are uniformly random l-bit values that cannot be
distinguished from the real protocol, meaning that PSSZ15.Sim2 is computa-
tionally indistinguishable form [PSSZ15a].

At last it is obvious that both simulators run in PPT, which concludes the
proof. �

44

PSSZ15.Sim2(1κ, Y,X ∩ Y)

Masking: Use the cuckoo hashing algorithm to compute the one-dimensional
array T2[] = CuckooHashing(Y, {H1, . . . ,Hh}, β), and insert d into all
empty positions. Fill the stash S until it has size s with d, and randomly
permute S.

OT-phase: For 1 ≤ i ≤ β let T2[i] = y = y[1] ‖ · · · ‖ y[t′], and for 1 ≤ k ≤ t′

include y[k] as OT input, and use the OT’s simulator to obtain 1 random
message of length l as OT output, denoted mi,k

y[k].

Use y to compute the mask M2,h[i] = H(
⊕t′

k=1m
i,k
y[k]), and if y ∈ X ∩ Y

save M2,h[i] in set V1.
Equivalently For 1 ≤ i ≤ s let S[i] = y = y[1]‖ · · · ‖ y[t], and for 1 ≤ k ≤ t
include y[k] as OT input, and use the OT’s simulator to obtain 1 random
message of length l as OT output, denoted mi,k

y[k].

Use y to compute the mask M2,s[i] = H(
⊕t
k=1m

i,k
y[k]), and if y ∈ X ∩ Y

save M2,s[i] in set V2.

Intersection: Insert random l-bit values in V1 until |V1| = h ·n1 and randomly
permute V1. Equivalently insert random l-bit values in V2 until |V2| = s·n1
and randomly permute V2. Include V1, V2 in view as message from the
Sender, and output {T2[i] | ∃j s.t.M2,h[i][j] ∈ V } combined with the set
{S[i] | ∃j s.t. M2,s[i][j] ∈ V2}.

Figure 4.3: Simulator for Receiver in [PSSZ15a]

45

4.4 Malicious adversary against [PSSZ15a]

During work prior to this thesis three vulnerabilities were discovered when the
PSI protocol of [PSSZ15a] was analyzed with a malicious adversary, rather than
the semi-honest adversary it is created to be secure against. Methods to prevent
two of the three attacks have been found during this thesis. The vulnerabilities
are as follows:

First, the random OT being used in the protocol is secure against a semi-
honest adversary, and as such any malicious attack depending on the OT will
likely extend to a vulnerability in the PSI protocol. As the OT is being used
as a functionality no specific attack will be mentioned, and it can trivially be
prevented by using a maliciously secure random OT functionality instead, and
as such will not be discussed further.

Secondly a malicious Receiver is able to verify whether some small subset
of elements are contained in the Sender’s set, despite not being included in his
input. This attack can be prevented by using secret sharing and symmetric-key
encryption, as will be explained shortly.

The last is a malicious Sender that can influence correctness of the protocol,
by making the output dependant on how the Receiver hashes his elements. A
second attack influencing correctness that is a result of the countermeasure to
the malicious Receiver has also been found. No working countermeasures have
been found for this attack.

4.4.1 Malicious Receiver

This section will consist of four parts, namely an exact algorithm to attack the
PSI protocol as a malicious Receiver combined with arguments to show that the
attack is possible and efficient. Afterwards it will be shown how to prevent this
by using Shamir’s secret sharing scheme to enforce correct behaviour from the
Receiver. Following this optimizations to increase the efficiency of the scheme
will be shown, as the secret sharing imposes a quadratic overhead, together
with minor tweaks to ensure correctness and security. At last the new protocol
is proven secure against a malicious Receiver.

Description of attack: An exact algorithm to attack the PSI protocol as a
malicious Receiver can be seen in Figure 4.4, which will be used to argue about
the severity of the attack.

Intuitively the attack uses, assuming two hash functions, that the Cuckoo
array T2[] consists of roughly 50% empty spots after inserting n2 elements that
constitute as the Receiver’s input. The basic idea behind the attack is taking
some element e and hashing it using both H1 and H2. If T2[Hi(e)] = ⊥ then
e can be inserted into T2 without removing elements from Y . When creating
masks through the random OT a valid mask will be created for e rather than
the dummy element that ought to be at e’s position. When the Sender sends
his mask set V1 the Receiver can check whether e ∈ V1, and if true he knows e
is contained in the Sender’s input set X except with negligible probability. If
e /∈ V1 he knows e /∈ X as well. The same idea applies to the stash S, where

46

1: procedure Receiver.attack(Y)
2: Hash elements in Y as usual, resulting in T2[] and S[]
3: for interesting elements e do
4: for Each hash function Hi do
5: if T2[Hi(e)] = ⊥ then
6: Insert e into T2[Hi(e)]
7: else
8: if |S| < s then
9: Insert e into S

10: Complete protocol as usual

Figure 4.4: An attack on the PSI protocol of [PSSZ15a] as a malicious Receiver

elements can be inserted until it has size s, to create masks and check whether
said elements are included in X. This results in providing the Receiver with
full knowledge of whether e is contained in the Sender’s input.

Due to the size restriction on both T2 and S a malicious Receiver is bounded
in the number of elements he can obtain knowledge of. Using h = 2 the array
T2 is roughly half full, while the size of S is a small constant, which results
in the Receiver learning inclusion of about n2 elements he ought to not learn
about. This number is decreased as h increases.

