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Abstract. A sparse Merkle tree is an authenticated data structure based
on a perfect Merkle tree of intractable size. It contains a distinct leaf
for every possible output from a cryptographic hash function, and can
be simulated efficiently because the tree is sparse (i.e., most leaves are
empty). We are the first to provide complete, succinct, and recursive
definitions of a sparse Merkle tree and related operations. We show that
our definitions enable efficient space-time trade-offs for different caching
strategies, and that verifiable audit paths can be generated to prove
(non-)membership in practically constant time (< 4 ms) when using
SHA-512/256. This is despite a limited amount of space for the cache—
smaller than the size of the underlying data structure—and full security
in the multi-instance setting.

1 Introduction

Secure HTTPS connections rely on the users’ browsers to obtain authentic
domain-to-key bindings during set-up. For that purpose, trusted third parties
called certificate authorities are used to vouch for the integrity of public keys by
issuing X.509 certificates. While this may appear to solve the initial problem of
establishing trust, several new complications arise. Considering that there are
hundreds of certificate authorities, all of which are capable of issuing certificates
for any domain, it is challenging to concisely observe what has been issued for
whom [10]. As such, a misissued or maliciously issued certificate could remain
unnoticed forever, or more likely until an attack against a domain has taken
place. Naturally that raises an important question: who watches the watchmen?

Google’s Certificate Transparency (CT) project proposes public logs based
on append-only Merkle trees [16]. The basic idea is that an SSL/TLS certificate
must be included in some log to be trusted by a browser, and because the
infrastructure is public anyone can audit or monitor these logs to ensure correct
behaviour [6,14]. Thus, CT allows clients to determine whether a certificate was
valid at some point in time, but inclusion in the log cannot guarantee that
it is current. For instance, what if a certificate has to be revoked due to a
compromised private key or an entire certificate authority [13,25]? Since the log
is append-only, it must be chronological. Therefore certificates can neither be
removed nor can the absence of a revocation certificate be proven efficiently [11].



Certificate Revocation (RT) [21] is a proposed extension to CT by Laurie and
Kasper [15]. The aim is to provide a separate mechanism that proves certificates
unrevoked, and requires an authenticated data structure supporting efficient
non-membership proofs [30]. As is, there are at least two approaches towards
such proofs. One is based on sorted Merkle trees, and the other on tuple-based
signed statements on the form “Key ki has the value vi; there are no keys in the
interval (ki, kj+1)” [9,15]. We consider the former in terms of a sparse Merkle
tree (SMT), whose scope goes far beyond RT. For example, SMTs can be used
as key building blocks in a wide area of applications, ranging from dynamic
authenticated dictionaries to secure messaging applications [9,18,26,28].

After introducing some necessary preliminaries (Section 2) and the approach
taken here (Section 3), our contributions are as follows. First, building on an
interesting proposal started by Laurie and Kasper [15], we define efficient caching
strategies and complete recursive definitions for an SMT (Section 4). Second, we
evaluate the security of our definitions in the multi-instance setting, comparing
our design decisions with those made in CONIKS [18] (Section 5). Third, we
examine three caching strategies experimentally for an SMT, showing different
space-time trade-offs (Section 6). Finally, we discuss related work (Section 7)
and end with conclusions (Section 8).

2 Preliminaries

We start by describing background regarding Merkle trees and audit paths, then
we present cryptographic assumptions that our security evaluation relies on.

2.1 Merkle Trees

A Merkle tree [19] is a binary tree that incorporates the use of cryptographic hash
functions. One or many attributes are inserted into the leaves, and every node
derives a digest which is recursively dependent on all attributes in its subtree.
That is, leaves compute the hash of their own attributes, and parents derive the
hash of their children’s digests concatenated left-to-right. As further described
in Section 5, certain digests must also be encoded with additional constants.
This is to prevent indistinguishability between different types of nodes [7,18].

