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Abstract

To date, all constructions in the standard model (i.e., without random oracles) of Bounded
Key-Dependent Message (KDM) secure (or even just circularly-secure) encryption schemes rely
on specific assumptions (LWE, DDH, QR or DCR); all of these assumptions are known to imply
the existence of collision-resistant hash functions. In this work, we demonstrate the existence of
bounded KDM secure encryption assuming indistinguishability obfsucation for P/poly and just
one-way functions. Relying on the recent result of Asharov and Segev (STOC’15), this yields the
first construction of a Bounded KDM secure (or even circularly secure) encryption scheme from
an assumption that provably does not imply collision-resistant hash functions w.r.t. black-box
constructions. Combining this with prior constructions, we show how to augment this Bounded
KDM scheme into a Bounded CCA2-KDM scheme.
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1 Introduction

The notion of Key Dependent Message (KDM) security, introduced by Black, Rogaway and Shrimp-
ton [BRS02], requires an encryption scheme to remain secure even if the attacker can request encryp-
tions of functions of the the secret key, and more generally encryptions of different secret keys in use
by different players. This notion generalizes circular security introduced by Camenish and Lysyan-
skaya [CL01] in which the adversary can request encryptions of the form Encpki(ski+1 mod N ). Both
circularly-secure and KDM-secure encryption schemes have various applications, such as anonymous
credential schemes, the “bootstrapping” technique used to construct fully homomorphic encryption,
and disk encryption in the cases where the key itself might be encrypted.

The original works of Black, Rogaway and Shrimpton [BRS02] and of Camenish and Lysyan-
skaya [CL01] provided construction of circularly-secure encryption and even “full” KDM security
(where there is no bound on the class of functions) in the Random Oracle model. Subsequent
results provided constructions in the standard model (i.e., without random oracles), which is the
focus of this paper.

Circular security and KDM for simple functions In a breakthrough result, Boneh, Halevi,
Hamburg and Ostrovsky [BHHO08], provided the first construction of circular-secure encryption
in the standard model (without a random oracle); their construction is based on the DDH assump-
tion. Subsequently, schemes which expanded the class of permissible KDM queries and which were
based on different assumptions were presented: Applebaum, Cash, Peikert and Sahai [ACPS09]
obtain KDM security for affine functions under the Learning With Error (LWE) assumption; Brak-
erski, Goldwasser and Kalai [BGK09] give a transformation to convert a KDM scheme (with some
additional properties) into one that is secure w.r.t. a richer class of functions: applying such trans-
formation to the [BHHO08] and [ACPS09] gives a scheme secure w.r.t. the class to functions that
can be expressed as polynomials of bounded degree, and a second one where the class consists
of functions expressed as Turing machines of logarithmic size description. Malkin, Teranishi, and
Yung [MTY11] achieves KDM security w.r.t. modular arithmetic circuits of bounded degree but
(unbounded) polynomial size, based on the Decisional Composite Residuosity assumption (DCR).
Wee [Wee16] explains [BHHO08,BGK09,BG10] as instantiations of a common framework based on
smooth projective hashing, but known constructions of such hashing are based on the DDH, QR
and DCR assumptions.

Bounded KDM security Barak, Haitner, Hofheinz and Ishai [BHHI10] significantly expand
the class of permissible functions by showing how to realize KDM secure encryption for any set
of circuits of a-priori bounded size; this notion is referred to as Bounded KDM security. Roughly
speaking, their construction shows how to utilize schemes that satisfy KDM-security w.r.t. affine
functions (and additional properties, which are satisfied by the known constructions) to get KDM
security w.r.t. any circuit of bounded size. Their constructions can be instantiated from schemes
relying on either DDH or LWE. Applebaum [App14] also show how to use randomized encodings
to amplify KDM security against a small class of functions to Bounded KDM security1.

1Both [App14] and [BHHI10] discuss how to strengthen their schemes to achieve a notion called length-dependent
KDM security, which is slightly stronger than Bounded KDM security in the sense that the functions queried by
the adversary can have circuit size which grows polynomially in the length of their inputs and outputs. We choose
to state our result using Bounded KDM security for simplicity of exposition, but our construction can be similarly
adapted to achieve this stronger notion by padding the obfuscated circuits appropriately
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Our results Summarizing, all known constructions in the standard model (i.e., without ran-
dom oracles) of Bounded KDM secure, and even just circularly-secure encryption rely on specific
assumptions (LWE, DDH, QR or DCR). This gives rise to the following natural question:

Can Bounded KDM encryption be based on general assumptions?

In fact, all assumptions under which Bounded KDM schemes can be constructed imply the existence
of collision-resistant hash functions. An orthogonal, but related, question is thus:

Can Bounded KDM encryption be constructed from an assumption that does not imply
collision-resistant hash functions?

In this work we address both of these questions assuming the existence of indistinguishability
obfuscation (iO). Roughly speaking, program obfuscation is a class of cryptographic primitives
aimed at making programs “intelligible” while preserving their functionality: in particular, iO
guarantees that the obfucations of two circuits of the size that compute the same function (although
potentially very different) are computationally indistinguishable. Our key result shows:

Theorem 1 (Informally stated). Assume there exists an indistinguishability obfuscator for P/poly,
and a family of one way functions, then there exists a Bounded KDM secure public key encryption
scheme.