The existence of an element e that can be inserted into T2 when using h = 2
(the argument extends to h > 2 as the percentages are based on how Cuckoo
hashing works) is as follows: for an element e /∈ Y the Receiver will hash it
twice, using H1, H2. Both times he will check if T2[Hi(e)] = ⊥, and if true insert
e, which results in him learning whether e is contained in X. The Cuckoo hash
array is at most half full and the hash functions are modelled as random oracles,
resulting in an upper bound of 1

4 ’th chance of T2[Hi(e)] 6= ⊥ when hashing with
both hash functions. Repeating this a polynomial p(κ) number of times, using
different elements, results in (1

4)p(κ) chance of not finding an element hashing to
an empty spot. As this probability is negligible that means a malicious Receiver
is able to efficiently insert some element into T2, resulting in learning whether
said element is contained in X.

Countermeasure: As part of this thesis Shamir’s secret sharing scheme
paired with symmetric-key encryption will be proposed to prevent this attack.
The basic idea to preventing a malicious Receiver obtaining more information
is making the dummy elements necessary.

The Sender generates a key k and uses a (β+s−n2, β+s)-threshold Shamir’s
secret sharing scheme to split k into β + s shares. He then computes the β + s
dummy element masks and uses these as a one-time pad encryption on the
key-shares, resulting in the values (r1, . . . , rβ+s). The Sender then computes
the two sets V ′1 , V ′2 obtained as usual and encrypts them using k resulting in
V1 = E(k, V ′1) and V2 = E(k, V ′2). Then he sends V1, V2, (r1, . . . , rβ+s) to the
Receiver.

This means the Receiver is required to obtain β + s − n2 dummy element

47

masks to decrypt the one-time pad encryption of β+s−n2 key-shares to recon-
struct the key. From this he can decrypt the sets and compute the intersection.

A formal description of this can be seen in Figure 4.5.

Ensuring correctness, security and efficiency: The modified protocol
has a few subtle changes to ensure that correctness is preserved and the asymp-
totic overhead is not too high. The first change is the length of l, which
has to be increased to ensure that an l-bit value can be used as one-time
pad encryption of the key-shares. This is done by increasing the length from
l = λ + log(n1) + log(n2) to l = max(κ, λ + log(n1) + log(n2)). With less
length than the new l it might be possible to brute-force the encryption, clearly
violating the security of the protocol.

The second issue is a result of the quadratic running-time of Shamir’s se-
cret sharing scheme. The number of dummy elements, or empty positions in
T2, determines the input size to Shamir’s secret sharing scheme, and thus the
running-time is significantly increased as the input size, and hence number of
dummy elements, grows.

To prevent this issue the number of hash functions will once again change,
but instead of being predetermined as a function of the difference in set sizes
it will be computed as a function dependant on the Receiver’s input size n2.
This function will keep the number of dummy elements constant, at the cost of
sending slightly more masks in the set V1, as its size is h · n1.

Proof of modified protocol: At last a proof to show the modified protocol
is secure against a malicious Receiver. Note that the proposed protocol is not
secure against a malicious Sender, and thus can only be proven for a corrupt
Receiver. The protocol is secure against a semi-honest Sender, but as that proof
is closely related to the proof shown for [PSSZ15a], except adding a few more
computations, it will be omitted.

Proof:
To prove the modified protocol secure against a malicious Receiver Defi-

nition 2.9 states a simulator S needs to be constructed. S needs to extract
the input of the corrupt party A to use it as input to the trusted party com-
puting the functionality f∩, and ensure the output corresponds to what the
trusted party returns. This needs to be done while simulating a view that is
indistinguishable from the real protocol.

The functionality f∩ computing the intersection needs a maximum input
size, defined as n1 for the Sender and n2 for the Receiver, defined prior to
inputting the sets. If the input exceeds those limits it will output aborti, where
party i has input too many elements.

The simulator for a corrupt Receiver can be seen in Figure 4.6. The basic
idea is playing the role of a trusted party for the OT, and using the Receiver’s
OT inputs to compute his cuckoo array and stash, as he cannot change his
input after the OT. From this the simulator S inputs the remaining set to the
functionality. If f∩ outputs an intersection the corresponding masks will be
encrypted, excluding wrongly hash elements, and otherwise zeroes of the same

48

Figure 4.5: Protocol of [PSSZ15a], modified to be secure against a malicious
Receiver

49

length will be encrypted.

To prove security the transmitted messages in the simulator need to be
computationally indistinguishable from the real protocol, which means the OT
output, the encrypted sets and the one-time pad encrypted elements. The
output also needs to be consistent with the functionality’s output.
S’s OT output is computationally indistinguishable from the real protocol,

as it uses the simulator guaranteed to exist for the OT to generate the messages.
This leaves the two encrypted sets V1, V2 together with the random values.
The indistinguishability of the real and ideal world is dependant on the

encryption scheme satisfying IND-CPA, meaning without the key A has only a
negligible probability of decrypting the sets, which means it also relies on the
secret sharing scheme hiding the key. This splits into two cases depending on
whether the adversary A has input at least β + s− n2 dummy elements to the
OT or not.

If he did input at least β + s − n2 dummy elements he can compute at
least β + s − n2 masks of dummy elements that can be used to decrypt the
one-time encryption of the key-shares, and obtain at least β + s − n2 key-
shares. As he used β+ s−n2 dummy elements his input set consists of at most
n2 elements, that have been input to the functionality which resulted in the
simulator obtaining the intersection. This means V1, V2 consists of masks (and
random values), and that he can obtain the encryption key from the one-time
pad encrypted elements, and thus A cannot distinguish whether he is in the
ideal or real world when properly computing the intersection.

