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Abstract. We propose a new zero-knowledge protocol for proving knowl-
edge of short preimages under additively homomorphic functions that
map integer vectors to an Abelian group. The protocol achieves amor-
tized efficiency in that it only needs to send O(n) auxiliary function
values to prove knowledge of n preimages. Furthermore we significantly
improve previous bounds on how short a secret we can extract from a
dishonest prover, namely our bound is a factor O(k) larger than the size
of secret used by the honest prover. In the best previous result, the fac-
tor was O(klog kn). Our main technique is derived from the theory of
expanders.

Our protocol can be applied to give proofs of knowledge for plaintexts in
(Ring-)LWE-based cryptosystems, knowledge of preimages of homomor-
phic hash functions as well as knowledge of committed values in some
integer commitment schemes.

Keywords: Proofs of Plaintext Knowledge, Lattice-based Encryption, Homo-
morphic Hashing, Integer Commitments

1 Introduction

Proofs of Knowledge In a zero-knowledge protocol, a prover demonstrates
that some claim is true (and in some cases that he knows a proof) while giving
the verifier no other knowledge beyond the fact that the claim is true. Zero-
knowledge protocols are essential tools in cryptographic protocol design. For
instance, one needs zero-knowledge proofs of knowledge in multiparty computa-
tion to have a player demonstrate that he knows the input he is providing.
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In this work, we will consider the problem of proving knowledge of a preimage
under a one-way functions f : Zr 7→ G where G is an Abelian group (written
additively in the following), and where furthermore the function is additively
homormorphic, i.e., f(a)+f(b) = f(a+b). We will call such functions ivOWF ’s
(for homomorphic One-Way Functions over Integer Vectors). This problem was
considered in several earlier works, in particular recently in [BDLN16], from
where we have borrowed most of the notation and basic definitions we use in the
following.
ivOWF turns out to be a very general notion. Examples of ivOWFs include:

– The encryption function of several (Ring-)LWE-based cryptosystems(such
as the one introduced in [BGV12] and used in the so-called SPDZ protocol
[DPSZ12]).

– The encryption function of any semi-homomorphic cryptosystem as defined
in [BDOZ11].

– The commitment function in commitment schemes for committing to integer
values (see, e.g., [DF02]).

– Hash functions based on lattice problems such as [GGH96,LMPR08], where
it is hard to find a short preimage.

We will look at the scenario where a prover P and a verifier V are given y ∈ G
and P holds a short preimage x of y, i.e., such that ||x|| ≤ β for some β.
P wants to prove in zero-knowledge that he knows such an x. When f is an
encryption function and y is a ciphertext, this can be used to demonstrate that
the ciphertext decrypts and P knows the plaintext. When f is a commitment
function this can be used to show that one has committed to a number in a
certain interval.
A well-known, simple but inefficient solution is the following protocol π:

(1) P chooses r at random such that ||r|| ≤ τ · β for some sufficiently large τ ,
the choice of which we return to below.

(2) P then sends a = f(r) to V.
(3) V sends a random challenge bit b.
(4) P responds with z = r + b · x.
(5) V checks that f(z) = a+ b · y and that ||z|| ≤ τ · β.

If τ is sufficiently large, the distribution of z will be statistically independent of
x, and the protocol will be honest verifier statistical zero-knowledge1. On the
other hand, we can extract a preimage of y from a cheating prover who can
produce correct answers z0, z1 to b = 0, b = 1, namely f(z1 − z0) = y. Clearly,
we have ||z1−z0|| ≤ 2 ·τ ·β. We will refer to the factor 2τ as the soundness slack
of the protocol, because it measures the discrepancy between the interval used
by the honest prover and what we can force a dishonest prover to do. The value
of the soundness slack is important: if f is, e.g., an encryption function, then a

1 We will only be interested in honest verifier zero-knowledge here. In applications one
would get security for malicious verifiers by generating the challenge in a trusted way,
e.g., using a maliciously sure coin-flip protocol.