A Merkle tree without a proper encoding is shown in Figure 1. It contains
eight attributes ρ–ω, and the root digest r ← d30 serves as a reference to prove
membership by presenting an audit path [16]. For instance, dashed nodes are
necessary to authenticate the third left-most leaf containing attribute τ . More
generally, an audit path comprises all siblings along the path down to the leaf
being authenticated. Combined with a retrieved attribute that represents a mem-
bership proof, which is valid if it reconstructs the root digest r′ such that r′ = r.
Therefore a proof is only as convincing as r, but trust can be established using,
e.g., digital signatures or by periodically publishing roots in a newspaper.



d30 := H(d20‖d21)

d21 := H(d10‖d11)

d13 := H(d06‖d07)

d07 := H(ω)d06 := H(ψ)

d12 := H(d04‖d05)

d05 := H(χ)d04 := H(φ)

d20 := H(d10‖d11)

d11 := H(d02‖d03)

d03 := H(υ)d02 := H(τ)

d10 := H(d00‖d01)

d01 := H(σ)d00 := H(ρ)

Fig. 1: A Merkle tree containing attributes ρ–ω. The digest rooted at height h
and index i is abbreviated dhi .

2.2 Setting and Cryptographic Assumptions

Inspired by Katz [12] and Melara et al. [18], we consider a computationally
bound adversary in the multi-instance setting. This means that there are several
distinct SMTs, and the adversary should not gain any advantage in terms of
necessary computation if she attempts to attack all SMTs at once. In other
words, despite the adversary’s multi-instance advantage, the goal is to provide
full λ-bit security for each SMT. For security we rely on a collision and pre-image
resistant hash function H with digests of N := 2λ-bits, as well as Lemma 1.

Lemma 1. The security of an audit path reduces to the collision resistance of
the underlying hash function H.

Proof. This follows directly from the work of Merkle [19] and Blum et al. [5].

3 Sparse Merkle Trees

First we introduce non-membership proofs that are based on sorted Merkle trees,
then the notion of an SMT and our approach is incrementally described.

3.1 Non-Membership Proofs and High-Level Properties

In RT-like applications it is crucial to prove a value absent [15,28,31]. This forms
the notion of a non-membership proof, and requires lexicographically sorted tree
structures that prevent all nodes from being enumerated. Previously this has
been accomplished by viewing balanced binary search trees, e.g., treaps and
red-black trees, as Merkle trees [9]. This involves rules that rotate nodes upon
insertion and removal, and means to fix the tree structure by trustworthy roots.
Non-membership is proven by generating an audit path through binary search,
and a verifying party accepts it to be valid if there is no evidence that the
tree structure is unsorted or that the root is improperly reconstructed. In other
words, non-membership is proven efficiently due to a balanced tree structure,
and proofs are convincing because the structure is fixed by a trustworthy root.

While an SMT also relies on the structure of the tree together with being a
Merkle tree, it is different in that it requires neither balancing techniques nor



certain constants when encoding digests. This is due to an intractably large
Merkle tree that reserves a unique leaf ` for every conceivable key digest. The
hash of a key k determines `, and k is a (non-)member if the attribute a ∈ ` is set
to a0/a1. Therefore the resulting tree structure contains 2N leaves at all times,
and (non-)membership can be proven by presenting an audit path for leaf H(k).
This set-up also implies history independence: a unique set of keys produce a
deterministic root digest, regardless of the order in which keys are inserted or
removed. Notably history independence is not necessarily provided by balanced
Merkle trees (e.g., the case for deterministic treaps, but not for red-black trees).

3.2 Tractable Representations

Considering the intractably large size of an SMT, it is challenging to represent
efficiently in memory. To begin with, the only reason why this is feasible traces
back to the key observation that SMTs are sparse. That is, the majority of all
leaves are associated with attribute a0 and represent non-members. Such leaves
are henceforth referred to as empty, and yield a construction where the empty
subtrees rooted at height h derive identical default digests. The basic principle
is that an empty leaf computes d0∗ ← H(a0), a node rooted at an empty subtree
with height one derives d1∗ ← H(d0∗‖d0∗), and so on. Since these default digest
can be precomputed, they need neither be associated with explicit nodes nor be
derived recursively by visiting all leaves. Instead, referring to Figure 2, it suffices
to process the filled nodes whose digests depend on existing keys.

a0a0a0a0a1a0a0a1 a1a1

Fig. 2: An illustration of how default nodes can be discarded to attain a tractable
representation of an SMT.