If he did not input β + s − n2 dummy elements he cannot learn the key
from the values r1, . . . rn+s, as they are uniformly random values. However this
is exactly as the real protocol, as the key-shares would be uniformly random
values, and he needs β + s− n2 elements to reconstruct the key. Since he does
not have that he knows nothing about the key, and cannot decrypt the two sets.
Thus the encryption of zeroes from the simulator and encrypted masks in the
real world cannot be distinguished, as he cannot decrypt either.

To formally prove that a cheating adversary’s views are computationally
indistinguishable in the real and ideal world a reduction to the encryption
scheme’s property IND-CPA will be made. By assuming a distinguisher D
that can distinguish the simulated and hybrid views a dinstinguisher DE will
be made that breaks IND-CPA:

Upon receiving auxiliary input z DE emulates the view of a Sender until
the last step where it has to send two encrypted sets and the key-shares. DE

then creates four sets. The first two are created as the protocol, namely a
set containing masks corresponding to DE ’s simple hashing array, and one set
containing masks corresponding to the stash, both randomly permuted. The
two last sets contain only zeroes. DE then inputs the four sets to the encryption
oracle such that the two sets containing masks is the first input, and the two
sets containing zeroes is the second input. The encryption oracle returns two
encrypted sets V ′′1 and V ′′2 , which DE gives to D together with β + s uniformly
random values. D outputs a guess b on whether the sets contain masks or

50

LO16.Sim2(z)

The simulator invokes A on auxiliary input z

OT-phase: The adversary A outputs β ·t′ strings as OT-input. For each string
w[k] the simulator uses it to reconstruct the adversary’s array T2. It also
uses the simulator guaranteed to exist for the Random OT to obtain N
strings. These are saved in arrayWh[i][k], where 1 ≤ i ≤ β and 1 ≤ k ≤ t′.
The simulator returns Wh[i][k][w[k]] to A.
Equivalently A outputs s ·t strings corresponding to his stash, from which
the simulator reconstructs the stash S. For each string w[k] the simulator
obtains N random strings from the OT’s simulator saved in Ws[i][k], for
1 ≤ i ≤ s and 1 ≤ k ≤ t, where it returns Ws[i][k][w[k]] as OT-output to
A.

Constructing sets: From the constructed T2, S all dummy elements are re-
moved, and the resulting set is input to the functionality f∩.
If the output is the intersection Z the masks for each z ∈ Z are con-
structed by finding its position, except for any wrongly hashed element
(meaning that element z ∈ T2 at position i will have Hk(z) 6= i for all
hash functions. Any element that has been inserted into such a position
cannot be contained in the intersection, as the Sender is guaranteed to
not create the mask). If T2[i] = z the mask will be constructed from
strings in Wh[i], as the real protocol and it will be saved in V ′1 . Otherwise
if S[i] = z the strings in Ws[i] will be used, and the mask will be saved
in V ′2 . V ′1 is filled with random masks until it has size h · n1 and V ′2 is
filled with random values until it has size s · n1. At the end both sets are
randomly permuted.
Otherwise if f∩ outputs abort2 V ′1 is filled with h · n1 zeroes of length l,
and V ′2 is filled with s · n1 zeroes of length l.

Sending response: A key k is generated and used to encrypt V ′1 and V ′2 to
obtain V1, V2. If V ′1 and V ′2 contain masks k is split into β+s shares using
Shamir’s secret sharing scheme, and one-time pad encryption is used to
encrypt each key-share with the mask of a dummy element, like the real
protocol, to obtain the elements r1, . . . , rβ+s. Otherwise if V ′1 , V ′2 are
encryptions of zero r1, . . . , rβ+s are obtained as uniformly random l-bit
values.
V1, V2, {r1, . . . , rβ+s} is sent to the adversary A.

Figure 4.6: A simulator against a malicious corrupt Receiver, as modified ver-
sion of [PSSZ15a], proposed as part of this thesis

51

zeroes, and DE outputs b as well.
If D, and hence DE , guesses correct with a non-negligible probability it

means one of two things. Either D has broken IND-CPA of the encryption
scheme, or can distinguish the secret sharing of the key encrypted under one-
time pad with the dummy elements from uniformly random elements. As the
latter is unconditionally secure it reduces to breaking IND-CPA with non-
negligible probability.

�

4.4.2 Malicious Sender

This section will include a detailed description of the attack a malicious Sender
is able to perform on the protocol described by [PSSZ15a], and a secondary
attack that is a result of preventing a malicious Receiver. Whether either of
the issues can be efficiently prevented is an open problem.

A malicious Sender is able to influence the correctness of the protocol by
replacing the masks in V1 and V2 to not include all h+s masks of each element.
As the size of V1 and V2 is predetermined, and can efficiently be verified by
the Receiver, just adding or removing elements is not sufficient. The attack
basically consists of having two elements e, e′ where the Sender computes all
h + s masks of each element, denoted me

1, . . . ,m
e
h+s and me′

1 , . . . ,m
e′
h+s. If a

malicious Sender includesme
1 andme′

2 , . . . ,m
e′
h+s in the sets V1, V2 it corresponds

to having 1
h+s chance of e being in X and h+s−1

h+s chance of e′ being in X, which
cannot be modelled in the ideal world. In particular the Receiver’s output is
now dependant on how he hashes his elements, as each mask is created at a
position specified by the hash functions.

The added step of sending one-time padded key-shares allows a malicious
Sender to encrypt wrong shares, resulting in the Receiver reconstructing the
wrong key, and hence obtaining uniformly random values, rather than masks.
These elements would be a function of how the Receiver hashed his elements, as
the key-shares he can obtain are dependant on where the dummy elements are
inserted in his data structure. This does not constitute for input substitution, as
the probability of having h+s valid masks for the possible element is negligible,
which means it does not satisfy correctness of the protocol.

