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Abstract. Protocols for secure electronic voting are of increasing societal im-
portance. Proving rigorously their security is more challenging than many other
protocols, which aim at authentication or key exchange. One of the reasons is that
they need to be secure for an arbitrary number of malicious voters. In this paper
we identify a class of voting protocols for which only a small number of agents
needs to be considered: if there is an attack on vote privacy then there is also an
attack that involves at most 3 voters (2 honest voters and 1 dishonest voter).
In the case where the protocol allows a voter to cast several votes and counts, e.g.,
only the last one, we also reduce the number of ballots required for an attack to
10, and under some additional hypotheses, 7 ballots. Our results are formalised
and proven in a symbolic model based on the applied pi calculus. We illustrate the
applicability of our results on several case studies, including different versions of
Helios and Prêt-à-Voter, as well as the JCJ protocol. For some of these protocols
we can use the ProVerif tool to provide the first formal proofs of privacy for an
unbounded number of voters.
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1 Introduction

Electronic voting has been adopted in several countries, such as the United States, Es-
tonia, Australia, Norway, Switzerland, and France, to conduct legally binding elections
(or at least trials for some of them). Electronic voting systems should ensure the same
properties than the traditional paper ballots systems, despite the fact that malicious users
may easily intercept ballots and try to forge fake ones. One crucial property is vote pri-
vacy: no one should know how a particular voter voted. Symbolic models have been
very successful in the analysis of more traditional protocols that aim at confidential-
ity or authentication. Many decision techniques and several tools have been developed
(see [1,2,3] to cite only a few) which have been successfully applied to a large number
of case studies including widely deployed protocols such as TLS [4]. Vote privacy in
symbolic models can be expressed through a rather simple and natural property [5]: an
attacker should not be able to distinguish the situation where Alice votes 0 and Bob
votes 1 from the situation where the votes are swapped:

VAlice(0) | VBob(1) ≈ VAlice(1) | VBob(0)



Despite its apparent simplicity, this property is difficult to check for several reasons.
Firstly, most existing decision techniques apply to reachability properties (such as au-
thentication and confidentiality) but not to indistinguishability properties. Another ma-
jor difficulty comes from the fact that e-voting systems involve less standard cryp-
tographic primitives and sometimes even specially designed, ad-hoc primitives (like
for the protocol used in Norway [6]). Typical primitives in e-voting are homomorphic
encryption, zero-knowledge proofs, reencryption mixnets, etc. Some techniques and
tools [7, 8, 9, 10] for indistinguishability properties have recently been developed to au-
tomatically check indistinguishability properties and some of them can handle part of
the primitives needed in e-voting. For example, ProVerif and Akiss have both been suc-
cessfully applied to analyse some voting protocols [5, 10, 11, 12, 13, 14]. However, a
third source of difficulty is the fact that voting systems are typically parametrized by
the number of voters: both the bulletin board and the tally processes have to process
as many ballots as they receive. This is typically modeled by considering processes
parametrized by the number of voters. Even though parameterized protocols can be
encoded in a formalism such as the applied pi calculus, such encodings are compli-
cated and generally beyond the capabilities of what automated tools support. ProVerif,
which to the best of our knowledge is the only tool that supports verification of indistin-
guishability properties for an unbounded number of sessions (i.e. allowing replication)
generally fails to prove vote privacy. One exception is a case study of the Civitas vot-
ing system by Backes et al. [11] using ProVerif. The other tools for indistinguishability
(e.g. SPEC [8], Akiss [10], and APTE [9]) can only handle a finite number of sessions.
So case studies have to consider a finite number of voters [10, 12, 13, 14] unless proofs
are conducted by hand [13, 15].

Contributions. Our main contribution is a reduction result for a reasonnably large class
of voting protocols. If there is an attack on privacy for n voters, we show that there
also exists one that only requires 3 voters: 2 honest voters are necessary to state the
privacy property and then 1 dishonest is sufficient to find all existing attacks. This result
significantly simplifies security proofs: there is no longer need to consider arbitrarily
many voters, even in manual proofs. Moreover, this result allows the use of automated
tools for checking equivalence properties and justifies previous proofs conducted for a
fixed number of voters (provided at least one dishonest voter was considered).

Several protocols assume voters may revote several times. This is for example the
case of Helios or Civitas. Revoting is actually crucial for coercion-resistance in Civitas.
When revoting is allowed, this should be reflected in the model by letting the ballot box
accept an unbounded number of ballots, and retaining only the valid ones according
to the revote policy. This aspect is typically abstracted in any existing formal analysis.
We show that we can simplify the analysis by reducing the total number of ballots
to 10 for typical revoting policies (e.g. the last vote counts) and typical tally functions.
Altogether, our result amounts in a finite model property: if there is an attack on privacy
on n voters that may vote arbitrarily, then there is an attack that only requires 3 voters
and at most 10 ballots. We can further reduce the number of ballots to 7 for a class of
protocols that has identifiable ballots, that is ballots that reveal the corresponding public
credentials. Of course, only 3 ballots are sufficient when revoting is disallowed.



