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Abstract

Resilient substitution boxes (S-boxes) with high nonlinearity are important cryp-
tographic primitives in the design of certain encryption algorithms. There are several
trade-offs between the most important cryptographic parameters and their simultane-
ous optimization is regarded as a difficult task. In this paper we provide a construction
technique to obtain resilient S-boxes with so-called strictly almost optimal (SAO) non-
linearity for a larger number of output bits m than previously known. This is the first
time that the nonlinearity bound 2n−1− 2n/2 of resilient (n,m) S-boxes, where n and
m denote the number of the input and output bits respectively, has been exceeded
for m > bn4 c. Thus, resilient S-boxes with extremely high nonlinearity and a larger
output space compared to other design methods have been obtained.

Keywords: Boolean functions, nonlinearity, resiliency, S-boxes, stream ciphers.

1 Introduction

The concept of resilient S-boxes was first introduced by Chor et al, [1] and independently
by Bennett et al. [2]. Whereas in the block cipher design the resiliency is not considered
as a relevant cryptographic criterion, in certain stream cipher encryption algorithms it
is not only a desirable property but sometimes also necessary as well. On the other
hand, the nonlinearity is a widely accepted cryptographic criterion which measures the
Hamming distance of a given Boolean function to the set of affine functions. The same
applies when S-boxes are considered since in this case a common approach is to consider
the nonzero linear combinations of the output Boolean functions and to measure their
distance to the affine functions. For instance, the best affine approximation attack [3] and
linear approximation attack [4] both reflect the importance of designing highly nonlinear S-
boxes. The construction of resilient S-boxes with high nonlinearity has been an important
challenge in cryptography since mid 1990s, and it was extensively studied in [6, 7, 8, 9,
10, 11, 12, 13].
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An (n,m) S-box can be identified with a multiple-output (vectorial) Boolean function,
thus with a mapping F : Fn2 7→ Fm2 . In addition, to specify the order of resiliency the
notation (n,m, t) stands for a t-resilient (n,m) S-box. For even n ≥ 2m, the (n,m)
S-boxes achieving the maximum possible nonlinearity 2n−1 − 2n/2−1 are called perfect
nonlinear S-boxes [5]. However, it is well-known that perfect nonlinear S-boxes can not be
resilient. In [14], Zhang and Pasalic presented a novel approach of finding disjoint linear
codes and obtained a large set of (n,m, t) S-boxes with strictly almost optimal (SAO)
nonlinearity, where an (n,m) S-box is called SAO if its nonlinearity is strictly greater than
2n−1 − 2bn/2c. For the first time the nonlinearity bound 2n−1 − 2n/2 has been exceeded
by an (n,m, t) S-box in [14] but the number of output bits was bounded by m ≤ bn4 c.
In this paper, we present a new construction method for designing (n,m, t) S-boxes with
SAO nonlinearity. whose number of output bits can exceed the value bn4 c. This implies
the existence of resilient S-boxes with SAO nonlinearity with larger output space, thus
potentially improving the throughput of encryption algorithms for certain stream cipher
scheme that employ such S-boxes for achieving a proper nonlinear characteristic of the
cipher.

The main idea behind the proposed method is to construct certain matrices whose m
columns will define the m Boolean functions of a resilient (n,m) S-box. Similarly to the
standard Maiorana-McFarland method, for any fixed column its entries are all different and
each of them will specify a distinct linear function. To ensure that the order of resiliency
is t, only those rows in the considered matrix are used for which any nonzero linear
combination of the elements in the row is of Hamming weight at least t + 1. Otherwise,
the rows not satisfying this condition are discarded and not used in the construction. The
size of these row reduced matrices cannot be deduced theoretically and their number is
established through computer simulations. Nevertheless, the simulations show that such
an approach in many cases yields significant improvements in the number of outputs m for
t-resilient S-boxes with SAO nonlinearity compared to the method in [14]. Notice that for
the same purpose the method in [14] uses a set of disjoint linear [u,m, t+ 1] codes (these
codes intersect in zero only) and therefore the request concerning the Hamming weight is
automatically satisfied. Finally, we emphasize that our method can be employed for the
cases when m ≤ bn4 c, thus addressing the same range of main parameters as in [14], giving
resilient S-boxes with slightly better nonlinearity (see Table 3).