52

Chapter 5

PSI using garbled Bloom
filters by [DCW13]

[DCW13] proposes two PSI protocols based on their variant of Bloom filters,
named garbled Bloom filters (see Figure 2.10), and oblivious transfer. Their
first protocol is secure against a semi-honest adversary, while the second is an
enhanced version of the first protocol meant to be secure against a malicious
adversary. At first the basic protocol will be sketched, followed by focusing on
the enhanced version and its flaws.

5.1 Semi-honestly secure protocol from [DCW13]

The full protocol is shown in Figure 5.1. It uses four pre-shared values, namely
n as their set sizes, h = κ to determine the number of hash functions, H as
the set of h hash functions and m as the size of a Bloom filter supporting
h hash functions and n elements. It starts by having the Sender create an
(m,n, h,H, κ)-garbled Bloom filter (see Figure 2.10), GBF1, representing his
input set X, while the Receiver creates a (m,n, h,H)-Bloom filter (see Figure
2.9), BF2, representing his input set Y .

The only interaction between the two parties is computing m OTs. In the
i’th OT the Sender will input (ri, GBF1[i]), where ri is a uniformly random
κ-bit value, and the Receiver will use BF2[i] as his selection bit. From the m
random κ-bit strings obtained from the m OTs the Receiver will build a garbled
Bloom filter GBFX∩Y . For each element y ∈ Y he will check if y is represented
in GBFX∩Y , and if true y will be output as part of the intersection.

Proof of correctness and proof sketch of security is shown in [DCW13], and
will thus be omitted from this thesis.

5.2 Enhanced protocol from [DCW13]

An enhanced version of the semi-honestly secure protocol was also included in
[DCW13], and was meant to be secure against a malicious adversary. To obtain
that the authors of [DCW13] identified two vulnerabilities in the basic protocol

53

Figure 5.1: Semi-honestly secure PSI protocol from [DCW13]

that a malicious adversary can exploit, followed by restricting his behaviour.
However, as will be seen shortly, two vulnerabilities still persist.

5.2.1 Attacks on semi-honestly secure protocol from [DCW13]

Two attacks were sketched in [DCW13]:
The first attack consists of the Receiver inputting 1 into all m OTs, rather

than using his Bloom filter entries as selection bits. This provides him with
the Sender’s full garbled Bloom filter, and as a result the Receiver is able to
efficiently compute whether a given element is contained in the Sender’s input
set X.

This vulnerability is prevented by having the Sender use a symmetric-key
block cipher that encrypts each entry in his garbled Bloom filter prior to in-
putting them into the OT. The key is split using a secret sharing scheme, where
the Receiver is able to reconstruct the key by inputting enough zeroes to the
OT.

Specifically the Sender generates a uniformly random key k using a symmetric-
key encryption generator, which is split using a (m/2,m)-threshold secret shar-
ing scheme to obtain the shares (k1, . . . , km), where m = 2κn. For the i’th OT
the Sender will input the pair

(ki, E(k,GBF1[i]))

which causes the Receiver to either obtain a key share or an encrypted entry of
the Garbled Bloom filter. Informally the argument for security is as follows: If
the Receiver inputs at least m/2 zeroes he will be able to reconstruct k, which
makes it possible to decrypt the encrypted garbled Bloom filter entries and
hence construct the new garbled Bloom filter GBFX∩Y , from which he is able
to find the intersection. If, however, he inputs less than m/2 zeroes he won’t
be able to reconstruct k, and the encrypted values will provide no information
due to the encryption scheme satisfying IND-CPA.

The second identified vulnerability consists of a malicious Sender inputting
wrong key-shares shares to the OT, since the Receiver cannot distinguish whether
the Sender sends correct or wrong key-shares. If he sends wrong key-shares the
Receiver will obtain wrong garbled Bloom filter entries when decrypting, which

54

Figure 5.2: Enhanced PSI protocol from [DCW13]

causes him to construct a wrong GBFX∩Y , and as a result correctness is no
longer satisfied.

To prevent this attack [DCW13] makes the Receiver send m κ-bit uniformly
random strings (r1, . . . , rm) to the Sender. The sender will then use the pair

(ki, E(k, ri ‖GBF1[i]))

as input to the OT instead.
[DCW13] argues for security by saying that the probability the Receiver

obtains a different key k′ 6= k and that the i’th entry decrypts to a string where
the first κ bits are equal to ri is negligible in κ, which means he should be able
to detect whether he obtains the correct key or not.

For completeness the enhanced protocol of [DCW13] can be seen in Figure
5.2.

5.2.2 Attacks on enhanced protocol from [DCW13].

Despite including a proof sketch for security of their enhanced protocol issues
still exist. In fact two attacks will be shown as results of thesis, where the
first makes it possible to determine whether a given element is contained in
the Receiver’s input, while the second makes the Sender’s input dependant on
the Receiver’s input, where both attacks are performed as a malicious Sender.
Whether either of the issues can be efficiently prevented is an open problem.

Check whether one element is contained in the Receiver’s input

The first attack is based on selective failure, which reveals the Receiver’s OT
input. Intuitively the attack is dependant on an OT protocol providing the
Receiver with information of exactly one of the Sender’s inputs. In particular
for some invocation of the OT the Sender inputs the pair (OT0, OT1), and
the Receiver will input the bit b, from which the Receiver obtains OTb and

55

1: procedure Sender.CheckContainment(e)
2: Create GBF1, k, (k1, . . . , km) as usual
3: Obtain random strings (r1, . . . , rm) from the Receiver
4: for i = 1 to m do
5: if Hj(e) = i for some Hj ∈ H then
6: Input (0, E(k, ri ‖GBF1[i])) to the OT
7: else Input (ki, E(k, ri ‖GBF1[i])) to the OT
8: return ⊥

Figure 5.3: Attack on enhanced protocol from [DCW13] as a malicious Sender

can verify correctness of OTb. The Receiver does not obtain any knowledge of
OT1−b, and as such cannot verify whether OT1−b is constructed correctly. This
selective failure attack is performed by having the Sender input some wrong
pairs of (r,OT1), where r is meaningless data and OT1 is the correctly formed
input. If the Receiver obtains r he will abort outputting ⊥, and otherwise he
will correctly output the intersection.