Our result holds in a rather general setting provided that the e-voting system can
be modeled as a process in the applied-pi calculus [16]. Of course, this reduction result
cannot hold for arbitrary systems. For example, if the tally phase checks that at least
4 ballots are present then at least 4 voters are necessary to conduct an attack. So we
model what we think to represent a “reasonable” class of e-voting systems. The process
modeling the voter may be an arbitrary process as long as it does not depend on cre-
dentials of other voters and provided voters do not need to interact once the tally phase
has started. This corresponds to the “vote and go” property, that is often desirable for
practical reasons, but also excludes some protocols such as [17]. Once the vote is casted
the authorities proceed as follows.

– The bulletin board (if there is one) performs only public actions such as publish-
ing a received ballot, possibly removing some parts and possibly after some public
tests, i.e. tests that anyone could do as well. Typical public tests are checks of signa-
ture validity, well-formedness of the ballots, or validity of zero-knowledge proofs.
Alternatively, we may consider an arbitrary bulletin board in case it is corrupted
since it is then part of the adversarial environment.

– Next, a revote policy is applied. We consider two particular revote policies: the
policy which selects the last ballot, which is the most common one, and the policy
that selects the first one, which encodes the situation where revoting is prohibited.

– Finally, the tally is computed according to some counting function. We consider
in particular two very common functions: the multiset and the additive counting
functions. The multiset counting function returns the votes in an arbitrary order
and corresponds for example to the output of a decryption mixnet. The additive
counting function returns the number of votes received by each candidate.

We believe that these conditions are general enough to capture many existing e-
voting schemes.

Applications. To illustrate the applicability of our result, we re-investigate several ex-
isting analyses of e-voting protocols. First, we consider several versions of the Helios
protocol [18], both in its mixnet and homomorphic versions. These versions also in-
clude the Belenios [19] protocol. We are able to use the ProVerif tool to show privacy
for the mixnet versions of these protocols for a bounded number of voters and ballots.
Our reduction result allows immediately to conclude that vote privacy also holds for
an arbitrary number of voters. The homomorphic version of Helios is out of reach of
existing tools due to the presence of associative and commutative symbols. However,
our reduction result does apply, which means that the manual proof of Helios conducted
in [13] did not need to consider arbitrarily many voters and could be simplified. In case
one wishes to adapt this proof to Belenios [19], our reduction result would alleviate
the proof. The Prêt-à-Voter [20] protocol (PaV) has been analysed using ProVerif for 2
honest voters [12]. Adding a third, dishonest, voter, we can apply our result and obtain
the first proof of vote privacy for an arbitrary number of voters. Unfortunately, ProVerif
did not scale up to verify automatically the protocol in presence of a dishonest voter. We
were also able to apply our result (and a proof using ProVerif) to a protocol by Moran
and Naor and to the JCJ protocol implemented in Civitas (without a ProVerif proof).



Related work. To our knowledge, the only other reduction result applying to voting pro-
tocols was proposed by Dreier et al. [21]. Their result states that it is sufficient to prove
vote privacy for two honest voters when the protocol is observationally equivalent to a
protocol consisting of the parallel composition (not sharing any secret) of a partition of
the set of voters. Applicability has however only been shown to examples where this
trivially holds, e.g. [17, 22] as these protocols use completely public tallying mecha-
nisms. In general, proving the required equivalence does not seem easier than proving
directly vote secrecy. Moreover, it does not apply to some well known protocols such
as Helios since a dishonest voter is needed to mount the vote replay attack [13].

The results of [23,24] show how to reduce the number of agents, in the case of trace
properties [23] and equivalence properties [24]. The major difference with our work is
that [23,24] simply reduce the number of agent identities while the number of sessions
(or processes) remains the same. In contrast, we do not only reduce the number of voter
identities but also the number of ballots the ballot box needs to process, yielding a
simpler process.

2 Modelling security protocols

As usual in symbolic protocol analysis we model protocol messages as terms. Protocols
are modelled in a process calculus, similar to the applied pi calculus [16].

2.1 Messages

We assume an infinite set of names N = {a, b, k, n, . . .} (which are used to represent
keys, nonces, . . . ) and an infinite set of channels Ch = {c, c1, ch, ch1, . . .} (which
are used to represent communication channels). We also consider a set of variables
X = {x, y, . . .}, and a signature Σ consisting of a finite set of function symbols.

