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Abstract. Extensions of linear cryptanalysis making use of multiple
approximations such as multidimensional linear cryptanalysis are an
important tool in symmetric-key cryptanalysis, among others being re-
sponsible for the best known attacks on ciphers such as Serpent and
present. At CRYPTO 2015, Huang et al. provided a refined analysis
of the key-dependent capacity leading to a refined key equivalence hy-
pothesis, however at the cost of additional assumptions. Their analysis
was recently extended by Blondeau and Nyberg to also cover an updated
wrong key randomization hypothesis, using similar assumptions. As a
consequence, the effectiveness of multidimensional linear attacks seems
significantly reduced, e.g. to only 24 rounds for present. It is therefore an
important open problem how to take key dependent behaviour for both
right and wrong keys into account without introducing other limiting
assumptions in the process.
In this paper, we address this issue by proposing multivariate linear
cryptanalysis as a new technique for using multiple linear approximations.
Based on multivariate statistics and featuring a novel distinguishing
technique based on quadratic discriminant analysis, it allows more realistic
modelling of key dependence, while not relying on the limiting assumptions
of previous work. Furthermore, it comes with a flexible signal/noise
decomposition approach to allow for a realistic estimation of correlations.
As an application of multivariate linear cryptanalysis, we provide attacks
on 26 and 27 rounds (the latter marginally faster than exhaustive search)
of present under much more realistic assumptions than previous work.

Keywords: linear cryptanalysis, multivariate, multidimensional cryptanalysis,
key variance, PRESENT, key recovery, discriminant analysis, statistical attack.

1 Introduction

Proposed by Matsui [34,35] in the early 1990s, linear cryptanalysis has proven
to be a seminal cryptanalytic technique for symmetric-key cryptography. Most
prominently, linear cryptanalysis was successfully applied to the former U.S.
encryption standard DES, breaking it for the first time both theoretically and



experimentally. Influential cipher design paradigms such as the wide-trail strat-
egy [22] were specifically developed as a response to the advert of linear and
differential cryptanalysis. Nowadays, every newly proposed keyed symmetric
primitive such as a block cipher, authenticated encryption scheme, or message au-
thentication code, is expected to be accompanied by strong evidence of resistance
against this attack.

In the last two decades, a number of advanced variants of linear cryptanalysis
have been developed, among others differential-linear cryptanalysis [31], multiple
linear cryptanalysis [4, 30], multidimensional linear cryptanalysis [25, 26, 27],
zero-correlation linear cryptanalysis [15] and key-invariant bias attacks [12]. These
extensions of linear cryptanalysis have provided the best single-key cryptanalytic
results on ciphers such as Serpent [37], present [17,49], CLEFIA [13], CAST-
256 [48], and LBlock-s [47].

Parallel to the development of these cryptanalytic results, extensive research
has been carried out to deepen our understanding of linear cryptanalysis [2]
and their extensions [6], especially concerning links between differential and
linear cryptanalysis [7] and truncated differential and multidimensional linear
techniques [8]. How to provide resistance against these advanced cryptanalysis
techniques has been studied in [5, 46].

Background. Already in his linear cryptanalysis of the DES [35], Matsui was
making use of not just a single approximation to amplify his attack. Generaliza-
tions of this idea, notably multiple linear cryptanalysis [4,30] and multidimensional
linear cryptanalysis [25,26,27] have proven to be among of the most influential
extensions of linear cryptanalysis. In particular, multidimensional linear crypt-
analysis has been used to devise the best known key recovery attacks on the
ciphers Serpent [37] and especially present [17, 49].

The block cipher present. The block cipher present [14] was proposed at
CHES 2007 as a very lightweight cipher. Having withstood extensive cryptana-
lytic scrutiny [17,33,40,49], it has recently been standardised by ISO/IEC [1].
At CRYPTO 2015, a known-key distinguisher for full 31-round present was
presented [11], which however does not translate to an attack in the secret-key
setting.

The evolution of linear cryptanalytic techniques and the analysis of present.
Since its publication, there has been significant interplay between the evolution
of the cryptanalysis of present and the development of extensions to linear
cryptanalysis. The statistical saturation attack [19] was devised to attack 15 of
present’s 31 rounds experimentally, and up to 24 rounds based on a theoretical
estimate. Leander [33] later demonstrated that statistical saturation attacks
can actually be interpreted within the framework of multidimensional linear
cryptanalysis.

Essentially all further improvements are based on the crucial observation
of Ohkuma [40], who demonstrated the presence of a strong linear hull effect
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in present, leading to a linear attack on 24 rounds. Following the develop-
ment of multidimensional linear cryptanalysis [25, 26, 27], Cho [17] combined
this with Ohkuma’s approximations to obtain attacks on 25 and 26 rounds of
present. Recently, an improvement of Cho’s attack to 27 rounds was presented
by Zheng and Zhang [49], based on his original model and complexity analy-
sis. At CRYPTO 2015, Huang et al. [28] presented a refined analysis of Cho’s
multidimensional linear attacks, leading to a slightly increased time complexity
for the 26-round attack. Later, Blondeau and Nyberg [9] further refined this
analysis, concluding that under more realistic assumptions, multidimensional
linear cryptanalysis can only reach up to 24 rounds of present.

Our problem. In order to evaluate the complexity of a multidimensional linear
attack, one usually has to make certain assumptions to simplify the analysis. The
original papers [25,26,27] show that the complexity depends on the capacity of
the used linear approximations, which is equal [25] to the sum of the squared
correlations of the linear approximations.

Cho’s attacks on present [17] are developed under the assumption that
for the right (target) key guess, the key equivalence hypothesis holds: namely,
that the capacity for any fixed target key will be equal to the average over the
key space. This however was demonstrated not to be the case in practice, in
particular not for present [28, 33]. For the wrong key guesses, [17] assumes that
the capacity will be identical to zero. This is a simplified interpretation of the
wrong key randomization hypothesis, which states that wrong key guesses yield
essentially random behaviour. It is however well known [21], that for a random
permutation, the correlation of a linear approximation is not identically zero, but
is itself distributed over the key space. This has been demonstrated to have a
significant effect in standard linear cryptanalysis [16].

The refined analysis in [28] removes the limitation imposed by the key equiv-
alence hypothesis, but does not take the distribution for the wrong keys into
account, and, as demonstrated in Section 4, in turn needs additional assumptions
regarding independence of linear approximations and identical variances that are
typically not fulfilled in practice. The extended analysis of [9] does take the wrong
key distribution into account, but does not address the issues of independence
and identical variances.

Furthermore, all previous work relies on the assumption that the correlation
of the used approximations for the right key can be evaluated in an exact manner.
For ciphers with a block length of 64 bits or more, this is however computationally
infeasible. Instead, one is limited to enumerating a certain amount of trails in the
linear hulls defined by the approximations. We summarise the various complexity
analyses of multidimensional linear cryptanalysis and their implications for
present in Table 1.

Our problem is now as follows:

Can we develop a technique for using multiple linear approximations
which simultaneously
1. incorporates realistic distributions over the right and wrong keys;
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Reference

24 99% 2295 259.8 259.8 234.0 7 7 7 Blondeau, Nyberg [9]

25

95% 2295 265.0 262.4 234.0 7 7 7 Cho [17]

95% 2295 265.0 261.6 234.0 7 7 7 7 Huang, et al. [28]

Impossible, according to [9] 7 7 7 Blondeau, Nyberg [9]

26

95% 2295 272.0 264.0 234.0 7 7 7 Cho [17]

80% 2295 276.0 262.5 234.0 7 7 7 7 Huang, et al. [28]a

Impossible, according to [9] 7 7 7 Blondeau, Nyberg [9]

95% 189 273.0 263.3 251.0 Sect. 8.1

27

95% 405 274.0 264.0 270.0 7 7 7 Zheng, Zhang [49]

Impossible, according to [9] 7 7 7 Blondeau, Nyberg [9]

95% 189 277.0 263.8 251.0 Sect. 8.2b

a For 3.7% of the key space.
b Uses distinct texts. All other attacks use non-distinct texts.