large soundness slack will force us to use larger parameters for the underlying
cryptosystem to ensure that the ciphertext decrypts even if the input is in the
larger interval, and this will cost us in efficiency.
The naive protocol above requires an exponentially large slack to get zero-
knowledge, but using Lyubachevsky’s rejection sampling technique, the sound-
ness slack can made polynomial or even constant (at least in the random oracle
model).
The obvious problem with the naive solution is that one needs to repeat the
protocol k times where k is the statistical security parameter, to get soundness
error probability 2−k. This means that one needs to generate Ω(k) auxiliary
f -values. We will refer to this as the overhead of the protocol and use it as a
measure of efficiency.
One wants, of course as small overhead and soundness slack as possible, but as
long as we only want to give a proof for a single f -value, we do not know how
to reduce the overhead dramatically in general. But if instead we want to give a
proof for k or more f -values, then we know how to reduce the amortised over-
head: Cramer and Damg̊ard [CD09] show how to get amortised overhead O(1),
but unfortunately the soundness slack is 2Ω(k), even if rejection sampling is used.
In [DKL+13] two protocols were suggested, where one is only covertly secure.
The other one can achieve polynomial soundness slack with overhead Ω(k) and
works only in the random oracle model2. This was improved in [BDLN16]: a
protocol was obtained (without random oracles) that has O(1) overhead and
quasi polynomial soundness slack (proportional to n · (2k + 1)log(k)/2).

1.1 Contributions & Techniques

In this paper, we improve significantly the result from [BDLN16] and [DKL+13]:
we obtain O(1) overhead and soundness slack O(k). All results hold in the stan-
dard model (no random oracles are needed).
Our protocol uses a high-level strategy similar to [BDLN16]:

(1) Do a cut-and-choose style protocol for the inputs y1, . . . , yn. This is a rela-
tively simple but imperfect proof of knowledge: It only guarantees that the
prover knows almost all preimages.

(2) Let the verifier assign each yi to one of several buckets following a randomised
strategy.

(3) For each bucket, add all elements that landed in the bucket and do an im-
perfect proof of knowledge as in the first step, but now with all the bucket
sums as input.

2 The protocol in [DKL+13] is actually stated as a proof of plaintext knowledge for
random ciphertexts, but generalizes to a protocol for ivOWFs. It actually offers a
tradeoff between soundness slack s and overhead in the sense that the overhead is
M · log(k), where M has to be chosen such that the error probability (1/s)M is
negligible. Thus to get exponentially small error probability in k as we do here, one
can choose s to be poly(k) and hence M will be Ω(k/ log k).



The reason why one might hope this would work is as follows: as mentioned, the
first step will ensure that we can extract almost all of the required n preimages,
in fact we can extract all but k preimages (we assume throughout that n >> k).
In the second step, since we only have k elements left that were “bad” in the
sense that we could not yet extract a preimage, then if we have many more
than k buckets, say Θ(n) and distribute them in buckets according to a carefully
designed strategy, we may hope that with overwhelming probability, all the bad
elements will be alone in one of those buckets for which we can extract a preimage
of the bucket sum. This seems plausible because we can extract almost all such
preimages. If indeed this happens, we can extract all remaining preimages by
linearity of f : each bad element can be written as a sum of elements for which
the extractor already knows a preimage.

Furthermore, the overall cost of doing the protocol would be O(n), and the
soundness slack will be limited by the maximal number of items in a bucket.
In fact, if each bucket contains O(k) elements, then the soundness slack is O(k)
as well. It turns out that we can derive a (randomised) strategy for assignment
to buckets by modifying the construction of certain expander graphs and this is
our main technical contribution, the intuition of which we explain shortly.

In comparison, the protocol from [BDLN16] also plays a “balls and bins” game.
The difference is that they use only O(k) buckets, but repeat the game O(log k)
times. This means that their extraction takes place in Ω(log k) stages, which
leads to the larger soundness slack.