Terms are defined as names, variables, and function symbols applied to other terms.
In particular, a channel is not a term. Let N ⊆ N and X ⊆ X , the set of terms built
from N and X by applying function symbols in Σ is denoted by T (Σ,N∪X). We write
fv(t) (resp. fn(t)) for the set of variables (resp. names) occurring in a term t. A term is
ground if it does not contain any variable.

Example 1. We model asymmetric encryption, signatures, and pairs by the signature

Σaenc
def
=
{aenc/3, adec/2, pk/1, sig/2, checksig/2, getmsg/1, vk/1, 〈·, ·〉/2, π1/1, π2/1}

where f/i denotes that f has arity i. Consider term t
def
= 〈pk(sk), aenc(pk(sk), r,m)〉

where sk, r,m ∈ N . The term t represents a pair consisting of the public key pk(sk) as-
sociated to the private key sk and the encryption of message m with public key pk(sk)
using randomness r. To improve readability, we may sometimes write 〈t1, . . . , tn〉 in-
stead of 〈t1, 〈. . . 〈tn−1, tn〉 . . .〉〉.

We denote by ` = [t1, . . . , tn] the list of terms t1, . . . , tn and by t0 :: ` the list
obtained by adding the term t0 to the head of the list, i.e., t0 :: ` = [t0, t1, . . . , tn].



Sometimes we interpret lists as multisets and we write `1 =# `2 for the equality of the
multisets corresponding to these lists.

A substitution is a partial function from variables to terms. The substitution σ that
maps xi to ti (1 ≤ i ≤ n) is denoted {x1 7→ t1, . . . , xn 7→ tn} and we write
dom(σ) = {x1, . . . , xn} for the domain of σ. We denote by ∅ the substitution whose
domain is empty. We always suppose that substitutions are acyclic. As usual we extend
substitutions to terms and write tσ for the application of σ to term t.

To model algebraic properties of cryptographic primitives, we define an equational
theory by a finite set E of equations u = v with u, v ∈ T (Σ,X ). We define =E to
be the smallest equivalence relation on terms, that contains E and that is closed under
application of function symbols and substitutions of terms for variables.

Example 2. Continuing Example 1 we define the equational theory Eaenc by the follow-
ing equations.

adec(xk, aenc(pk(xk), xr, xm)) = xm checksig(sig(x, y), vk(y)) = ok
πi(〈x1, x2〉) = xi (i ∈ {1, 2}) getmsg(sig(x, y)) = x

Then we have that adec(sk, π2(t)) =Eaenc m.

To illustrate our calculus we consider the Helios e-voting protocol as running ex-
ample. The Helios protocol relies on zero knowledge proofs. We next specify the equa-
tional theory for the particular zero knowledge proofs built by the Helios participants.

Example 3. The Helios zero knowledge proofs can be modelled by the signature

Σzkp
def
=
{zkpE/3, checkzkpE/2, okzkpE/0} ∪ {zkp

m
DM/3, checkzkp

m
DM/3, okzkp

m
DM/0}m∈N

In case of homomorphic tally, the voters should also prove that their vote is valid, which
can be modeled in a similar way. When submitting an encrypted vote, voters are re-
quired to prove that the encryption is well-formed, that is to say, that they know the
corresponding plaintext and randomness. This is reflected by the following equation.

checkzkpE(zkpE(xr, xv, aenc(xpk, xr, xv)), aenc(xpk, xr, xv)) = okzkpE.

In the decryption mixnets-based variant of the Helios protocol, the talliers output a zero
knowledge proof of correct mix and decryption. Such a proof establishes that the output
of the decryption mixnet is indeed a permutation of the content of the encrypted ballots
received as input. This is captured by the following infinite set of equations. For all
m ∈ N, and all {i1, . . . , im} = {1, . . . ,m},

checkzkpmDM(zkpmDM(xk, xciph, xplain), xciph, xplain) = okzkpmDM

with xciph = (aenc(pub(xk), xr1, xv1), . . . , aenc(pub(xk), xrm, xvm)) and xplain =
(xvi1 , . . . , xvim).

In all the examples of this section, we will consider the signature Σ = Σaenc ∪Σzkp

and the equational theory E = Eaenc ∪ Ezkp.

We say that a symbol + is associative and commutative (AC in short) w.r.t. an
equational theory E if E contains the two equations:

x+ y = y + x x+ (y + z) = (x+ y) + z



2.2 Processes

We model protocols using a process calculus. Our plain processes are similar to plain
processes in applied pi calculus [16] and are defined through the grammar given in
Figure 1 where c is a channel, t, t1, t2 are terms, x is a variable, n is either a name or a
channel, and i ∈ N is an integer. The terms t, t1, t2 may contain variables.