Interpreting our results Although iO is seemingly stronger than all assumptions from which
KDM security could previously be based, our construction relies on assumption of qualitatively
different and more general nature (we make no number-theoretic or lattice-based assumptions).

By the recent beautiful result by Asharov and Segev [AS15], it is known that black-box con-
struction of CRH from iO and OWF is not possible2, and as such, the assumption we use are
separated (at least w.r.t. oracle-aided black-box constructions) from the assumptions previously
used. As such, our work also addresses the second italicized question3. Notably, by embedding (in
the security reduction) the code of the functions that the adversary asks as queries inside obfus-
cated circuits, our construction circumvents the impossibility result of [HH09], which shows that
KDM security is impossible to get from any hardness assumption, as long as the reduction’s proof
of security treats both the adversary and functions queried as black boxes.

CCA2-KDM Security Camenisch, Chandran and Shoup [CCS09] construct a CCA2-KDM se-
cure encryption scheme by using a KDM-secure scheme for the function family, an NIZK proof
system, a CCA2-secure encryption scheme, a strongly secure one time signature scheme, and ap-
plying the Naor-Yung construction [NY90]. By combining our Bounded-KDM construction with
the known constructions of CCA2 encryption and NIZK from sub-exponentially secure iO, one-way
functions and signatures, we construct bounded CCA2-KDM secure encryption.

2They show that a CRHF cannot be constructed in a blackbox-manner from a one-way permutation and an
indistinguishability obfuscator for all polynomial-sized oracle-aided circuits without exponential-loss in security. Such
oracle-aided circuits can model most common uses of iO in cryptographic constructions such as puncturing in which
the circuits that are obfuscated make oracle calls to the one-way permutation.

3In fact, combining our result with [AS15] directly rules black-box constructions of CRH from single-key BKDM
security. On the other hand, it is not directly clear whether our final construction of multi-key BKDM falls into the
class of oracle-aided circuits.
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IND-CPA Security and Circular Security The dual problem of separating IND-CPA security
from n-circular (and therefore KDM) security for n > 1 has also been open for a long time, and
was solved assuming indistinguishability obfuscation and one way functions in [MO14, KRW15],
and more recently relying on LWE in [KW16,AP16].

1.1 Proof Overview

Informally, the (N,L)-Bounded KDM security definition4 states that no efficient adversary has
non-negligible advantage in the following game:

1. The challenger generates a random bit b and N key pairs (sk1, PK1), . . . , (skN , PKN ) (where
the secret keys have length k) and runs the adversary A on input the public keys.

2. A can adaptively make queries of the form (h, i), where i ∈ {1, . . . , N} and h is a circuit of
size at most L, input size kN and output size k (representing a function from N secret keys to
a k bit message). If b = 1, A receives an encryption EncPKi(h(sk1, . . . , skn)), and otherwise
receives EncPKi(0

k).

3. A halts and outputs a bit b′. A wins if b = b′.

The single-key case We start by giving an high level overview of our Bounded KDM secure
scheme in the simpler case where N = 1. The secret key of our construction is just a string
s ∈ {0, 1}k, while the public key consists of (p,K), where K is the key for an injective5 one way
function and p = OWFK(s). To encrypt a message m, the ciphertext consists of the obfuscation
of a program that on input x returns m if OWFK(x) = p and ⊥ otherwise. Decryption consists of
running the obfuscated ciphertext program on input the secret key.

Informally, such a scheme should be IND-CPA secure because, if we treat the obfuscation as a
black box, the only way to extract the message from a ciphertext (i.e. an obfuscated circuit) is to
run the circuit on input the secret key, which is a sufficiently long uniformly random string. To argue
the IND-CPA security of the scheme relying on an indistinguishability obfuscator, one can instead
leverage a theorem from [BCP14]: informally, any adversary that distinguishes obfuscations of two
circuits that differ on polynomially many inputs can be turned into an adversary that computes one
input on which the two circuits differ. Therefore, an adversary distinguishing between encryptions
of two different messages, i.e. only having different output on input an x such that OWFK(x) = p,
can be turned into an adversary that computes such an x, effectively inverting the one way function.

To prove that the scheme is also KDM secure, the simulator needs to answer queries about
a function h of a secret key s it does not know: this can be achieved by obfuscating a program
that on input x, first checks whether OWFK(x) = p, and then returns either h(x) if the check
passes or ⊥ otherwise. Since this new program is functionally equivalent to an honest encryption
of h(s) (as the one way function is injective6 and therefore there is only one input s that passes the

4For simplicity, in this paper we assume that the message and key space of the encryption scheme are both {0, 1}k,
where k is the security parameter.

5 [BPW16] shows how to construct a family of one way functions where randomly sampled functions are injective
with overwhelming probability. Their construction requires iO, one way functions and q-wise independent hashing,
as detailed in Section 2.

6To be more precise, the function is only injective with overwhelming probability. We will deal with this and other
subtleties in the formal proof.
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equality test, namely the secret key), indistinguishability obfuscation guarantees that no adversary
will notice the difference. Moreover, since such a simulation does not require the secret key, we can
later switch (in a standard hybrid argument) to a game where the public key is a pair (p,K) on
which the simulator wants to invert the one way function, and prove security as in the IND-CPA
case. This proof outline omits several subtle corner cases which complicate the formal proof.