The rest of this article is organized as follows. In Section 2 some basic definitions
and notions are introduced. The construction method is described in Section 3 and the
interesting parameters demonstrating the improvements upon other methods are given in
a tabulated form. Some concluding remarks can be found in Section 4.

2 Preliminaries

The set of Boolean functions of n variables will be denoted by Bn. A Boolean function
f ∈ Bn maps the elements from the vector space Fn2 to F2, where F2 denotes the Galois
field of two elements. The Galois field of order 2n is denoted by F2n . Thus, an element
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Xn = (x1, . . . , xn) ∈ Fn2 is mapped to F2 so that f(Xn) ∈ F2. To avoid confusion with
the additions of integers in R, denoted by + and Σi, the additions over F2 are denoted by
⊕ and

⊕
i. Nevertheless, for simplicity, we denote by + the addition of vectors of Fn2 . A

Boolean function f(Xn) is commonly represented by its algebraic normal form (ANF):

f(Xn) =
⊕
u∈Fn

2

λu(

n∏
i=1

xuii ) (1)

where λu ∈ F2, u = (u1, . . . , un). The algebraic degree of f(Xn), denoted by deg(f), is
the maximal value of wt(u) such that λu 6= 0, where wt(u) denotes the Hamming weight
of u. In particular, f is said to be affine if deg(f) = 1. An affine function with constant
term equal to zero, thus λ0 = 0, is called a linear function. Any linear function on Fn2 can
be uniquely expressed using the standard inner (dot) product, denoted by “·”, as:

ω ·Xn = ω1x1 ⊕ · · · ⊕ ωnxn,

where ω = (ω1, . . . , ωn), Xn = (x1, . . . , xn) ∈ Fn2 . The Walsh spectral value of f ∈ Bn at
any point ω ∈ Fn2 is denoted by Wf (ω) and calculated as

Wf (ω) =
∑

Xn∈Fn
2

(−1)f(Xn)⊕ω·Xn . (2)

f ∈ Bn is said to be balanced if its output column in the truth table contains equal number
of 0’s and 1’s (that is, Wf (0) = 0), where the truth table is the evaluation of f(Xn) when
Xn goes through Fn2 . In [15], a spectral characterization of resilient functions was given.

Lemma 1. An n-variable Boolean function is t-resilient if and only if its Walsh transform
satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ t, ω ∈ Fn2 . (3)

The nonlinearity of f ∈ Bn, as the most important parameter, can be expressed in
terms of the Walsh spectra as [16]

Nf = 2n−1 − 1

2
· max
ω∈Fn

2

|Wf (ω)|. (4)

An (n,m) S-box can be viewed as a vectorial Boolean function F : Fn2 7→ Fm2 which
in turn can be represented as a collection of m Boolean functions so that F (Xn) =
(f1(Xn), . . . fm(Xn)), where f1, . . . , fm ∈ Bn are called component functions of F .

Definition 1. The nonlinearity of an (n,m) S-box F (Xn) = (f1(Xn), . . . , fm(Xn)), de-
noted by NF , is defined as

NF = min
c∈Fm

2
∗
Nfc (5)

where fc =
∑m

i=1 cifi, c = (c1, . . . , cm) and Fm2 ∗ = Fm2 \0 .

Definition 2. An (n,m) S-box F (Xn) = (f1(Xn), . . . fm(Xn)) is t-resilient if and only if
all nonzero linear combinations of f1, . . . , fm are t-resilient functions.
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3 Main Construction

In this section, we first describe the construction details and give some explanations for
greater readability when necessary.

Let u, m, t be integers with 2 ≤ m < u. Let α be a root of the primitive polynomial
p(x) = 1 + p1x + · · · + pk−1x

k−1 + xu ∈ F2[x] and (1, α, α2, · · · , αu−1) be a polynomial
basis of F2u . Define a bijection π : F2u 7→ Fu2 by

π(b0 + b1α+ · · ·+ bu−1α
u−1) = (b0, b1, · · · , bu−1). (6)

Consider the matrix A(u) of size (2u − 1)×m, defined by,

A(u) =


π(1) π(α) · · · π(αm−1)
π(α) π(α2) · · · π(αm)

...
...

