
A

A PUF-based Secure Communication Protocol for IoT

URBI CHATTERJEE, RAJAT SUBHRA CHAKRABORTY and DEBDEEP
MUKHOPADHYAY, Indian Institute of Technology Kharagpur

Security features are of paramount importance for IoT, and implementations are challenging given the
resource-constrained IoT set-up. We have developed a lightweight identity-based cryptosystem suitable for
IoT, to enable secure authentication and message exchange among the devices. Our scheme employs Physi-
cally Unclonable Function (PUF), to generate the public identity of each device, which is used as the public
key for each device for message encryption. We have provided formal proofs of security in the Session Key
security and Universally Composable Framework of the proposed protocol, which demonstrates the resilience
of the scheme against passive as well as active attacks. We have demonstrated the set up required for the
protocol implementation and shown that the proposed protocol implementation incurs low hardware and
software overhead.
Keywords: Internet of Things (IoT) · Identity based Encryption (IBE)· Physically Unclonable Functions
(PUFs)

Categories and Subject Descriptors: B.7.1 [INTEGRATED CIRCUITS]: VLSI (Very Large Scale Integra-
tion); C.2.0 [COMPUTER-COMMUNICATION NETWORKS]: Security and Protection; K.5.1 [MANAGE-
MENT OF COMPUTING AND INFORMATION SYSTEMS]: Security and Protection

General Terms: IoT, Protocol, Security

Additional Key Words and Phrases: Communication protocol, identity-based cryptography, internet-of-
things, physically unclonable function, security analysis

ACM Reference Format:
Chatterjee, U., Chakraborty, R. S. and Mukhopadhyay, D. 2015. A PUF-based Secure Communication Pro-
tocol for IoT ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 29 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
In recent years, the Internet-of-Things (IoT) has been foreseen to become an essential
landmark in the growth of smart cities and smart homes in the near future. IoT is a set-
up in which an unique identifier is assigned to each object, and data exchange between
the objects takes place without any human or computer supervision. The IoT is the
conjunction of several apparently disparate technologies such as wireless communica-
tion, micro-electromechanical systems (MEMS), sensor technologies and the Internet.
IoT devices are frequently used in application domains such as environment moni-
toring, infrastructure management, manufacturing, energy management, medical and
health systems, building and home automation and transportation. The IoT nodes such
as heart monitoring implants, bio-chip transponders, electric clams in coastal waters,
sensor nodes in automobiles, smart thermostats, RFID tags, WiFi connected electronic

Authors’ addresses: The authors are with the Secured Embedded Architecture Laboratory (SEAL), Depart-
ment of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West
Bengal, INDIA – 721302. E-mails: {urbi.chatterjee,rschakraborty,debdeep}@cse.iitkgp.ernet.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

Fig. 1. General working principle of a PUF.

home appliances and smart cards etc., generate large quantities of possibly security-
sensitive data. Hence, special methods must be deployed to enable authentication and
secure data transmission, and ensure that the IoT nodes are free from the threats
of device tampering, information disclosure, privacy breach, denial-of-service, spoof-
ing, elevation of privilege etc. Since the IoT nodes are inherently resource-constrained,
an additional challenge in this context is that the implementation of the security mea-
sures must be sufficiently lightweight. This often means that traditional cryptographic
algorithms and protocols cannot be directly used in IoTs, and novel measures must be
adopted.

In recent years, Physically Unclonable Function (PUF) [Pappu 2001; LIM 2004] has
been introduced as a promising hardware security primitive for different emerging
applications. Silicon PUF is a physical entity embodied in a physical structure that
is easy to fabricate but practically infeasible to clone, even given the exact manu-
facturing process that produced it. In addition, the functional mapping between in-
put and output is instance-specific and unpredictable prior to the actual fabrication
of the circuit. Rather than embodying a single cryptographic key, PUFs implement
a “challenge-response authentication” mechanism. When an electrical stimulus is ap-
plied to the structure, it reacts in an unpredictable (but instance-wise repeatable) man-
ner due to the complex interaction of the stimulus with the physical micro-structure
of the device. The exact nature of this micro-structure depends on physical factors in-
troduced during manufacturing, which are unpredictable and unclonable. The applied
stimulus is considered as the “challenge”, while the reaction generated by the PUF
is considered as the “response”. A specific challenge and its corresponding response
together form a challenge-response pair (CRP). A given PUF instance’s identity is
established by the properties of the micro-structure itself, and its CRP dataset acts
as a unique fingerprint for the instance. PUFs have been proposed to be used in IC
anti-counterfeiting, device identification and authentication [Majzoobi and Koushan-
far 2011], binding hardware to software platforms [Kumar et al. 2008], secure storage
of cryptographic secrets [Yu et al. 2011], keyless secure communication [Rührmair
2012], etc. PUF offloads the computational expense of cryptographic algorithms while
having relatively low hardware overhead, and is thus a very effective choice for solv-
ing secure communication problems in the context of IoTs. Fig. 1 shows the general
working principle of a PUF. Since the assessment of a PUF implies a physical mea-
surement, it is very susceptible to circuit noise. Hence to make it reliable and to have
full entropy, [Maes et al. 2009] had proposed an error correction circuit with a very low
hardware overhead to reduce the fuzziness of the PUF’s responses and make it more
robust and reliable.

The desirable features of PUFs are: lightweightedness, unpredictability, unclonabil-
ity and uniqueness (with respect to each instance). A PUF with a large enough chal-
lenge space to make exhaustive enumeration of its CRP set infeasible is termed a
strong PUF, and are the PUFs of choice in most practical security applications. We
would also keep ourselves confined to strong PUFs [Rührmair et al. 2010] in this work.
Several strong PUF-based authentication protocols have been proposed in the past,
such as Controlled PUFs [Gassend et al. 2002], Noisy PUFs [Öztürk et al. 2008], Log-
ically Reconfigurable PUFs (LRPUF) [Katzenbeisser et al. 2011], Slender PUFs [Maj-
zoobi et al. 2012], Converse PUF-based Authentication [Koçabas et al. 2012] etc.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:3

However, in [Delvaux et al. 2014], several severe security and practicality issues
of the above mentioned protocols were reported. The major concerns with these
protocols are: Denial-of-Service (DoS) attack, synchronization problem, replay at-
tack, token/server impersonation, restricted attack model and scalability issues. Sim-
ilarly, [Avoine et al. 2015] surveys several different ultralightweight authentication
protocols designed for RFID authentication, and notes significant threats in the form
of typical flaws, e.g. dependency on linear and T-functions, biased output, rotations,
insecure message composition, knowledge accumulation by partial leakage of secret
and key updating, desynchronization etc. This implies that we cannot adopt any of
the above protocols in their original form. To overcome these obstacles, the authors
have proposed to use classical challenge-response authentication protocol employing
a new ultralightweight cryptographic primitive. Recently, another SRAM PUF based
privacy preserving authentication protocol was proposed in [Aysu et al. 2015]. But as
the SRAM PUF has been shown to be physically clonable [Helfmeier et al. 2013], we
cannot directly adopt this protocol.

In this work we would consider public-key cryptography because of its flexibility
and versatility. One important feature of public-key cryptography is its dependency on
a public-key infrastructure that is shared among its users. Before the communication,
each party must decide its public/private key pair, receive certificates signed by a
Certificate Authority (CA) after verifying the identity, use them for authentication
and encrypt/decrypt the messages. This process can be both laborious and erroneous,
and is especially not suitable for IoT applications due to relative lack of resources
such as processor speed and memory, and limited interoperability. Identity-based
cryptography (IBC) can be applied in this situation to reduce these obstacles by
requiring no preparation on the part of the receiver. It provides certificate-less public
key cryptography, where some unique information about the identity of the user (e.g.
a user’s email address) is used as its public key. Hence, it eliminates the need for a
public key distribution infrastructure. In [Boneh and Franklin 2003], a concept of
Identity based Encryption (IBE) using Weil pairing on elliptic curves was introduced,
which provides security against Chosen-Plaintext Attack (CPA) and Chosen-Ciphertext
Attack (CCA). Many lightweight approaches have been proposed for hardware and
software implementations for elliptic curve cryptography [Lee et al. 2008; Batina
et al. 2006; Batina et al. 2006], and bilinear pairing [Xiong et al. 2010; Yoshitomi
et al. 2008; Acar et al. 2011; Grewal et al. 2012; Shirase et al. 2009] respectively, in
wireless sensor networks and RFID tags. In the recent past, [Chen 2012] and [Yang
et al. 2013] have proposed two IBE based secure communication prototype of for IoT
infrastructure.

The other relevant topics of interest are: session key exchange protocols, attack
models for such protocols, and their security analysis over an adversary-controlled
network. A new notion of Session Key Security model and an Universally Composite
Framework (UCF) were introduced in [Canetti and Krawczyk 2001; Canetti 2001].
Based on this model, different symmetric key exchange schemes using PUFs for
resource-constrained devices have been proposed in [Koçabas et al. 2012; Brzuska et al.
2011]. However, as a threat to the above application of PUF, a concept of malicious
PUFs (namely PUF re-use model and bad PUF model) was introduced to compromise
system security [Ruhrmair and van Dijk 2013], and the same work also discussed tech-
niques to make them secure and robust. In [Ostrovsky et al. 2013], the notion of UCF
was modified to make it resistant against malicious PUFs.

1.1. Our contributions and paper organization
In this paper our major contributions are:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

•We have presented a complete authentication, key sharing and secure communica-
tion architecture where each IoT node has an integrated PUF instance, and the iden-
tity of the node is created by the CRP signature of its PUF instance.
•We have considered the Identity based Encryption scheme proposed in [Boneh and

Franklin 2003], and Weil Pairing on elliptic curves which was proved to be secure
against CPA and CCA Secure. But The major differences of our scheme with respect
to the originally proposed one are:
— Instead of using public e-mail ID or any publicly known identity string, we have

used the response of the PUF on a data node, obtained after applying a pair of
challenges, as the public identity of the data node (refer to section 3.3).

— In our protocol there is no Public Key Generator (PKG), as mentioned in the
scheme described in [Boneh and Franklin 2003]. Here, the data node which is
going to receive the message, generates its own private/public key, and the server
is responsible for verifying the public key to prevent any masquerading attack
(refer to section 3.3).

— And the foremost difference is: the original scheme was not protected against re-
pudiation attack. With respect to IoT framework, it is very crucial to keep track
of which device is sending what data. It can help to find out the device in case
of any malicious information damages the system. If a system is secure against
repudiation attack, the device which is sending the malicious data, cannot deny
its accountability later for the mishap.

•We demonstrate through theoretical analyses that our proposed scheme is resistant
against different active and passive attacks in Session Key Security model and Uni-
versally Composite Framework. Our security proofs are based on reduction of the
problem of attacking the proposed scheme to the problem of cloning (either physi-
cally or mathematically) a particular PUF instance. Since it is known that: (a)
physical cloning of most PUF variants; (b) mathematical cloning of particu-
lar PUF variants, or, (c) devising a physical PUF instance or a mathematical
model sufficiently similar to a given PUF instance, are difficult problems at
the current state-of-the-art, we conclude that the proposed schemes are se-
cure.
•We have also implemented the major software and hardware components of the pro-

tocols and demonstrated that they incur low hardware and software overhead.