The multi-key case We can extend the idea of computing h(s) “on the fly” inside the ciphertext
program when the correct secret key is given as input to the case where multiple secret keys are
involved. The challenge is that the new ciphertext program is given as input only one of the secret
keys and has to compute a function possibly depending on other independently generated keys7.

We circumvent the problem by embedding in the simulated ciphertexts the relationship between
secret keys s1, . . . , sn in the form a vector ~r = (s1 ⊕ s1, s2 ⊕ s1, . . . , sn ⊕ s1). Note that the vector
itself is uniformly distributed (since the secret keys are, except for the first component 0k = s1⊕ s1

which is left there for convenience of notation) and it allows the (simulated) ciphertext program,
given one of the secret keys, to compute on the fly all the other secret keys (and therefore functions
of them).

To reduce the security of the encryption scheme to the hardness of inverting the one way
function, we have one last problem: the simulator has to compute the vector ~r without knowing
the secret keys. Equivalently, we use the vector ~r to define the secret keys: the simulator will
get a tuple (p1,K1) for which it has to find a preimage and sample a random ~r, thus implicitly
defining each secret key si as the string that satisfies OWFK1(si ⊕ ri) = p1. Note that this change
does not modify the distribution of the secret keys and that the ciphertext programs will still be
functionally equivalent to the ones in the real experiment. However, the simulator now cannot
compute as public keys values (pi,Ki) consistent with pi = OWFKi(si). We therefore modify the
original encryption scheme so that the public keys are also released in obfuscated form: the modified
encryption scheme will have as public keys obfuscations of programs that have (pi,Ki) embedded

and on input x output 1 if pi
?
= OWFKi(x) and ⊥ otherwise. The ciphertexts will be modified

accordingly as obfuscations of programs that have the obfuscated public key PK embedded and

on input x return the message if PK(x)
?
= 1 and ⊥ otherwise. In the simulation, these public

key programs will be substituted with (functionally equivalent) obfuscated programs that output
1 iff p1 = OWFK1(x ⊕ ri). This last modification allows the simulation to be completed without
knowledge of any of the secret keys.

Lastly, as before, the same lemma from [BCP14] allows us to switch to a hybrid in which all
the ciphertexts returned to the adversary are encryptions of 0; this implies the KDM security of
the scheme.

Organization of the paper In the next section we go over the definition of KDM security and
review some of the results required for our construction. Section 3 shows a constructions in the
simpler case where only one secret key is used. Section 4 describes the more general construction
where functions of more than one secret key might be used and considers some extensions and
generalizations.

7Note that [BHHI10] solves the problem by embedding in their ciphertexts an encryption of the other secret keys
under the appropriate public key, which is why circular security is required as an additional assumption for their
underlying encryption scheme.
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2 Preliminaries

Notation and Conventions If S is a finite set s← S is a uniformly random sample from S. If
A is a randomized algorithm, x← A is the output of A on a uniformly random input tape.

Definition 2 (Injective OWF family (as stated in [BPW16])). Let l be a polynomially-bounded
length function. An efficiently computable family of functions

OWF = {OWFK : {0, 1}k → {0, 1}∗ : K ∈ {0, 1}l(k), k ∈ N}

associated with an efficient (probabilistic) key sampler KOWF is said to be an injective OWF family
if it satisfies:

1. Injectiveness: With overwhelming probability over the choice of K ← KOWF (1k), the func-
tion OWFK is injective

2. One-wayness: For any polysize inverter Adv there exists a negligible function negl(·), such
that for all k ∈ N,

Pr
[
x← {0, 1}k,K ← KOWF (1k) : Adv(K,OWFK(x))

?
= x

]
≤ negl(k)

[BPW16] shows how to construct injective one way functions assuming one way functions and
indistinguishability obfuscation.

2.1 Bounded Key Dependent Message Security

Definition 3 (Public Key Encryption). A public key encryption scheme PKE = (Gen,Enc,Dec) is
a triple of PPT algorithms such that:

• Gen(1k) is a randomized algorithm that takes as input a security parameter k and outputs a
couple of strings sk ∈ K, pk. For simplicity, we assume in the rest of the paper that the secret
keys are exactly k bits long.

• Enc(pk,m) is a randomized algorithm that on input a public key and a message m ∈ M
outputs a ciphertext c. Again, for simplicity we assume that M = {0, 1}k.

• Dec(sk, c) is an algorithm that on input a secret key and a ciphertext c outputs a message m

We require that ∀k,∀m ∈M, ∀(pk, sk)← Gen(1k), Dec(sk,Enc(pk,m)) = m.

Definition 4 (KDM Security w.r.t. H). Let PKE = (Gen,Enc,Dec) be a public key encryption
scheme with message space M and secret key space K, where for simplicity we assume M = K =
{0, 1}k. Fix a positive integer valued function N = N(k) > 0. Consider the following probabilistic
experiment (i.e. a random variable) between a challenger and an adversary A, parametrized by a
bit b:

KDMb
N,A(k):

• The challenger runs N = N(k) times Gen(1k) to get (pk1, sk1), . . . , (pkN , skN ) and runs the
adversary A on input pk = (pk1, . . . , pkN ).
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• The adversary can adaptively submit queries of the form (h, i), where h : KN → M is a
function (encoded as a circuit) and i ∈ 1, . . . , N . If b = 1, the challenger answers these
queries with Enc(pki, h(sk)), otherwise with Enc(pki, 0

k), where sk = (sk1, . . . , skN ).