Limitations
(Addressed in Section)

Explanation

L1: Right key (Sect. 3) Oversimplified key equivalence assumption; the right key lin-
ear potential is assumed equal to the average linear potential.

L2: Wrong key
(Sect. 3)

Oversimplified wrong key randomisation hypothesis; the
wrong key linear potential is assumed to be zero.

L3: Independence
(Sect. 4, Fig. 1)

Simplifying assumptions about the multidimensional proba-
bilities are made that imply independence of the linear corre-
lations over the key space. In general, the linear correlations
are not independent over the key space.

L4: Identical variances
(Sect. 5, Fig. 1)

The variance over the key space of either the correlation values
or the multidimensional data values are assumed identical.
This is very unlikely to be the case in practice.

L5: Unknown trails
(Sect. 6, Fig. 3)

Only a part of the hull is analysed – the remaining trails are
not considered. This might give a misleading estimate of the
linear correlation.

Table 1: Top: Linear cryptanalysis of present. For each attack, the complexities
are given, and limitations are highlighted for the models in which the attacks
were stated. Bottom: Explanations of model limitations.
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2. does not rely on simplifying assumptions such as independence or
identical variances of the correlations;

3. provides a strategy for taking the unknown part of the linear hulls
into account; and lastly

4. allows us to attack more than 24 rounds of present?

Our results. In this paper, we answer the above-mentioned questions in the
affirmative. To this end, we propose multivariate linear cryptanalysis as a tech-
nique for linear cryptanalysis with multiple approximations. By developing the
underlying model based on multivariate statistics, we are able to incorporate both
realistic key equivalence and wrong key randomization hypotheses, as well as to
avoid any issues related to dependence of approximations or assuming identical
variances. We give an informal preview of the technique in the following model:

Model (Multivariate Linear Cryptanalysis). Let (αi, βi), i = 1, . . . ,M , be
M different linear approximations of a cipher, and let

CK = (CKα1,β1
· · ·CKαM ,βM

)>

be a vector containing the linear correlations. Then CK ∼ NM (µ,Σ) over the
key space, for some mean vector µ and covariance matrix Σ.

In detail, the contributions of our paper are as follows.

Analysis of previous attack models. We investigate the underlying assump-
tions of previous models for analysing the complexity of multidimensional
linear attacks. In particular, we show that all current approaches to incorpo-
rating realistic versions of the key equivalence and wrong key randomization
hypotheses into the model lead to assumptions equivalent to that of statistical
independence – which was one of the issues multidimensional linear crypt-
analysis intended to overcome. For an overview of how different limitations
are essentially traded off against each other, we refer to Table 1.

Proposal of multivariate linear cryptanalysis. We develop and propose
multivariate linear cryptanalysis as a new technique for symmetric crypt-
analysis using multiple linear approximations. It allows us to incorporate
more realistic interpretations of both the key equivalence and wrong key
randomization hypotheses, while at the same time avoiding any unrealistic
assumptions about the correlation distributions (as illustrated in Table 1).
Our concerns about the validity of these assumptions are exemplified in Fig. 1
for the full present. Unlike previous work, multivariate linear cryptanalysis
also comes with a flexible signal/noise decomposition approach to allow for a
realistic estimation of correlations based on a number of enumerated known
trails (as illustrated in Figure 2).

New distinguishing technique based on QDA. We propose a new statis-
tical technique for distinguishing the multivariate distributions based on
quadratic discriminant analysis (QDA). Compared to conventional binary
hypothesis testing, it offers greater advantages over exhaustive search for all
presented attacks (cf. Sect. 7).
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Attacks on 26/27 round PRESENT. As an application of the new multi-
variate technique, we apply it to the block cipher present, obtaining an
attack on 26 rounds with time/data/memory complexities of 273/263.3/251

and a marginal attack on 27 rounds with complexities 277/263.8/251; both
under much more realistic assumptions than previous work (see Table 1 and
Sect. 8).

Experimental verification. Both the relevance of the limitations of previous
models and the advantage of the new multivariate model are supported by
extensive experimental evidence on both small-scale and the full present.

Organization. The remainder of the paper is organized as follows. Sect. 2
introduces the preliminaries. Sect. 3 discusses limitations of the current results
on present. Sect. 4 gives results on independence in the current linear models.
Sect. 5 presents multivariate linear cryptanalysis. Sect. 6 shows how to compensate
for the unknown part of the hull. Sect. 7 gives two distinguishing methods in the
new model. In Sect. 8 we attack present with our new technique. We conclude
in Sect. 9.

2 Preliminaries

We consider a block cipher E(P,K) : Fn2 × Fκ2 → Fn2 with block size n and key
length κ. For each key K ∈ Fκ2 , EK := E(·,K) is a permutation on Fn2 . If a block
cipher picks a permutation completely at random from the space of all (2n)!
permutations for each key, we say that it is ideal.

Most modern block ciphers are iterative block ciphers where the encryption
function is a composition of r key-dependent round functions. If each round
function can be described as a key-independent transformation followed by an
XOR of the round key, we call the cipher a key-alternating cipher. Usually, a
key-schedule is used to expand the κ-bit master key K into r + 1 n-bit round
keys. By K̄ = k0‖k1‖ . . . ‖kr we denote the expanded key, i.e. the concatenation
of the round keys.

2.1 Linear Cryptanalysis

Linear cryptanalysis was introduced by Matsui in 1993 [34]. A linear approxima-
tion of a cipher is a pair (α, β) ∈ Fn2 × Fn2\(0, 0). α is called the input mask and
β the output mask. The key-dependent linear correlation of the approximation is
defined as

CKα,β = 2Pr(α · x = β · EK(x))− 1,

where the probability is taken over all x ∈ Fn2 and · denotes the canonical
inner product on Fn2 . Assuming that K is drawn at random from Fκ2 , CKα,β
is a random variable over the key space. We denote the distribution of this
variable over the keys by Cα,β . In [21], Daemen and Rijmen proved that this
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distribution is approximately N (0, 2−n) for an ideal cipher and any non-trivial
linear approximation. Now, if we can find a linear approximation of the target
cipher with a distribution Cα,β sufficiently different from N (0, 2−n), we can use
this property to distinguish the cipher from an ideal cipher.

Let (ui, ui+1), i = 0, . . . , r−1 be a series of one round linear approximations of
an iterative block cipher. Such a series of approximations is called a linear trail. We
will often denote the trail by the concatenation of its masks, i.e. U = u0‖ . . . ‖ur.
Then the correlation contribution of trail is defined by

CKU =

r−1∏
i=0

CKui,ui+1
.

The collection of all trails such that u0 = α and ur = β is called the linear hull of
(α, β). The correlation of (α, β) is then the sum of the correlation contributions
of the hull [20, 22]:

CKα,β =
∑

u0=α,ur=β

CKU . (1)

For a key-alternating cipher, the correlation contribution of a trail can be written
as CKU = (−1)U ·K̄⊕dUCU , where CU = |CKU | for any key, and dU is a sign bit
indicated by the sign of CKU for the all-zero expanded key [22]. In this case, we
can therefore rewrite Equation 1 as

CKα,β =
∑

u0=α,ur=β

(−1)U ·K̄⊕dUCU . (2)

Finally, (CKα,β)2 is called the linear potential (LP) and E((CKα,β)2) the expected
linear potential (ELP) over keys.