The rest of the paper is organized as follows. In Section 2, we provide the necessary
background on cryptographic pairing. In Section 3, we present our proposed novel au-
thentication, key exchange and secure communication protocol. The security analysis
of the proposed scheme is described in Section 4, along with a detailed comparison
of the proposed protocol with existing protocols. The experimental set up and results
have been given in Section 5. We conclude the paper with future research directions
in Section 6.

2. BACKGROUND: CRYPTOGRAPHIC PAIRING
First we will provide the mathematical theory of Elliptic curve cryptography and then
define pairings on elliptic curves as bilinear maps on additive groups on that basis.
The definition and the notations are referred from [Mass 2004].

2.1. Elliptic Curves
Let K denote a field and K its algebraic closure. We denote K∗ for K \ {0}. Consider
the homogeneous function over the projective plane P2(K) given by:

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X2Z − a4XZ2 − a6Z3 (1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:5

where a1, a2, a3, a4, a6 ∈ K. An elliptic curve E is defined to be the set of solutions
to F (X,Y, Z) = 0 in the projective plane P2(K), where points are equivalent to their
multiples, i.e. (X : Y : Z) v (λX : λY : λZ) for λ ∈ K∗. There is only one point in E
with Z = 0 which is termed as the point at infinity O (denoted by (0 : 1 : 0)) . Next, we
define a non-singular curve where, for all points P ∈ E, the three partial derivatives
δF/δX, δF/δY and δF/δZ are not all zero at P .

Additionally, we will use affine coordinates x = X/Z and y = Y/Z, and express an
elliptic curve by the (affine) Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2)

Formally the elliptic curve is the set of points (x, y) ∈ P2(K) = K × K that satisfy
equation 2, along with the point at infinity O. E is said to be defined over K, denoted
E/K, if a1, a2, a3, a4, a6 ∈ K. Then K is called the definition field and E(K) is denoted
by the set of K-rational points, i.e. the points with both coordinates in K, together with
O. Now, we will represent E = E(K).

Two elliptic curvesE1/K,E2/K are said to be isomorphic overK (denoted asE1/K w
E2/K), if there exist u, r, s, t ∈ K , u 6= 0, such that the admissible change of variables
(x, y) −→ (u2x+r, u3y+u2sx+ t) transforms the equation of E1 into the equation of E2.
Generally the elliptic curves over a finite field K = Fq consists of q elements, where
q = pm is a prime power. So the algebraic closure of K is given by K = ∪i≥1Fqi . If the
characteristic p of K is greater than 3, then any curve defined over K is isomorphic
with a curve of particularly simple form, namely:

E : y2 = x3 + ax+ b; a, b ∈ K (3)

There is tangent-and-chord-method that creates a additive group using the set of
points on an elliptic curve and it has the point at infinity O as zero element. Let P =
(x1, y1), Q = (x2, y2) ∈ E\{O} for characteristic > 3. The point −P is given by (x1,−y1).
Suppose Q 6= −P , then P +Q = (x3, y3), where

x3 = λ2 − x1 − x2 (4)
y3 = λ(x1 − x3)− y1 (5)

λ =

{
(y2 − y1)/(x2 − x1), if P 6= Q

(3x21 + a)/2y1, if P = Q
(6)

Similarly for m ∈ Z and P ∈ E, the scalar multiplication by m is defined as:
[m]P = P + ...+ P (m terms) for m > 0, [0]P = O, and [−m]P = [m](−P) for m < 0.

The order of a point P ∈ E is the smallest positive integer k such that [k]P = O and
the order is said to be infinite in case no such integer exists. If [n]P = O for P ∈ E,
then P is called an n-torsion point. The subgroup of n-torsion points in E is denoted by
E[n], so

E[n] = {P ∈ E : [n]P = O}.
Moreover, we can write E(K)[n] for the subgroup of n-torsion points in E(K), so

E(K)[n] = {P ∈ E(K) : [n]P = O}.
Let E be an elliptic curve defined over Fq. The number of points in E(Fq), called the
order of the elliptic curve, is denoted by #E(Fq). The trace of Frobenius or simply
trace of a curve is the value t satisfying #E(Fq) = q + 1− t. The elliptic curve E/Fq is
said to be supersingular if the characteristic p of Fq divides t, and non-supersingular
otherwise.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

2.2. Functions on an Elliptic Curve
Let K = Fq and let the curve E/K be given by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (7)

We define the function r ∈ K[x, y] by

r(x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x− a6,

then the coordinate ring K[E] of E over K is defined as the integral domain

K[E] = K[x, y] = (r),

where (r) is the ideal in K[x, y] generated by r. Similarly, K[E] is defined as

K[E] = K[x, y] = (r)

We can write l ∈ K[E] in canonical form,

l(x, y) = v(x) + yw(x), v(x), w(x) ∈ K[x],

by using the relation 2 to knock down exponents of y that are greater than or equal to
2. By taking the field of fractions of K[E], we obtain the function field K(E). Here, two
elements f1/g1 and f2/g2 ∈ K(E) are identified if f1g2 = f2g1. Similarly for K, K(E) is
the field of fractions of K[E]. An element of K(E) is called a rational function.

Definition 2.1. Zeros and Poles of a Function: A non-zero rational function
f ∈ K(E)∗ is said to be defined at a point P ∈ E O if f can be written as f = g/h,
for g, h ∈ K[E], with h(P) 6= 0. In that case, the evaluation of f at P , given by
f(P) = g(P)/h(P), is well-defined. Further, f is said to have a zero at P if f(P) = 0,
and f is said to have a pole at P (denoted by f(P) =∞) if f is not defined at P . It is to
be noted that a non-zero rational function can only have a finite number of zeros and
poles.

Definition 2.2. Uniformizing Parameter of a Point: For every point P ∈ E,
there exists a rational function u with u(P) = 0, such that every non-zero rational
function f ∈ K(E)∗ and is written as f = uds, where s ∈ K(E), s(P) /∈ 0,∞, for some
integer d. This function is called a uniformizing parameter for P .

Definition 2.3. Multiplicity of Zeros and Poles: Let u be a uniformizing parame-
ter for P ∈ E. The non-zero rational function f ∈ K(E)∗ can be decomposed as f = uds,
where s ∈ K(E) and s(P) /∈ 0,∞. Then the order of f at P , denoted as ordP (f), equals
d. If P is a zero of f , then ordP (f) > 0 and the zero is said to have multiplicity ordP (f).
In case P is a pole, then ordP (f) < 0 and the multiplicity of the pole is defined as
−ordP (f). If P is neither a zero nor a pole, then ordP (f) = 0.

Definition 2.4. Divisors: Next we define a divisor D as a formal sum of points

D =
∑
P∈E nP (P)

where nP ∈ Z and nP = 0 for all but finitely many P ∈ E. The group of divisors of E,
denoted Div(E), is the free abelian group generated by the points of E, where addition
is given by ∑

P∈E nP (P) +
∑
P∈EmP (P) =

∑
P∈E(nP +mP)(P)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:7

The support of a divisor D =
∑
P∈E nP (P) ∈ Div(E) is given by the set of points

supp(D) = {P ∈ E|nP 6= 0}.
Further, its degree deg(D) is defined by

deg(D) =
∑
P∈E nP .

The divisors of degree 0, denoted Div0(E), form a subgroup of Div(E). For any degree
zero divisor D ∈ Div0(E), there is a unique point P ∈ E such that D ∼ (P) − (O). In
canonical form, it is written as:

D = (P)− (O) + div(f) (8)

where f ∈ K(E) is uniquely determined up to a constant multiple.

Definition 2.5. Principle Divisor: The divisor of a function f , denoted div(f), as:

div(f) =
∑
P∈E ordP (f)(P).

Note that div(f) = 0 if and only if f is a constant function. A divisorD ∈ Div(E) is called
principal if D = div(f) for some rational function f . Two divisors D1, D2 ∈ Div(E) are
said to be (linearly) equivalent, denoted D1 v D2, if D1 − D2 is principal, i.e. we can
write:

D1 = D2 + div(f) (9)

for some rational function f .

Definition 2.6. Picard Group: The set of all principal divisors is denoted Prin(E).
The quotient group

Pic(E) = Div(E)/Prin(E)

, which represents the set of divisors that are not principal, is called the Picard group
or divisor class group. From the fact that

div(f1f2) = div(f1) + div(f2)

for all f1, f2 ∈ K(E) follows that Prin(E) forms a subgroup of Div0(E). Hence, we can
define the group called the degree zero part of the Picard group, or divisor class group
of E, as follows:

Pic0(E) = Div0(E)/Prin(E).

Finally we will conclude this subsection by the Weil’s reciprocity law which states:

THEOREM 2.7. (Weil’s reciprocity law) Let f, g ∈ K(E). Then f(div(g)) = g(div(f))

2.3. Weil Pairing
Definition 2.8. Let F : E −→ E be a nonconstant rational mapping of smooth

curves, P ∈ E and u ∈ K(E) is a uniformizing parameter for F (P). Then the rami-
fication index of F at P is defined by

eF (P) = ordP (u ◦ F)

By the definition of the order of a point, eF (P) is independent of the choice of u and
that u ◦ F has a zero at P , and eF (P) ≥ 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

Definition 2.9. Let F : E −→ E be a nonconstant rational mapping of smooth
curves. The homomorphism F ∗ : Div(E) −→ Div(E) is given by

F ∗((Q)) =
∑
F (P)=Q eF (P).(P)

Let m ≥ 2 be a fixed integer coprime to p = char(K). Suppose T ∈ E[m], then, the
divisor m(T)−m(O) is principal. Let f ∈ K(E) be a function such that div(f) = m(T)−
m(O).Therefore, the divisor

[m]∗(T)− [m]∗(O) =
∑

[m]P=T

e[m](P).(P)−
∑

[m]P=O

e[m](P).(P)

=
∑

R∈E[m]

(T ′ +R)− (R), s.t. [m]T ′ = T, T ′ ∈ E

Since e[m]=1, this has degree 0. Since #E[m] = m2 and [m2]T ′ = O,

∑
R∈E[m](T

′ +R)− (R) = [m2]T ′ = O

Therefore, [m]∗(T) − [m]∗(O) is a principle and there is a function g ∈ K(E) with
div(g) = [m]∗(T)− [m]∗(O). Now we can define Weil Pairing.

Definition 2.10. The Weil em-pairing em : E[m]× E[m] −→ µm is given by:

em(S, T) = g(X + S)/g(X)

where X ∈ E is any point such that g(X +S), g(X) /∈ 0,∞, and µm is the group of m-th
roots of unity in K.