3.3 Earlier Proposals

Different approaches can be used to provide efficient representations of an SMT.
Bauer [3] has proposed an explicit pruned tree structure where all the non-empty
attributes are elevated upwards through their ancestors. The elevation stops
when the root of a subtree containing a single non-empty leaf is reached, and all
descendants to such roots are discarded. The original SMT can be reconstructed
by recording indices for the non-empty leaves in each subtree, but will require



excessive amounts of memory unless they are evenly spread out. Hence, while the
proposal is neat, we find the approach started by Laurie and Kasper [15] more
generally applicable. It is based on maintaining a collection of keys K, and the
collection is authenticated by simulating an SMT. As is, however, their proposal
is incomplete and cannot, e.g., derive (non-)membership proofs efficiently. This is
due to deriving subtrees’ digests over and over again—an issue we solve in the
following sections by introducing relative information.

3.4 Our Approach

We define the SMT as a composition of a non-authenticated data structure D
and some relative information δ . The data structure contains unique keys k (or
more accurately the keys’ digests), and must support insertion, removal, look-up,
and splitting. Splitting refers to dividing D in two based on a key, and relative
information a collection of digests that are recorded by a caching strategy. The
resulting SMT is simulated in the sense that there is no explicit tree structure,
which is possible because every k ∈ D can be mapped to its associated subtrees
recursively. For instance, as shown in Figure 3, a root digest can be obtained by
starting a traversal from the root down to all the non-empty leaves. The base is
initially set to all zeros and refers to the left-most leaf in a subtree. It remains
the same on left-traversals, must be updated by setting the appropriate bit to
one on right traversals, and is used to determine the split index. The split index
is the key upon which D is divided on and refers to the left-most leaf in the right
subtree. Thus, as formalized in Section 4.3, it is an upper exclusive and lower
inclusive bound for the keys in the left and right subtrees, respectively.
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Fig. 3: An illustration of a recursive traversal to obtain the root digest; k1 = 000,
k2 = 010, and k3 = 111.

Clearly it is inefficient to obtain a subtree’s digest by repeatedly visiting all
the non-empty leaves. Therefore relative information is necessary: a collection of
cached digests with the sole purpose of preventing such inefficiency. For instance,
a näıve caching strategy could record every digest that is non-default. Although



that requires excessive amounts of memory, it would ensure that all siblings’
digests are available upon generating audit paths. Consequently, the number of
splits will be constant, and (non-)membership can be proven with the same time
complexity as the underlying split operation. Our aim when defining caching
strategies is to preserve this property while reducing memory requirements.

4 Efficient Representations

First we define caching strategies that are based on capturing branches, then our
proposal is formalized by presenting complete recurrences for an efficient SMT.

4.1 Caching Strategies

During the design of a caching strategy it is important to consider expected and
worst case scenarios. The former is straight forward since the output of H is
uniformly distributed, whereas the latter is strategy and use-case dependent. In
the average case, however, non-empty leaves will be evenly spread out. Therefore
a cluster of non-default digests will be formed at the first dlog ne+ 1 layers, and
intuitively these digests are important to prevent traversals down to the leaves.
The digests rooted at layers below the dense threshold are of lesser importance
due to the sparse property, but can be vital if non-empty leaves are clumped.

An intuitive caching strategy that we omit is to record the higher dlog ne+ 1
layers of the SMT. While the dense part would be captured in the average case,
forcing leaves to clump at some subtree is trivial for an adversary that selects
the keys. Consequently, the majority of all the non-default digests cannot be
captured, and the resulting cache will be useless if (non-)membership proofs are
issued for that subtree. For this reason our caching strategies aim to bound the
number of recursive traversals down to the leaves by a constant, evolving around
capturing branches: parents whose children derive non-default digests [23].

B cache. Figure 4a depicts the B cache which captures every digest rooted at a
branch. It contains n− 1 digests at all times, and requires at most N traversals
down to either a branch or a leaf upon generating audit paths. The former follows
from the observation that all but the first insertion yield a single branch, and
the latter (i.e., the worst case) is discussed in Section 5.3.

B- cache. By discarding f(n) branches from the B cache, memory requirements
can be reduced at the cost of additional computation. This forms the notion of B-,
which provides trade-offs depending on how f(n) is implemented. We examine a
probabilistic approach where a branch is captured with probability p, meaning
f(n) is roughly n(1 − p). Other variations for f(n) include ignoring every other
layer, as well as defining an upper bound for how many branches to ignore.
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Fig. 4: Captured digests as circled subtrees contain a single non-empty leaf.