2.2 Statistical Distinguishing

In statistical cryptanalysis, distinguishing is usually a question of determining
which distribution an observed value came from – typically one aims to distinguish
between the distributions of an ideal and a non-ideal cipher. This value will be
computed from the observed cipher data, and we will refer to it in general as the
test statistic T . In differential cryptanalysis, T would be the observed probability
of a differential, and in classical linear cryptanalysis, T would be the observed
linear correlation of an approximation. We now consider two types of general
distinguishing techniques.

Distinguishing as Hypothesis Testing. Assume that T ∼ DI , if the observed
data was generated by an ideal cipher, and T ∼ DN , otherwise. If the data
came from a univariate distribution, we can use binary hypothesis testing to
determine which distribution T came from. Without loss of generality, assume
that E(DI) ≤ E(DN ). Then we conclude that the data came from a non-ideal
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cipher if T ≥ τ , and from an ideal cipher if T < τ , for some threshold value τ . In
this case, the probability of type I error (false positive) and type II error (false
negative) is given by

PI = 1− FDI
(τ),

PII = FDN
(τ),

where FX is the cumulative distribution function of X. The probability of success
is then PS = 1− FDN

(τ). The exact value of τ can then be chosen based on the
desired value of these probabilities.

Distinguishing with QDA. If the cipher data comes from a d-variate distri-
bution (d > 1), then we can use other methods. Assume that the distribution is a
d-variate normal distribution Nd(µI ,ΣI), for an ideal cipher, and Nd(µN ,ΣN ),
for a non-ideal cipher. In this case, we can use quadratic discriminant analysis
(QDA) to distinguish. For QDA with equal misclassification costs and probabili-
ties, we define the test statistic (classically called the discriminant function)

T = (X− µN )>Σ−1
N (X− µN )− (X− µI)

>Σ−1
I (X− µI), (3)

where X is the cipher data. We note that the form given here deviates from the
discriminant function normally found in the literature by a shift and a scaling
factor. This has no impact on our analysis. We decide that the data came from
an ideal cipher if T ≥ τ , and from a non-ideal cipher if T < τ , for some threshold
value τ . We can then obtain PI and PII as

PI = FDI
(τ),

PII = 1− FDN
(τ).

However, in this case it is not straightforward to exactly determine DI and DN ,
and thus PI , PII , PS , and τ . (The easiest solution to this problem is to simulate
observations from DI and DN in order to get an estimate of these values. In most
cases, this will not be a problem.)

From Distinguishing to Key Recovery. For both methods, we define the
advantage a = − log2(PI), a notion first introduced by Selçuk in [44,45] in the
context of key-ranking. Due to recent criticisms of the key-ranking approach, e.g.
[42], we will not be considering this method. Luckily, the key-ranking results
can be recovered using the hypothesis testing technique above. The advantage
plays an important role when we use a distinguisher as a part of a key-recovery
attack. To do this for a linear distinguisher, the standard tool is the wrong key
randomisation hypothesis.

Hypothesis 1 (Wrong Key Randomisation). Consider a linear approxima-
tion (α, β) over r rounds of a cipher. Let (P,C) be a plaintext-ciphertext pair
encrypted with key K over r + ` rounds, ` > 0. Assume that we pick a key K ′,
encrypt/decrypt ` rounds of (P,C), and measure CK

′

α,β. If K 6= K ′, CK
′

α,β will be

distributed as N (0, 2−n).
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Algorithm 1 80-bit present key-schedule.

1: for i = 0 to 31 do
2: Ki = (k79k78 . . . k17k16) . Extract 64 leftmost keybits from K
3: (k79k78 . . . k1k0) = (k18k17 . . . k20k19) . Rotate K 61 positions to the left
4: (k79k78k77k76) = S(k79k78k77k76) . Apply S-box to leftmost nibble of K
5: (k19k18k17k16k15) = (k19k18k17k16k15)⊕ (i + 1)
6: end for

Although not stated exactly as above, the general idea for this hypothesis was
first given by Harpes et al. in [24] and later stated in the context of linear
cryptanalysis by Junod in [29]. The hypothesis, as we have stated it here, was
given in [16].

2.3 PRESENT

present is an ultra-lightweight, key-iterated, block cipher. It is an SPN cipher
with 31 rounds, a block size of 64-bit, and a key size of either 80 bit or 128 bit.
Each round consists of an XOR with a round key, a layer of 16 parallel 4-bit
S-boxes, and bit permutation. We will denote the S-boxes by S0, . . . , S15, with
S0 affecting the 4 least significant bits of the state. The bit permutation sends
the bit in position i to position P (i), where P is given by

P (i) =

{
16 · i mod 63 for 0 ≤ i < 63

63 for i = 63
.

An additional round key is added after the last round. The 32 round keys are
derived through a key-schedule. The key-schedule for the 80-bit key version of
present is given in Algorithm 1. Here, K = (k79 . . . k0) is initially the 80-bit
master key, and Ki is the i’th round key. For further details, we refer to [14].

3 Multidimensional Linear Cryptanalysis of PRESENT

Currently, the best cryptanalytic results on present have been achieved with
multidimensional linear cryptanalysis. In this section, we first give a short overview
of multidimensional linear cryptanalysis. We consider the results on present,
and make observations regarding the underlying assumptions made in the models
used. We argue that all current attacks are derived using models that exhibit
one or more limitations.

Kaliski and Robshaw [30], as well as Biryukov et al. [4], considered using
multiple approximations to obtain more powerful linear attacks, under the as-
sumption that the approximations are statistically independent over the text
space. As Murphy showed in [36], this assumption does not hold in general.
Multidimensional linear cryptanalysis tries to work around this problem. It builds
on the work done by Baigneres et al. in [3], while most of the main results
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were given by Hermelin, Cho, and Nyberg in [25, 26, 27]. In multidimensional
linear cryptanalysis, an m-dimensional subspace of Fn2 × Fn2 is considered. The
distribution of a plaintext-ciphertext pair restricted to this subspace, say (P ′, C ′),
is then studied. This distribution can be described by the vector

ηK = (ηK0 , . . . , η
K
2m−1),

where ηKi = Pr(P ′‖C ′ = i). ηK is a key-dependent, 2m-dimensional, discrete
probability distribution. The capacity is defined as a measure of distance between
ηK and the uniform distribution:

CK =

2m−1∑
i=0

(ηKi − 2−m)2

2−m
. (4)

Now, let (α1, β1), . . . , (α2m−1, β2m−1) be all possible non-zero linear approxima-
tions of the m-dimensional subspace. This collection is called a multidimensional
linear approximation. It can be shown [25] that

CK =

2m−1∑
i=1

(CKαi,βi
)2 and E(CK) =

2m−1∑
i=1

ELPi,

where ELPi is the ELP of (αi, βi). As for classic linear cryptanalysis, if we can
find a multidimensional linear approximation of the target cipher where the
distribution of CK is sufficiently different from that of an ideal cipher, we can
use this property as a distinguisher.

3.1 Cho’s Cryptanalysis of PRESENT

The idea of using more than one approximation was considered already by Matsui
in 1993. At the time, results in linear cryptanalysis were derived under the
assumption that the linear correlations were largely the same for all keys, or
that a small number of key-classes partitioned the key space [4, 24, 29, 30]. Thus,
only the variance of the observed correlations over the text space was considered.
It is therefore in this setting that the first results on multidimensional linear
cryptanalysis were developed.