. . .
...

π(α2u−2) π(1) · · · π(αm−2)

 =


A

(u)
0

A
(u)
1
...

A
(u)
2u−2

 . (7)

It is not difficult to show that (cf. [11]), for any nonzero linear combination of columns of
the matrix A(u) each nonzero vector of Fu2 appears exactly once.

To ensure the resiliency of order t, we delete some row vectors in A(u). More precisely,

for any row vector A
(u)
i , i = 0, 1, · · · , 2u − 2, if there exists a vector c ∈ Fm2 ∗ such that

wt(c · A(u)
i ) ≤ t, then A

(u)
i will be deleted from A(u). The remaining row vectors form a

new matrix

Ã(u) =


π(αl1) π(αl1+1) · · · π(αl1+m−1)
π(αl2) π(αl2+1) · · · π(αl2+m−1)

...
...

. . .
...

π(αlN(u,m,t)) π(αlN(u,m,t)+1) · · · π(αlN(u,m,t)+m−1)

 =


A

(u)
l1

A
(u)
l2
...

A
(u)
lN(u,m,t)

 (8)

of size N(u,m, t)×m, where 0 ≤ l1 < l2 < · · · < lN(u,m,t) ≤ α2u−2 and

N(u,m, t) = #{A(u)
i | wt(c ·A

(u)
i ) > t for any c ∈ Fm2

∗, i = 0, 1, · · · , 2u − 2}. (9)

Note that for any fixed c ∈ Fm2 ∗,

#{A(u)
i | wt(c ·A

(u)
i ) ≤ t, i = 0, 1, · · · , 2u − 2} =

t∑
i=1

(
u

i

)
. (10)

We have

(2u − 1)− (2m − 1)−
t∑
i=1

(
u

i

)
≥ N(u,m, t) ≥ (2u − 1)− (2m − 1)

t∑
i=1

(
u

i

)
. (11)

By computer simulations, a detailed list of N(u,m, t) is given in Table 1.
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Table 1: N(u,m, t)

t m \ u 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 113 238 492 1002 2024 4070 8164 16354 32737 65502 131036 262106 524248 1048534
3 99 220 472 980 2002 4044 8136 16324 32707 65468 131000 262068 524208 1048492
4 71 187 432 939 1957 3992 8080 16267 32647 65400 130931 261992 524128 1048411
5 29 123 356 855 1867 3888 7972 16151 32527 65264 130791 261840 523968 1048247
6 1 45 231 692 1687 3686 7753 15919 32287 64997 130511 261536 523648 1047919
7 0 1 70 416 1350 3290 7315 15455 31802 64459 129951 260928 523014 1047263

1 8 - 0 1 115 791 2572 6466 14534 30847 63383 128831 259719 521741 1045951
9 - - 0 1 178 1438 4912 12760 28957 61239 126591 257295 519195 1043327
10 - - - 0 1 307 2660 9555 25327 57028 122146 252456 514103 1038079
11 - - - - 0 1 487 4760 18842 49008 113437 242864 503958 1027593
12 - - - - - 0 1 809 9327 35502 96951 224438 483872 1006716
13 - - - - - - 0 1 1364 16576 68432 189897 444768 965443
14 - - - - - - - 0 1 2064 29618 131527 373576 885327
2 79 189 429 922 1926 3948 8020 16185 32543 65276 130781 261818 523924 1048174
3 40 133 356 831 1821 3808 7861 16002 32336 65032 130508 261508 523576 1047793
4 2 51 219 651 1606 3526 7545 15637 31916 64535 129952 260873 522867 1047018
5 0 0 63 362 1205 3016 6932 14914 31092 63556 128865 259627 521485 1045499
6 0 0 0 67 587 2135 5741 13472 29425 61582 126667 257105 518682 1042428
7 0 0 0 0 56 915 3759 10871 26231 57724 122338 252134 513121 1036329