• The adversary stops and outputs a bit b′, which is defined as the output of the game (i.e. the
value of the random variable).

The KDM advantage of A is defined as

AdvKDM
PKE,N,A(k)

def
= |Pr[KDM1

N,A(k) = 1]− Pr[KDM0
N,A(k) = 1]|

We say that PKE is KDM secure with respect to a function class H = {Hk} iff for every polynomial
N and every PPT A that in the above game only queries the challenger with functions h ∈ Hk, the
advantage function AdvKDM

PKE,N,A(k) is negligible in k.

Definition 5 (Bounded KDM Security). A public key encryption scheme PKE is said to be (N,L)-
Bounded KDM secure if it is KDM secure with respect to the class H = {Hk}, where Hk consists
of all functions h : KN(k) →M that can be encoded as circuits8 of size bounded by the polynomial
function L(k).

Note that, for simplicity, we have denoted with N(k) both the arity of the functions in H and
the number of key pairs generated in the security experiment above. In general, the number of keys
in the experiment might be higher than the arity of the functions in H, and it is easy to extend
our proofs to hold even in this case.

2.2 Indistinguishability Obfuscation

Definition 6 (Indistinguishability Obfuscation [GGH+13]). Given a circuit class {Ck}, a (uniform)
PPT machine iO is called an indistinguishability obfuscator (iO) for {Ck} if it satisfies:

Preserving Functionality: For every k ∈ N and C ∈ Ck,

Pr[C ′(x) = C(x)|C ′ ← iO(k,C)] = 1 ∀x

Indistinguishability: For any (not necessarily uniform) polynomial-size distinguisher D, all se-
curity parameters k and all couples C0, C1 ∈ Ck such that C0(x) = C1(x) for all inputs x, we
have that ∣∣∣Pr[D(iO(k,C0)) = 1]− Pr[D(iO(k,C1)) = 1]

∣∣∣ ≤ negl(k)

2.3 Extractability Obfuscation

Definition 7 (Weak Extractability Obfuscation [BCP14]). A uniform transformation O is a weak
extractability obfuscator for a class of circuits C = {Ck} if the following holds. For every PPT
adversary A and polynomial p(k), there exists a PPT algorithm E and polynomials pE(k), tE(k)

8Recall that we assume for simplicity M = K = {0, 1}k.
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for which the following holds. For every polynomial d(k), for all sufficiently large k, and every pair
of circuits C0, C1 ∈ Ck differing on at most d(k) inputs, and every auxiliary input z,

Pr[b← {0, 1}; C̃ ← O(1k, Cb) : A(1k, C̃, C0, C1, z) = b] ≥ 1

2
+

1

p(k)

⇒ Pr[x← E(1k, C0, C1, z) : C0(x) 6= C1(x)] ≥ 1

pE(k)
,

and the runtime of E is tE(k, d(k)).

Lemma 8 ( [BCP14] ). Let iO be an indistinguishability obfuscator for P/poly. Then iO is also
a weak extractability obfuscator for P/poly.

3 (1,L)-Bounded KDM Construction

In this section, we consider the simpler case where functions queried by the adversary can involve
only one public key at a time.

3.1 Scheme description

The scheme is parametrized over a polynomial function L(k) (which is a bound on the size of the
circuits for which we can prove the Bounded KDM security of the scheme).

ΠL :

Key Generation: The algorithm Gen(1k) generates a random secret key s ← {0, 1}k and a key
for an injective one way function K ← KOWF (1k). It outputs s as the secret key and the
couple (p,K) where p← OWFK(s) as the public key.

Encryption: The algorithm Enc((p,K),m) on input a public key (p,K) and a message m ∈ {0, 1}k
outputs an obfuscated circuit C ← iO(Gp,K,m(·)) (the circuit Gp,K,m is described in figure 1).

Decryption: The algorithm Dec(s, C) on input a secret key s ∈ {0, 1}k and a ciphertext C ∈ P
outputs m′ = C(s).

It can be verified that correctness of the Obfuscator implies correctness of the encryption scheme.
The following theorem argues that the scheme achieves Bounded KDM Security.

Theorem 9. If iO is an indistinguishability obfuscator for P/poly and OWF is a family of in-
jective one way functions, then for any polynomial function L(·) the encryption scheme ΠL =
(Gen,Enc,Dec) described above is (1, L)-Bounded KDM secure.

Proof. The proof proceeds by a hybrid argument. Assume by contradiction that there exists an
adversary A such that AdvKDM

ΠL,1,A(k) is non negligible in k, i.e. there exists a polynomial p such that

AdvKDM
ΠL,1,A(k) > 1

p(k) for infinitely many k. We define the random variable KDMHyb
1,A (k) exactly as

KDM1
1,A(k), but where queries (h, 1) by the adversary9 are answered by returning as the ciphertext

9since there is only one public key, in the rest of the theorem we will just refer to the query for a function h and
implicitly assume i = 1
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Gp,K,m:
Constants: p ∈ {0, 1}∗,m ∈ {0, 1}k,K ∈ {0, 1}l(k)

Inputs: x ∈ {0, 1}k

1. If (OWFK(x)
?
= p), then output m; else output ⊥.

G′p,K,h:

Constants: p ∈ {0, 1}∗, h ∈ {0, 1}L,K ∈ {0, 1}l(k)

Inputs: x ∈ {0, 1}k

1. If (OWFK(x)
?
= p), then output h(x); else output ⊥.

All the circuits are padded to a specific length `(k, L) which will be specified in the proof.