In 2010, Cho gave an attack on 25 and 26 rounds of present [17]. This
attack was derived using the model developed in [26]. As such, the assumption
was made that for an ideal cipher, ηKi = 2−m, i.e. the uniform distribution, for
all keys. Under this assumption, an ideal cipher will have a fixed capacity of zero.
In this sense, the attack relies on a wrong key randomisation hypothesis that
deviates from the one we have given in Hypothesis 1, as under this hypothesis
the capacity is not fixed, even for an ideal cipher. Moreover, it was assumed
that for a non-ideal cipher, all keys have the same multidimensional distribution,
i.e. ηK = η for all K. This implies that the capacity is the same for all keys.
The analysis in [17] therefore uses the expected capacity, assuming that this is a
good estimate for all (or most) keys. In this setting, if the text pairs are drawn
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independently at random, Equation 4 is akin to a Pearson χ2 test statistic, with
a known limiting distribution, as shown in [26]. Cho uses this result to derive the
complexity of his attack.

Consider the following: It is known that the multidimensional probabilities
can be expressed as linear combinations of the correlations [27]. For an ideal
cipher [21] shows that the correlations do have a distribution over the key space.
Similarly, Equation 2 shows the key-dependence of the correlation values for a
non-ideal cipher, and for most practical ciphers we observe that this distribution
can have a large variance. Hence, while assuming fixed wrong key or right key
correlations and capacity simplifies the analysis considerably, we risk obtaining
misleading results. In this work, in particular in 5, we will consider a setting
where the key dependent behaviour is taken into account.

In 2015, a 27-round attack on present was given by Zheng and Zhang [49].
This attack uses the same model as Cho, and is therefore prone to the same
limitations. Additionally, both attacks analyse only the 1-bit trails of present
to derive the capacity values and the resulting strength of the attack. As it
was argued by Ohkuma in [40], the 1-bit trails of present do have a much
larger correlation contribution than any other trails – and indeed, the best
approximations of present are those that have a large number of these trails.
However, the number of trails for any present approximation is extremely large.
Therefore, even if the remaining trails have a small correlation contribution,
they can still contribute significantly to the correlation distribution. As such, we
would argue that somehow modelling the remainder of the hull will improve the
estimate of the correlation distributions.

3.2 Multidimensional Linear Cryptanalysis With Key Dependence

While Cho, Zheng, and Zhang simplify the key dependent behaviour of the
capacity, some work has been done to analyse the capacity distribution over the
key space. The papers [9,28] both considered multidimensional linear cryptanalysis
when the key influence is taken into account. In [28], Huang et al. give a model
for the key dependent behaviour of ηK , and the resulting distribution of the
capacity was studied. In particular, the following proposition was given.

Proposition 1 ([28]). In an m-dimensional linear attack with the probability
distributions ηKi i.i.d. to a normal distribution N (2−m, σ2), i ∈ Fm2 , the capacity
CK follows a Gamma-distribution Γ ( 2m−1

2 , 2 · 2mσ2).

We note that Proposition 1 imposes the limitation, that the ηKi are indepen-
dent over the key space and all have the same normal distribution. Moreover, the
distribution in the ideal case is not considered in [28]. The same result is given
by Blondeau and Nyberg in [9], and additionally the ideal case is considered. The
following more general result is also shown.

Theorem 1 ([9]). In an m-dimensional linear attack, assume that ηKi ∼
N (λi, σ

2), i ∈ Fm2 . Then CK/(2mσ2) ∼ χ2
2m−1(δ), where δ = E(CK)/(2mσ2).
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Interestingly, as a consequence of this theorem, the analysis in [9] shows that
if the capacity of a multidimensional approximation is lower than 2−n(2m − 1),
then a multidimensional attack is not possible. This includes Cho’s attack on 25
and 26 rounds of present, as well as Zheng and Zhang’s attack on 27 rounds.
However, this would mean that the multidimensional approximation used has
one-dimensional correlation values worse than those of an ideal cipher – it is not
clear if that can actually happen for a cipher such as present. We address this
issue in Sect. 6.

While not explicitly stated in the assumptions of Theorem 1, the proof in [9]
does use the fact that the ηKi are independent, in order to arrive at the non-central
χ2 distribution. Thus, while both [28] and [9] make valuable corrections to Cho’s
analysis, simplifying assumptions are needed that limit the applicability of the
model, i.e. independence and identical variances. Indeed, we show in the following
section that the assumptions of Proposition 1 and Theorem 1 imply that the
linear correlations are statistically independent over the key space.

4 Implicit Independence Assumption in Multidimensional
Linear Cryptanalysis

As discussed in the previous section, the current state of the art analysis of
multidimensional linear cryptanalysis is that given in [9, 28]. This analysis, how-
ever, still relies on some limiting assumptions, namely that the multidimensional
probabilities are independent and have identical variances over the key space.
In this section, we consider what these assumptions imply with regards to the
statistical dependence of the linear correlations over the key space.

Joint Normality of Correlations. We start by stating a model that allows
for multidimensional distributions with arbitrary parameters, as opposed to the
settings of Proposition 1 and Theorem 1.

Model (Multidimensional Linear Cryptanalysis). In an m-dimensional
linear attack, the ηKi , i ∈ Fm2 are independent and distributed as N (λi, ζ

2
i ) over

the key space.

By definition of the multivariate normal distribution, the multidimensional
model immediately implies that ηK ∼ N2m(λ,Z) over the key space, where
λ = (λ0 · · ·λ2m−1)> and Z is a diagonal matrix with the ζ2

i in the diagonal. From
this observation, we obtain the following theorem.

Theorem 2. Let ηK be the key dependent probability distribution of an m-
dimensional linear approximation, and let CK be the vector of linear correlations
for the corresponding 1-dimensional approximations. Then, in the multidimen-
sional model,

CK ∼ N2m(Aλ,AZA),

over the key space, where λ = (λ0 · · ·λ2m−1)>, Z = diag(ζ2
0 , . . . , ζ

2
2m), and A is

a 2m × 2m matrix with Ai,j = (−1)i·j.
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Proof. As noted, since the ηi are independent normal distributions, the vector
ηK = (ηK0 · · · ηK2m−1)> has multivariate normal distribution N2m(λ,Z) over the

key space, with λ and Z as given in the theorem. Then CK = Aη is a vector of
the corresponding linear correlations since

CKα,β =
∑
i∈Fm

2

(−1)(α‖β)·iηKi ,

as shown in [27]. Note that the first element of CK is the linear correlation of
the trivial approximation (0, 0). Now, let y ∼ N2m(0, I). We can then write,

CK = ABy + Aλ,

where B = diag(ζ0, . . . , ζ2m−1). This implies that

CK ∼ N2m(Aλ,AB(AB)>) = N2m(Aλ,ABB>A>),

and since BB> = Z and A is symmetric, this proves the theorem. ut

By Theorem 2, the multidimensional model also implies that the vector of
correlations, CK , has a joint normal distribution. However, since AZA is not
necessarily a diagonal matrix, the correlations are not necessarily statistically
independent over the key space. Thus, going from the correlation values CK

to the multidimensional distribution η is a matter of transforming a set of
dependent random variables to a set of independent random variables using
a linear transform. If we let CK ∼ N2m(µ,Σ), this transform corresponds
to diagonalising Σ. Moreover, this transform is always possible if CK has a
multivariate normal distribution, as any symmetric matrix is diagonalisable. The
following corollary shows us which diagonalisation results in the multidimensional
distribution η.