The selective failure can be used to determine whether a given element e is
contained in the Receiver’s input, and make him either output an intersection
containing e or abort outputting ⊥. If e ∈ Y then the honest Receiver is
guaranteed to satisfy

BF2[Hj(e)] = 1 ∀Hj ∈ H

If e /∈ Y with high probability there will be a hash function Hj ∈ H where
BF2[Hj(e)] = 0. Both of these statements follow directly from analysis of
Bloom filters, see [DCW13].

If the Sender wants to check whether e ∈ Y , that is if element e is contained
in the Receiver’s input set Y , he will do as in Figure 5.3. As sketched the Sender
will use the knowledge that BF2[Hj(e)] = 1 and input a meaningless string as
OT output if the Receiver inputs 0. This will ensure that the Receiver abandons
the protocol with high probability if e /∈ Y , and if e ∈ Y he is guaranteed to
finish the protocol and output an intersection that includes e. The chance that
he successfully finishes the protocol with e /∈ Y is negligible in κ.

It is important to understand the leakage of a protocol suffering from selec-
tive failure, as it cannot be securely composed. As shown either the enhanced
PSI protocol of [DCW13] leaks whether an element is contained in the input
(and output), or it aborts outputting ⊥. This clearly breaks the protocol’s com-
posability, as using the output as input in a subsequent protocol either leaks
to the adversary that e is contained in the input, or it is meaningless. Since
composability of protocols is a security goal in itself clearly the protocol cannot
be deemed secure under a standard definition when it is vulnerable to selective
failure.

Make Sender’s input dependant on the Receiver’s input

A malicious Sender can make his input dependant on the Receiver’s input, by
having the Receiver decrypt one of two different garbled Bloom filters. This is

56

possible due to [DCW13] not providing any requirements for their encryption
scheme, which means using one-time pad encryption should be secure. This is,
however, not true as the Sender can make the Receiver accept two different keys
k0, k1 that share a significant number of points after being secret shared. The
Receiver will obtain either k0 or k1 as a function of two Bloom filter entries.

For simplicity a small example will be used to describe the attack (where
m = 4), followed by extending it to larger m.

When m = 4 it will be assumed that the Sender knows two entries in
the Receiver’s Bloom filter (without loss of generality assume that he knows
BF2[1] = 0 and BF2[2] = 1), and he wants to make the Receiver’s output
dependant on his last two entries. He will do this by generating two different
garbled Bloom filters GBF0 and GBF1, after obtaining (r1, . . . r4) from the
Receiver. Then he generates two different keys k0 and k1 under the constraints

E(k0, ri ‖GBF0[i]) = E(k1, ri ‖GBF1[i])∀i ≤ 4

Note that this is easy, when one-time pad encryption is used.1
He then splits k0 into 4 shares (ks1

0, . . . ks
4
0). Using ks1

0 and k1 he recon-
structs a new secret sharing (ks1

1, . . . , ks
4
1) where ks1

0 = ks1
1. Note that ks2

0 and
ks2

1 are irrelevant, as the Sender knows the Receiver will not obtain a key-share
in the second OT.

In the first two OTs the Sender will input the pairs

(ks1
0, E(k0, r1 ‖GBF0[1])) , (ks2

0, E(k0, r2 ‖GBF0[2]))

and for the third and fourth he will input, respectively,

(ks3
0, E(k1, r3 ‖GBF1[3])) , (ks4

1, E(k0, r4 ‖GBF0[4]))

Note the difference in key-shares and encryption being input during the third
and fourth OT, and since the Sender knows the Receiver will not input 0 into
the second OT he inputs a random key-share.

The Receiver will, from this, obtain

ks1
0, E(k0, r2 ‖GBF0[2]), ks4−b

b and E(kb, r4−b ‖GBFb[4− b])

for some choice of b ∈ {0, 1}.2 This results in reconstructing kb, which decrypts
the two garbled Bloom filter entries to obtain GBFb, and hence the Sender’s
input is dependant on the Receiver’s input.

This example can be extended for larger m, where knowledge is assumed of
m−2 entries, where the Sender is able to make the Receiver decrypt to one of two
garbled Bloom filters depending on the remaining two entries in his Bloom filter.
Without knowledge of m − 2 Bloom filter entries the Sender cannot construct
two sets of keys-shares that guarantee decrypting the Receiver’s random values
correctly.

1Except for the parts that encrypt the third and fourth entries the two keys are equal. For
the third entry, ignoring r3, GBF0[3]⊕GBF1[3] is the difference in the two keys. Equivalently
for the fourth entry.

24− b is either 3 or 4

57

Chapter 6

Private Set Operations from
[DC16]

[DC16] proposes two protocols that with minor modifications can be adapted to
compute four private set operations, namely union (PSU), intersection (PSI),
union-cardinality (PSU-CA) and intersection-cardinality (PSI-CA). The first
protocol is secure against a semi-honest adversary, and will be the only one
included in this thesis, while the second protocol is secure against a malicious
adversary.