Our protocol is honest verifier zero-knowlegde and is sound in the sense of a
standard proof of knowledge, i.e., we extract the prover’s witness by rewinding.
Nevertheless, the protocol can be readily used as a tool in a bigger protocol that
is intended to be UC secure against malicious adversaries. Such a construction
is already known from [DPSZ12].

We now explain how we arrive at our construction of the verifier’s strategy
for assigning elements to buckets: We define the buckets via a bipartite graph.
Consider a finite, undirected, bipartite graph G = (L,R,E) without multi-edges,
where L denotes the set of vertices “on the left,” R those “on the right” and E
the set of edges. Write n = |L| and m = |R|. Each vertex w ∈ R on the right
gives a “bucket of vertices” N({w}) ⊂ L on the left, where N({w}) denotes the
neighborhood of w.

We say that the bipartite graph G has the (f1, f2)-strong unique neighbor prop-
erty if the following holds. For each set N1 ⊂ L with |N1| = f1, for each set
N2 ⊂ R with |N2| = f2, and for each i ∈ N1, there is w ∈ R \ N2 such that
N1 ∩ N({w}) = {i}. Note that this property is anti-monotonous in the sense
that if it holds for parameters (f1, f2) it also holds for parameters (f ′1, f

′
2) with

f ′1 ≤ f1 and f ′2 ≤ f2.

With f1 corresponding to the failures in step 1 and f2 corresponding to those
in step 3, it should be clear that this property on (an infinite family of bipartite
graphs) G, together with the conditions that n = poly(k), m = O(n), f1 = O(k),
f2 = O(k) and the condition that the right-degrees in G are all in O(k), is



sufficient to pull off our claimed result. Of course, in addition, this requires
efficient construction of G.

Our pivotal observation for the construction of such bipartite graphs concerns a
connection between our (f1, f2)-strong unique neighbor property and bipartite
graphs with excellent expansion properties. Suppose the left-degrees in G are
upper bounded by d. Then we say that a set S ⊂ L expands ε-excellently if its
neighborhood N(S) ⊂ R satisfies |N(S)| ≥ (1 − ε)d|S| with 0 ≤ ε < 1/2. Note
that expansion in this regime is already known to imply the unique neighbor
property for such an expanding set S, i.e., there exists a vertex w ∈ R such
that |S ∩ N({w})| = 1. Also note that ε < 1/2 is essential for the implication.
However, this implication is not sufficient for us. Instead, we show that G has the
(f1, f2)-strong unique neighbor property if there is an ε such that 0 ≤ ε < 1/2
and 2εf1 + f2 < d and such that each set S ⊂ L of size f1 expands ε-excellently.
This generalization turns out to be sufficient for our purposes.

By the requirement that f1, f2 ∈ O(k), it follows that the left-degrees of G
cannot be upper bounded by a constant. Consequently, very well-known re-
sults on constant-degree lossless expanders [CRVW02] or unique-neighbor ex-
panders [AC02] do not apply readily. 3

Luckily, it turns out that a probabilistic construction of excellent bipartite ex-
panders with parameters as required for our purposes can be based on the idea,
originally due to Bassalygo [Bas81], of creating a bipartite expander graph from
several random perfect-matchings. However, even though the probability of suc-
cess is substantial (i.e., constant), this is certainly not large enough for our
purposes.

The way out is that we can do with slightly weaker requirements. Namely, for
our purposes, it suffices that there is an ε such that 0 ≤ ε < 1/2 and 2εf1+f2 < d
and such that, for each fixed set S ⊂ L of size f1, the probability that S expands
ε-excellently is exponentially close to 1. As we show, this is satisfied in our
probabilistic approach. After an appropriate choice of parameters, we achieve
f1 = c1k and f2 = c2k for arbitrary constants c1, c2, n = m with n ∈ O(k3), and
the right-degrees are each in O(k).