Corollary 1. Let ηK , CK , and A be as in Theorem 2 with the notation CK ∼
N2m(µ,Σ). Then λ = 2m/2Aµ and Z = 2mAΣA.

Proof. We simply note that A−1 = 2m/2A. ut

Independence of Correlations. Now, let us consider the assumptions used
in Proposition 1 and Theorem 1. These are equivalent to the multidimensional
model with additional restrictions on the λi and ζ2

i of the distributions. In this
case, we get the following result by directly using Theorem 2 and the structure
of A.

Corollary 2. Let ηK be as in Theorem 2 with ζ2
i = ζ2 for i = 0, . . . , 2m − 1.

Then, for the corresponding non-zero approximations, CKαi,βi
∼ N (µi, 2

mζ2),
i = 1, . . . , 2m−1. Additionally, the linear correlations are statistically independent.
Furthermore, if λi = λ, i = 0, . . . , 2m − 1, then the µi are zero.
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0 2−47.88 0 0 · · ·
0 0 2−47.88 0 · · ·
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...
...

...
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(a) Multidimensional model.



2−47.93 −2−58.14 −2−55.60 2−54.33 · · ·
−2−58.14 2−47.94 −2−55.05 −2−55.58 · · ·
−2−55.60 −2−55.05 2−47.94 −2−54.67 · · ·

2−54.33 −2−55.58 −2−54.67 2−47.95 · · ·
...

...
...

...
. . .


(b) Measured covariance matrix.

Fig. 1: Partial covariance matrix of the linear correlations for a multidimensional
approximation over 17 rounds of present. The covariance matrix in the multidi-
mensional model was calculated using Ohkuma’s results on optimal 1-bit trails
[40], while the actual covariance matrix was calculated by enumerating the trails
explicitly and calculating their correlation contributions for 5000 random keys.

Interestingly, Corollary 2 shows that the assumptions of Proposition 1 and The-
orem 1 imply that the linear correlations are independent over the key space.
Thus, while multidimensional linear cryptanalysis originally solved the problem
of statistical dependence over the text space, the current best results on the be-
haviour over the key space still needs assumptions equivalent to that of statistical
independence of the linear correlations.

As an illustration, see Fig. 1. Here, we consider a multidimensional approxi-
mation of present which contains a number of one-dimensional approximations
with a maximal number of 1-bit trails. In the setting of Corollary 2, Σ will be a
diagonal matrix, and the variances will be the sum of squared trail contributions
(since µi = 0). The squared correlation contribution of a 1-bit present trail over
r rounds is 2−4r, and Ohkuma gave the maximal number of such 1-bit trails in
[40]. From this, we calculate part of Σ in the multidimensional model, shown
in Fig. 1a. We calculated the same part of Σ directly by enumerating the exact
same 1-bit trails and then calculating their correlation contribution for 5000
random master keys. The result is shown in Fig. 1b, and clearly deviates from
the Σ implied by the multidimensional model. The variances are not equal to
the sum of squared correlation contributions, indicating that µi 6= 0, and the
covariances are not zero, showing that the correlations are clearly not statistically
independent. In the following section, we develop a model that expands on the
idea of joint normality of the correlation values, while removing assumptions of
independence and restrictions on the distribution.

5 Establishing Multivariate Linear Cryptanalysis

As argued in Sect. 4, if the multidimensional probabilities are independent normal
distributions over the key space, then the corresponding collection of linear
correlations will also be jointly normal, but not necessarily independent. However,
if the multidimensional probabilities all have the same variance over the keys, as
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was assumed in [9, 28], then the correlations will also be independent. Thus, the
current best analysis in the area of multidimensional linear cryptanalysis hinges
on assumptions that are not necessarily sound for practical ciphers. Moreover,
current analysis only considers part of the linear hull. In this section and Sect. 6,
we aim to create a model for linear cryptanalysis with multiple approximations
that:

– Does not assume independence over the text or key space,
– Does not assume any particular structure of the correlation distributions,
– Takes into account the unknown part of the linear hull.

We will base our model on the idea of the linear correlations having a joint
normal distribution. In Theorem 2, the vector CK represents the correlations of
all linear approximations of a subspace of Fn2 × Fn2 . As a generalisation, consider
a vector CK containing the correlations of any M linear approximations of a
cipher. We propose the following new model.

Model (Multivariate Linear Cryptanalysis). Let (αi, βi), i = 1, . . . ,M , be
M different linear approximations of a cipher, and let

CK = (CKα1,β1
· · ·CKαM ,βM

)>

be a vector containing the linear correlations. Then CK ∼ NM (µ,Σ) over the
key space, for some mean vector µ and covariance matrix Σ.

While the multidimensional model imposes a certain structure on the dis-
tribution of CK , namely that given in Theorem 2, the multivariate model only
assumes joint normality. In this sense, the multivariate model makes a weaker
assumption than the multidimensional. Since Σ can be arbitrary (as long as it is
positive semi-definite), we also do not need any assumption about the statistical
dependence of the approximations.

Capacity in the Multivariate Model. We now turn our attention to the
distribution of the capacity over the keys. For our analysis, we will need the
following concept: For a random d-vector X and a constant, symmetric, d× d
matrix Q, we say that Y = X>QX is a quadratic form in X. In particular, we
can express the capacity as the quadratic form

CK = (CK)>ICK =

M∑
i=1

(CKαi,βi
)2. (5)

We will need the following lemma to determine the mean and variance of C.

Lemma 1 ([43]). Let X ∼ Nd(µ,Σ) and Q a symmetric, d× d matrix. Then

E(X>QX) = tr(QΣ) + µ>Qµ,

Var(X>QX) = 2tr(QΣQΣ) + 4µ>QΣQµ.
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Using this lemma and the quadratic form given in Equation 5, we obtain the
following result. Note that this result says nothing about the shape of the capacity
distribution – in general, this distribution is difficult to determine explicitly when
the CKαi,βi

are not independent.

Theorem 3. Consider the approximations (αi, βi), i = 1, . . . ,M in the multi-
variate model. Then their capacity has mean and variance over the key space
given by

E(CK) =

M∑
i=1

ELPi and Var(CK) = 2tr(ΣΣ) + 4µ>Σµ.

Theorem 3 is useful only if we can measure the exact correlation values.
However, in an attack scenario, we typically will not be able to do this, as this
would require us to obtain the full codebook. We therefore have to understand
how undersampling affects the distribution of CK .

The Undersampled Distribution. In [36], Murphy showed that the joint
distribution over the text space of the empirical correlations, measured using
N randomly drawn text pairs for a fixed key K0, has a multivariate normal

distribution, Ĉ
K0 ∼ NM (µK0 ,ΣK0,N ), where µK0

i = CK0

αi,βi
and

ΣK0,N
i,j =

{
N−1CK0

αi⊕αj ,βi⊕βj
for i 6= j,

N−1 for i = j.

When taken as a random variable over the key space, we note that µK0 = CK

and therefore has distribution NM (µ,Σ). Indeed, ΣK0,N also has a distribution
over the key space, but to simplify our analysis, we will only consider the mean
of this matrix distribution, namely

ΣN
i,j =

{
N−1E(CKαi⊕αj ,βi⊕βj

) for i 6= j,

N−1 for i = j.
(6)

Then, the empirical value of CK over keys measured using N random text pairs
is approximately given by

Ĉ
K
∼ NM (NM (µ,Σ),ΣN ) = NM (µ,Σ + ΣN ).