THEOREM 2.11. (Properties of Weil Pairing): Let S1, S2, S;T1, T2, T ∈ E[m]. The
Weil pairing satisfies the following properties:

(1) em(S1 + S2, T) = em(S1, T)em(S2, T) (linearity in the first factor).
(2) em(S, T1 + T2) = em(S, T1)em(S, T2) (linearity in the second factor).
(3) em(S, S) = 1 (identity).
(4) em(S, T) = em(T, S)−1 (alternation).
(5) If em(S, T) = 1 for all S ∈ E[m], then T = O (non-degeneracy).

The details of these properties are given in [Silverman 1986].

2.4. Tate Pairing
Similar to the Weil pairing, the Tate pairing is defined in terms of rational functions

evaluated in a certain divisor. Let P ∈ E(Fqk)[m], then m(P) − m(O) is a principal
divisor. Let g ∈ Fqk(E) with div(g) = m(P) −m(O). Now let Q be a point representing
a coset in E(Fqk)/mE(Fqk), then we construct a divisor D ∈ Div0(E) such that D v
(Q)− (O). D is selected such that its support is disjoint from the support of the divisor
of g. Next, we can define Tate Pairing as:

Definition 2.12. the Tate pairing is given by:

< ., . >: E(Fqk)[m]× E(Fqk)/mE(Fqk) −→ F ∗qk/(F
∗
qk)m

is given by: < P,Q >= g(D).

The properties of Tate pairing are given below:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:9

(1) < O, Q > = 1 for all Q ∈ E(Fqk) and < P,Q >∈ (F ∗qk)m for all P ∈ E(Fqk)[m] and all
Q ∈ E(Fqk)/mE(Fqk) (well-defined).

(2) For each point P ∈ E(Fqk)[m]/O, there is some point Q ∈ E(Fqk) such that
< P,Q >/∈ (F ∗qk)m (non-degeneracy).

(3) For all P1, P2, P ∈ E(Fqk)[m] and Q1, Q2, Q ∈ E(Fqk), we have < P1 + P2, Q >=<
P1, Q >< P2, Q >, and < P,Q1 +Q2 >=< P,Q1 >< P,Q2 > (bilinearity).

3. PROPOSED AUTHENTICATION, KEY EXCHANGE AND SECURE COMMUNICATION
PROTOCOL

In this section, we describe a protocol that provides the functionalities of authentica-
tion, key exchange and secure communication, and can be suitably implemented in an
IoT infrastructure.

The IoT network consists of several mobile “data nodes” (referred as
Node1, Node2, ..., Nodei in Fig. 2), which act as sources and recipients of information. A
static “server node” (referred as Server Node1, ..., Server Noden) is used to coordinate
the communication of each node in its read range, and pass the data to a “router” (re-
ferred as Router1, ..., Routerm). The router consequently passes the information to the
cloud through the “Network Gateway” to be utilized [Murthy and Manoj 2004]. The
data nodes are constrained in computational resources, while the server nodes and all
the other higher level nodes are relatively resourceful. It is assumed that the server
nodes and the data nodes are so distributed that each data node is within the read
range of at least one server node at all times. Each data node, server node and router
possess a PUF instance which is used to authenticate them to the server node, router
and the network gateway, respectively. Note that in our proposed architecture there is
no explicit key storage at any of the nodes. We will describe our protocol with respect
to the data nodes and the server nodes; however it is to be noted that this mechanism
extends to higher level nodes in the infrastructure. The proposed protocol follows the
following steps as described below:

• Initially, an Enrolment Phase is executed, once for each data node being managed
by a given server node. This procedure creates a CRP database for the PUF contained
in each node, in the server node corresponding to the data node.
•When two nodes (supervised by the same server node) want to communicate, their

common server node first authenticates them, and then helps them to generate their
pubic/private key pairs, and then enables secure key sharing. This is termed the
Authentication and Key Sharing Phase.
•Finally, in the Secure Communication Phase, the two nodes send and receive the

message securely over the network using the keys, without any intervention of the
server.
• If a data node moves to a new location so that it has to be managed by a new server

node, the authentication procedure has to be carried out between the data node and
the new server node supervising it.

It has been assumed that each data node holds the address of the server node known
as “home address” to which it is enrolled in. When it moves to the domain of a new
server node, a “handoff mechanism” [Murthy and Manoj 2004] reassigns the node to
the new server. To initiate it, the data node sends the authentication request to the new
server node along with its home address. If the address is within the range of the router
to which the new server belongs, then it randomly chooses two challenges and sends an
encrypted message to the old server asking for the responses corresponding to the data
node’s CRP database. As these two server are under the same router, it can be assumed
that they already have session key pairs or can create a pair by authenticating to the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

 Routeri Routerj
Routerm

Node1 Node2

Router1

Nodef

Server Noden

Nodei
Nodei Nodef2

1

3

45

1

2

3

4

7

9

5

6

8

Server Nodef
Server Node1 Server Nodei Server Nodej

Network Gateway

Key generation and secure communication between Node1 and Node2

Key generation and secure communication between Server Nodei and
Server Nodej are done after the authentication by Routerj.

Key generation and secure communication between Routeri and Routerj

are done after the authentication by Server Node1.

are done after the authentication by Network Gateway.

1. Nodei moves from the domain of Server Nodej to Server Nodei.
2. Nodei requests for authentication to Server Nodei.

3. Server Nodei randomly selects two challenges and requests Server Nodej
for the responses from CRP database of Nodei.
4. Server Nodej sends the responses to Server Nodei.
5. Nodei is authenticated by Server Nodei using the two challenge− response pairs.

1. Nodef moves from the domain of Routeri to Routerm.
2. Nodef requests for authentication to Server Noden.
3. Server Noden randomly selects two challenges and forwards the request to Routerm.

4. Routerm requests Routeri for the responses from CRP database of Nodef .

5. Routeri forwards the request to Server Nodef .

6. Server Nodef sends the responses toRouteri.

7. Routeri forwars the responses to Routerm.

8. Routerm forwards the responses to Server Noden.

9. Nodef is authenticated by Server Noden using the two challenge− response pairs.

Fig. 2. The secure communication mechanism in different levels of IoT architecture.

router. Once the old server receives the message, it retrieves the responses from the
data node’s CRP database and forwards it back to the new server. Consequently, the
new server authenticates the data node using these two challenge-response pairs.

However, if the old server resides in the domain of a different router, then the new
server forwards the request to its router. It then finds out the router of the old server
and sends the message to it (using their public/private key pairs). The router of the
old server retrieves the responses from it and again forwards them to the router of the
new server. It comes back to the new server later and is used for authenticating the
data node by the new server. Once authentication is done, the data node can establish
key pairs with any other data node in the new server’s domain.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:11

 Server

Randomly choses a challenge C

Node

 (Holds the PUF)

R
 Append <C,R> into database

(Holds the database)

(The process is repeated for pre−defined K times)

 R=PUF(C)

C

Fig. 3. The enrolment phase of the proposed protocol.

3.1. Public Mathematical Parameters
Our scheme requires that the communicating parties must agree on several mathe-
matical parameters before initiating communication. For some large prime value p,
two groups G1, G2 of order p (as mentioned in Section 2) are generated, and an admis-
sible bilinear map ê: G1 × G1 → G2 is defined over these two groups. We also need to
choose four secure cryptographic hash functions:

•H1: {0, 1}n → G∗1
•H2: G2 → {0, 1}n
•H3 : {0, 1}n × {0, 1}n → Z∗p , where Z∗p is a set non-negative integers less than p and

co-prime to p.
•H4: {0, 1}n → {0, 1}n

where n is the bit length of the message. So the public mathematical parameters are:
<p, G1, G2, ê, n, H1, H2, H3, H4>.

3.2. Enrolment Phase
Before deploying the nodes in the communication network, the enrolment phase is
executed for each node in a secure and trusted environment. The steps are shown in
Fig. 3, and are summarized as follows:

•The server sends a random challenge C to the node.
•The node applies the challenge C to its PUF, and generates the output R = PUF (C)

and returns it to the server.
•The server stores the response along with the challenge by appending <C,R> to its

database.
•This procedure is repeated k times predefined according to the memory capacity of

the server.

At the end of the enrolment phase for a given node, the server node supervising the
data node has a CRP database with k CRPs for the node. Here we have assumed that
the server stores the CRP in a secure database which cannot be accessed by the at-
tacker, and that the server is sufficiently resourceful to implement secure databases.
This assumption is based on the fact that there are several existing methodologies
[Dubey et al. 2015; Mutti et al. 2015; Kim et al. 2016; Guo and Xu 2015] to control au-
thentication, authorization and grant secure access to databases at the current state-
of-the-art.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

Server

Calculates:

ID1,P1,K1PUB,d1

ID1 ⊕P1 ⊕K1PUB ⊕TS) == d1
ID2,P2,K2PUB,d2

Node1

ID2 ⊕P2 ⊕K2PUB ⊕TS == d2)

Calculates:

∆2 = H1(R3||R4||TS)

TS′
2 = TS⊕ (R3||R4)

d4 = H4(R3 ⊕R4 ⊕ ID1 ⊕P1 ⊕K1PUB)

ID2,P2,K2PUB,d3

Calculates:

P2 = H1(C3 ⊕C4)

K2PUB = s ·P2

K2PRV = s · ID2

d3 = H4(R1 ⊕R2 ⊕ ID2 ⊕P2 ⊕K2PUB)

where s ∈R Z∗
q

d2 = H4(PUF2(C3)⊕PUF2(C4)⊕ ID2

⊕P2 ⊕K2PUB ⊕TS)

Node1 accepts K2PUB.

P1 ⊕K1PUB) == d4

ID1,P1,K1PUB,d4

C1,C2 ∈R CRP1

C3,C4 ∈R CRP2

C1,C2,TS′
1

ID1 = H1(PUF1(C1)||PUF1(C2)||TS)

P1 = H1(C1 ⊕C2)

K1PUB = t ·P1

K1PRV = t · ID1

where t ∈R Z∗
q

d1 = H4(PUF1(C1)⊕PUF2(C2)⊕ ID1

⊕P1 ⊕K1PUB ⊕TS)

P2 ⊕K2PUB) == d3

TS = TS′
1 ⊕ (PUF1(C1)||PUF1(C2))

If H4(PUF1(C1)⊕PUF1(C2)⊕ ID2⊕

If ID1 == ∆1 and H4(R1 ⊕R2⊕

If ID2 == ∆2 and H4(R3 ⊕R4⊕

TS′
1 = TS⊕(R1||R2)

Node2 accepts K1PUB.

If H4(PUF2(C3)⊕PUF2(C4)⊕ ID1⊕

∆1 = H1(R1||R2||TS)

TS = TS′
2 ⊕ (PUF2(C3)||PUF2(C4))

ID2 = H1(PUF2(C3)||PUF2(C4)||TS)

Node1,Node2

Node1,C3,C4,TS′
2

Node1 is authenticated.

Node2 is authenticated.

Node2

Fig. 4. Authentication and key sharing phase.

3.3. Authentication and Key Sharing Phase
The second phase of this protocol performing authentication and key sharing is de-
scribed below as shown in Fig. 4.