First a description of the PSU protocol will be given, followed by the modi-
fications required to obtain a PSI, PSU-CA and a PSI-CA protocol, as they are
proposed by [DC16]. At last five problems have been found during this thesis,
where each issue will be shown and, unless otherwise specified, solutions found
as part of this thesis will be proposed.

The semi-honestly secure protocols allow slightly different leakage compared
to what has been described so far. The standard allowed leakage for set op-
eration protocols allows both parties to obtain both set sizes, however [DC16]
allows that the Receiver is allowed to learn the Sender’s set size, while the
Sender should learn nothing of the Receiver’s set size.

6.1 PSU protocol
Intuitively the set union protocol from [DC16] consists of three steps, where h
hash functions {H1, . . . ,Hh} are assumed to be shared. The Receiver is given
the Sender’s set size, while the Sender knows nothing of the Receiver’s set size.
The full protocol can be seen in Figure 6.1.

In the first step the Receiver generates an additively homomorphic encryption-
key pair (pk, sk). He then computes a Bloom filter of his elements BF2, where
he inverts all entries in BF2 to obtain the inverted Bloom filter IBF2. For each
entry i in IBF2 he will encrypt it using pk, to obtain

EIBF2[i] = E(pk, IBF2[i])

resulting in the encrypted inverted Bloom filter EIBF2, where he sends (pk,EIBF2)
to the Sender. This basically means for each entry i in BF2 where BF2[i] = 1

58

Figure 6.1: PSU protocol from [DC16]

the Receiver sends E(pk, 0), and for each entry where BF2[i] = 0 he sends
E(pk, 1). Note that EIBF2 has not been randomized, meaning it is ordered as
the corresponding Bloom filter.

In the second step the Sender will for each element xi ∈ X use the h hash
functions to find the encrypted values {Ci1, . . . , Cih}:

Cik = EIBF2[Hk(xi)] | 1 ≤ k ≤ h, xi ∈ X

For each xi he computes

ci = (Ci1 +H · · ·+H Cih)

That is using the function defined by the encryption scheme to be homomorphic
addition of the ciphertexts. For an element in the union, but not intersection,
this results in the Sender including some Cik where EIBF2[Hk(xi)] = E(pk, 1) as
the Receiver does not have anything hashed to position Hk(xi), and as such the
decryption of ci returns a non-zero element. For an element in the intersection
this is not true, and thus D(sk, ci) = 0. At last he will send the tuples

(p̃i = ci ∗ xi, ci) ∀xi ∈ X

to P2. Remember that ci ∗ xi means the scalar multiplication of the decrypted
text with xi, that is D(sk, ci ∗ xi) = zi · xi where zi = D(sk, ci).

In the third step the Receiver will for each received tuple (p̃i, ci) check
whether D(sk, ci) = 0. If true it trivially follows that D(sk, p̃i) = 0 as well, due
to the decrypted value of p̃i being a multiplication of D(sk, ci). Otherwise if
D(sk, ci) = zi 6= 0 the Receiver will compute

D(sk, p̃i) = D(sk, ci ∗ xi) = zi · xi

59

Inverting zi and multiplying z−1
i to zi · xi results in xi, which can be saved in

a set V . At the end V ∪ Y will be output as the union.

The proof of security can be found in [DC16], and while the basic idea for
correctness will be sketched together with the simulator for a corrupt Sender
the full proof will be omitted from this thesis, as the second problem is related
to the simulator for a corrupt Receiver (which will be sketched later).

The correctness is based on the inverted Bloom filter, which results in the
Receiver only being able to obtain the xi’s where xi /∈ Y . For an xi /∈ Y the
homomorphic addition will include at least one entry where

D(sk,EIBF2[Hk(xi)]) = 1

and as such in the tuple being send in step three

D(sk, ci) = zi 6= 0

and thus
D(sk, ci ∗ xi) = zi · xi 6= 0

From this xi can be computed and included in the output.
The simulator for a corrupt Sender has to create m encrypted values that

are indistinguishable from an encrypted inverted Bloom filter that is used in
real protocol. This can trivially be done by creating m encryptions of zero and
referencing IND-CPA, Definition 2.6, as the corrupt Sender only obtains the
public key pk. From this fake EIBF2 the simulator computes n1 messages like
the real protocol and includes them in its view, followed by outputting ⊥.

6.2 PSI protocol

[DC16] suggests changing the PSU protocol to compute PSI by modifying three
parts of the protocol. The first is no longer inverting the Receiver’s Bloom filter,
which results in sending E(pk,BF [i]) for each 1 ≤ i ≤ m, as the encrypted
Bloom filter EBF2. Secondly a multiplicative homomorphic encryption scheme
will be used, which causes ci to be computed slightly different, namely

ci = Ci1 ·H · · · ·H Cih where Cik = EBF2[Hk(xi)]

At last the value p̃i is computed as p̃i = ci ·H E(pk, xi).
The correctness relies on D(sk, ci) = 1 if each Cik is an encryption of 1,

which is guaranteed to be true for elements in the Receiver’s set. As ci decrypts
to one ci ·H E(pk, xi) will decrypt to xi, and as such the Receiver can find the
intersection. If ci decrypts to 0, which will be the case for all elements not in the
intersection, D(sk, ci ·H E(pk, xi)) = 0 as well, and thus hides the Sender’s set.
The security arguments rely on the same arguments as the set union protocol,
and will not be mentioned here.

60

6.3 PSU-CA and PSI-CA

[DC16] uses the observation

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

to define two almost equivalent protocols computing the union and intersection
cardinality. As the union size can trivially be computed given the intersection
size (and vice versa) it can be considered as one protocol. Their proposal is
using their PSU protocol where the sender excludes the message p̃i, and thus
only sends ci. This means if D(sk, ci) = 0 the xi used to compute ci is contained
in the intersection but not union, and if D(sk, ci) 6= 0 the corresponding xi is
contained in the union but not intersection.