B+ cache. The drawback of using a B cache is that, in the average case, only
the higher dlog ne layers will be captured3. In other words, since the dense part
also spans layer dlog ne+ 1, we are missing out on some performance. B+ aims
to solve this issue by capturing branches together with their children. While the
resulting cache cover the entire dense part of an SMT, we also bound the worst
case memory requirements by 2n due to discarding branches (Figure 4b). The
difference is negligible with regard to time because the children are cached.

4.2 The Cache Routine

Implementation wise our caching strategies are convenient. To process an interior
digest, a cache function that accepts the left and the right child digests can be
used. Upon invocation it computes the interior digest d, examines if both children
are non-default, deletes the previous branch (if applicable), caches in case of a
new branch, and outputs d. While this protocol merely concerns the B cache, it
extends perfectly to B- and B+. Therefore these caching strategies are practical
to mix: start off with B+, switch to B as memory requirements grow larger, and
finally migrate to B- with shrinking probability p. For instance, this could be
interesting in real-world settings where memory is a limited resource.

4.3 Recurrences

Let h be the height of a subtree, b the base of a node, and D a data structure
containing unique keys’ digests H(k). Further denote by αi the ith ≥ 0 left-most
bit in α, αi=β the assignment of that bit to β ∈ {0, 1}, and by colon (:) list
concatenation. Finally, define the bit in the base that is set on right traversals4

as j := N − h, the split index as s := bj=1, and D divided on s for relation
R as DRs := {k|k ∈ D ∧ kRs}. Our recurrences are shown in Figure 5 and
interpreted as follows:

3 Note that this drawback applies in an even larger extent for B- since B-⊂ B.
4 This bit refers to the depth of a subtree.



ξh∗ :=

{
LH∗∗(a0) , if h = 0

IHh∗
(
ξh−1
∗ , ξh−1

∗
)

, else .
(1)

R
h
b (D) :=


δhb , if available

ξh∗ , elif |D| = 0

LH∗b(a1) , elif |D| = 1 ∧ h = 0

IHhb
(
Rh−1
b (D<

s ), Rh−1
s (D≥

s )
)

, else .

(2)

A
h
b (D, k) :=


∅ , if h = 0

Rh−1
s (D≥

s ) : Ah−1
b (D<

s , k) , elif kj = 0

Rh−1
b (D<

s ) : Ah−1
s (D≥

s , k) , else .

(3)

B
h
b (P, k, a) :=


LH∗b(a) , if h = 0

IHhb
(
Bh−1
b (P, k, a), P [j]

)
, elif kj = 0

IHhb
(
P [j], Bh−1

s (P, k, a)
)

, else .

(4)

U
h
b (D,K, a) :=


LH∗b(a) , if h = 0

Chb
(
Rh−1
b (D<

s ), Uh−1
s (D≥

s ,K, a)
)

, elif
∣∣K<

s

∣∣ = 0 ∧
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(
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)

, elif
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s

∣∣ 6= 0 ∧
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s
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Chb
(
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b (D<

s ,K<
s , a), Uh−1
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s ,K≥

s , a)
)

, else .

(5)

Fig. 5: Recurrences that derive default digests (ξ), root digests (R), audit
paths (A), reconstructed root digests (B), and relative information (U).

– Given a height h, (1) derives the default digest dh∗ . The leaf hash (LH) and
interior hash (IH) functions serve the purpose of encoding digests securely,
as further described in Section 5.

– Given a height h, a base b, and a collection of keys D, (2) derives the di-
gest dhb . The base case occurs if there is relative information available, if a
default digest is applicable, or if a non-empty leaf is reached. Otherwise, (2)
performs two recursive calls with D divided on s, b updated on right traver-
sals, and h reduced by one.

– Given a height h, a base b, a collection of keys D, and a key k for leaf `, (3)
generates an audit path for `. Note that all siblings’ digests are gathered by
list concatenation and invoking (2) after reaching `.

– Given a height h, a base b, an attribute a ∈ {a0, a1}, and an audit path P for
key k, (4) reconstructs the root digest by traversing the tree structure down
to the leaf being authenticated. Every sibling’s digest is obtained from P [j].

– Given a height h, a base b, a collection of keys D, a subset of keys K ⊂ D
where K 6= ∅, and an attribute a ∈ {a0, a1}, (5) outputs the new root
digest and updates the relative information. This is achieved by visiting all
leaves ` ∈ K, also invoking the cache function (C) to compute the interior
digest dhb and ensure that the relative information is up-to-date.