•At first,Node1 initiates a request to inform the server about its willingness of sending
a message to Node2, and to supervise the communication.
•The server chooses two challenges C1 and C2 randomly from the stored PUF CRP

database of Node1, and C3 and C4 randomly from the stored PUF CRP database of
Node2. The server node also fixes a timestamp (TS) for initializing the protocol, and
performs the following computations:

∆1 = H1(R1||R2||TS)

∆2 = H1(R3||R4||TS)

TS′1 = TS ⊕ (R1||R2)

TS′2 = TS ⊕ (R3||R4)

(10)

where R1, R2, R3 and R4 are the PUF responses corresponding to the challenges C1,
C2, C3 and C4. Note that ∆1 and ∆2 are calculated as elements of G∗1.
•The server node then sends (C1, C2, TS

′
1) to Node1 and (Node1, C3, C4, TS

′
2) to Node2.

•After receiving the message from server, Node1 calculates:
TS = TS′1 ⊕ (PUF1(C1)||PUF1(C2))
ID1 = H1(PUF1(C1)||PUF1(C2)||TS)
P1 = H1(C1 ⊕ C2)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:13

Thus Node1 applies the challenges C1, C2 to its PUF instance, gets the corresponding
responses, and calculates the value of ID1 ∈ G∗1, which ideally must be equal to ∆1.
•Next, Node1 randomly chooses a value t such that t ∈R Z∗q and computes:
K1PUB = t · P1

K1PRV = t · ID1

d1 = H4(PUF1(C1)⊕ PUF1(C2)⊕ ID1 ⊕ P1 ⊕K1PUB ⊕ TS)
•Node1 then sends a message to the server which contains (ID1, P1,K1PUB , d1). Note

that K1PUB and K1PRV act as the public and private key for Node1 respectively.
•Node2 also performs operations similar to Node1:
TS = TS′2 ⊕ (PUF2(C3)||PUF2(C4))
ID2 = H1(PUF2(C3)||PUF2(C4)||TS)
P2 = H1(C3 ⊕ C4)
Thus Node2 applies the challenges C3, C4 to its PUF instance, and gets the corre-
sponding responses, and calculates the value of ID2 ∈ G∗1, which ideally must be
equal to ∆2.
•Next, it randomly chooses a value s such that s ∈R Z∗q and computes:
K2PRV = s · ID2

K2PUB = s · P2

d2 = H4(PUF2(C3)⊕PUF2(C4)⊕ID2⊕P2⊕K2PUB⊕TS). As in case of Node1, K2PUB
and K2PRV act as the public and private key for Node2 respectively.
•Node2 sends a message to the server which contains (ID2, P2,K2PUB , d2).
•After receiving messages from both Node1 and Node2, the server node needs to

authenticate them individually, and also check whether the public key truly be-
longs to the correct node claiming it. To ensure this, it first checks if ID1 = ∆1,
and if the test passes, then data node Node1 is authenticated. Additionally, if
H4(R1 ⊕ R2 ⊕ ID1 ⊕ P1 ⊕ K1PUB ⊕ TS) = d1, then the public key is also authen-
tic and it belongs to Node1. Hence the server node accepts it.
• Similarly, if the server finds ID2 = ∆2, then the data node Node2 is authenticated.

Additionally, if H4(R3 ⊕ R4 ⊕ ID2 ⊕ P2 ⊕K2PUB ⊕ TS) = d2, then the public key is
also authentic and it belongs to Node2. Hence the server node accepts it.
•When the server completes authentication for both the parties, it transmits the public

keys to their corresponding receivers. For that, it calculates:
d3 = H4(R1 ⊕R2 ⊕ ID2 ⊕ P2 ⊕K2PUB) d4 = H4(R3 ⊕R4 ⊕ ID1 ⊕ P1 ⊕K1PUB)
•Finally, the server node sends Node1 and Node2 two messages containing

(ID2, P2,K2PUB , d3) and (ID1, P1,K1PUB , d4), respectively.
•Once the message from the server node is received by Node1, it calculates:
H4(PUF1(C1) ⊕ PUF1(C2) ⊕ ID2 ⊕ P2 ⊕ K2PUB). If it equals d3, then Node1 is en-
sured that the message is truly generated by the server node, and thus Node1 accepts
Node2’s public key.
• Similarly, Node2 calculates: H4(PUF2(C3) ⊕ PUF2(C4) ⊕ ID1 ⊕ P1 ⊕ K1PUB). If it

equals to d4, then Node2 is assured that the message is truly generated by the server
node, and Node1’s public key is accepted by Node2.

3.4. Secure Communication Phase
The final phase is where the actual secure transmission of message takes place from
Node1 to Node2. In this phase, we have used Weil pairing to make the message commu-
nication secure against CPA and CCA attack. The proof of security is given in [Boneh
and Franklin 2003]. In addition, we have modified the protocol so that it becomes se-
cure against repudiation attack. In this case, we have utilized the bilinearity property
of Weil pairing and collision resistant hash function to ensure that the sender of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

Selects{M,nonce} ∈R {0, 1}n

Calculates:

X = W ·P2

Z = M⊕H4(nonce)⊕V X,Y,Z

M′ = Z⊕H4(nonce
′)⊕

X == W′ ·P2, then accept M′ as M,

else reject M .

If X /∈R G∗
1, reject M.

V = H2(ê(K1PRV,P1))

Y = nonce⊕H2(ê(K2PUB, ID2)
W)

Node1 Node2

W = H3(nonce||M)

W′ = H3(nonce
′||M′)

nonce′ = Y ⊕H2(ê(X,K2PRV))

H2(ê(ID1,K1PUB))

ˆ

Fig. 5. Secure communication phase resistant against CCA and CPA attacks.

message cannot deny it later. In Fig. 5, we have illustrated the steps of the secure com-
munication phase. The secure communication phase consists of the following steps:

•First, Node1 (the sender) executes the following steps:
— It selects the message M and a nonce. Both of the entities are n-bit long. It then

calculates the following: V = H2(ê(K1PRV , P1)). Note that since K1PRV = t · ID1,
it follows that: ê(K1PRV , P1) = ê(t · ID1, P1)=ê(ID1, P1)t ∈ G2.

—Node1 then calculates W = H3(nonce ‖M) and X = W · P2.
—Node1 further calculates: Y = nonce ⊕ H2(ê(K2PUB , ID2)W) = nonce ⊕ H2(ê(s ·
P2, ID2)W) = nonce⊕H2(ê(P2, ID2)s·W), and,

—Z = M ⊕H4(nonce)⊕ V
— Finally, for the plaintext M , Node1 creates the ciphertext as the 3-tuple (X,Y, Z),

and sends to Node2.
•Once Node2 receives the ciphertext, it follows the below steps:

— If X /∈ G∗1, Node2 rejects the message, otherwise calculates the following three
values:

— nonce′ = Y ⊕H2(ê (X,K2PRV)
= Y ⊕H2(ê (W · P2, s · ID2)
= Y ⊕H2(ê(P2, ID2)s·W)

—M ′ = Z ⊕H4(nonce′)⊕H2(ê(ID1,K1PUB))
= Z ⊕H4(nonce′)⊕H2(ê(ID1, t · P1))
= Z ⊕H4(nonce′)⊕H2(ê(ID1, P1)t) and,

—W ′ = H3(nonce′ ‖M ′).
— If X equals W ′ · P2, Node2 accepts M ′ as the message, otherwise it rejects the

message.
— Now, if Node1 does not send the message, then the value of H2(ê(K1PUB , ID1))

cannot be equal to V (with only a negligible probability of collision). That, in turn,
implies that X 6= W ′ ·P2. Therefore, Node2 never accepts an incorrect message M ′
in place of M . And if it accepts the message, then Node1 cannot deny that it did
not send it.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:15

4. SECURITY ANALYSIS
Attack Models: Next we will shortly describe attack models for the session key ex-
change protocol. For that, we have considered three different attack models as de-
scribed below.

•Session Key Security Model: Under this framework, we have assumed all of the
data nodes, servers, routers and network gateway are trusted. The attacker either (i)
eavesdrops the communication link without any change or addition to the messages
(e.g. packet sniffing attack) or, (ii) has full control over the links and can modify
the messages (e.g. packet injection or re-routing attack). In Section 4.4, it has been
shown that the protocol is secure against both of these attack variants.
•Universally Composite Framework: This model ensures that the proposed key ex-

change protocol provides the same security when used by any other protocol to set
up session keys between two parties, even when it runs in parallel with an arbitrary
set of other protocols in a distributed communication network. The primary concepts
of this framework are described in Section 4.5. We have described an ideal function-
ality of the asymmetric key exchange protocol in Section 4.6. Here also the attacker
has full control over the links. Moreover, she can get more advantages if some of the
participants get compromised. We have shown three such scenarios where:
(1) Server and the two communicating parties are honest (ideal case).
(2) The server is corrupt (e.g., the attacker can have access to the CRP database for

a limited time)
(3) Either of the two communicating parties or both are corrupt (e.g., in real life

implementation, we can picture this scenario as the attacker can control the in-
ternal functioning of the node and tries to send some malicious information to
disrupt the system)

Further, we have shown what the implications will be in the proposed scheme for
these three level of attacks. We have presented the security analysis for the server-
node layer. But it is also applicable for router-server and gateway-router layer also.
•Malicious PUF Model: In this model, we have assumed that after the enrolment

phase, the attacker has either tampered the PUF of a specific node or has replaced
it by some malicious or untrusted PUF. Subsequently the attacker eavesdrops or
modifies the messages transmitted over the network and tries to guess the private
key of that particular node. In this case also, we have shown that our protocol is
secure from any such vulnerability.

4.1. Definition of Session-Key Security
The definition of Session-Key Security (SK security) is based on the approach called
“security by indistinguishability”. To elaborate, this approach evaluates the security of
a cryptographic system as follows. Suppose, two games Game1 and Game2 are con-
structed in which the adversary communicates with the protocol under considera-
tion. If no feasible adversary can distinguish between whether she is interacting with
Game1 or Game2, then the protocol is said to be indistinguishable and secure. Further,
in order to ensure that the proposed cryptographic scheme is secure against differing
capabilities of the attacker, usually two adversarial models are considered:

•The Unauthenticated-link Adversarial Model (UM): Here, a probabilistic
polynomial-time (PPT) attacker is considered who has full access/control over the
communication links, along with the scheduling of all protocol events such as initia-
tion of protocols and message delivery.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

•The Authenticated-link Adversarial Model (AM): In this case, the attacker is
restricted to only deliver messages truly generated by the parties without any change
or addition to them.

To define UM, first an “experiment” is defined where the attacker Λ chooses to attack
a session under “test”, and is asked to distinguish between the real value of the session
key and a random value. Let κ be the shared session key of the session under test. We
consider the result of a coin toss b, where b ∈ {0, 1}. If b = 0, the value κ is given
to the attacker Λ, otherwise a random value r, randomly chosen from the probability
distribution of keys generated by the protocol π, is provided. The attacker have the
permission to act as a regular UM attacker, and at the end of its run, outputs a bit b′.
Under this model,

Definition 4.1. A key-exchange (KE) protocol π is called SK-secure if the following
properties hold for any KE-adversary Λ in the UM:

(1) Protocol π satisfies the property that if two uncorrupted parties successfully com-
plete a session then they both output the same key, and,

(2) the probability that Λ guesses correctly the bit i.e., b′ = b is more than 1
2 by only a

negligible quantity.