With this, we get the following corollary of Theorem 3.

Corollary 3. Consider the approximations (αi, βi), i = 1, . . . ,M in the multi-
variate model. Then their empirical capacity measured using N random text pairs
approximately has mean and variance

E(ĈK) = MN−1 +

M∑
i=1

ELPi,

Var(ĈK) = 2tr
(

(Σ + ΣN )2
)

+ 4µ>(Σ + ΣN )µ,
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where ΣN is given in Equation 6.

Theorem 3, and by extension Corollary 3, gives us a way to estimate the
distribution of the capacity over the keys for a completely arbitrary set of
approximations. In contrast to Proposition 1 and Theorem 1, no assumptions
about independence or the parameters of the involved distributions are required.
Additionally, we can pick any M good approximations without having to consider
potentially bad approximations to complete a subspace. However, this generality
comes at the price of having to estimate at least M2 +M parameters that describe
CK . We will discuss this problem in the following section.

Moreover, if the approximations do not form a full subspace, we potentially
have to approximate another M2 parameters to determine ΣN . We note, however,
that we can sometimes make a simplifying assumption about ΣN . Typically, we
use approximations that only active one S-box at the input and one S-box at
the output. If the approximations activate different S-boxes, their resulting XOR
combined approximations will activate multiple S-boxes, and will therefore have
comparatively small correlation values. In this case, we can reasonably simplify
Equation 6 to a diagonal matrix with N−1 in the diagonal. This simplification
does not seem to have any significant impact in practice.

6 Signal/Noise Decomposition for Multivariate Linear
Cryptanalysis

Undersampling is not the only uncertainty introduced when applying linear
cryptanalysis. In most cases, we will also be unable to calculate the exact
distribution of CKα,β for any approximation. While Equations 1 and 2 are promising
tools in theory, if the number of trails is very large, we will not be able to compute
the full sum. One approach to this problem is to find a set of ”dominant trails”,
i.e. trails with a large contribution to the total correlation [16, 41]. Furthermore,
most analysis on the topic only considers the expected correlations or capacity,
as discussed in Sect. 3, which removes the need to consider the key-dependent
behaviour of the approximations. It is then sufficient to determine CU for the
dominant trails, and then determine how many of these trails exist. This can be
done separately for each approximation.

For the multivariate approach, however, we need to analyse the simultaneous
behaviour of all M approximations to estimate the distribution of CK . This is
most easily done for key-alternating ciphers as we can use Equation 2. However,
since we need to know how the sign of each trail changes with the key, we need
to explicitly know the masks of each trail. If the number of relatively good trails
is large, efficient trail enumeration becomes quite important for the multivariate
linear model. Depending on the structure of the cipher, this can be quite an
obstacle for the analysis. Nevertheless, for present and similar ciphers, we have
been able to develop quite efficient tools for trail enumeration.

We will denote the set S of enumerated trails of an approximation by the
signal. We will indicate quantities calculated from the signal by a ?. To estimate
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α

β

?

P CEK

Fig. 2: Illustration of the signal/noise decomposition of a linear hull. The lines
from α to β represents the linear trails of the cipher. The grey area shows the
signal, i.e. the known trails. The remaining trails are unknown.

CK , we will have to calculate the signal correlations

CK?αi,βi
=
∑
U∈S

(−1)U ·K̄⊕dUCU ,

for the M approximations and for a suitably large number of random keys. We can
then estimate the joint distribution of the signal correlation CK? ∼ NM (µ?,Σ?)
and use this as an approximation of the true distribution in Corollary 3. Never-
theless, even if we can enumerate a large number of trails, the total number of
trails might be extremely large, as is the case for present. In this case, a large
part of the hull is still unknown, as illustrated in Fig. 2. In the following, we
discuss how we can deal with this unknown part of the hull.

6.1 Signal/Noise Decomposition

While the signal trails in S will help to approximate the correlation distributions,
there might still be a significant number of trails that we are unable to enumerate.
In the following, we discuss how to model the contribution of this unknown part
of the hull. We will do so under the following assumption.

Assumption 1. For an n-bit cipher with a reasonably large key space, if an
approximation does not have correlation equal to zero, the variance the correlation
is at least 2−n.

The reasoning behind Assumption 1 is that an approximation of an n-bit
permutation has correlation variance 2−n over the space of all n-bit permutations,
cf. [21]. A cipher represents a subset of all n-bit permutations the size of its key
space. Since we cannot do better than an ideal cipher, the correlation variance
must be lower bounded by the ideal case. Nyberg also makes an argument for
this lower bound in [38].

Bogdanov and Tischhauser presented one way to model the unknown part of
the hull in [16]. As in that work, we will call the unknown part of the hull the noise.
Then, the correlation distribution of an approximation can be decomposed as
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CKα,β = CK?α,β + noise. If the contribution from the signal part of the correlation is
significant, then the contribution of the noise is probably small, and we therefore
model this part of the hull as an ideal cipher. In that case, the full distribution
of the linear correlation is CKα,β = CK?α,β +N (0, 2−n). The following assumption
formalises this – a similar statement is given in [16].

Assumption 2. If the variance of the signal part of the linear correlation is
larger than 2−n, then the noise part has distribution N (0, 2−n).

Signal/noise decomposition is reasonable when the contribution from the
signal is large, as we do not risk significantly overestimating the strength of the
approximation. But what if the variance of our signal is smaller than 2−n? In
that case, we make the following, stronger assumption.

Assumption 3 ([16]). If the number of trails in the unknown part of the hull
is large, and their correlation contributions are small, then the correlation of the
noise part of the hull is distributed as N (0, 2−n).

Experimental Verification. To justify this assumption, we conducted experi-
ments on 9-round 32-bit SmallPresent [32]. We picked a set of 255 approxi-
mations, namely all non-zero approximations starting at S5 and ending at S1.
This sets consists of generally weak approximations. We enumerated trails of all
approximations having intermediate masks with at most hamming weight 3 – a
situation that closely resembles what is possible to enumerate for full present.
We calculated the signal correlations for 5000 random keys, and measured the ac-
tual correlation for 1000 random keys. The result of adding noise to the measured
signal distributions are shown in Fig. 3.

We make the following observations: For these very weak approximations,
the signal part of the hulls give a large underestimate of the actual correlation
variance – in particular the signal variance is always lower than 2−32, indicating
that these approximations would not be useful for distinguishing. However, the
actual variances are all larger than 2−32, and so when adding noise, we get a good
estimate of the actual value. For only five approximations we get an overestimate
of the variance, but the error is not larger than 2−36. This error can be explained
by measuring error of the actual correlation values. Thus, we would argue that
adding noise to the measured signal distributions, under Assumption 3, give
us a much more accurate estimate of the correlation distributions than simply
considering the signal. Indeed, after adding noise, we might use an approximation
in a linear attack which we would otherwise have discarded based on its signal
distribution. This is particularly important in typical attack scenarios where we
try to attack as many rounds as possible, and therefore use approximations with
correlation values close to that of an ideal cipher.
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Fig. 3: Variance of correlation values of 9 round approximations of 32-bit
SmallPresent starting at S5 and ending at S1. Signal and exact variance
values are shown along with variance estimates based on signal/noise decom-
position. Trails having intermediate masks with Hamming weight up to 3 were
enumerated for the signal values. The graph demonstrates that even for approx-
imations with low correlation, and with a signal variance lower than 2−n, it
is still reasonable to add the noise distribution N (0, 2−n). In this way, we can
compensate for the unknown part of the linear hull, cf. Assumption 3.