The correctness follows trivially from the PSU protocol, and the security
will be sketched shortly.

6.4 Problems

Five issues have been identified in [DC16] as part of this thesis, that will be
explained shortly. The first issue is evident in their proof of security for the PSU
protocol. The second issue is lacking enough randomness. The third issue is
their suggestion of multiplicative homomorphic encryption scheme. The fourth
issue is minor leakage during their cardinality protocols, and the last issue is
related to leaking an upper bound on the Receiver’s set size. A solution will be
sketched for all five problems.

6.4.1 Security proof

The security proof for PSU from [DC16] is roughly as follows, for a corrupt
Receiver:

The simulator for a corrupt Receiver is given Y,X ∪Y and |X|, from which
it can compute the intersection size |I| and the union size |U |. It creates a
key pair (pk, sk), and an encrypted inverted Bloom filter EIBF2 of its input
Y and includes (pk,EIBF2) as a part of its view. Secondly it constructs |I|
encryptions of 0 and |U | \ |Y | = |X| \ |I| encryptions of ci = Ci1 +H · · ·+H Cih
(where Cik is computed as usual) and the corresponding p̃i for each element
in X ∪ Y . These |X| encryptions are included as part of the view, and the
simulator outputs X ∪ Y .

Their argument of security relies on being able to compute the Sender’s
|X| \ |I| elements in the union, while the |I| elements in the intersection are
indistinguishable from the real protocol, due to IND-CPA security of the en-
cryption scheme.

During this thesis one issue is found to be present in this proof. It is us-
ing IND-CPA, Definition 2.6, to argue for privacy of the elements contained
in the intersection. The definition states that an adversary cannot distinguish
between the encryption of two different values, given the public key. However
in this case the adversary (Receiver) also knows the secret key, and as such the

61

property does not apply to the problem. The proof should have used circuit
privacy, Definition 2.7, which states that the adversary cannot distinguish be-
tween newly encrypted values and values obtaining through the homomorphic
Eval, even given the secret key. Using circuit privacy it follows that the |I|
encryption of zeroes cannot be used to distinguish between the real and ideal
world. Additionally [DC16] uses Paillier’s additively homomorphic encryption
scheme [Pai99] as example, which satisfies this property.

6.4.2 Lacking randomness

The homomorphic Eval provides no new randomness, which means if both a
Sender and Receiver compute some p̃i the encrypted message p̃i will be equiv-
alent for both of them.

When the Sender computes his n1 ciphertext pairs {(p̃1, c1), . . . , (˜pn1 , cn1)}
during the PSU protocol the intersection is meant to be hidden from the Re-
ceiver. This is not the case, since for each y ∈ Y the Receiver can compute the
corresponding p̃y and check whether it is contained in the n1 elements from the
Sender. If p̃y ∈ {p̃1, . . . , ˜pn1} he knows that y ∈ X, and hence he learns the
intersection.

This can be prevented by creating two new encryptions of zero for each pair
of ci and p̃i. These encryptions d1 = E(pk, 0), d2 = E(pk, 0) can be added using
the homomorphic addition, such that the Sender sends (p̃i +H d1, ci +H d2) for
new d1, d2 for each pair. This results in ciphertexts that are uniformly random
values from which the Receiver cannot determine which of his elements are
contained in X.

6.4.3 Multiplicative homomorphic encryption

As part of the PSI protocol it is suggested that ElGamal, [Gam84], can be used
as multiplicative homomorphic encryption scheme, which means the operations
are computed modulo p. In the PSI protocol [DC16] wants to encrypt the
number zero, however ElGamal can only encrypt elements in Z∗p, and since
0 /∈ Z∗p the PSI protocol cannot use ElGamal.

This issue can be fixed in one way, which was hinted at by [DC16]. Their idea
consists of reusing the additively homomorphic encryption scheme for comput-
ing the intersection. This is done by having the Receiver compute an encrypted
inverted Bloom filters of his input, and sending it together with a public key to
the Sender, who computes the ci’s as specified in the PSU protocol, meaning

ci = EIBF2[H1(xi)] +H · · ·+H EIBF2[Hh(xi)]

To compute p̃i some randomness is required to hide elements not contained in
the intersection. This means p̃i = ci ∗ ri +H E(pk, xi), where ri is a uniformly
random string. The message send to the Receiver then contains (p̃i, ci), as the
PSU protocol.

This results in two cases, either D(sk, ci) = 0 which means D(sk, ci ∗ri) = 0
and thus

D(sk, p̃i) = D(sk, ci ∗ ri +H E(pk, xi)) = D(sk,E(pk, xi)) = xi

62

This can only happen if EIBF2[Hk(xi)] = 0 for all hash functions, which only
happens if xi ∈ Y , except with negligible probability. Otherwise if D(sk, ci) 6= 0
then D(sk, ci ∗ ri) is a uniformly random number from which the homomorphic
addition of xi leaks nothing about xi, and thus the Receiver learns nothing.

6.4.4 Cardinality protocols

For a corrupt Sender the security follows directly from the PSU protocol, how-
ever for a corrupt Receiver their argument is not correct. They split it into
two cases, namely if D(sk, ci) = 0 nothing is leaked (which is correct), and if
D(sk, ci) = zi 6= 0 they argue that zi does not leak anything about the xi used
to compute ci. However this is not correct, as zi is the number of hash func-
tions evaluated on xi where BF2[Hk(xi)] = 0. This means a Receiver can verify
whether any other element q is contained in X \ Y by evaluating all h hash
functions on the inverted Bloom filter and compute q′ =

∑h
k=1 IBF2[Hk(q)]. If

q′ is different from all zi’s obtained from the Receiver q is guaranteed to not be
contained in X, thus clearly leaking something.