Notation

Throughout this work we will format vectors such as b in lower-case bold face
letters, whereas matrices such as B will be in upper case. We refer to the ith
position of vector b as b[i], let [r] := {1, ..., r} and define for b ∈ Zr that ||b|| =
maxi∈[r]{|b[i]|}. To sample a variable g uniformly at random from a set G we

use g
$←− G. Throughout this work we will let λ be a computational and k be

a statistical security parameter. Moreover, we use the standard definition for
polynomial and negligible functions and denote those as poly(·), negl(·).

3 One may also derive excellent expansion from graphs with large girth. But this only
applies to very small sets – too small for our purposes. Note that spectral properties
of graphs do not guarantee excellent expansion. See [Kah92].



2 Homomorphic OWFs and Zero-Knowledge Proofs

We first define a primitive called homomorphic one-way functions over integer
vectors. It is an extension of the standard definition of a OWF found in [KL14].
Let λ ∈ N be the security parameter, G be an Abelian group, β, r ∈ N,
f : Zr → G be a function and A be any algorithm. Consider the following game:

InvertA,f,β(λ):
(1) Choose x ∈ Zr, ||x|| ≤ β and compute y = f(x).
(2) On input (1λ, y) the algorithm A computes an x′.
(3) Output 1 iff f(x′) = y, ||x′|| ≤ β, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)). A
function f : Zr → G is called a homomorphic one-way function over the integers
if the following conditions hold:

(1) There exists a polynomial-time algorithm evalf such that evalf (x) = f(x)
for all x ∈ Zr.

(2) For all x,x′ ∈ Zr it holds that f(x) + f(x′) = f(x+ x′).
(3) For every probabilistic polynomial-time algorithm A there exists a negligible

function negl(λ) such that

Pr[InvertA,f,β(λ) = 1] ≤ negl(λ)

As mentioned in the introduction, this abstraction captures, among other prim-
itives, lattice-based encryption schemes such as [BGV12,GSW13,BV14] where
the one-way property is implied by IND-CPA and β is as large as the plain-
text space. Moreover it also captures hash functions such as [GGH96,LMPR08],
where it is hard to find a preimage for all sufficiently short vectors that have
norm smaller than β.

2.1 Proving Knowledge of Preimage

We consider two parties, the prover P and the verifier V. P holds values x1, ...,xn ∈
Zr, both parties have values y1, ..., yn ∈ R and P wants to prove to V that
yi = f(xi) and that xi is short, while not giving no knowledge on the xi away.
More formally, the relation that we want to give a zero-knowledge proof of knowl-
edge for is

RKSP =

{
(v, w)

∣∣∣∣ v = (y1, ..., yn) ∧ w = (x1, ...,xn)∧

[
yi = f(xi) ∧ ||xi|| ≤ β

]
i∈[n]

}
However, like all other protocols for this type of relation, we will have to live
with a soundness slack τ as explained in the introduction. What this means
more precisely is that there must exist a knowledge extractor with properties
exactly as in the standard definition of knowledge soundness, but the extracted
values only have to satisfy [yi = f(xi) ∧ ||xi|| ≤ τ · β]i∈[n].



3 Proofs of Preimage

3.1 Imperfect Proof of Knowledge

The first tool we need for our protocol is a subprotocol which we borrow from
[BDLN16], a so-called imperfect proof of knowledge. This protocol is proof of
knowledge for the above relation with a certain soundness slack, however, the
knowledge extractor is only required to extract almost all preimages. We note
that to show knowledge soundness later for our full protocol, Goldreich and
Bellare [BG93] have shown that it is sufficient to consider deterministic provers,
therefore we only need to consider deterministic provers in the following.
The idea for the protocol is that the prover constructs T = 3n auxiliary values
of form zi = f(ri) where ri is random and short. The verifier asks the prover
to open half the values (chosen at random) and aborts if the preimages received
are not correct and short. One can show that this means the prover must know
correct preimages of almost all the unopened values. The prover must now reveal,
for each yi in the input, a short preimage of the sum yi + zj for some unopened
zj . By the homomorphic property of f this clearly means we can extract from
the prover also a short preimage of most of the yi’s.
The reason one needs to have more than 2n auxiliary values is that the protocol
makes use of Lyubashevsky’s rejection sampling technique [Lyu08,Lyu09], where
the prover is allowed to refuse to use some of the auxiliary values. This allows
for a small soundness slack while still maintaining the zero-knowledge property.
For technical reasons the use of rejection sampling means that the prover should
not send the auxiliary values zi in the clear at first but should commit to them,
otherwise we cannot show zero-knowledge.
The following theorem is proved in [BDLN16] (their Theorem 1):