7 Hypothesis Testing and QDA for the Multivariate
Model

Different methods for distinguishing when using many approximations have been
proposed. The LLR method was proposed by Baigneres et al. in [3] as an optimal
disinguisher and used in [25] in a multidimensional attack against the block
cipher Serpent. Both the LLR method and the χ2 method was studied in [26],
where the LLR method was concluded to have better performance. However, as
noted by Cho in [17], the LLR method is often not practical to use, as it requires
an accurate knowledge of the key-dependent behaviour of the multidimensional
probability distribution.

In the following, we consider two ways to create a statistical distinguisher using
the multivariate model presented in Sect. 5. The first method is equivalent to the
χ2 method. The other method takes advantage of the multivariate distribution of
the correlations and uses quadratic discriminant analysis. We first note that for
an ideal cipher, CKα,β ∼ N (0, 2−n) [29,39], and the correlations for two different
approximations are independent both over the text-space (by the result in [36])
and the key space (since each bit of the input and output can be considered as
independent random variables). Thus, for an ideal cipher,

ĈK ∼ NM (0, (2−n +N−1)I). (7)
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7.1 Distinguishing with Binary Hypothesis Testing

Consider the binary hypothesis testing framework as given in Sect. 2.2 with the
test statistic

T = N

M∑
i=1

(ĈKαi,βi
)2. (8)

As mentioned, this test statistic has been used frequently in the past, and is
usually referred to as the χ2 test statistic. In the setting of multivariate linear
cryptanalysis, this is equal to the scaled quadratic form T = N(ĈK)>IĈK . Then,
by Corollary 3, the mean and variance of the test statistic distribution for an
ideal cipher DI are given by

µI = M +NM2−n and σ2
I = 2MN2(2−n +N−1)2,

while the mean and variance for the non-ideal distribution DN are given by

µN = M +N

M∑
i=1

ELPi, (9)

σ2
N = 2N2

(
tr
(

(Σ + ΣN )2
)

+ 2µ>(Σ + ΣN )µ
)
. (10)

We note that the parameters for the ideal case was also given in [9]. While
Corollary 3 says nothing about the shape of DI and DN , we will make the
simplifying assumption that they are approximately normal. In that case, the
threshold value for a given success probability PS is given by

τ = µN + σNΦ
−1(1− PS),

and the resulting probability of false positives for the distinguisher is

PI = 1− Φ
(
µN − µI + σNΦ

−1(1− PS)

σI

)
. (11)

Experimental Verification Estimates of µN and σ2
N were also given in [9] in

the multidimensional model with λi = 1/2m and ζ2
i = ζ2 for some variance ζ2.

We have conducted experiments on 9-round 32-bit SmallPresent to asses the
accuracy of the estimates from [9] and the ones given above. We consider the
255 approximations starting at S6 and ending at S6. We measured the exact
correlation values for 1000 random keys to obtain the distribution of C. We then
measured the value of T for 1000 random keys. The results are shown in Fig. 4.

Fig. 4a shows the test statistic mean µN . The estimate given in Equation 9 is
identical to the one found in [9], and gives a very good estimate of the actual
mean. Fig. 4b shows the test statistic variance σ2

N . Both the estimate given in
Equation 10 and in [9] underestimate the actual variance significantly. However,
our estimate using the multivariate model does improve upon the result from [9].
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Fig. 4: Exact mean and variance of the hypothesis testing test statistic T =
N
∑M
i=1(ĈKαi,βi

)2 for 9 rounds of 32-bit SmallPresent. Approximations starting
and ending at S6 were used. The multidimensional estimate of E(T ) = M +
NE(CK) and Var(T ) = 2

M (M +NE(CK))2 were given in [9]. The multivariate
estimate is given in Equations 9 and 10. Using the multivariate model results in
an improved estimate of the test statistic variance.

Nevertheless, underestimating the variance is a problem: Since the distribution
of T is fixed for the ideal cipher and a given N , and our estimate of µN is
good, underestimating σ2

N means that we will overestimate the power of the
distinguisher. In the following, we explore a distinguishing method where both
the ideal and non-ideal distribution of T depends on C.

7.2 Distinguishing with Quadratic Discriminant Analysis.

In order to fully take advantage of the multivariate representation of the linear
correlations, we now consider the quadratic discriminant analysis method given in
Sect. 2.2. We will use ĈK as the cipher data, and by Corollary 3 and Equation 7,
we can express Equation 3 as

T = (ĈK − µ)>(Σ + ΣN )−1(ĈK − µ)− N
2−nN+1 (ĈK)>ĈK . (12)

As mentioned in Sect. 2.2, finding the exact distribution of T is in this case not
trivial. However, since sampling from a multivariate normal distribution is easy,
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Fig. 5: Advantage for hypothesis testing and QDA distinguishing using 189
approximations of 22-round present, PS = 0.95. The QDA distinguisher achieves
the full advantage when N ≥ 263.4. The sudden increase in advantage for the
QDA method happens because the distinguishing distributions DI and DN move
away from each other more rapidly than for the hypothesis testing method.

we can easily simulate DI and DN , and then calculate the empirical CDFs to get
an estimate of τ for the desired success probability and the resulting probability
of false positives.

Comparison to Hypothesis Testing. To compare the QDA distinguisher
to the hypothesis testing distinguisher, we calculated the advantage of 189
approximations over 22 rounds of present with PS = 0.95. The approximations
are specified in Sect. 8. We enumerated part of the hull of each approximation.
All trails with hamming weight 1 masks were enumerated, as well as some trails
with hamming weight 2 and 3 masks. An average of 103,482,624 trails were
enumerated per hull. The distribution of CK? was then estimated using 2000
random master keys. Noise was added to all approximations to compensate for
the unknown part of the hull, as described in Sect. 6. The addition of noise is
reasonable in this case under Assumption 3, since the number of present trails
is known to be extremely large, and trails with hamming weight larger than 1
have much smaller correlation contribution, as argued in e.g. [17, 40].

The advantage for the hypothesis testing distinguisher was calculated using
Equation 11. The advantage for the QDA distinguisher was calculated using
500,000 samples from each normal distribution. We note that due to the structure
of the approximations, we can assume that ΣN is a diagonal matrix, as discussed
in Sect. 5. This simplifies our analysis considerably, and the results are shown
in Fig. 5. For N < 263.4, the advantage of the QDA distinguisher is about 1 bit
larger than that of the hypothesis testing distinguisher. However, for N ≥ 263.4,
the QDA distinguisher achieves the full advantage, whereas the hypothesis testing
distinguisher never obtains an advantage larger than 35 bits. We can explain this
by the fact that both DI and DN depends on the distribution of ĈK , and as this
becomes more significant with large N , the two distributions rapidly separate,
increasing the advantage.
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8 Multivariate Linear Attacks on PRESENT

Under the wrong key randomisation hypothesis, Hypothesis 1 in Sect. 2.2, we can
turn our multivariate linear distinguisher into a key-recovery attack. The general
idea for the attack is as follows: Collect N text pairs. Guess the k round key
bits required to (partially) encrypt/decrypt ` rounds. Apply the distinguisher
to the resulting correlations: Save the key guess if the distinguisher indicates a
non-ideal cipher. Repeat for all guesses of the round key bits. For each saved
key we can find the master key by exhaustively guessing the remaining bits and
verifying by trial encryption. In the following, we present a new attack on 26 and
27 rounds of present in the multivariate model.

8.1 Attacking 26 rounds

We aim to recover the master key for r rounds of present by using a multivariate
linear approximation over r − 4 rounds. Because of the large number of outer
rounds we need to bypass, the approximations are chosen such that the involved
round key bits are sparse. Additionally, due to the effectiveness of the QDA
distinguisher, we can afford to use relatively few approximations.