The size of an audit path is O(1), but can be further reduced by discarding
default digests. That yields a sparse audit path, and necessitates encoding of an
N -bitmap to determine whether a digest is (non-)default. We omit the details
of such a recurrence since it is trivially added when (3)–(4) is provided.

5 Security of Audit Paths

Consider a single SMT and assume that the hash function is fixed. Then it
follows that size of an audit path is fixed by N due to the structure of tree, and
consequently we can distinguish between leaves and interior nodes. This means
that, for the case of a single SMT with a fixed hash function, no special encoding
is necessary to distinguish between nodes, and that the security of an audit path
reduces to the collision resistance of the underlying hash function (Lemma 1).

Next, to prevent an adversary from gaining any advantage when brute-forcing
several SMTs in parallel, we consider the full (concrete) security of an audit
path in the multi-instance setting. Thereafter we relate our encoding of nodes
to CONIKS [18], and examine the impact of caching strategies for security.

5.1 The Merkle Prefix Tree in CONIKS

CONIKS, as described more broadly in Section 7, is a key verification service
that uses a Merkle prefix tree (MPT) to authenticate users’ key bindings [18]. An
MPT can be seen as a dynamically sized and explicit SMT where empty subtrees
are replaced by empty nodes. Key-bindings are mapped to unique indices i by
a hash function, and every (non-)empty leaf in the tree is associated with a
depth ` and an `-bit unique prefix j of i. The encoding of an empty node is
defined by (6).

H(Cempty‖Ctw‖j‖`) (6)

Cempty is a constant for empty leaves and Ctw a tree-wide constant. The encoding
of a non-empty node containing the payload p is defined by (7).

H(C leaf‖Ctw‖i‖`‖p) (7)

C leaf is a constant for non-empty leaves. Finally, the encoding for an interior
node is defined by (8).

H(dright‖dleft) (8)

The constants Cempty and C leaf serve the purpose of preventing indistin-
guishability between (non-)empty leaves, and the tree-wide constant Ctw pro-
vides some protection against an adversary in the multi-instance setting. That
is, if all MPTs use distinct tree-wide constants, no nodes’ pre-images can be valid
across different trees. Similarly, no nodes’ pre-images can be valid across multiple
locations because the leaves’ digests are uniquely encoded by j‖` and i‖` (the
location of an interior node is implicit due to the children it commits to). Thus,
as oppose to searching collisions across multiple trees and locations in parallel,



an adversary must target a particular tree and location. However, we also need
to consider different versions of trees generated by updates. To accomplish full
λ-bit security for an instance of the MPT, a new tree-wide constant must be
selected after each update to prevent parallel attacks through past versions of
the tree structure. For all updates, the entire MPT has to be recomputed.

5.2 A Secure Encoding for Sparse Merkle Trees

Figure 6 defines a secure encoding for an SMT in the multi-instance setting. We
prevent attacks across distinct trees by introducing a tree-wide constant Ctw, but
we do not protect against attacks on different versions of the same tree because
Ctw is reused between updates. For attacks within particular tree structures, we
include unique identifiers in every non-empty subtree. This differs with respect
to MPTs, but is necessary to preserve the sparse property of an SMT: if unique
prefixes were included in all empty subtrees, then there would no longer be any
default digests. As shown in (10), we solve this issue and retain security by
moving the encoding of an empty node into the non-empty parent. An interior
node that is non-default will still commit properly to a certain location encoded
by the base and height5, and since the digest of an empty node is publicly known
even for an MPT no security is lost. Furthermore, note that we do not encode the
attributes a0 and a1 explicitly in (9). Inclusion of the base suffices to distinguish
between (non-)empty leaves.

LH
∗
b(a) :=

{
H(Ctw) , if a = a0

H(Ctw‖b) , else .
(9)

IH
h
b

(
dleft, dright

)
:=

{
H(dleft‖dright) , if dleft = dright = ξh−1

∗

H(dleft‖dright‖b‖h) , else .
(10)

Fig. 6: Secure node encodings for an SMT.