Theorem 1. Let f be an ivOWF, k be a statistical security parameter, As-
sume we are given Caux, a perfectly binding/computationally hiding commitment
scheme over G, τ = 100 · r and T = 3 · n, n ≥ max{10, k}. Then there exists a
protocol PImperfectProof with the following properties:

Efficiency: The protocol requires communication of at most T f -images and
preimages.

Correctness: If P,V are honest and run on an instance of RKSP, then the
protocol succeeds with probability at least 1− negl(k).

Soundness: For every deterministic prover P̂ that succeeds to run the protocol
with probability p > 2−k+1 one can extract at least n− k values x′i such that
f(x′i) = yi and ||x′i|| ≤ 2 · τ · β, in expected time O(poly(s) · k2/p) where s is
the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-knowledge.

In the following we will use PImperfectProof(v, w, T, τ, β) to denote an invocation
of the protocol from this theorem with inputs v = (y1, ..., yn), w = (x1, ...,xn)
and parameters T, τ, β.



3.2 The Full Proof of Knowledge

The above imperfect protocol will be used as a building block. After executing
it with the (xi, yi) as input, we may assume that a preimage of most of the yi’s
(in fact, all but k) can be extracted from the prover.
The strategy for the last part of the protocol is as follows: we let the verifier
randomly assign each yi to one of several buckets. Then, for each bucket, we add
all elements that landed in the bucket and have the prover demonstrate that
he knows a preimage of the sum. The observation (made in [BDLN16]) is that
we can now extract a preimage of every bad elements that is alone in a bucket.
The question, however, is how we distribute items in buckets to maximize our
chance of extracting all the missing preimages, and how many buckets we should
use. One solution to this was given in [BDLN16], but it requires repeating the
experiment log k times before all bad elements have been handled with good
probability.
Here we propose a new strategy that achieves much better results: we need just
one repetition of the game and each bucket will contain only O(k) items which
gives us the soundness slack of O(k).
Before we can describe the protocol, we need to define a combinatorial object
we use in the protocol, namely a good set system distribution:

Definition 2. A set system distribution D with parameters n,m is a probability
distribution that outputs m index sets B1, ..., Bm, where each Bj ⊂ [n], and
[n] = {1, ..., n}. Both n and m depend on a security parameter k and we require
that the distribution can be efficiently sampled (polynomial time in k). The set
system distribution is good if the maximal size of a set Bj is O(k), m is O(n)
and if for every set N1 ⊂ [n] of size k, the following event GoodN1 occurs, except
with probability at most 2−Ω(k). GoodN1

occurs if after choosing the Bj’s, for
every set N2 ⊂ [m] of size k and every i ∈ N1, there exists j ∈ [m] − N2 such
that Bj ∩N1 = {i}.

The idea in the definition is that D will describe the verifier’s choice of buckets
{Bj}. Then, if the distribution is good, and if we can extract preimage sums
over all bucket except k, then we will be in business.

Theorem 2. Let f be an ivOWF, k be a statistical security parameter, β be a
given upper bound and n ∈ Θ(k3). If PCompleteProof is executed using a good set
system distribution D, then it is an interactive honest-verifier zero-knowledge
proof of the relation RKSP with knowledge error 2−k+1. More specifically, it has
the following properties:

Efficiency The protocol has overhead O(1).
Correctness: If P,V are honest then the protocol succeeds with probability at

least 1− 2−O(k).
Soundness: For every deterministic prover P̂ that succeeds to run the protocol

with probability p > 2−k+1 one can extract n values x′i such that f(x′i) = yi
and ||x′i|| ≤ O((k · r · β) except with negligible probability, in expected time
poly(s, k)/p, where s is the size of the input to the protocol.