The process 0 does nothing. P | Q behaves as the parallel execution of processes P
andQ. νn.P restricts the scope of n. When n is a name, it typically represents a freshly

P,Q := 0
P | Q
νn.P
!P
if t1 = t2 then P else Q
c(x).P
c〈t〉.Q
i : P

Fig. 1. Syntax of plain processes

generated, secret value, e.g., a key or a nonce,
in P . When n is a channel, it declares a private
channel, that cannot be accessed by the adversary.
Replication !P behaves as an unbounded num-
ber of copies of P . The conditional if t1 =
t2 then P else Q behaves as P if t1 and t2 are
equal in the equational theory and asQ otherwise.
The process c(x).P inputs a message t on chan-
nel c, binds it to x and then behaves as P where x
has been replaced by t. c〈t〉.Q outputs message
t on channel c before behaving as Q. Our cal-
culus also introduces a phase instruction, in the
spirit of [24, 25], denoted i : P . We denote by
Phase(P ) the set of phases that appears in P , that
is the set of j such that j : Q occurs in P . By a

slight abuse of notations, we write Phase(P ) < Phase(Q) if any phase in Phase(P )
is smaller than any phase in Phase(Q).

As usual, names and variables have scopes, which are delimited by restrictions and
inputs. We write fv(P ), bv(P ), fn(P ) and bn(P ) for the sets of free and bound vari-
ables, and free and bound names of a plain process P respectively.

Example 4. A voter in Helios proceeds as follows. She computes her ballot by encrypt-
ing her vote with the public key pk(skE) of the election. The corresponding secret
key is shared among several election authorities, which is not modeled here. Then she
casts her ballot together with her identity and a zero knowledge proof through an au-
thenticated channel. All this information will be published on a public bulletin board.
The process V (pk(skE), cred, id, v) models the actions of a voter with identity id and
credential cred casting a ballot for candidate v:

V (pk(skE), cred, id, v)
def
= νr. bb〈〈id, sig(bal, cred), prf 〉〉

where bal = aenc(pk(skE), r, v) and prf = zkpE(r, v, bal). The authenticated channel
is modelled by a signature although Helios relies on a login/password mechanism.

Extended processes keep track of additional information during an execution: the
names that have been bound, the currently active processes that are running in parallel,
the history of messages that were output by the process and the current phase.

Definition 1 (Extended process). An extended process is a tuple (E ;P;Φ; i) where:



– E is a set of names and channels that are restricted in P and Φ;
– P is a multiset of plain processes with fv(P) = ∅;
– Φ = {x1 7→ u1, . . . , xn 7→ un} is a ground substitution where u1, . . . , un repre-

sent the messages previously output to the environment.
– i is an integer denoting the current phase.

Example 5. The following extended process models two honest Helios voters idA and
idB ready to cast their ballots vA and vB respectively in a first phase, and the Helios
tallying authorities Tal ready to tally the cast ballots in a second phase

Helios(vA, vB)
def
= (E0, 1 : VA | 1 : VB | 2 : Tal, ∅, 1)

where E0 is a set of names with credA, credB ∈ E0,

VA
def
= V (pk(skE), credA, idA, vA) and VB

def
= V (pk(skE), credB , idB , vB)

model the two honest voters where V is defined in Example 4, and

Tal
def
= bb(xbA).bb(xbB).T

for some process T modelling the tallying authorities.

Given A = (E ;P;Φ; i), we define the set of free and bound names of A as fn(A) =
(fn(P)∪ fn(Φ))r E , and bn(A) = bn(P)∪ E . Similarly free and bound variables are
defined as fv(A) = (fv(P) ∪ dom(Φ)), and bv(A) = bv(P). An extended process A
is closed if fv(A) = dom(Φ).

The operational semantics of our calculus is defined by a labelled transition system
which allows to reason about processes that interact with their environment. The transi-
tion relation A `−→ B relates two ground extended processes A and B and is decorated
by a label `, which is either an input (c(M)), an output (νx.c〈x〉), or a silent action (τ ).
Silent actions are standard, while visible input and output actions are interactions with
the adversary on public channels. An output label νx.c〈x〉 reflects that messages are
output “by reference”: the label contains the variable added to dom(Φ) which maps to
the ground message that was output. The input label c(M) contains the term M used
by the adversary to compute the message:M may be constructed from previous outputs
(adressed through variables in dom(Φ)), but is not allowed to use private names. The
precise definition of the transition relation is given in Appendix ??.
Notations. Given a set S we denote by S∗ the set of all finite sequences of elements
in S. We may also write ũ for the finite sequence u1, . . . , un. Let A be the alphabet
of actions (in our case this alphabet is infinite and contains the special symbol τ ). For
every w ∈ A∗, the relation w−→ on processes is defined in the usual way, i.e., we write
A

w−→ A′ when w = `1`2 · · · `n and A `1−→ A1
`2−→ . . .