5.3 Security Aspects of Caching Strategies

Consider the B cache. In the worst case, if there are merely N keys, an adversary
could force an almost perfect spine of branches as depicted in Figure 7. Whenever
membership proofs are issued for the leaves on that spine, the large majority of all
the non-default digests must be computed because the siblings are not captured
by the cache. While this is not an issue for a small SMT, the worst case efficiency
actually increases as the tree grows: new insertions yield additional branches, and

5 The height is necessary since the base is fixed-size and traversals to the left of an
SMT does not modify the base.
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Fig. 7: A branch spine, potentially caused by an adversary.

it is more efficient to stop traversals at a branch than at a leaf. In other words,
there are two scenarios each time a sibling’s digest is requested. First, the digest
is default and can be requested in constant time. Second, the digest is non-default
and can be derived by traversing the tree down to a branch or leaf. In either
case, regardless of how an adversary selects the keys, at most N traversals are
necessary (one per layer). This analysis applies to B+ with minor modifications,
and for B- one can show that the number of traversals will be bounded by f(n).
As such, to prevent an adversary from causing inefficiency, f(n) must be constant
or unpredictable to the adversary.

A similar analysis for worst case behaviour applies during updates. This
follows from the observation that (3) and (5) traverse the tree down to the
leaves, invoking (2) on each layer.

6 Performance

We evaluate performance and space-time trade-offs experimentally with a proof
of concept implementation in Go6. We used SHA-512/256 as the hash function7,
a non-authenticated data structure that supports splitting in logarithmic time,
and relative information that is maintained in constant time (a hash table). All
experiments use an Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz with 2x8 GB
DDR4 RAM, as well as Go’s built-in benchmarking tool.

The B- cache was implemented probabilistically such that a branch is cap-
tured with probability p (uniformly at random). While this is inefficient in the
worst case, it does provide resilience against an adversary that selects the keys.
Denoted by B-

p, we evaluate B- for p ∈ {0.5 . . . 0.9}. We also include B, B+, and
a hash treap in our experiments. For relevant operations, the expected O(log n)
time complexity of a hash treap makes it a good representation of other related
authenticated data structures that are explicitly stored in memory.

Figure 8a shows the size of the authenticated data structure as a function
of the data structure being authenticated. There is essentially no distinction
between the two for a hash treap8, and in the case of an SMT this is the relation

6 Source code available at https://github.com/pylls/gosmt.
7 SHA-512 truncated to 256-bit output, resulting in an SMT with 2256 leaves [22].
8 The size refers to the nodes of the tree together with the children’s pointers.

https://github.com/pylls/gosmt
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Fig. 8: Space-time trade-offs for a hash treap (abbreviated HT) and different
caching strategies for SMTs.

between δ and D. For 220 keys, the hash treap needs 960 MiB, the B+ cache
512 MiB, the B cache 256 MiB, and the B-

0.5 cache 128 MiB. It is evident that
the different caches double in size, and that the size of a hash treap is roughly
eight times larger than that of a B-

0.5 cache. Furthermore, it should be noted that
the B-

p caches with p ∈ {0.6 . . . 0.9} have sizes evenly distributed in [B-
0.5,B].

Figure 8b shows the time required to generate an audit path. Since the full
structure is in memory for the hash treap, it is just a matter of copying the
nodes along the path in negligible time (0.003 ms). Similarly, for B+ and B, we
see consistent results that are less than 1 ms regardless of how large D is. This
is because both caching strategies ensure that the vital non-default digests are
cached, whereas additional recursive traversals down to either branches or leaves
are necessary for B-

p. Finally, we also observe the impact of selecting p. While
p > 0.6 gives an expected time that is less than 4 ms, p = 0.5 behaves erratically.
This follows from the high probability that a siblings’ digests must be derived
instead of found in the cache, as is to a smaller extent also evident for p = 0.6.

Figure 8c shows the time it takes to update m keys in a data structure
containing n = 215 keys. All approaches scale as O (m log n), with the hash



treap being significantly faster. Similarly, Figure 8d shows the time it takes to
update m = 256 keys as a function of the size n. The B+ cache consistently needs
less than 20 ms, as oppose to the hash treap which needs 9.5 ms for n = 220.
Considering that a hash treap consumes twice as much memory, this is indeed
an interesting trade-off. For the remaining caching strategies, p together with
the relation between n and m determines the probability of having cache misses.
Simplified, larger p yields less variance and greater efficiency in terms of time.