Procedure PCompleteProof

Let f be an ivOWF. P inputs w to the procedure and V inputs v. We assume that
good set system distribution D is given with parameters n,m.

proof(v, w, β) :
(1) Let v = (y1, ..., yn), w = (x1, ...,xn). Run PImperfectProof(v, w, 3n, 100r, β). If
V in PImperfectProof aborts then abort, otherwise continue.

(2) V chooses B1, ..., Bm according to D and sends the specification of the Bj ’s
to P.

(3) For j = 1, . . . ,m, both players compute γj =
∑

i∈Bj
vi and P also computes

δj =
∑

i∈Bj
xi. Let h be the maximal size of a bucket set Bj , and set

γ = (γ1, . . . , γm), δ = (δ1, . . . , δm).
(4) Run PImperfectProof(γ, δ, 3m, 100r, hβ). If V in PImperfectProof aborts then

abort, otherwise accept.

Fig. 1. A protocol to prove the relation RKSP

Zero-Knowledge: The protocol is computational honest-verifier zero-knowledge.

Proof. Efficiency is immediate from Theorem 1 and the fact that we use a good
set system, so that m is O(n). Note also that the verifier can specify the set
system for the prover using O(m · k · log n) bits. This will be dominated by the
communication of m preimages if a preimage is larger than k log n bits, which
will be the case for any realistic setting.
Correctness is immediate from correctness of PImperfectProof.
The extractor required for knowlege soundness will simply run the extractor
for PImperfectProof twice, corresponding to the 2 invocations of PImperfectProof.
Let N1 be the set of k preimages we fail to extract in the first invocation, and
let N2 be the set of bucket sums we fail to extract in the second invocation.
The properties of a good set system distribution now guarantee that no matter
what set N2 turns out to be, we can find, for each i ∈ N1, a set Bj where we
know a preimage of the sum over the bucket (j ∈ [m] − N2), and furthermore
Bj ∩N1 = {i}. Concretely, we know δj such that f(δj) =

∑
l∈Bj

yl and we know
preimages of all summands except for yi. By the homomorphic property of f
we can solve for a preimages of yi, and the size of the preimage found follows
immediately from Theorem 1 and the fact that buckets have size O(k).
Honest-verifier zero-knowledge follows immediately from Theorem 1. We do the
simulation by first invoking the simulator PImperfectProof with the input pa-
rameters for the first step. We then sample according to D, compute the inout
parameters for the second invocation and run the simulator for PImperfectProof

again. ut

To make this theorem be useful, we need of course that good set system distri-
butions exist. This is taken care of in the following theorem.

Theorem 3. Good set system distributions exist with parameters n,m ∈ O(k3).



4 Proof of Theorem 3

Let G = (L,R, V ) be a finite, undirected bipartite graph. For simplicity we also
assume G has no multi-edges. Here, L denotes the set of vertices “on the left,”
R the set of vertices “on the right” and V the set of edges.

Suppose S ⊂ L is nonempty. The neighborhood of S is denoted N(S). Note that
N(S) ⊂ R since G is bipartite. The neighborhood N(T ) ⊂ L of a nonempty set
T ⊂ R is defined similarly. The unique neighbor set U(S) ⊂ R of the set S ⊂ L
consists of all w ∈ R such that

|N({w}) ∩ S| = 1.

In general, U(S) may be empty. We may similarly define U(T ) for nonempty
T ⊂ R, but we will not need this.

We say that graph G is d-left-bounded if, for each v ∈ L, it holds that |N({v})| ≤
d. Similarly for d′-right-bounded. The graph G is (d, d′)-bi-bounded if it is d-left-
bounded and d′-right-bounded.