`n−→ A′. For s ∈ (Ar {τ})∗, the
relation s

=⇒ on processes is defined by: A s
=⇒ B if, and only if there exists w ∈ A∗ such

that A w−→ B and s is obtained by erasing all occurrences of τ from w.

Example 6. Continuing our running example we illustrate the operational semantics by
the following transitions

Helios(vA, vB)
νyA.bb〈yA〉
=======⇒ νyB .bb〈yB〉

=======⇒ phase 2
====⇒ (E ;T ;Φ; 2) where



– E = E0 ∪ {rA, rB},
– Φ = {yA 7→ 〈idA, sig(balA, credA), prfA〉, yB 7→ 〈idB , sig(balB , credB), prfB 〉}

where balC = aenc(pk(skE), rC , vC) and prf C = zkpE(rC , vC , balC) for C ∈
{A,B}.
A frame ϕ = νE .Φ consists of a set of names E and a substitution Φ = {x1 7→

u1, . . . , xn 7→ un}. The names E are bound in ϕ and can be α-converted. Moreover
names can be added (or removed) to (from) E as long as they do not appear in Φ. We
writeϕ =α ϕ

′ when framesϕ andϕ′ are equal up to α-conversion and addition/removal
of unused names. In this way two frames can always be rewritten to have the same set of
bound names. When A = (E ;P;Φ; i) is an extended process, we define φ(A) def

= νE .Φ.
Given a frame ϕ = νE .Φ an attacker can construct new terms building on the terms

exposed by ϕ. For this the attacker applies a recipe on the frame. A recipeR for a frame
ϕ is any term such that fn(R) ∩ E = ∅ and fv(R) ⊆ dom(Φ). An attacker is unable to
distinguish two sequences of messages if he cannot construct a test that distinguishes
them. This notion is formally captured by static equivalence [16] of frames.
Definition 2 (Static equivalence). Two frames ϕ1 =α νE .Φ1 and ϕ2 =α νE .Φ2 are
statically equivalent, noted ϕ1 ∼ ϕ2 when dom(Φ1) = dom(Φ2), and for all recipes
M and N of ϕ1 we have that MΦ1 =E NΦ1 iff MΦ2 =E NΦ2.

Note that in the above definition the frames ϕ1 and ϕ2 have the same set of recipes as
they bind the same names E and their substitutions have the same domain.
Example 7. Let Φ be the substitution of Example 6 and

Φ′ = {yA 7→ 〈idA, sig(bal′A, credA), prf ′A〉, yB 7→ 〈idB , sig(bal′B , credB), prf ′B 〉}
where bal′C = aenc(pk(skE), rC , vD) and prf ′C = zkpE(rC , vD, bal

′
C) for C,D ∈

{A,B} with C 6= D. Since adec(skE, π1(π1(getmsg(yA))))Φ =E vA, but adec(skE,
π1(π1(getmsg(yA))))Φ

′ 6=E vA, we have that

νskE.νrA.νrB .Φ ∼E νskE.νrA.νrB .Φ
′ while νrA.νrB .Φ 6∼E νrA.νrB .Φ

′

Indeed, an attacker may distinguish between these two frames as soon as he has the
secret key skE, by simply decrypting the ballots.

Given two extended processes A1 and A2, we often write A1 ∼ A2 for φ(A1) ∼
φ(A2). Given an extended process A we define its set of traces as

traces(A)
def
= {(tr, B) | A tr

=⇒ B}
We can now define what it means for an attacker to be unable to distinguish two

processes even if he is allowed to actively interact with them. This notion of indistin-
guishability is naturally modelled by trace equivalence.

Definition 3 (Trace equivalence). Let A and B be two closed extended processes. A
is trace included in B, written A v B, if for every trace (tr, A′) ∈ traces(A) there
exists B′ such that (tr, B′) ∈ traces(B) and A′ ∼ B′. A and B are trace equivalent,
denoted A ≈ B, if A v B and B v A.

Intuitively, as the sequence of visible actions in the labels encode the adversary’s
actions the definition requires that for the same interaction with the adversary the pro-
tocols produce indistinguishable outputs.



3 Modelling e-voting protocols

In this section we explain how we formally model e-voting protocols and state the
assumptions needed for our results.