2 8 - 0 0 0 0 74 1311 6590 20457 50374 113863 242313 502037 1024122
9 - - 0 0 0 0 53 1964 11606 37688 97826 223241 480169 999909
10 - - - 0 0 0 0 59 2838 19258 70523 187967 438154 952192
11 - - - - 0 0 0 0 16 3574 33050 129858 361553 861031
12 - - - - - 0 0 0 0 0 4929 55719 238452 696721
13 - - - - - - 0 0 0 0 0 6215 90566 439795
14 - - - - - - - 0 0 0 0 0 7864 150083

Remark 1. The main difference to the approach taken in [14] is that we cannot estimate
the number Nu,m,t theoretically but rather using computer simulations. On the other
hand, the method in [14] uses a sophisticated way of finding disjoint linear [u,m, t + 1]
codes where each code gives rise to 2m − 1 rows (only) satisfying the restrictions imposed
by resiliency order t.

In what follows we specify our resilient S-box by using two matrices Ã(n/2) and Ã(k)

for suitably chosen k which together provide enough rows to define an (n,m) S-box. The

entries of Ã(n/2) will correspond to linear functions in n/2 variables but since there are

not sufficiently many rows from Ã(n/2) the goal is to find the smallest integer k for which
the construction is possible.

Let n be even, and k, m be two integers with m < k < n/2. Let E0 ⊂ Fn/22 with

#E0 = N0. Let E0 = Fn/22 \E0, and E1 = E0 × Fn/2−k2 with #E1 = N1. Obviously,
N0 · 2n/2 +N1 · 2k = 2n. Let E0 = {e1, e2, · · · , eN0} with

N0 = N(n/2,m, t). (12)

For i = 1, 2, . . . ,m and j = 1, 2, . . . , N(n/2,m, t), let

ϕi(ej) = π(αlj+i−1) (13)
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be an injective mapping from E0 to Fn/22 . Then we have
ϕ1(e1) ϕ2(e1) · · · ϕm(e1)
ϕ1(e2) ϕ2(e2) · · · ϕm(e2)

...
...

. . .
...

ϕ1(eN0) ϕ2(eN0) · · · ϕm(eN0)

 = Ã(n/2). (14)

Let E1 = {ε1, ε2, . . . , εN1}. If N1 ≤ N(k,m, t), we can build injective mappings ψi, i =
1, 2, . . . ,m, from E1 to Fk2 such that


ψ1(ε1) ψ2(ε1) · · · ψm(ε1)
ψ1(ε2) ψ2(ε2) · · · ψm(ε2)

...
...

. . .
...

ψ1(εN1) ψ2(εN1) · · · ψm(εN1)

 = Ã(k)
∗

=


A

(k)
l1

A
(k)
l2
...

A
(k)
lN1

 , (15)

where the row vectors of Ã(k)
∗

consist of the upper N1 rows of Ã(k) .

Let Xn = (X ′n/2, X
′′
n/2) = (X ′n−k, X

′′
k ) ∈ Fn2 , where X ′n/2, X

′′
n/2 ∈ Fn/22 , X ′n−k ∈ Fn−k2

and X ′′k ∈ Fk2. An (n,m) S-box is then defined as,

F (Xn) = (f1(Xn), f2(Xn), · · · , fm(Xn))

where for i = 1, 2, · · · ,m,

fi(Xn) =

{
ϕi(X

′
n/2) ·X

′′
n/2, X ′n/2 ∈ E0

ψi(X
′
n−k) ·X ′′k , X ′n−k ∈ E1.

(16)

Now we prove that the above approach indeed yields t-resilient S-boxes with SAO
nonlinearity, which is summarized in Theorem 1 below. For any 0 6= c = (c1, · · · , cm) ∈
Fm2 , let ϕc = c1ϕ1 + · · ·+ cmϕm. By (8),

ϕc(e1)
ϕc(e2)

...
ϕc(eN0)

 =


π(αl1(c1 + c2α+ · · ·+ αm−1))
π(αl2(c1 + c2α+ · · ·+ αm−1))

...