We can define a function f as negligible if for every polynomial p(·), there exists an
M such that for all integers n > M , f(n) < 1

p(n) [Katz and Lindell 2007]. In other word,
a function that grows slower than any inverse polynomial is termed “negligible”.

In our proposed protocol, since we have used the identity-based encryption system,
hence the session keys in this case are asymmetric keys. Still, in the subsequent sec-
tions we will show that our cryptographic constructions can be extended to be relevant
to the above definitions of security, and hence it is SK-secure in AM and UM adversar-
ial model.

4.2. The Uniqueness Property of Physical Unclonable Functions
The cryptographic security of our proposed authentication and key exchange scheme is
based on the Uniqueness Property of the Physically Unclonable Functions. The unique-
ness property of the PUF circuit embedded in a chip provides the capability of uniquely
identify it from a set of PUF instances of the same type, which have gone through the
same manufacturing process. The uniqueness metric is defined as:

Uniqueness =
2

k(k − 1)

k∑
i=1

k∑
j=i+1

HD(Ri, Rj)

n
× 100 (11)

whereHD(Ri, Rj) is the Hamming Distance between the responses of ith and jth FPGA
chip embedding PUF for a particular challenge C and k is the total number of chips
under consideration, and n is the total number of response bits of the PUF. The above
equation needs some explanation. The metric is calculated considering pairs of PUF
instances (Pi, Pj) (with i 6= j), calculating the HD between their responses (for the
same set of applied challenges), dividing the HD by the number of PUF output bits
(i.e. n), summing all the HD values for all the PUF instance pairs, and finally dividing
by the total number of (unordered) pairs from the set of k PUF instances (which is

(
k
2

)
).

The quantity is multiplied by 100 to convert it to a percentage value. The ideal value
of the uniqueness metric is 50%.

At the current state-of-the-art, it is infeasible to physically clone a given PUF in-
stance, for most PUF types. The only reported successful physical cloning of PUF
is [Helfmeier et al. 2013] for the SRAM PUF. In other words, given a PUF instance

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:17

with a particular CRP characteristics, it is infeasible to fabricate another PUF in-
stance which is sufficiently similar in its CRP characteristics. PUFs can also be math-
ematically replicated, whereby a mathematical model of a given PUF instance, usually
built by machine learning techniques, is capable of predicting the response for an arbi-
trary challenge with very high probability of success (> 0.95). Certain PUF types (e.g.
Arbiter PUF) can be mathematically modeled extremely accurately [Rührmair et al.
2010]. However, by choosing the appropriate PUF type (e.g. Lightweight Se-
cure PUF or XOR PUF) [Rührmair et al. 2010], we can avoid both physical
and mathematical cloning. We will prove that our proposed protocols are secure
as long as the underlying problem of replicating (either physically or mathematically)
the challenge-response mapping of a given PUF instance is hard. The basic security
assumption is: this challenge-response mapping cannot be constructed accurately by
any polynomial time algorithm except with negligible probability, as formalized in the
security definitions below:

Definition 4.2. (Decisional Uniqueness Problem (DUP)) Given a PUF instance
PUFAdv, a challenge C and an n-bit string z ∈ {0, 1}n, theDUP aims to decide whether
z = PUFN (C) for a PUF instance PUFN , or a random n-bit string.

Definition 4.3. (2-Decisional Uniqueness Problem (2-DUP)) Given a PUF instance
PUFAdv, two challenges C1, C2, and two n-bit strings z1, z2 ∈ {0, 1}n, the problem aims
to find out whether z1 = PUFN (C1) and z2 = PUFN (C2) for another PUF instance
PUFN , or two random n-bit strings.

Next we will define the assumption for DUP and 2-DUP which will provide
the computational indistinguishability for some probabilistic, polynomial time al-
gorithm. The computational indistinguishability refers to the probability ensembles
which are infinite sequence of probability distributions. The Decisional Unique-
ness Problem Assumption can be formalized by stating that the ensemble of tu-
ples of type (C,PUFAdv, z) is computationally indistinguishable from the ensemble
of tuples of type (C,PUFAdv, PUFN (C)). Similarly, 2-Decisional Uniqueness Prob-
lem Assumption can be formalized by stating that the ensemble of tuples of type
(C1, C2, PUFAdv, z1, z2) is computationally indistinguishable from the ensemble of tu-
ples of type (C1, C2, PUFAdv, PUFN (C1), PUFN (C2)).

Definition 4.4. (Decisional Uniqueness Problem Assumption) The problem of fab-
ricating a PUF instance PUFN using another instance PUFAdv is hard, and for all
probabilistic, polynomial time algorithm A, there exists a negligible function negl(·)
such that:

| Pr[A(C,PUFAdv, z) = 1]− Pr[A(C,PUFAdv, PUFN (C)) = 1] |6 negl(n) (12)

where n is the number of response bits of the PUF instance. This implies that given
an arbitrary challenge C and an arbitrary PUF instance PUFAdv, the adversary A
behaves almost identically, for a random element z ∈ {0, 1}n, and the actual n-bit
response PUFN (C).

Definition 4.5. (2-Decisional Uniqueness Problem Assumption) The problem of fab-
ricating a PUF instance PUFN using another instance PUFAdv is hard, and for all
probabilistic, polynomial time algorithm B, there exists a negligible function negl(·)
such that:

| Pr[B(C1, C2, PUFAdv, z1, z2) = 1]−
Pr[B(C1, C2, PUFAdv, PUFN (C1), PUFN (C2)) = 1] |6 negl(n)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

which implies that given two challenges C1, C2 and the PUF instance PUFAdv, the
adversary B behaves almost identically, for a pair of two random elements z1, z2 ∈
{0, 1}n, and the actual n-bit responses PUFN (C1) and PUFN (C2).

Now we prove the following claim:
Claim: The 2-DUP problem is at least as hard as DUP.

PROOF. Suppose, there exists a PPT adversary B such that B has non-negligible
advantage ε in solving 2-DUP, i.e., B can break 2-DUP with a non-negligible probability
ε greater than 1

2 . Then, we will construct a PPT adversary A which also has advantage
ε in solving DUP.
A takes as input a random DUP input tuple (C,PUFAdv,z). Then, A constructs an

2-DUP input tuple (C,C, PUFAdv , z, z) and gives it to B. If z = PUFn(C), note that
this is a valid input tuple to B. The behaviour of A is such that if B outputs 1, then
A outputs 1; otherwise A outputs 0. Since A perfectly simulates B, hence, A has the
same advantage ε in breaking DUP. Therefore, 2-DUP is at least as hard as solving
DUP.

The implication of the above claim is that if we assume DUP to be a stan-
dard hard problem, 2-DUP is also another difficult problem to solve. This
result is crucial in proving the security of the proposed protocol.

4.3. Correctness Proof of the Proposed Scheme
We consider a setting with two parties, a data node N and the corresponding server
node currently in charge of the data node N . We denote the protocol by π. Recall
that the data node N contains a PUF instance PUFN , and the server node contains
a database consisting of a subset of the challenge-response pairs (CRPs) of PUFN .
The protocol also uses the timestamp of the session initiation in the computation to
make the approach more granular – this compels the node N to authenticate itself to
the server every time it wants to create a session with other nodes. Within a single
communication session, these two parties can communicate with each other multiple
times.

Let TS denote the timestamp used by the server at the time of the protocol
run for each node. Moreover, let outputN,π(C1, C2, (PUFN (C1)||PUFN (C2)) ⊕ TS) and
outputS,π(C1, C2, (R1||R2)⊕ TS) denote the respective outputs of the data node N , and
the server node (upon receiving the challenges C1, C2, and the time stamp TS). We
assume that this output takes the form of an element of G∗1 that is supposed to be con-
sidered as the identity of node N , and should be shared by the data node N and the
server node. Hence,

outputN,π(C1, C2, (PUFN (C1)||PUFN (C2))⊕ TS) = H1(PUFN (C1)||PUFN (C2)||TS)
(13)

and

outputS,π(C1, C2, (R1||R2)⊕ TS) = H1(R1||R2||TS) (14)

Next, we present the definition of the correctness requirement. It states that, except
with negligible probability, the data nodeN and the server node will generate the same
identity, and only node N will be authenticated to the server.

Definition 4.6. A protocol π for authentication and key exchange is called correct if
there exists a negligible function negl(·), such that for every possible value of n:

Pr[outputN,π(C1, C2, (PUFN (C1)||PUFN (C2))⊕ TS) 6=
outputS,π(C1, C2, (R1||R2)⊕ TS)] 6 negl(n)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:19

It can be trivially observed that:

H1(PUFN (C1)||PUFN (C2)||TS) = H1(R1||R2||TS) (15)

This means that the data node N and the server node will output the same value,
thereby proving the correctness of the scheme.

4.4. Security Proof of the Proposed Scheme
Now we define security in the context of the proposed authentication and key exchange
protocol in general. Intuitively, an authentication and key exchange protocol is secure
if the identity output by the data node N and the server node are identical, and no
adversary can correctly guess the identity for two challenges C1 and C2 and a times-
tamp TS chosen randomly. This has been formulated by giving an adversary the two
particular challenges C1, C2 and TS′ of a protocol execution, and observing if she can
distinguish between the ID output by data node N , and the server node and a com-
pletely random element of G∗1. We would show that breaking the proposed protocol is
at least as difficult as solving the 2-Decisional Uniqueness Problem, i.e., a successful
attack on the proposed protocol implies a feasible solution to the 2-Uniqueness Prob-
lem. In order to demonstrate this, an experiment has been presented next.

Let Adv be a probabilistic, polynomial time adversary, and the number of PUF
response bits be n. Then, consider the following experiment:
The Eavesdropping Authentication and Key Exchange Experiment
Authadv,π(n, ζ,PUFAdv, ID0, ID1) :

(1) The adversary Adv is provided:
(a) ζ=< C1, C2, TS′ > where TS′ = ((PUFN (C1)||PUFN (C2))⊕ TS).
(b) A PUF instance PUFAdv.
(c) two identities ID0 and ID1, which are calculated as: a random bit b ∈ {0, 1} is

chosen and the followings have been calculated.

IDb = H1(PUFN (C1)||PUFN (C2)||TS)

ID1−b = h ∈R G∗1
(2) The adversary Adv will output a value b′.

The adversary Adv succeeds in the experiment if she can distinguish between the
“correct” ID and the random one. Next we will prove the following theorem.

THEOREM 4.7. The authentication and key exchange protocol π is secure in the pres-
ence of eavesdropping adversaries if the 2-Decisional Uniqueness Problem Assumption
holds.