Figure 1: Circuits used in the encryption of the (1-L)-Bounded KDM scheme

an obfuscation iO(G′p,K,h), where (p,K) is the public key generated in the first step of the game
and G′ is described in figure 1.

By definition of advantage and the triangular inequality, it must be that at least one of the
following two inequalities hold for infinitely many k:

|Pr[KDM1
1,A(k) = 1]− Pr[KDMHyb

1,A (k) = 1]| > 1

2p(k)

|Pr[KDMHyb
1,A (k) = 1]− Pr[KDM0

1,A(k) = 1]| > 1

2p(k)

However, the next two lemmas will prove that the quantities on the right hand side of the above
inequalities are both negligible, which is a contradiction and therefore proves the claim. In the
following, for brevity, we will denote KDMb

1,A(k) for b = 0, 1, Hyb as Zb.
To make sure we can rely on the security of the iO in the lemmas below, we set `(k, L) to be

an upper bound on the size of the circuits Gp,K,m and G′p,K,h of figure 1.

Lemma 10. |Pr[Z1 = 1]− Pr[ZHyb = 1]| < negl(k)

Proof. To prove this lemma, we rely on the security of the iO obfuscator using a hybrid argument.
Let q(k) be a (polynomial) upper bound on the number of queries thatAmakes. We consider a series
of hybrid games: for j = 0, . . . , q(k) define the random variable Hj as an interactive experiment
where the first and third step (i.e. the key generation phase and the output of the game) are defined
as in KDM1

1,A(k), while the queries are handled as follows. The first q(k)−j queries made by A are
answered with iO(Gp,K,h(s)) (where h is the function the adversary queried), i.e. according to what
would happen in game Z1; instead, the last j queries are answered with iO(G′p,K,h) (i.e. according
to ZHyb). Since H0 has the same distribution as Z1 and Hq(k) has the same distribution as ZHyb,
to prove the claim it is enough to show that for all j, |Pr[Hj = 1]− Pr[Hj+1 = 1]| < negl(k).

Notice that, until the (q(k)− j)th query is answered by the challenger, the “state” of the game
has the same distribution both in Hj and Hj+1. Here the “state” of the game consists of the
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keys sampled by the challenger in the first step of the game, the view of the adversary A and its
internal state; it depends on the random choices made by both A and the challenger up to the
point where the (q(k)− j)th query is made (but not answered). We can therefore consider the state
t̄ that maximizes (over the choice of t) the quantity |Pr[Hj = 1|t] − Pr[Hj+1 = 1|t]| subject to
the constraint that the one way function key K chosen by the challenger defines an injective one
way function. Let v̄(k) be this maximum value. It is not hard to see that, in order for the lemma
to hold, it is enough to prove that this ¯v(k) is negligible in k. In fact, let T denote the set of all
possible game states (as defined above), T1 be the set of states such that the key K chosen by the
challenger as part of the public key defines an injective one way function, and T2 = T \ T1. Since
the one way function family is injective, Pr[t ∈ T2] is negligible. Therefore we have that:

|Pr[Hj = 1]− Pr[Hj+1 = 1]| ≤ |v̄(k)|Pr[t ∈ T1] + Pr[t ∈ T2] = |v̄(k)|+ negl(k)

Therefore, we are left with proving that v̄(k) is negligible. Assume by contradiction it is not,
and let s, (p,K) and h be the sampled keys and the (q(k)− j)th function queried by A according to
state t̄. We will build a (non-uniform) distinguisher D which will distinguish between obfuscations
of Gp,K,h(s) and G′p,K,h, thus contradicting the security of the obfuscator. First of all notice that,
since t̄ was conditioned on K being injective, the two circuits are functionally equivalent. D works
as follows: it receives as a non uniform advice the state t̄ (which has size polynomial in k) and as
an input an obfuscation O of one of the two circuits. D continues the simulation of the experiment
from state t̄ as the challenger, using O as an answer to the (q(k)− j)th query of the adversary and
then answering all other queries according to ZHyb. When A halts and outputs a bit b, D does the
same. It holds that, when O ← iO(Gp,K,h(s)), the view of A is distributed as in Hj , while when
O ← iO(G′p,K,h), it is distributed as in Hj+1. Therefore

∣∣∣Pr[Dt̄(iO(k,Gp,K,h(s))) = 1]− Pr[Dt̄(iO(k,G′p,K,h)) = 1]
∣∣∣ =∣∣∣Pr[Hj = 1 | t̄]− Pr[Hj+1 = 1 | t̄]

∣∣∣ = |v̄(k)|

which contradicts the security of iO and concludes the proof.

Lemma 11. |Pr[ZHyb = 1]− Pr[Z0 = 1]| < negl(k)

Proof. The proof is by contradiction of the one-wayness property of the function family leveraging
Lemma 8. Let q(k) be a (polynomial) upper bound on the number of queries that A makes.
We consider a series of hybrid games: for j = 0, . . . , q(k) define the random variable Hj as an
interactive experiment where the first and third step (i.e. the key generation phase and the output
of the game) are defined as in KDM0

1,A(k), while the queries are handled as follows. The first
q(k) − j queries made by A are answered with iO(G′p,K,h) (where h is the function the adversary
queried), i.e. according to what would happen in game ZHyb; instead, the last j queries are
answered with iO(Gp,K,0k) (i.e. according to Z0). Since H0 has the same distribution as ZHyb

and Hq(k) has the same distribution as Z0, to prove the claim it is enough to show that for all j,
|Pr[Hj = 1]− Pr[Hj+1 = 1]| < negl(k).