Since many e-voting protocols use zero-knowledge proofs, we consider a signature
Σ with zkp, checkzkp, okzkp ∈ Σ and we assume an equational theory that can be
described by an AC-convergent (possibly infinite) rewrite theory such that the only
rules in which zkp, checkzkp, and okzkp occur, are of the form:

checkzkp(zkp(U1, . . . , Um), V1, . . . , Vn)→ okzkp

where zkp, checkzkp, okzkp do not occur in the Ui, Vj . Since the terms Ui, Vj are left
unspecified, this captures most existing zero-knowledge proofs. In particular, it covers
the zero-knowledge proofs considered in Example 3.
A voting protocol is a family of processes {Πnh,nd,m(Crhnh

, Crdnd
,Kpv,Kpb)}nh,nd,m∈N

where

– nh and nd are the number of honest and dishonest voters respectively;
– Crhnh

(resp. Crdnd
) is the set of nh (resp. nd) voting credentials which determines

the set of honest eligible voters (resp. dishonest eligible voters), such that Crhnh
∩

Crdnd
= ∅. Each credential c̃r ∈ Crhnh

∪ Crdnd
is a sequence of terms;

– m is the number of ballots accepted during the tally;
– Kpv (resp. Kpb) is the set of all private (resp. public) material.

As usual it is sufficient to consider voting processes that model only the honest
voters and the tally (the dishonest voters are left unspecified as part of the environment,
and their credentials are public). We may assume w.l.o.g. that the tally process starts
with a fresh phase and first reads the ballots on the board. Formally, we assume that
voting processes are of the form:

Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)
def
= V ( ˜cr1) | V ( ˜cr2) | · · · | V ( ˜crnh

) |
tall : bb(x1). . . . .bb(xm).Tn,m(Crn,Kpv,Kpb)

where Crn = Crhnh
∪ Crdnd

, and for all i ∈ {1, . . . , nh}, c̃ri ∈ Crhnh
. Furthermore, we

require that Phase(V ) < tall, Phase(Tn,m) = ∅ and Tn,m(Crn,Kpv,Kpb) contains at
most one output which is performed on the channel tal. We note that from the above
structure of a voting process it follows that all traces are prefixes of traces of the form

tr′·phase tall·bb(RB1). . .bb(RBm)·νy.tal〈y〉.

V (c̃r) models an honest voter, whose credentials are c̃r. Tn,m(Crn,Kpv,Kpb) is the
remainder of the tallier process. It is parameterised by the numberm of ballots it accepts
and the number n of eligible voters. We require that V (c̃r) be independent of n and m
and does not use any other credentials, i.e. fn(V (c̃r))∩Crn ⊆ {c̃r}. These are the only
restrictions on the voter process and we believe them to be reasonable and natural.

An e-voting protocol proceeds in two phases: vote casting and tallying. During the
vote phase all voters simply cast their ballots. The tally phase proceeds as follows. First



m ballots are input. Then a public test is applied to these ballots to carry out a first
validity check, e.g. verify some zero knowledge proofs ensuring that the ballots are
well formed. Next, the revote policy is applied to remove votes cast by a same voter,
e.g., keep only the last one. Finally, the process performs the tally and outputs the result.

3.1 Public tests

As explained above, the ballot box may apply public tests to the casted ballots. Pub-
lic tests are Boolean combinations over atomic formulas of the form M = N where
M,N ∈ T (Σ,X), i.e. they do not contain any names. An atomic formula is satisfied
when M =E N and we lift satisfaction to tests as expected.

We assume a family of tests {Testm}m∈N where m is the number of casted ballots
that are tested and Testm contains m distinguished variables x1, . . . , xm to be substi-
tuted by the ballots. We write Testm([B1, . . . , Bm]) = > when the test Testm{x1 7→
B1, . . . , xm 7→ Bm} is satisfied. Finally we say that a test is voting-friendly when-
ever satisfaction is preserved on sublists of ballots, that is Testm([B1, . . . , Bm]) = >
implies Testh([Bi1 , . . . , Bih ]) = > for any 1 ≤ i1 < · · · < ih ≤ m.

We believe this condition to be natural. It discards contrived tests that would accept
a ballot only if another ballot is present. Conversely, we may consider tests that discard
lists with duplicate ballots.