PROOF. To prove this, we will show that the protocol π is secure if the adversary suc-
ceeds in the experiment Authadv,π with probability that is at most negligibly greater
than 1

2 , i.e., for every probabilistic polynomial time adversary Adv, there exists a neg-
ligible function negl(·) such that:

Pr[Authadv,π = 1] 6
1

2
+ negl(n)

Let us assume that the adversary Adv has some non-negligible advantage ε in break-
ing the protocol π. Then we can construct an algorithm B which will have the same ad-
vantage ε in breaking the 2-Uniqueness problem. Now the algorithm B takes as input
a random 2-Uniqueness Problem tuple (C1, C2, PUFAdv, z1, z2) (where z1 = PUFN (C1)
and z2 = PUFN (C2) or two random string belongs to {0, 1}∗) and proceeds as follows:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

AuthAdv,Π

Instance of

”Break”

Protocol Π

Solution to PUF’s

Instance of PUF’s

B
2-Decisional Uniqueness Problem

2-Decisional Uniqueness Problem

Fig. 6. The view of Authadv,π when it is run as a sub-routine of B (referred to [Katz and Lindell 2007]).

(1) SetUp:Provide Adv with PUFAdv.
(2) Input tuple:

(a) First it randomly chooses TS.
(b) It calculates TS′ = (z1||z2)⊕ TS.
(c) Then sets ζ =<C1, C2, TS

′>, which is perfectly random to the adversary Adv.
(d) Next, it randomly chooses b ∈ {0, 1}.
(e) It then calculates IDb = H1(z1||z2||TS) and

ID1−b = h ∈R G∗1
(f) The algorithm B finally provides Adv the input tuple < ζ, ID0, ID1 >.

If z1 = PUFN (C1) and z2 = PUFN (C2), then IDb will be equal to
H1(PUFN (C1)||PUFN (C2)||TS) and it will a valid input tuple. Otherwise,
ID0, ID1 both will be some random element of G∗1.

(3) Guess: The adversary Adv returns b′, a guess of b. If b = b′, then the algorithm
B returns 1, implying that z1, z2 are the correct responses of C1, C2. Otherwise, it
returns 0.

Hence, it is proved that the adversary Adv has the same advantage ε as the adversary
B. But, due to the hardness 2-Uniqueness Problem, ε should be negligible. Hence,

Pr[Authadv,π = 1] 6
1

2
+ negl(n)

Once the authentication is done successfully, the data nodeN selects a random value
t ∈R Z∗q . Then, it locally calculates its {public,private} key pair K1PUB = t · P1 and
K1PRV = t · ID1, where P1 = H1(C1 ⊕C2). It keeps K1PRV secret and sends K1PUB to
the server over the authenticated link. Now assuming the complexity of the Compu-
tational Discrete Log Problem, the probability that the adversary Adv can retrieve the
value of t from K1PUB , knowing the value of ID1 is negligible. Hence the adversary
Adv fails to calculate the correct value of private key K1PRV .

If we consider the AM adversarial model, the adversary Adv is restricted to only
deliver messages truly generated by the parties without any change or addition to
them; hence she fails to calculate the private key of node N . On the other hand, in the
UM adversarial model, any change in the message sent over the channel will end up

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:21

with difference in the hashed value of the message at the data node and sever node
ends. From the result obtained in the previous theorem, we conclude the following:

THEOREM 4.8. Based on the complexity assumption of the Computational Discrete
Log Problem and that the hash function is collision resistant, the authentication and
key-exchange protocol π is SK-secure in AM as well as in UM model.

Next, we will prove the compatibility of the scheme with the universally composable
framework.

4.5. Security under Universally Composable Framework
First we turn to familiarize with the concept of Universally Composable (UC) frame-
work. The basic objective of this framework is to guarantee that any key exchange
protocol provides the same security for any other protocol which wants to set up ses-
sion keys between two parties, even when it runs in parallel with an arbitrary set of
other protocols in a distributed communication network. We will prove that the method
of key exchange as proposed in this work is also compatible with similar composability
properties. The definition of UC framework follows the approach referred as “security
by emulation of an ideal process”. The primary concept of this principle is as given
below [Canetti 2001]:

(1) The model of protocol execution consists of the communicating parties running the
protocol and the adversary. They are further considered as interacting computing
elements and modelled as Interactive Turing Machines (ITMs).

(2) We formulate an “ideal process” F that picks up the task f of the desired function-
ality.

(3) In the ideal process F all communicating parties provides inputs to an “idealized
trusted party” which locally performs the task, and sends each party its desired
output. In this regard, it is the formal specification of the security requirements of
the task.

(4) Additionally, a new algorithmic object, called the “environment machine” E , is added
in this computational model, which is considered to consist of everything external
to the current protocol execution, such as other protocol executions and their adver-
saries, human users, etc.

(5) The adversary Λ can directly interact with E throughout the execution of the pro-
tocol. They can exchange information after each message or output generated by
a party running the protocol. The environment E also has the permission to apply
inputs to the communication parties, and collect outputs from them. But the envi-
ronment E is constrained to collect outputs of the main program running in each
party, and not the output from the subroutines called from that main program. For
example, in our protocol, if the environment E randomly selects two challenges and
a timestamp and applies to any data node Nodei, it will receive (IDi, Pi,KiPUB , di)
as output (refer to Fig. 4). But it cannot directly query the PUF instance of Nodei
for a particular challenge and collect the response.

(6) If any protocol π securely realizes any task f with respect to this kind of “interactive
environment”, then it is said that “π UC-realizes f”.

(7) More illustratively, we can say that a protocol π securely realizes the task if the
running protocol π emulates the ideal process F for the task f , i.e., if there ex-
ists an adversary Λ which attacks protocol π, there also exists a “simulator” S that
achieves similar adversarial effect by interacting with the ideal process F . In addi-
tion, no environment E can tell with non-negligible probability of success whether
it is interacting with Λ and π, or with S and F for f .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

In the paper [Brzuska et al. 2011], the authors presented the ideal functionality
concept for symmetric key exchange protocol. In the following subsections, we will
extend these concepts for our asymmetric key exchange phase, and will also prove
that our scheme securely realizes the ideal functionality.

4.6. UC Security of the Proposed Key Exchange Phase
The main concept of asymmetric key exchange ideal functionality FAKE is the follow-
ing:

(1) If both the communicating parties are honest, the functionality provides them with
two random IDs, which is written directly to the party’s input tape. The adversary
cannot have access to the tape, hence the values are invisible to her.

(2) If one of the communicating parties is corrupt, then the adversary can easily deter-
mine the ID of the corrupt party.

(3) FAKE is parameterized by an integer N (the total number of permissible sessions),
where a server node runs with exactly n parties, Node1, Node2,...,Noden and the
simulator S.

The working principle of FAKE has been shown the Fig. 7. Next we prove the security
of FAKE .

THEOREM 4.9. Protocol π securely realizes functionality FAKE .

PROOF.
Here we assume that (a) the adversary possesses two PUF instances; (b)

queries to the PUFs are genuinely handed on to the simulator S ’s PUFs, and
(c) the PUFs’ answers are forwarded unmodified to the querying party through-
out all the simulations. We consider different usage and security scenarios in turn.
Case-1: Server and the two communicating parties are honest:

•Setup: Whenever the functionality FAKE receives message
(establish− sessionAKE, sid, Nodei, server, Nodej) for the first time, the simula-
tor S queries the two PUF instances PUFi and PUFj for k random challenges C1,
C2,..., Ck, and obtains responses Ri1, Ri2,..., Rik and Rj1, Rj2,..., Rjk. Then, it creates
two lists Li and Lj of k challenge-response pairs.
• It then hands over PUFi and PUFj to Nodei and Nodej .
•On receiving a message (establish− sessionAKE, sid, Nodei, server, Nodej),
FAKE increments p by one and the simulator S sends (deliverAKE , sid, server) to
FAKE .
• FAKE then sends (deliverAKE , sid, IDi, IDj , server) to the server.
•Now the simulator S is activated again and it simulates that the server sends

(C1, C2, TS
′
1) and (C3, C4, TS

′
2) to Nodei and Nodej .

•When the adversary Λ instructs to send the latter message to Nodei and Nodej , the
simulator S sends (deliverAKE , sid, IDi, Nodei) and (deliverAKE , sid, IDj , Nodej)
to FAKE .
•The probability that the value of H1(PUFi(C1)||PUFi(C2)||TSi) is equal to IDi

and the value of H1(PUFj(C3)||PUFj(C4)||TSj) is equal to IDj , is negligible (as
proved in Section 4.4) , where TSi = (PUFi(C1)||PUFi(C2)||TS′1) and TSj =
(PUFj(C3)||PUFj(C4)||TS′2).

Case-2: Server is corrupt:

•The simulator S lets the server to instantiate two PUFs PUFi and PUFj , and hands
them over to Nodei and Nodej .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:23

(establish− sessionAKE, sid,
Nodei, server, Nodej) ?

If p > N

by nodei?

message written
in the input tape of FAKE in the input tape of FAKE

message written

by S?

Message ==

Yes

If p > 1 and i, j ∈ n

Nodei, server, Nodej) or

Nodej, server, Nodei) ?
(establish− sessionAKE, sid,

If there exists a tuple

(establish− sessionAKE, sid, Nodei, server, Nodej)

S writes on his input tape

all parties are honest?

It draws two random values
IDi, IDj in G∗

1.

Stores the messages

p = p + 1

Stores the messages

(deliverAKE, sid, IDi, IDj, server),

p = p + 1

(deliverAKE, sid, IDi, IDj, server),

(deliverAKE, sid, IDi, Nodei),

(deliverAKE, sid, IDj, Nodej)

(deliverAKE, sid, IDi, Nodei),

(deliverAKE, sid, IDj, Nodej)

(deliverAKE, sid, IDi, Nodei),

in the input tape of Nodei

on the input tape of Nodej and server

it writes (deliverAKE, sid, IDj, Nodej) and

Similarly for Nodej and server

p = p− 1

No

FAKE checks if

then FAKE writes (deliverAKE, sid, IDi, Nodei)

(deliverAKE, sid, IDi, IDj, server)

If there exists a tuple

FAKE deletes the tuples from the input tape

Yes

No

Message ==

(choose− valueAKE, sid, Nodei, server, Nodej,

IDi, IDj)?

(deliverAKE, sid, Nodei, server, Nodej)?

Message ==

FAKE sets p = 1

FAKE waits for new message

(establish− sessionAKE, sid,

New Message

No

Yes Yes

No

No

Yes
Yes

No

No

No

Yes

Yes

Yes No

START (N, n)

STOP

Fig. 7. The asymmetric key exchange ideal functionality.