This can trivially be fixed by having the Sender multiply each ci with a
uniformly random number ri to obtain c′i = ci ∗ ri, and send c′i for each i. This
results in the decrypted zi either being zero or a random number, where both
cases leak nothing about X.

6.4.5 Size of the Receiver’s input

As the first transmitted message the Receiver sends m encrypted values to the
Sender, where each value is correlated to his Bloom filters. The number m can
be used to efficiently compute an upper bound on the Receiver’s set size, which
is not allowed leakage. At the start of the protocol the Receiver has to compute
m to be optimal, that means as small as possible, for his input size n2. The
formula used to compute the number of bins m is

m ≥ n2 · log(e) · log(1/ε) (6.1)

The paper suggests using ε ≈ 2−100, which results in

log(e) · log(1/ε) ≈ 145

Inserting that into Formula 6.1 gives m ≥ n2 · 145 which can be rewritten to

n2 ≤
m

145

which means that the Receiver’s set size at most one 145’th of the number of
elements he sends.

This issue can be fixed by using the standard model for PSI, that is to allow
both set sizes to be leaked.

63

Bibliography

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael
Zohner. More efficient oblivious transfer extensions with security
for malicious adversaries. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 673–701. Springer, 2015.

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hash-
ing: Constant worst-case operations with a succinct representation.
In 51th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 787–796. IEEE Computer Society, 2010.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM, 13(7):422–426, 1970.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Dorothy E. Den-
ning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria
Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on
Computer and Communications Security, Fairfax, Virginia, USA,
November 3-5, 1993., pages 62–73. ACM, 1993.

[CT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set in-
tersection protocols with linear complexity. In Radu Sion, editor,
Financial Cryptography and Data Security, 14th International Con-
ference, FC 2010, Tenerife, Canary Islands, January 25-28, 2010,
Revised Selected Papers, volume 6052 of Lecture Notes in Computer
Science, pages 143–159. Springer, 2010.

[DC16] Alex Davidson and Carlos Cid. Computing private set operations
with linear complexities. IACR Cryptology ePrint Archive, 2016:108,
2016. URL of analyzed version: http://eprint.iacr.org/2016/
108/20160210:220813.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set in-
tersection meets big data: An efficient and scalable protocol. IACR

64

Cryptology ePrint Archive, 2013:515, 2013. URL of analyzed ver-
sion: http://eprint.iacr.org/2013/515/20130827:085046.

[Dem12] Laurent Demanet. Chaper 3: Interpola-
tion. http://ocw.mit.edu/courses/mathematics/
18-330-introduction-to-numerical-analysis-spring-2012/
lecture-notes/MIT18_330S12_Chapter3.pdf, 2012. [Online;
accessed 07-March-2012].

[FPSS03] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spi-
rakis. Space efficient hash tables with worst case constant access
time. In Helmut Alt and Michel Habib, editors, STACS 2003, 20th
Annual Symposium on Theoretical Aspects of Computer Science,
Berlin, Germany, February 27 - March 1, 2003, Proceedings, vol-
ume 2607 of Lecture Notes in Computer Science, pages 271–282.
Springer, 2003.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In G. R. Blakley and David
Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO
’84, Santa Barbara, California, USA, August 19-22, 1984, Proceed-
ings, volume 196 of Lecture Notes in Computer Science, pages 10–18.
Springer, 1984.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2,
Basic Applications. Cambridge University Press, 2004.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set inter-
section: Are garbled circuits better than custom protocols? In
19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. The
Internet Society, 2012.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Pro-
tocols - Techniques and Constructions. Information Security and
Cryptography. Springer, 2010.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science,
pages 145–161. Springer, 2003.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT exten-
sion for transferring short secrets. IACR Cryptology ePrint Archive,
2013:491, 2013.

[KMRS14] Seny Kamara, Payman Mohassel, Mariana Raykova, and
Seyed Saeed Sadeghian. Scaling private set intersection to billion-

65

element sets. In Nicolas Christin and Reihaneh Safavi-Naini, edi-
tors, Financial Cryptography and Data Security - 18th International
Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014,
Revised Selected Papers, volume 8437 of Lecture Notes in Computer
Science, pages 195–215. Springer, 2014.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More ro-
bust hashing: Cuckoo hashing with a stash. SIAM J. Comput.,
39(4):1543–1561, 2009.

[Orl15] Claudio Orlandi. Cryptographic computation foundations lecture
notes, 2015. Not publicly available.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology
- EUROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Com-
puter Science, pages 223–238. Springer, 1999.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In
Friedhelm Meyer auf der Heide, editor, Algorithms - ESA 2001,
9th Annual European Symposium, Aarhus, Denmark, August 28-
31, 2001, Proceedings, volume 2161 of Lecture Notes in Computer
Science, pages 121–133. Springer, 2001.

[PSSZ15a] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hashing.
In Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015., pages 515–530. USENIX Association, 2015.

[PSSZ15b] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hashing.
IACR Cryptology ePrint Archive, 2015:634, 2015. URL of analyzed
version: http://eprint.iacr.org/2015/634/20150702:114451.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster pri-
vate set intersection based on OT extension. In Kevin Fu and
Jaeyeon Jung, editors, Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., pages 797–
812. USENIX Association, 2014.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (ex-
tended abstract). In 27th Annual Symposium on Foundations of
Computer Science, Toronto, Canada, 27-29 October 1986, pages
162–167. IEEE Computer Society, 1986.

66