Assume by contradiction that there exist a specific index j and an adversary A that can dis-
tinguish between Hj and Hj+1 with non negligible probability a(k). Note that, as in the previous
lemma, the view of the adversary in games Hj and Hj+1 has the same distribution up to the point
where A makes the (q(k)− j)th query. We will use such an adversary to build an adversary B that
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breaks the one wayness of OWF . B takes as input randomly chosen function key K ← KOWF
and the image p of the function on a random input, and has to compute a preimage x such that
OWFK(x) = p.

By Lemma 8, the existence of an adversary C that distinguishes (with non negligible probabil-
ity) between obfuscations of two circuits that differ on only one input implies the existence of a
polynomial time algorithm E that computes the input on which they are different with overwhelm-
ing probability. B proceeds in two stages: first, it simulates for A an experiment similar to Hj+1,
using its own input (p,K) as the public key and up to the point where the (q(k)− j)th query for a
function h̄ is asked. Let t be the state of the adversary A (including its view) at this point in the
simulation. Note that this simulation is possible because knowledge of the preimage x is not neces-
sary to compute obfuscations of the programs G′p,K,h that are returned as answers to the queries.

As a second step, B can run the algorithm E (given by Lemma 8) on input (1k, G′
p,K,h̄

, Gp,K,0k , t),

which runs in polynomial time, and return its output.
We now analyze the success of B in two steps: we define a property of the states t sampled by

B (a state satisfying the property will be called a “good” state), and show that B samples a good
state with non negligible probability. Second, we show there exists an algorithm E that succeeds
with noticeable probability conditioned on the fact that t is good.

Denote with T the distribution on the states of A obtained by running Hj+1 up to the point
where the (q(k) − j)th query for a function h̄ is asked. A state t ← T (containing the public key
(p,K) and the (q(k)− j)th query h̄) is said to be “good” if all the following holds:

1. K denotes an injective function

2. h̄ is such that ∀x,OWFK(x) = p⇒ h̄(x) 6= 0k

3.
∣∣∣Pr[Hj = 1|t] − Pr[Hj+1 = 1|t]

∣∣∣ > a(k)
2 . Here Pr[Hj = 1|t] denotes the probability that the

value of the random variable Hj is 1 given that after the (q(k) − j)th query is asked A is in
state t.

Denote with Tg the set of good states, with T1 the set of states that do not satisfy condition 1,
with T2 the states that satisfy condition 1 but not condition 2, and with T3 the states that satisfy
conditions 1 and 2 but not 3. Note that Tg, T1, T2, T3 are a partition of T . First, although B
executes A using its own input (p,K) as the public key, when this input is randomly sampled
(x ← {0, 1}k;K ← KOWF (1k); p ← OWFK(x)) the distribution of t obtained by B is exactly T .
To argue that t ← T is good with non negligible probability, assume by contradiction it was not.
We have that, by a union bound

a(k) =
∣∣∣Pr[Hj = 1 | t ∈ Tg]− Pr[Hj+1 = 1 | t ∈ Tg]

∣∣∣Pr[t ∈ Tg]+

3∑
i=1

∣∣∣Pr[Hj = 1 | t ∈ Ti]− Pr[Hj+1 = 1 | t ∈ Ti]
∣∣∣Pr[t ∈ Ti] ≤ (∗)

We note that Pr[t ∈ T1] is negligible because the OWF is injective. Moreover, it is not hard

to prove that
∣∣∣Pr[Hj = 1 | t ∈ T2] − Pr[Hj+1 = 1 | t ∈ T2]

∣∣∣ is negligible as well: in fact, if

h̄(x) = 0k then G′
p,K,h̄

and Gp,K,0k would be functionally equivalent, and therefore their obfuscations

computationally indistinguishable (because of the security of iO), so A in an execution from state
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t would only be able to distinguish between them (and therefore between Hj and Hj+1) with

negligible probability. Moreover, since for t ∈ T3 condition 3 is not satisfied,
∣∣∣Pr[Hj = 1 | t ∈

T3]− Pr[Hj+1 = 1 | t ∈ T3]
∣∣∣ ≤ a(k)/2 from which

(∗) ≤
∣∣∣Pr[Hj = 1 | t ∈ Tg]− Pr[Hj+1 = 1 | t ∈ Tg]

∣∣∣Pr[t ∈ Tg] +
a(k)

2
+ negl(k)

Therefore, if Pr[t ∈ Tg] was negligible, then a(k) would be bounded by a negligible function , which
is a contradiction.