•When the adversary Λ instructs to deliver messages (C1, C2, TS
′
1) and (C3, C4, TS

′
2),

then the simulator S can easily evaluate IDi = H1(PUFi(C1)||PUFi(C2)||TSi) and
IDj = H1(PUFj(C3)||PUFj(C4)||TSj), as the server is corrupt.
• It next sends (choose − valueAKE , sid, Nodei, server, Nodej , IDi, IDj) to FAKE as

it has already calculated the value of IDi and IDj and F increments the value of p
by one.
•Finally, S sends the messages (deliverAKE , sid, IDi, Nodei) and

(deliverAKE , sid, IDj , Nodej) to FAKE .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

•Hence in this case the ID provided by F and the ID calculated from the challenges
given by the server is same.
•But Nodei later chooses a random value t ∈ Z∗p after getting the IDi, and calculates

the public and private keys using them. Hence, the simulator S as well as the adver-
sary Λ cannot guess the asymmetric key pairs for Nodei. This is due to fact that the
security of elliptic curve cryptography rests on the assumption that the elliptic curve
discrete logarithm problem (ECDLP) is hard. Let E is an elliptic curve over a finite
field K and there are points P,Q ∈ E(K) such that Q ∈< P >, where P is a primitive
point and < P > denotes the set of points generated by adding P k times, for some
value of k, i.e., Q = [k]P (P + P + P... + P k times). The ECDLP problem is to find
the value of k given P and Q and it is considered to be a hard problem. Now as Nodei
randomly selects the value of t and P1,K1PUB are the points on the elliptic curve, it
is assumed to be hard to predict the value of t by the simulator S and the adversary
Λ. The same is true for Nodej .
So, we can say that even if the server gets corrupted for a limited time, the keys of the
legitimate users are not compromised which in turn ensures that the data communi-
cated between two nodes cannot be retrieved by the corrupted server.

Case-3: Either of the two communicating parties or both are corrupt:
This case covers the situation if a party willingly hands over its PUF to the adversary

Λ. So in this case, we will show that the adversary Λ can easily retrieve the value of
private key for that particular party. Note that the protocol ensures that it can easily
track the party’s action, and a malicious party can never deny that a communication
has been taken place by it. Hence, it cannot forge the identification of its actions.

•The set up phase is same as given in Case-1.
•On receiving a message (establish− sessionAKE, sid, Nodei, server, Nodej),

the simulator S increments p by one and sends (choose −
valueAKE , sid, Nodei, server, Nodej , IDi, IDj) to FAKE .
• It is activated again and sends (deliverAKE , sid, server) to FAKE .
•The server writes the IDi and IDj on its local tape and S is activated again.
• It simulates the server sending (C1, C2, TS

′
1) and (C3, C4, TS

′
2) to Nodei and Nodej .

•When the adversary Λ instructs to deliver the latter message to Nodei and Nodej , S
sends (deliverAKE , sid, IDi, Nodei) and (deliverAKE , sid, IDj , Nodej) to FAKE .
• If Nodei or Nodej or both are corrupted, then Λ can easily find out the random value

chosen from Z∗p for calculating the private and public keys, and hence the value of
the private keys are compromised.
•But as shown in Section 3.4, the communication phase ensures non-repudiation as

each message provides the proof of integrity and origin of the data.

Hence, the scheme securely realizes the ideal functionality FAKE .

4.7. Security Evaluation with Respect to Malicious PUF
We will now describe an analysis of our protocol in the new attack model using mali-
cious PUFs proposed in [Ruhrmair and van Dijk 2013]. With this respect, the following
assumptions have been made in [Ostrovsky et al. 2013]:

(1) The adversary is allowed to create untrusted or malicious PUFs.
(2) An adversary can tamper a given PUF instance, but such tampering might result

in hampering its security as well as irreversible changes in its physical intrinsic
properties.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:25

Table I. Comparison of existing and proposed authentication protocols

Protocols Advantages and disadvantages of the proposed scheme

Controlled PUF Protocol
[Gassend et al. 2002]

Issues: To protect against modelling attack, this protocol requires an
huge number of CRPs for the PUF. Therefore, storage requirement
is very high.
Advantage: The number of CRPs used here are moderate, as the
response corresponding to a particular challenge is never sent over
the network directly. So, the challenges are re-usable.

Noisy PUF Protocol
[Öztürk et al. 2008]

Issues: Here also, to prevent PUF modelling attack, an internal
secret is XOR-ed with the challenge. But to derive a new secret, the
old one needs to be remembered for each instance. Hence, the
synchronization effort is an overhead. Moreover, it may enable
denial-of-service (DoS) attack.
Advantage: To avoid the DoS attack, we have introduced a random
parameter, namely the TimeStamp (TS), through which the server
can keep track of the sessions running between two communicating
parties. It implies that no other request from two nodes already
being served by a particular server node, will be served by the same
server node, until the current session has expired.

Reconfigurable PUF Protocol
[Katzenbeisser et al. 2011]

Issues: The protocol also implements a pseudorandom number
generator (PRNG) which leads to a DoS attack.
Advantage: As mentioned earlier, we use the timestamp to prevent
the protocol against this kind of attack.

Reverse FE Protocol
[Herrewege et al. 2012]

Issues: The protocol implements a PRNG to expand the PUF
response space which leads to token/server impersonation.
Advantage: As given in Section 4, the proposed scheme is secure
against impersonation.

Slender PUF Protocol
[Majzoobi et al. 2012]

Issues: The protocol employs a PRNG to expand the PUF response
space which leads to token impersonation.
Advantage: The proposed scheme is secure against impersonation as
mentioned before.

Converse PUF Protocol
[Koçabas et al. 2012]

Issues: First, the attacker model is too restricted, as the authors
have considered the security only against eavesdropping attacks.
Secondly, the server has to perform an exhaustive search over the
CRP database of the token for each authentication initiation, which
leads to scalability issues.
Advantage: The proposed scheme has been proved to be secure
against passive as well as active attacks also. He have considered
the security in AM and UM adversarial model, and shown its
compatibility in the UC framework as well. Scalability is not an
issue in this case, as the protocol initiation is done by the server
itself.

(3) Otherwise, the adversary might deploy some malicious programmable hardware
token in the network which may behave like a PUF at its interface, but is actually
programmed with some malicious code.

(4) Once the malicious PUF is deployed in the network, it cannot interact with its cre-
ator.

One of the major advantages of our protocol is that it avoids exchange of the PUF
instance between the sender and receiver. This means that the protocol can be executed
without both communicating parties having physical access to the PUF; it is sufficient
if one of the parties access to only the PUF CRP database. This is in contrast to the
protocol proposed in [Canetti 2001], two honest parties can have the same key only if
they have the same honest PUF. Now, the adversary can either query the honest PUF
during the handover phase (but in that the success probability is not high for guessing
the key in a random session), or it can replace the honest PUF with a fake PUF, thus
falling victim to the attacks proposed in [Ostrovsky et al. 2013]. But in our proposed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

protocol, the adversary does not have this provision. She can sent a fake PUF, but
as that PUF is not enrolled in the server, it cannot act as an honest (enrolled) PUF.
Due to the unpredictability and uniqueness property of PUFs, and the fact that the
timestamp is a randomly generated value, any node is able to answer to such a query
only if it possesses that particular enrolled PUF. Hence, we can say that our proposed
construct is also secure against the malicious PUF model.

4.8. Comparison with Existing Protocols
Table I provides a comparative study of several previously proposed PUF based au-

thentication protocols with our scheme. Here, we have presented the security issues
raised in [Delvaux et al. 2014] for each previously proposed authentication protocol,
and pointed out the features of our proposed architecture eliminates these shortcom-
ings.
5. EXPERIMENTAL SET UP AND RESULTS

In this section, we have described the set up of the test bed for realising the protocol
and provided the hardware overhead and execution time of the main components of
the scheme. To realise this, the COTS that we procured are Intel Edison and Xilinx
Artix-7 FPGA. Intel Edison is a deeply embedded IoT computing module with Blue-
tooth, Ethernet and WiFi connectivity. We can connect different kinds of sensors (e.g.
Sound Sensor, Temperature Sensor, Touch Sensor, Light Sensor etc.) and actuators
(e.g. buzzer, LED, LCD RGB Back light, Mini Servo) with this board and it has inbuilt
libraries to support those I/O and sensor interactions.

Our main target is to use PUF as device authentication. So the PUF instance for
each Edison board was implemented in the Nexys-4 board containing a Xilinx Artix-
7 FPGA which will be connected to the particular Edison board and they both to-
gether forms the IoT device. In this setup, we have used PC as the server and the CRP
database of each of these IoT device will be stored there in the Enrolment phase. At
the time of authentication, the PC sends the challenges to the Edison board through
WiFi. The Edison board applies the challenge to the FPGA, collects the responses and
send them back to the PC. The communication between FPGA and Edison board is
established through UART (Universal Asynchronous Receive/Transmit) protocol.

The PUF design and implementation was performed using Xilinx ISE (v 14.2) design
environment. We have used the basic concepts of lightweight secure PUFs proposed
by [Majzoobi et al. 2008]. We have used 6-stage parallel PUFs and instead of using
output network, we have XOR-ed the responses from these 6 stages. For each row of
the parallel PUFs, we have implemented the classical Arbiter PUFs with 64 switches,
thereby resulting in 64 bit challenges. The reliability and uniformity of the output
bit is 96.11% and 49.5% for 64 bit LSPUF where the uniformity measurement has
been taken using 100000 CRPs. To generate 48 bit response string and to improve the
statistical quality of the responses, we used a Linear Feedback Shift Register (LFSR)
at the input. Next, for a particular challenge Ci, the LFSR is loaded with the challenge
as a seed and after 10 clock cycles, the output state of the LFSR was input to the
LSPUF. The output state of the LSPUF was saved in a shift register. This process
has been executed for 48 times to get a 48 bit response Ri from the shift register for
the challenge Ci. By following these steps, the CRP database of each IoT device was
created and saved in the secure server. The hardware overhead for deploying the PUF
in the FPGA has been shown in Table II.

Next, we have used the MIRACL Crypto SDK [MIR] which provides a C software
library for elliptic curve cryptography. We have implemented necessary libraries which
are required to define the elliptic curve and to calculate Tate pairing in the Edison
board. Along with this, the elliptic curve definition is also required for the calculating

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:27

Table II. Hardware overhead of main components of the PUF

Components No. of Slices No. of Registers No. of LUTs
6-Stage 64 Bit LSPUF 776 12 986

64 Bit LFSR 16 48 6
48 Bit Shift Register 15 48 3

Table III. Execution time for different software modules in Edison Board

Components Execution Time (in sec) Clock Cycles
Tate Pairing 0.02019 100950

H1 0.071886 359430
H2 0.000043 22
H3 0.000134 670
H4 0.00007 350

the hash functions mentioned in Section 3.3 as the hash functions map a point in the
curve to a random string or map a random string to a point in the curve or to a value
which is co-prime to the prime characteristic of the curve. Overall, the implementation
takes only 236 kB of memory on the Edison board. In Table III, the execution time
and clock cycles required for Tate pairing and the four hash functions in Edison board
have been enlisted.
6. DISCUSSION AND CONCLUSIONS
In this paper we have developed and described in detail a lightweight protocol for
authentication, key exchange and secure message communication, applicable to hier-
archical architectures in the IoT framework. We have used PUFs and cryptographic
pairing for making our system resistant against active and passive adversarial at-
tacks. We have also provided the formal proofs of security of the proposed protocol
under the SK security and UC framework. The proposed protocol avoids the shortcom-
ings of several previously proposed related PUF based authentication protocols, and is
thus robust against reported attacks on such protocols. We have assumed that the CRP
database is stored in a secure server, and even if the adversary accesses the database
for a limited time, she would not be able to retrieve the private keys of the legitimate
users, and also would be unable to decrypt the data transmitted over the network.
However, there is a possibility that the compromised server can make a legitimate de-
vice communicate with an illegitimate or malicious node. In our future work, we will
try to evade this problem to make the protocol more secure and robust.