π(αlN0 (c1 + c2α+ · · ·+ αm−1))

 . (17)

Obviously, ϕc is bijective. Similarly, ψc = c1ψ1 + · · · + cmψm is bijective. Let α =

(β′, β′′) = (γ′, γ′′) ∈ Fn2 , where β′, β′′ ∈ Fn/22 , γ′ ∈ Fn−k2 and γ′′ ∈ Fk2. Note that

Fn2 = E0 × Fn/22 ∪ E1 × Fk2. Then

Wfc(α) =
∑

Xn∈Fn
2

(−1)fc(Xn)+α·Xn = I1 + I2 (18)
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where

I1 =
∑

X′
n/2
∈E0

(−1)
β′·X′

n/2

∑
X′′

n/2
∈Fn/2

2

(−1)
(ϕc(X′n/2

)+β′′)·X′′
n/2 ∈ {0,±2n/2} (19)

and

I2 =
∑

X′n−k∈E1

(−1)γ
′·X′n−k

∑
X′′k∈F

k
2

(−1)(ψc(X′n−k)+γ
′′)·X′′k ∈ {0,±2k}. (20)

Hence,

max
α∈Fn

2

|Wfc(α)| = 2n/2 + 2k. (21)

By (4),

Nfc = 2n−1 − 2n/2−1 − 2k−1, (22)

which implies

NF = 2n−1 − 2n/2−1 − 2k−1. (23)

Note that for X ′k ∈ E0 (resp., X ′n−u ∈ E1), we have wt(ϕc(X
′
k)) ≥ t + 1 (resp.

wt(ψc(X
′
n−u)) ≥ t + 1). When 0 ≤ wt(α) ≤ t, we have wt(β′′) ≤ t and wt(γ′′) ≤ t.

Clearly, (ϕc(X
′
k) + β′′) 6= 0, (ψc(X

′
u) + γ′′) 6= 0. Thus, I1 = I2 = 0. Then, we have

Wfc(α) = 0. By (3), fc is a t-resilient function, which implies F is a t-resilient S-box.
Thus we have proved the following result.

Theorem 1. Let n be even, and k, m be two integers with m < k < n/2. If

2n/2N(n/2,m, t) + 2kN(k,m, t) ≥ 2n, (24)

then there exits an (n,m, t) S-box F with SAO nonlinearity

NF = 2n−1 − 2n/2−1 − 2k−1. (25)

The condition 2n/2N(n/2,m, t)+2kN(k,m, t) ≥ 2n simply means that the whole truth
table of the component functions of the S-box (which is of length 2n) can be covered by

the linear functions derived from the matrices Ã(n/2) and Ã(k).

Example 1. Let n = 20 and m = 5. Note that N(10, 5, 1) = 855 and N(9, 5, 1) = 356.
We have 210N(10, 5, 1) + 29N(9, 5, 1) ≥ 220, which implies that a (20, 5, 1, 219 − 29 − 28)
S-box can be constructed.

In Table 2, we list some SAO (n,m) S-boxes with m ≥ bn/4c which were not known
earlier.
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Table 2: (n,m, t,NF ) S-boxes with m ≥ bn/4c
(20, 5, 1, 219 − 29 − 28) (24, 6, 1, 223 − 211 − 210)
(26, 7, 1, 225 − 212 − 211) (28, 8, 1, 227 − 213 − 212)
(30, 9, 1, 229 − 214 − 213) (32, 8, 1, 231 − 215 − 213)
(32, 10, 1, 231 − 215 − 214) (34, 9, 1, 233 − 216 − 214)
(34, 11, 1, 233 − 216 − 215) (36, 10, 1, 235 − 217 − 215)
(36, 12, 1, 235 − 217 − 216) (38, 11, 1, 237 − 218 − 216)
(38, 13, 1, 237 − 218 − 217) (40, 10, 1, 239 − 219 − 216)
(40, 12, 1, 239 − 219 − 217) (40, 14, 1, 239 − 219 − 218)
(36, 9, 2, 235 − 217 − 216) (38, 10, 2, 237 − 218 − 217)

3.1 Extending the approach by using more matrices

In the previous construction, only two matrices A(u) for u = n/2 and u = k were used. In
the corollary below, we employ more matrices which may improve the nonlinearity while
preserving the resiliency order. The main idea here is that in certain cases even though the
parameters n/2 and k may be sufficient to provide enough rows to enable the construction,
it might be the case that using the matrices A(k1), . . . , A(ks), where k > k1 · · · > ks, the
construction is still possible but the nonlinearity is slightly better. It is worthy of noticing
that using this approach one may also easily achieve better nonlineraty values by reducing
the number of outputs m (most often it decreases by one).