For the second step we prove that, conditioned on t ∈ Tg, B inverts with non negligible prob-
ability. Note that, on good states, there is exactly one x such that OWFK(x) = p, and moreover
it holds that h̄(x) 6= 0k. Therefore G′

p,K,h̄
and Gp,K,0k will differ on input x and have the same

output on all others. Under this condition, B inverts the function iff algorithm E (given by Lemma
1) is successful, which happens with overwhelming probability as long as we can prove that as
long as we can prove that there is an adversary C such that for each t ∈ Tg, C distinguishes ob-
fuscations of G′

p,K,h̄
and Gp,K,0k with non negligible probability. Consider the following adversary

C(O,G′
p,K,h̄

, Gp,K,0k , t)) :

1. Resume running A from the saved state t, answering its first (i.e. (q(k)− j)th) query with O.

2. Answer all subsequent queries with obfuscations of Gp,K,0k .

3. When A halts outputs a bit b′, halt and output the same bit.

Note that when O ← iO(G′p,K,h), the output of C has the same distribution as Hj |t, while if
instead C is run on an obfuscation O ← iO(G′

p,K,0k
), the view of A is consistent with Hj+1|t.

Therefore, if t ∈ Tg, the advantage of C in distinguishing obfuscations of the two circuits is

equal to
∣∣∣Pr[Hj = 1 | t] − Pr[Hj+1 = 1 | t]

∣∣∣ > a(k)
2 which is non negligible. This proves that

algorithm E exists and has overwhelming success probability on good states. Since we have also
proven that B samples good states with non negligible probability, we can conclude that it has non
negligible probability of inverting the OWF , which contradicts its one-wayness.

4 (N,L)-Bounded KDM Construction

The scheme is parametrized over polynomial functions L(k), N(k) (which are bounds on the size of
the circuits and number of keys for which we can prove the Bounded KDM security of the scheme).

ΠN,L:

Key Generation: The algorithm Gen(1k) samples a random secret key s← {0, 1}k and a key for
an injective one way function K ← KOWF (1k). Then it computes p← OWFK(s). It outputs
s as the secret key, and the program PK(·)← iO(Fp,K(·)) as the public key (the circuit Fp,K

is described in figure 2).

Encryption: The algorithm Enc(PK,m) on input a public key PK (which is interpreted as
an obfuscated program) and a message m ∈ {0, 1}k outputs an obfuscated circuit C ←
iO(GPK,m(·)) (the circuit GPK,m is described in figure 3).
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Fp,K :
Constants: p ∈ {0, 1}∗,K ∈ {0, 1}l(k)

Inputs: x ∈ {0, 1}k

1. if (OWFK(x)
?
= p), then output 1; else output ⊥.

F ′p,r,K :

Constants: p ∈ {0, 1}∗, r ∈ {0, 1}k,K ∈ {0, 1}l(k)

Inputs: x ∈ {0, 1}k

1. if (OWFK(x⊕ r)
?
= p), then output 1; else output ⊥.

All the circuits are padded to a specific length `PK(k,N,L) which will be specified in the proof.

Figure 2: Circuits used in the key generation of the (N-L)-Bounded KDM scheme

GPK,m:
Constants: PK ∈ {0, 1}`′PK(k,N,L,iO),m ∈ {0, 1}k
Inputs: x ∈ {0, 1}k

1. If (PK(x)
?
= 1), then output m; else output ⊥.

G′PK,r,h,i:

Constants: PK ∈ {0, 1}`′PK(k,N,L,iO), r = (r1, . . . , rN ) ∈ {0, 1}k·N , h ∈ H, i ∈ {1, . . . , N}
Inputs: x ∈ {0, 1}k

1. If (PK(x⊕ ri)
?
= 1), then output h(x⊕ ri⊕ r1, x⊕ ri⊕ r2, . . . , x⊕ ri⊕ rN ); else output

⊥.

All the circuits are padded to a specific length `Enc(k,N,L, iO) which will be specified in the
proof.

Figure 3: Circuits used in the encryption of the (N-L)-Bounded KDM scheme
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Decryption: The algorithm Dec(s, C) on input a secret key s ∈ {0, 1}k and a ciphertext C ∈ P
outputs m′ = C(s).

It can be easily verified that correctness of the Obfuscator implies correctness of the encryption
scheme. The following theorem argues that the scheme achieves Bounded KDM Security.

Theorem 12. If iO is an indistinguishability obfuscator for P/poly and there exists a family
of injective OWF , then for any polynomial function L and any N ∈ N the encryption scheme
ΠN,L = (Gen,Enc,Dec) described above is (N,L)-Bounded KDM secure.

Proof. The proofs proceeds by an hybrid argument, with a very similar structure to Theorem 9.
Given any adversary A define the following random variables:

Z1: this is the same as KDM1
ΠN,L,N,A(k).

Z2: this is the same as the previous one, but the public keys are generated as follows: the challenger
samples s1, . . . , sN ← {0, 1}k and K ← KOWF ; then it computes p ← OWFK(s1), ~r ←
(0k, s1 ⊕ s2, s1 ⊕ s3, . . . , s1 ⊕ sn) and sets PKi ← iO(F ′p,ri,K) for all i.

ZHyb: this is the same as the previous one, but queries (h, i) by the adversary are answered by
returning as the ciphertext an obfuscation iO(G′PK1,~r,h,i

). (Note that knowing the secret keys
is not needed to simulate this step).

Z3: this is the same as Z0, but the public keys are generated (as in Z2) as follows: the challenger
samples s1, . . . , sN ← {0, 1}k and K ← KOWF ; then it computes p ← OWFK(s1), ~r ←
(0k, s1 ⊕ s2, s1 ⊕ s3, . . . , s1 ⊕ sn) and sets PKi ← iO(F ′p,ri,K) for all i.