From the implementation perspective, we have also presented low-overhead hard-
ware/software co-design of the proposed architecture on an IoT test bed.Our future
work would be directed towards optimisation of cryptographic pairing to further re-
duce the memory footprint, analysis of power consumption required to execute the
protocol and evaluation of the robustness of the implementation with respect to
implementation-specific attacks such as side channel analysis.

REFERENCES
MIRACL Crypto SDK. http://www.miracl.com/miracl-sdk.
ACAR, T., LAUTER, K. E., NAEHRIG, M., AND SHUMOW, D. 2011. Affine pairings on ARM. IACR Cryptology

ePrint Archive 2011, 243.
AVOINE, G., CARPENT, X., AND HERNANDEZ-CASTRO, J. 2015. Pitfalls in ultralightweight authentication

protocol designs. Mobile Computing, IEEE Transactions on PP, 99, 1–1.
AYSU, A., GULCAN, E., MORIYAMA, D., SCHAUMONT, P., AND YUNG, M. 2015. End-to-end design of a puf-

based privacy preserving authentication protocol. In Cryptographic Hardware and Embedded Systems
- CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings.
556–576.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 U. Chatterjee, R. S. Chakraborty and D. Mukhopadhyay

BATINA, L., GUAJARDO, J., KERINS, T., MENTENS, N., TUYLS, P., AND VERBAUWHEDE, I. 2006. An elliptic
curve processor suitable for rfid-tags. IACR Cryptology ePrint Archive 2006, 227.

BATINA, L., MENTENS, N., SAKIYAMA, K., PRENEEL, B., AND VERBAUWHEDE, I. 2006. Low-cost elliptic
curve cryptography for wireless sensor networks. In Security and Privacy in Ad-Hoc and Sensor Net-
works, Third European Workshop, ESAS 2006, Hamburg, Germany, September 20-21, 2006, Revised
Selected Papers. 6–17.

BONEH, D. AND FRANKLIN, M. K. 2003. Identity-based encryption from the weil pairing. SIAM J. Com-
put. 32, 3, 586–615.

BRZUSKA, C., FISCHLIN, M., SCHRÖDER, H., AND KATZENBEISSER, S. 2011. Physically uncloneable func-
tions in the universal composition framework. In Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings. 51–70.

CANETTI, R. 2001. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA. 136–145.

CANETTI, R. AND KRAWCZYK, H. 2001. Analysis of key-exchange protocols and their use for building secure
channels. In Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory and
Application of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding. 453–474.

CHEN, W. 2012. An ibe-based security scheme on internet of things. In Cloud Computing and Intelligent
Systems (CCIS), 2012 IEEE 2nd International Conference on. Vol. 3. IEEE, 1046–1049.

DELVAUX, J., GU, D., SCHELLEKENS, D., AND VERBAUWHEDE, I. 2014. Secure lightweight entity authen-
tication with strong pufs: Mission impossible? In Cryptographic Hardware and Embedded Systems -
CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings.
451–475.

DUBEY, G., KHURANA, V., AND SACHDEVA, S. 2015. Implementing security technique on generic database.
In Eighth International Conference on Contemporary Computing, IC3 2015, Noida, India, August 20-22,
2015. 370–376.

GASSEND, B., CLARKE, D. E., VAN DIJK, M., AND DEVADAS, S. 2002. Controlled physical random functions.
In 18th Annual Computer Security Applications Conference (ACSAC 2002), 9-13 December 2002, Las
Vegas, NV, USA. 149–160.

GREWAL, G., AZARDERAKHSH, R., LONGA, P., HU, S., AND JAO, D. 2012. Efficient implementation of bi-
linear pairings on ARM processors. In Selected Areas in Cryptography, 19th International Conference,
SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers. 149–165.

GUO, Z. AND XU, L. 2015. Research of security structure model for web application systems based on the
relational database. IJSN 10, 4, 207–213.

HELFMEIER, C., BOIT, C., NEDOSPASOV, D., AND SEIFERT, J.-P. 2013. Cloning physically unclonable func-
tions. In Hardware-Oriented Security and Trust (HOST), 2013 IEEE International Symposium on.
IEEE, 1–6.

HERREWEGE, A. V., KATZENBEISSER, S., MAES, R., PEETERS, R., SADEGHI, A., VERBAUWHEDE, I., AND
WACHSMANN, C. 2012. Reverse fuzzy extractors: Enabling lightweight mutual authentication for puf-
enabled rfids. In Financial Cryptography and Data Security - 16th International Conference, FC 2012,
Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers. 374–389.

KATZ, J. AND LINDELL, Y. 2007. Introduction to Modern Cryptography. Chapman and Hall/CRC Press.
KATZENBEISSER, S., KOÇABAS, Ü., VAN DER LEEST, V., SADEGHI, A., SCHRIJEN, G. J., AND WACHSMANN,

C. 2011. Recyclable pufs: logically reconfigurable pufs. J. Cryptographic Engineering 1, 3, 177–186.
KIM, M., LEE, H. T., LING, S., REN, S. Q., TAN, B. H. M., AND WANG, H. 2016. Better security for queries

on encrypted databases. IACR Cryptology ePrint Archive 2016, 470.
KOÇABAS, Ü., PETER, A., KATZENBEISSER, S., AND SADEGHI, A. 2012. Converse puf-based authentication.

In Trust and Trustworthy Computing - 5th International Conference, TRUST 2012, Vienna, Austria,
June 13-15, 2012. Proceedings. 142–158.

KUMAR, S., GUAJARDO, J., MAES, R., SCHRIJEN, G.-J., AND TUYLS, P. 2008. Extended Abstract: The
Butterfly PUF Protecting IP on every FPGA. In Proceedings of the IEEE International Workshop on
Hardware-Oriented Security and Trust. HOST ’08. 67–70.

LEE, Y. K., SAKIYAMA, K., BATINA, L., AND VERBAUWHEDE, I. 2008. Elliptic-curve-based security proces-
sor for RFID. IEEE Trans. Computers 57, 11, 1514–1527.

LIM, D. 2004. Extracting Secret keys from Integrated Circuits.
MAES, R., TUYLS, P., AND VERBAUWHEDE, I. 2009. Low-overhead implementation of a soft decision helper

data algorithm for SRAM pufs. In Cryptographic Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings. 332–347.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A PUF-based Secure Communication Protocol for IoT A:29

MAJZOOBI, M. AND KOUSHANFAR, F. 2011. Time-bounded authentication of fpgas. IEEE Transactions on
Information Forensics and Security 6, 3-2, 1123–1135.

MAJZOOBI, M., KOUSHANFAR, F., AND POTKONJAK, M. 2008. Lightweight secure pufs. In 2008 Interna-
tional Conference on Computer-Aided Design, ICCAD 2008, San Jose, CA, USA, November 10-13, 2008.
670–673.

MAJZOOBI, M., ROSTAMI, M., KOUSHANFAR, F., WALLACH, D. S., AND DEVADAS, S. 2012. Slender PUF
protocol: A lightweight, robust, and secure authentication by substring matching. In 2012 IEEE Sym-
posium on Security and Privacy Workshops, San Francisco, CA, USA, May 24-25, 2012. 33–44.

MASS, M. 2004. Pairing-Based Cryptography.
MURTHY, C. S. R. AND MANOJ, B. 2004. Ad Hoc Wireless Networks: Architectures and Protocols. Prentice

Hall PTR, Upper Saddle River, NJ, USA.
MUTTI, S., BACIS, E., AND PARABOSCHI, S. 2015. Sesqlite: Security enhanced sqlite: Mandatory access

control for android databases. In Proceedings of the 31st Annual Computer Security Applications Con-
ference, Los Angeles, CA, USA, December 7-11, 2015. 411–420.

OSTROVSKY, R., SCAFURO, A., VISCONTI, I., AND WADIA, A. 2013. Universally composable secure com-
putation with (malicious) physically uncloneable functions. In Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings. 702–718.

ÖZTÜRK, E., HAMMOURI, G., AND SUNAR, B. 2008. Towards robust low cost authentication for pervasive
devices. In Sixth Annual IEEE International Conference on Pervasive Computing and Communications
(PerCom 2008), 17-21 March 2008, Hong Kong. 170–178.

PAPPU, R. 2001. Physical One-way functions. Ph.D. thesis, Massachusetts Institute of Technology, USA.
RÜHRMAIR, U. 2012. Simpl systems as a keyless cryptographic and security primitive. In Cryptography and

Security. Springer, 329–354.
RÜHRMAIR, U., BUSCH, H., AND KATZENBEISSER, S. 2010. Strong pufs: Models, constructions, and security

proofs. In Towards Hardware-Intrinsic Security - Foundations and Practice. 79–96.
RÜHRMAIR, U., SEHNKE, F., SÖLTER, J., DROR, G., DEVADAS, S., AND SCHMIDHUBER, J. 2010. Modeling

attacks on physical unclonable functions. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010. 237–249.

RUHRMAIR, U. AND VAN DIJK, M. 2013. Pufs in security protocols: Attack models and security evaluations.
In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 286–300.

SHIRASE, M., MIYAZAKI, Y., TAKAGI, T., HAN, D., AND CHOI, D. 2009. Efficient implementation of pairing-
based cryptography on a sensor node. IEICE Transactions 92-D, 5, 909–917.

SILVERMAN, J. H. 1986. The arithmetic of elliptic curves. Graduate texts in mathematics. Springer, New
York, Berlin. 2e tirage corrig 1992.

XIONG, X., WONG, D. S., AND DENG, X. 2010. Tinypairing: A fast and lightweight pairing-based crypto-
graphic library for wireless sensor networks. In 2010 IEEE Wireless Communications and Networking
Conference, WCNC 2010, Proceedings, Sydney, Australia, 18-21 April 2010. 1–6.

YANG, L., YU, P., BAILING, W., XUEFENG, B., XINLING, Y., AND GENG, L. 2013. Iot secure transmission
based on integration of ibe and pki/ca. International Journal of Control and Automation 6, 2, 245–254.

YOSHITOMI, M., TAKAGI, T., KIYOMOTO, S., AND TANAKA, T. 2008. Efficient implementation of the pairing
on mobilephones using BREW. IEICE Transactions 91-D, 5, 1330–1337.

YU, M. M., M’RAÏHI, D., SOWELL, R., AND DEVADAS, S. 2011. Lightweight and secure PUF key storage
using limits of machine learning. In Cryptographic Hardware and Embedded Systems - CHES 2011 -
13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings. 358–373.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