Corollary 1. Let n be even, and k, m be two integers with n/2 > k1 > k2 > · · · > ks > m
where 1 ≤ s ≤ n/2−m− 1. If

2n/2N(n/2,m, t) +

s∑
i=1

(
2kiN(ki,m, t)

)
≥ 2n, (26)

then there exits an (n,m, t) S-box F with SAO nonlinearity

NF = 2n−1 − 2n/2−1 −
s∑
i=1

2ki−1. (27)

Example 2. Let n = 22 and m = 6. Noticing 211N(11, 6, 1)+210N(10, 6, 1)+29N(9, 6, 1) ≥
222, a (22, 6, 1, 221 − 210 − 29 − 28) S-box can be obtained. Similarly, the S-boxes with pa-
rameters (28, 7, 1, 227−213−211−210), (30, 8, 1, 229−214−212−211), and (40, 11, 2, 239−
219 − 218 − 217) can also be constructed.

Remark 2. When m < bn/4c, our construction still works. And we can obtain SAO
S-boxes with better nonlinearity than those in [14], as illustrated in Table 3.

Due to the size of these S-boxes we could not investigate their algebraic properties,
in particular the algebraic immunity and their resistance to fast algebraic attacks remain
unknown. We leave this issue as an open problem since to the best of our knowledge
today’s algorithms can only determine these values for n ≤ 16.
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Table 3: (n,m, t,NF ) S-boxes with better nonlinearity than [14]
Ours [14]

(18, 4, 1, 217 − 28 − 27) (18, 4, 1, 217 − 29)
(22, 4, 1, 221 − 210 − 28) (22, 4, 1, 221 − 210 − 29)
(30, 4, 1, 229 − 214 − 210) (30, 4, 1, 229 − 214 − 211)
(28, 5, 1, 227 − 213 − 210) (28, 5, 1, 227 − 213 − 211)
(36, 5, 1, 235 − 217 − 212 − 211) (36, 5, 1, 235 − 217 − 213)
(38, 5, 1, 237 − 218 − 213) (38, 5, 1, 237 − 218 − 214)
(26, 6, 1, 225 − 212 − 210 − 29) (26, 6, 1, 225 − 212 − 211)
(30, 6, 1, 229 − 214 − 211 − 29) (30, 6, 1, 229 − 214 − 212)
(32, 6, 1, 231 − 215 − 212) (32, 6, 1, 231 − 215 − 213)
(34, 6, 1, 233 − 216 − 212 − 211) (34, 6, 1, 233 − 216 − 214)
(30, 7, 1, 229 − 214 − 212) (30, 7, 1, 229 − 214 − 213)
(32, 7, 1, 231 − 215 − 212 − 211) (32, 7, 1, 231 − 215 − 213)
(36, 7, 1, 235 − 217 − 213 − 212 − 211) (36, 7, 1, 235 − 217 − 214)
(38, 7, 1, 237 − 218 − 214) (38, 7, 1, 237 − 218 − 215)
(34, 8, 1, 233 − 216 − 213 − 212 − 211) (34, 8, 1, 233 − 216 − 215)
(36, 8, 1, 235 − 217 − 214) (36, 8, 1, 235 − 217 − 215)
(38, 8, 1, 237 − 218 − 214 − 213 − 212) (38, 8, 1, 237 − 218 − 215)
(40, 8, 1, 239 − 219 − 215) (40, 8, 1, 239 − 219 − 216)
(38, 9, 1, 237 − 218 − 215) (38, 9, 1, 237 − 218 − 216)
(40, 9, 1, 239 − 219 − 216) (40, 9, 1, 239 − 219 − 217)
(36, 2, 2, 235 − 217 − 212 − 211 − 210) (36, 2, 2, 235 − 217 − 213)

4 Conclusion

In this paper, we have presented a construction method for designing SAO resilient (n,m)
S-boxes. In difference to the method in [14] our new construction can be used even for
m > bn4 c and consequently a large set of unknown functions with SAO nonlinearity can be
generated. Furthermore, in Corollary 1 we give an improved method so that some higher
nonlinearities can be get than those obtained by the original method.
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