Z0: this is the same as KDM0
ΠN,L,N,A(k).

Again, to prove that Z1 and Z0 are indistinguishable, it is enough to show that any pair of
adjacent games Zi, Zj are also indistinguishable, i.e. for all A, |Pr[Zi = 1]−Pr[Zj = 1]| < negl(k).

To prove that Z1 is indistinguishable from Z2, we rely again on a hybrid argument: for j =
0, . . . , N(k), we define Z1,j to be the same as Z1, but where the public keys are sampled as follows.
The challenger samples s1, . . . , sN(k) ← {0, 1}k and K1, . . . ,KN(k) ← KOWF , then it computes

pi ← OWFK(si) ∀i and ~r ← (0k, s1⊕s2, s1⊕s3, . . . , s1⊕sN(k)); finally, it samples PKi ← iO(Fpi,Ki)
if i ≤ N(k)− j and PKi ← iO(F ′p1,ri,K1

) if i > N(k)− j. Note that Z1,0 has the same distribution
as Z1, and Z1,N(k) has the same distribution as Z2: an adversary distinguishing between the two
with non negligible probability must also distinguish between Z1,j and Z1,j+1 with non negligible
probability for at least one value of j. But, similarly as in the proof of lemma 11 and because OWF
is an injective family, such an adversary must distinguish between Z1,j and Z1,j+1 even conditioned
on the fact that K1 and Kj both denote injective functions. But under this assumption, the two
versions of PKj given to the adversary in the two hybrids (i.e. iO(Fpj ,Kj ) and iO(F ′p1,rj ,K1

)) are

functionally equivalent, and therefore (by the security of the iO) computationally indistinguishable,
which implies that no such efficient adversary can exist.

The proof that Z2 is indistinguishable from ZHyb and the one that ZHyb is indistinguishable
from Z3 are analogous to the ones of lemma 10 and 11. Note that in such proofs it is only necessary
to condition on K1 being injective (all other function keys do not affect the view of the adversary),
and in the second proof B receives (p1,K1) as the challenge to invert and will sample ~r uniformly:
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conditioned on K1 being injective, any input x on which two ciphertexts encrypted under public
key PKi differ can be transformed into a preimage x⊕ ri for p1,K1.

The proof that Z3 is indistinguishable from Z0 is analogous to the one that Z1 is indistinguish-
able from Z2. To make sure we can rely on the security of the iO in all the above hybrids, we
first set `PK(k,N,L) to be an upper bound on the maximum size of the circuits Fp,K and F ′p,r,K
of figure 2 (which depends on k, N , L). Then we can define `′PK(k,N,L, iO) (which in turns
determines the size of GPK,m and G′PK,r,h,i) to be a bound on the size of the output of iO on input
a circuit of length `PK(k,N,L). At last, we set `Enc(k,N,L, iO) to be an upper bound on the size
of circuits GPK,m and G′PK,r,h,i. Notice that all these functions are polynomially bounded.

Combining the above theorem with the construction of a family of one way permutations by
Bitansky, Paneth and Wichs [BPW16] gives the following corollary:

Corollary 13. If there exists an indistinguishability obfuscator for P/poly, and a family of one
way functions, then for any polynomial function L and any N ∈ N there exists a (N,L)-Bounded
KDM secure public key encryption scheme.

Avoiding reliance on a specific OWF As an additional interesting result, we note that the
scheme can be further simplified so that its security does not depend on a specific (injective) one
way function, but rather on the existence of an (injective) one way functions which can be computed
by a circuit whose size is below an explicitly specified bound. The idea behind this construction is
the fact that in our encryption scheme the public key is just an obfuscation of a point function, and
therefore an obfuscated public key is indistinguishable from the obfuscation of a program (padded
to an appropriate size) which directly checks if its input x is equal to the secret s (as opposed to
checking whether OWFK(x) = s) and therefore does not have to internally compute the one way
function.

We can leverage this fact and design a new encryption scheme where the key generation algo-
rithm chooses a secret key s uniformly at random and outputs as the public key the obfuscation of

a program that returns 1 iff its input x
?
= s (encryption and decryption algorithms are unchanged).

To prove security, we argue that the public keys of this new scheme are indistinguishable from
the ones of ΠN,L,iO (when instantiated with a secure OWF) and therefore reduce to the latter’s
Bounded KDM security.

Bounded KDM-CCA2 security Our construction can also be used to construct Bounded
KDM-CCA2 security in which, informally, the KDM adversary may also ask CCA2 queries on any
ciphertexts except for the ones received as answers to KDM queries (see [CCS09] for a formal defini-
tion). Camenish, Chandran and Shoup [CCS09] show a generic transformation for any KDM secure
encryption scheme into a KDM-CCA2 secure one (w.r.t. the same family of functions) by applying
the Naor-Yung paradigm [NY90]. Their transformation thus requires an NIZK proof system and
a CCA2-secure (normal) encryption scheme and a strongly secure one time signature. Combining
our construction with their Theorem 1, and the construction of NIZK, CCA2 and signatures from
sub-exponentially secure iO and one-way functions from [SW14], we get the following corollary:

Corollary 14. If there exists a sub-exponentially secure indistinguishability obfuscator for P/poly,
and a family of one way functions, then for any polynomial function L and any N ∈ N there exists
a (N,L)-Bounded KDM-CCA2 secure public key encryption scheme.
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