Write n = |L| and m = |R|. Let d be an integer with 1 ≤ d ≤ n and let δ, ε be
real numbers with 0 ≤ δ, ε ≤ 1. Let S ⊂ L be nonempty. Let f1 be an integer
with 1 ≤ f1 ≤ n and let f2, f be integers with 0 ≤ f2, f ≤ m.

Definition 3 (Unique Neighbor Property). The set S has the unique neigh-
bor property if it holds that U(S) 6= ∅.

Definition 4 (Strong Unique Neighbor Property of a Set). The set S
has the strong unique neighbor property if, for each i ∈ S, there is w ∈ R such
that N({w}) ∩ S = {i}.

Definition 5 (f-Strong Unique Neighbor Property of a Set). The set S
has the f -strong unique neighbor property if, for each i ∈ S and for each Z ⊂ R
with |Z| = f , there is w ∈ R \ Z such that N({w}) ∩ S = {i}.

The unique neighbor property has been widely considered before and it has many
known applications. We are presently not aware of previous consideration of our
f -strong unique neighbor property even though it is a very natural extension.

Definition 6 ((f1, f2)-Strong Unique Neighbor Property of a Graph G).
The bipartite graph G = (L,R,E) has the (f1, f2)-strong unique neighbor prop-
erty if each set S ⊂ L with |S| = f1 has the f2-strong unique neighbor property.

The following lemma is well-known.

Lemma 1. Suppose G is d-left-bounded. If N(S) ≥ (1 − ε)d|S|, then |U(S)| ≥
(1− 2ε)d|S|.



Proof. Since G is d-left-bounded, there are at most d|S| edges “emanating”
from S and “arriving” at N(S). Write m1 for the number of vertices w ∈ N(S)
with |S ∩N({w})| = 1. Then we have the obvious bound

m1 + 2(|N(S)| −m1) ≤ d|S|.

Therefore,
m1 ≥ 2|N(S)| − d|S|.

Since |N(S)| ≥ (1− ε)d|S|, it follows that

m1 ≥ (1− 2ε)d|S|,

as desired. 4
Using a “greedy argument” we now show how the f -strong unique neighbor
property for a set is implied by a large unique neighbor set.

Lemma 2. Suppose G is d-left-bounded. If

(1) |U(S)| ≥ (1− δ)d|S| and
(2) |S| < 1

δ (1− f
d )

then S has the f -strong unique neighbor property. As this property is anti-
monotone, it then also holds for all nonempty subsets S′ ⊂ S.

Proof. Since
|U(S)| ≥ (1− δ)d|S|,

it follows, by a pigeonhole argument, that, if

(1− δ)d|S| − f
|S| − 1

> d,

the set S has the f -strong unique neighbor property. Indeed, if the property
would fail on some i ∈ S, the inequality implies that there is some element in
S \ {i} with degree greater than d, which contradicts the fact that G is d-left-
bounded. Note that the previous inequality simplifies to |S| < 1/δ(1 − f/d).

4
By combining Lemmas 1 and 2 we get the following sufficient condition for the
f -strong unique neighbor property of a set S ⊂ L.

Corollary 1. Suppose G is d-left-bounded. If

(1) N(S) ≥ (1− ε)d|S| and
(2) |S| < 1

2ε (1−
f
d ),

then S (and all of its nonempty subsets) have the f -strong unique neighbor prop-
erty.

Remark 1. For this to be nontrivial, it is necessary that ε < 1/2 and f < d.



We now give a probabilistic construction. Suppose |L| = |R| = n. Write L =
{v1, . . . , vn} and R = {w1, . . . , wn}. For a permutation π on {1, . . . , n}, define
E(π) ⊂ L×R as the set of edges

{(v1, wπ(1)), . . . , (vn, wπ(n))}.

Suppose 1 ≤ d ≤ n. For a d-vector Π = (π1, . . . , πd) of (not-necessarily distinct)
permutations on {1, . . . , n}, define the set

E(Π) =

d⋃
j=1

E(πj) ⊂ L×R

and define the bipartite graph

G(Π) = (L,R,E(Π)).