Example 8. The public test applied by the tallying authorities in the Helios protocol
consists of two parts. First, a local test that checks the zero knowledge proofs of each
submitted ballot, and second, a global test that checks that encrypted votes are pairwise
distinct. This is to avoid the replay attack mentioned in [13]. Such checks are formally
reflected by the family of tests {Testm}m∈N with

Testm([B1, . . . , Bm])
def
=
∧i=m
i=1 lTest(Bi)

∧i6=j
i,j∈{1,...,m} gTest(Bi, Bj)

lTest(B)
def
=

{
> if B = 〈id, bal, prf 〉 and checkzkpE(getmsg(bal), prf ) =E okzkpE

⊥ otherwise

gTest(B,B′)
def
=

> if B = 〈id, bal, prf 〉 and B′ = 〈id′, bal′, prf ′〉
and getmsg(bal) 6= getmsg(bal′)

⊥ otherwise

3.2 Revote policies

Many e-voting protocols offer voters the possibility to cast several votes, keeping even-
tually only one vote per voter, e.g. the last submitted ballot. Which vote is kept depends
on the particular policy. Re-voting intends to guarantee some protection against coer-
cion. We formalize the notion of policy as a function Policyn,m which takes a list of
m terms (intuitively, the vote and credential) and a set of n credentials (honest and dis-
honest) and returns the sublist of selected terms to be tallied. A protocol will depend on
a family of such policy functions {Policyn,m}n,m∈N. We consider two particular, but
standard revote policies. The most usual one selects the last cast vote:

Policyn,mlast ([V1, . . . , Vm], Crn)
def
= [Vi1 , . . . , Vik ]



where each Vij = (v, c̃r) is the last occurence of the credential c̃r ∈ Crn in the list
[V1, . . . , Vm]. We also consider the policy which only keeps the first vote of each voter:

Policyn,mfirst ([V1, . . . , Vm], Crn)
def
= [Vi1 , . . . , Vik ]

where each Vij = (v, c̃r) is the first occurence of the credential c̃r ∈ Crn in the list
[V1, . . . , Vm]. Such a policy typically models the norevote policy (a voter cannot revote).

3.3 Extracting ballots and counting votes

A voting protocol should tally the ballots “as expected”. Formally, what is expected can
be formalized through an extract and a counting function.

Given a ballot B, and two sets of terms Kpb and Kpv representing the public and
private material, the extraction function Extract returns the corresponding vote and cre-
dential, or ⊥ when a ballot is not well formed., i.e., Extract(B,Kpv,Kpb) ∈ (V ×
Crn)∪ {⊥}. Moreover, we lift the extract function to lists of m ballots by applying the
function pointwise, i.e., Extractm([B1, . . . , Bm],Kpv,Kpb)

def
=

[Extract(B1,Kpv,Kpb), . . . ,Extract(Bm,Kpv,Kpb)]

Similar extract functions have been introduced in [26] to define ballot privacy.

Example 9. The Extract function for the Helios protocol decrypts the encrypted vote
and associates it with the signature associated to the ballot:

Extract(B, {skE}, {pk(skE)}) def
={

(v, (id, cred)) if B = 〈id, bal, prf 〉 and bal =E sig(aenc(pk(skE), r, v), cred)
⊥ otherwise

Similarly the counting function defines how the protocol is supposed to tally the
votes. The function Count` takes as input a list of ` pairs (v, cr) ∈ V × Cr and returns
a list of terms as the election result.

Definition 4. Let {Count`}`∈N be a family of counting functions. {Count`}`∈N is voting-
friendly if for all m,n and lists of terms W1 of size m, W2 of size n we have that

1. if W1 =# W2 then Countm(W1) =
# Countn(W2);

2. if Countm(W1) =
# Countn(W2)

then Countm+1((v1, cr1) ::W1) =
# Countn+1((v2, cr2) ::W2) iff v1 = v2

The first assumption requires that the result does not depend on the order in which
votes are provided (intuitively, only valid votes are kept at this stage). We believe this
property to be natural and it excludes contrived counting functions that would, e.g., only
keep votes at even positions. The second assumption states that we may count “step by
step”. This is more restrictive since it excludes the majority function, i.e., the function
that only outputs the name of the candidate that received most votes. But, it captures the
most common result functions, namely the multiset and the additive counting functions.



Example 10. The multiset counting function typically arises in mixnet based tallies,
which simply output the list of votes (intuitively once votes have been shuffled).

Count1Mix([V1])
def
= [v] and CountmMix([V1, . . . , Vm])

def
= v :: Countm−1Mix ([V2, . . . , Vm])

where V1 = (v, c̃r) andm > 1. The additive counting function can be defined similarly.
For simplicity consider a binary vote, where we just want to count the number of 1’s:

Count1HE([V1])
def
= v and CountmHE([V1, . . . , Vm])

def
= v + Countm−1HE ([V2, . . . , Vm])

where V1 = (v, c̃r), m > 1 and + is an AC symbol. Both functions are voting-friendly.