7 Related Work

Google considers three categories of authenticated data structures when adding
transparency to a trust model: verifiable logs, maps, and log-backed maps [11].
While CT relies on verifiable logs to support efficient consistency and mem-
bership proofs, verifiable maps based on SMTs are proposed in RT to prove
non-membership. This is not without issues, however. All operations must be
enumerated to determine whether a map’s state is correct. Therefore, the former
two categories are combined into a verifiable log-backed map where consistency
issues can be detected by the verifiable log, (non-)membership can be proven by
the verifiable map, and full audits can ensure complete correct behaviour. As
such, using an efficient verifiable map based on our extension of an SMT, the
combination of CT and RT can prove whether a certificate’s status is current.
Other CT-like proposals that an SMT could be applicable to include Distributed
Transparent Key Infrastructure [31] and Enhanced Certificate Transparency [28].

Verifiable maps are closely related to persistent authenticated dictionaries
(PADs) [9]. While both are dynamic, the difference is that a PAD supports
(non-)membership queries to current and past versions of the data structure.
Hence, if our representation of an SMT is first extended to a key-value store9,
adding some form of persistency would yield a PAD. Crosby and Wallach [8]
investigate caching strategies for tree-based PADs in conjunction with Sarnak
and Tarjan [29] versioned nodes. We could use a similar approach, or the path
copying approach of Anagnostopoulos et al. [1], for the cache in our SMT.

CONIKS is a privacy-preserving key-management service that allows clients
to monitor their own key-bindings efficiently [18]. An MPT (See Section 5.1)
is used for the purpose of verifiability, but prior to deriving a unique index i
the key-bindings are first transformed by a verifiable unpredictable function [20].
While that prevents audit paths from leaking user information, it cannot conceal
the total number of users. CONIKS solves this issue and others (e.g., ensuring
fork consistency [17]) by defining a protocol on top of an MPT. It appears that
an SMT could be a viable and attractive replacement if viewed as a dictionary.

The issue of proving non-membership is not only evident in CT and RT. For
instance, in privacy-preserving transparency logging [27], Balloon is a provably
secure append-only data structure that supports historical (non-)membership
queries [26]. This is accomplished by inheriting a scheme for authenticated data

9 It suffices to add a payload in the non-empty leaves.



structures defined by Papamanthou et al. [24], as well as combining a history
tree [7] and a hash treap [9,26]. The former is essentially a verifiable log, and the
latter a treap [2,4] viewed as a Merkle tree. While hash treaps and SMTs share
many properties, e.g., efficient (non-)membership proofs an history independent
representations, there are some striking differences. To begin with, hash treaps
store attributes in each node. As oppose to an SMT, information regarding these
attributes must be provided in audit paths due to encoding digests differently
(possibly leaking valuable information). There will also be exactly n nodes at
all times, and efficiency relies on a probabilistic balance. In these regards an
SMT is flexible: the variable parameters D and δ determine if/when efficiency
is provided, and memory requirements can be reduced to less than n if need be.

Finally, this work is an extension of the Bachelor’s thesis by Dahlberg [23].
Apart from improving terminology, we define recursions for batch updates and
reconstruction of root digests, as well as caching strategies based on branches.
We also add a security evaluation for full security in the multi-instance setting,
provide a publicly available implementation that uses a memory safe language,
and compare our results with a related authenticated data structure.

8 Conclusion

Our definition of an SMT builds upon and extends the principles provided by
Laurie and Kasper [15]. The proposal is generic in the sense that an arbitrary
data structure supporting insertion, removal, look-up, and splitting can be used,
and different caching strategies (B, B-, and B+) provide fine-grained control
over consumed space contra run time. In other words, rather than having an
explicit tree structure, the resulting SMT is simulated. While this comes as the
cost of additional computation when compared to other explicit tree-based data
structures, our benchmarks and worst case analysis imply that our definitions
are efficient regardless of how an adversary selects the keys. We also prove our
definitions secure in the multi-instance setting.

There is nothing that prevents further space-time trade-offs as the tree evolves.
In principal, the relation B- ⊂ B ⊂ B+ holds. Therefore it is simple to go from
one strategy to another depending on, e.g., how much memory is available at the
time being. This is a major difference with respect to an explicit tree structure,
which has no construction that is alike. Furthermore, the succinct recursions
used to simulate an SMT yield limited implementation complexity, and history
independence is a prevalent property if parallelized and distributed solutions are
considered for large-scale applications.
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