Note that G is a (d, d)-bi-bounded (undirected) bipartite graph (without multi-
edges). We have the following lemma.

Proposition 1. Let G = (L,R,E) be a random (d, d)-bi-bounded bipartite graph
with |L| = |R| = n as described above. Let α be a real number with 0 < α < 1.
Then, for any fixed set S ⊂ L with |S| = αn, it holds that

N(S) ≥ (d− 2)|S|,

except with probability

p′S ≤
(

d2αe

2(1− α)

)2αn

,

where e denotes Euler’s constant.

Proof. Choose the d permutations π1, . . . , πd sequentially. For convenience,
write S = {1, . . . , s}. For i = 1, . . . , s and j = 1, . . . , d, consider the random
variables

Xj
i ,

the image of i ∈ S under the permutation πj . We now think of these as “ordered”
X1

1 , . . . , X
1
s , X

2
1 , . . . , X

2
s , . . ., “increasing” from left to right.

For given Xj
i , condition on all “prior” random variables in the ordering. The

probability that Xj
i is a repeat, i.e., it lands in what is N(S)-so-far is at most

d|S|
n− i+ 1

≤ d|S|
n− |S|

.

Here the denominator on the LHS is due to the fact that when choosing the
image of i, the i − 1 distinct images of 1, . . . , i − 1 are already taken. Hence,
the probability p′S that the event |N(S)| ≤ (d − 2)|S| occurs is at most the



probability of the event that there are 2|S| repeats. By the union bound, the
latter probability is clearly at most(

d|S|
2|S|

)(
d|S|
n− |S|

)2|S|

Therefore, 4

p′S ≤
(
d|S|
2|S|

)(
d|S|
n− |S|

)2|S|

≤
(
de

2

)2|S|(
d|S|
n− |S|

)2|S|

=

(
d2αe

2(1− α)

)2αn

.

4
The lemma and its proof are adapted from an expander graph construction due
to Bassalygo [Bas81]. Our exposition follows (part of) the proof of Theorem 4.4
in Salil Vadhan’s textbook on Pseudorandomness [Vad12]. The reason we do
not apply the Bassalygo result directly is that the success probability of the
construction of an excellent expander is high (i.e., constant) but still much too
small for our purposes. Fortunately, we can do with the slightly weaker require-
ment on G that, for any fixed set S of precisely the dictated size, the probability
that the set S does not expand excellently is negligibly small. As this saves two
applications of the union bound, one to quantify over all sets S of the dictated
size and one to quantify over the subsets of size smaller than the dictated size,
we get exponentially small failure probability instead of constant.

In conclusion, combining Proposition 1 and Corollary 1, we obtain the following
result on set systems suitable for our purposes.

Theorem 4. Let k be the security parameter. Let c1, c2 be arbitrary positive
integers. Set

(1) f1 = c1k, f2 = c2k.
(2) d = c3k with c3 = c1 + c2 + 1.
(3) α = 1

d2e+1 .

(4) n = m = c1
α k = (d2e+ 1)c1k = (c23ek

2 + 1)c1k = c1c
2
3ek

3 + c1k.

Then there is good set system distribution with parameters as above and with
error probability p′ satisfying

p′ ≤
(

1

2

)2c1k

Proof. For each set S of size K = αn = c1k = f1, it holds that N(S) ≥
(d − 2)|S|. Note that ε = 2/d here. This means that the second condition for
the f2-strong unique neighbor property of sets of this size is f1 + f2 < d. This is
satisfied by definition. Note that efficiency of the construction is obvious. 4
This proves Theorem 3 - note that f1, f2 are upper bounds on the sizes of the
“failure sets” N1, N2 from Definition 2, so this result is in fact more general
because any constant times k is allowed. We get Theorem 3 by setting c1 = c2 =
1.
4 Note that

(
r
s

)s ≤ (r
s

)
≤
(
re
s

)s
.
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