Approximations and Key Guessing. As Ohkuma noted in [40], the best
approximations of present are those that start and end with the S-boxes Si
with i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15}. For our attack, we consider the input and
output masks

α = 24i+3, i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15},
β = j · 24i+2, i ∈ {5, 6, 7, 9, 10, 11}, j ∈ {1, 2, 3}, and

β = 24i+3, i ∈ {13, 14, 15}.

These bit positions are highlighted in Fig. 6. Taking all possible combinations of
these input and output masks gives us M = 9 · 6 · 3 + 9 · 3 = 189 approximations.
Fig. 6 shows the S-box positions we need to encrypt/decrypt to calculate the
linear correlations of these approximations. The straight forward approach to
partially encrypting/decrypting these positions would require guessing 80 key bits
across the four round-keys. By considering the key-schedule, we can dramatically
improve this. We first guess the following 24 bits of the master key:

ki, i ∈ [0, 2] ∪ [15, 18] ∪ [63, 79]. (13)

The 42 round-key bits we obtain from this guess are marked in dark grey in Fig. 6.
By guessing the missing 23 bits of K26, we also obtain 8 bits of K25. Finally, we
only need to guess an additional 7 bits of K25. In total, we only need to guess 54
bits of key material. Note additionally that each approximation only depends on
at most 8 bits of K25.
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Fig. 6: An outline of the 26-round attack using approximations over 22 rounds.
The input/output mask bits are indicated by bold lines. The dark grey squares
indicate the round-key bits obtained by guessing 24 bits of the master key. The
light grey squares indicate the round-key bits obtained by guessing 23 bits of the
last round-key. The squares indicated by ? are extra bits of the second to last
round-key that need to be guessed.

Attack Description. With the above considerations in mind, the attack pro-
ceeds as follows.

Distillation phase

1. Obtain N partial text pairs (pi, ci), where pi is 16 bits and ci is 32 bits.

2. Generate a vector t of size 248 where t[s‖t] = #{i | pi = s and ci = t}.

Analysis phase

1. Fix a 24-bit guess of the master key, KM .

(a) For each input mask α, calculate a vector tKM
α of size 232, where

tKM
α [j] = #{(pi, ci)|ci = j and α · EKM

(pi) = 0},

where EKM
(p) is the partial two-round encryption of p under master key

KM .
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(b) For each output mask β, fix a guess of the relevant bits of K25. Denote
the guess KI . Then calculate the 232 × 232 matrix AKI

β , where

AKI

β [i, j] = β · DKI
(i⊕ j),

where DKI
(c) is the partial two-round decryption of c using KI , but

excluding the first key XOR.
(c) Calculate the correlations of all 189 approximations and 232 guesses of

the partial K26 by calculating the matrix-vector products

Cα,β = 2
NAKI

β tKM
α − 1.

(d) Repeat steps (b) and (c) for all values of KI , resulting in correlation
values for all approximations for at most 240 guesses of the last two round
keys. Extract the correlations of at most 230 guesses that agree with KM .

(e) Calculate the QDA test statistic T for each surviving key guess. Save all
keys (of 54 bits) with T < τ .

2. Repeat the above steps for all values of KM .

Search phase

1. For each key candidate, perform trial encryption to find the remaining
80− 54 = 26 bits of the master key.

Attack Complexity. We now consider the computational complexity of the
attack. We consider the number of single round encryption equivalent operations
performed. The distillation phase requires O(N) operations. For the analysis
phase, step 1a can be done by iterating over t once and encrypting two rounds,
using O(2 · 248) operations. Steps 1b and 1c can be performed using the FFT
technique given in [18]. Using this technique, we only need to compute the first
column of each AKI

β , and then calculate Cα,β for a fixed β and all α in time

O((2 · 9 + 1) · 32 · 232). Thus, steps 1b and 1c need a total of O(21 · 28 · (2 · 232 +
(2 · 9 + 1) · 32 · 232)) ≈ O(253.64) operations. Step 1d uses O(230) operations. In
step 1e we can calculate the test statistics of 189 keys simultaneously by using
two matrix-matrix products. Using Strassen’s algorithm for this, we can process

230 keys using O( 230

189 · 2 · 1892.807) ≈ O(244.67) operations. In total, the analysis
phase uses O(224 · (249 + 253.64 + 230 + 244.67)) ≈ O(277.70) operations. If one
uses hypothesis testing instead, step 1e will be slightly cheaper, but the final
complexity does not change significantly. Finally, the search phase requires 2κ−54

full encryptions of 254−a candidates keys, using a total of O(2κ−a) operations.
The advantage of the attack was determined in Sect. 7. From Fig. 5, we

obtain a plot of the computational complexity of the 26-round attack, given in
Fig. 7. Here, we have fixed the success probability at 95%. As long as the search
phase dominates the complexity, we observe that the QDA distinguisher has an
advantage over hypothesis testing. We can highlight two 26 round attacks with
different trade-offs. For N = 263.25, we obtain an advantage of 19 bits, and a
computational complexity of O(277.70/26) = O(273.00) encryptions. Alternatively,
we can decrease the data complexity to N = 261.75, giving and advantage of 4.33
bits, and a computational complexity of O(280.58/26) = O(275.88) encryptions.
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Fig. 7: Our 26 round attack: Computational complexity as a function of data
complexity for the 26-round attack on present using 189 approximations over
22 rounds. Non-distinct random texts were used, and PS = 0.95. Note that the
QDA distinguisher achieves a better complexity as long as long as the search
phase dominates the complexity.
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Fig. 8: Our 27 round attack: Computational complexity as a function of data
complexity for the 27-round attack on present using 189 approximations over
23 rounds. Distinct random texts were used, and PS = 0.95. Note that the QDA
distinguisher generally achieves a better complexity for this attack.

8.2 Attacking 27 rounds

The attack described above can be extended to 27 rounds by using the same
approximations over 23 rounds. By guessing the bits of the master key given in
Equation 13, we determine 41 required bits of the round keys. We additionally
have to guess 25 bits of K27 and 6 bits of K26, for a total of 55 bits of key
material. Due to the way we carry out the attack, the complexity calculation
is not affected by this – only the lower advantage has an influence. However, if
we use non-distinct random texts for the attack, the advantage is too low. If we
instead use distinct random texts, we obtain a better advantage. This scenario
is in some sense a chosen plaintext attack, and has been studied in [9,10]. The
resulting attack complexities are shown in Fig. 8. Using the QDA distinguisher
with PS = 0.95 and N = 263.83, we obtain an advantage of 3.05 bits and a
computational complexity of O(276.96) encryptions.
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9 Conclusions

In this paper, we proposed multivariate linear cryptanalysis as a new technique for
using multiple linear approximations. It is based on a multivariate statistical model
and allows for realistic key equivalence and wrong key randomization hypotheses
without introducing additional limiting assumptions about the distributions of
the correlations of the used linear approximations. Additionally, it features a
signal/noise decomposition approach for a realistic estimation of correlations in
the common scenario where only a limited number of trails per hull is known,
and we use QDA as a novel distinguishing technique. As an application of this
new technique, we have shown attacks on 26 and 27 rounds of present under
significantly more realistic assumptions than previous work.

It remains an interesting open problem to apply multivariate linear crypt-
analysis to other ciphers, with Serpent and LBlock being particular natural
candidates. Additionally, it would be interesting to investigate the connection
between the the capacity and the power of the QDA distinguisher.
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