3.4 Properties

When verifying security properties of e-voting protocols it is common to only consider
processes whose runs satisfy a particular property. For instance, vote secrecy is typically
expressed as the indistinguishability of two processes modelling the situations where
two honest voters swap their votes. We need however to ensure that these two honest
voters have indeed cast their votes successfully to avoid trivial attacks. Indeed, in a run
where the attacker blocks one of these voters, but not the other, the election result will
be different and the two processes would be distinguished. Therefore when checking
vote secrecy one typically adds a check that guarantees that the two honest votes are
counted. We simply require that a check check([b1, . . . , bm]) applied to a list ballots
[b1, . . . , bm] satisfies the two following requirements:

– If check([b1, . . . , bm]) holds then we can identify two (intuitively honest) ballots
bi1 , bi2 such that check holds for any sublist containing bi1 and bi2 .

– If check([b1, . . . , bm]) does not hold then it does not hold either for any sublist of
these ballots or if some ballots are replaced by invalid ones (that is replaced by ⊥).

How such a check is implemented is left unspecified, it could be by listening to private
channels, successively checking signatures, etc.

3.5 E-voting processes

As often when considering trace equivalence (e.g. [10, 24]), we assume processes to
be deterministic. More precisely, we require the vote phase to be determinate: if the
same sequence of labels leads to two different processes then the two resulting frames
have to be statically equivalent. This typically holds for standard voting processes since
the voter’s behaviour is deterministic. For the tallying phase we slightly relax this no-
tion and require what we call almost determinate. This relaxed notion only requires
that there exists an output of a tally (among all possible outputs, as the particular tally
may be chosen non-deterministically) that ensures static equivalence. This allows us to
capture some non-deterministic behaviors such as mixnet tally.

Definition 5. An e-voting protocol {Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)}nh,nd,m∈N is al-
most determinate if for any set of names E0, any initial attacker knowledge Φ0, any



m,nh, nd ∈ N, and any traces (tr, A1), (tr, A2) ∈ traces(E0, Πnh,nd,m(Crhnh
, Crdnd

,
Kpv,Kpb), Φ0, 0) we have that

∀A′1. A1
νx.tal〈x〉
=====⇒ A′1 ⇒ ∃A′2. A2

νx.tal〈x〉
=====⇒ A′2 and A′1 ∼ A′2

We can now put all the pieces together and link e-voting protocols to the notions of
public tests, revote policies, extraction and counting functions and properties.

Definition 6. An e-voting protocol {Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)}nh,nd,m∈N is vot-
ing friendly w.r.t. check, {Testm}m∈N, {Policyn,m}n,m∈N, Extract, {Count`}`∈N if it
is almost determinate, if {Testm}m∈N, {Policyn,m}n,m∈N, Extract, are voting-friendly,
and if for any set of names E0, any initial attacker knowledgeΦ0, anym,nh, nd, and any
trace (tr′·νx.phase tall.bb(RB1). . .bb(RBm), A1) of (E0, Πnh,nd,m(Crhnh

, Crdnd
,Kpv,

Kpb), Φ0, 0), the resulting list of ballotsBB = [B1, . . . , Bm] (whereBi = RBiφ(A1))
satisfies the following properties.

1) The tally is successful (that is (νy.tal〈y〉, A2) ∈ traces(A1)) if and only if BB
passes the test and the check (Testm(BB) = > and check(BB) = >)

2) Whenever the tally produces an output (that is (νy.tal〈y〉, A2) ∈ traces(A1))
then it outputs a triple yφ(A2) = 〈res, nvotes, zkp〉 where

– res is the result computed by counting the votes once the extraction function and
the revote policy have been applied on the bulletin board;

– nvotes is the number of votes that has been counted;
– zkp is a (valid) zero-knowledge proof that would not be valid for any other list of

ballots different from BB;
– either res is the only result the tally can produce from BB (typically in the ho-

momorphic case) or the tally can produce any permutation of it (typically in the
mixnet case).

A fully formal definition can be found in Appendix ??. We believe most existing protocols
satisfy these requirements.

For many protocols ballots can be associated to the public credentials that were used
to cast them. This is the case for Helios and some of its variants where ballots either
contain the voter identity (in the original Helios) or are signed using private credentials
(in the Belenios system). As we will see in the next section we can get tighter bounds for
this class of protocols. Formally we define protocols with identifiable ballots as follows.

Definition 7. An e-voting protocol {Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)}nh,nd,m∈N has
identifiable ballots if for all nh, nd,m ∈ N, for any trace

(tr′·νx.phase tall.bb(RB1). . .bb(RBm)·νy.tal〈y〉, A)

of Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)) there exists a recipe R and a variable x such that

∀1 ≤ i ≤ m. if Extract([RBiφ(A)],Kpv,Kpb) = (V, c̃r) then Riφ(A) = pub(c̃r)

where Ri = R{x 7→ RBi}.



4 Main results

Throughout the section we consider two voting protocols

{Πnh,nd,m
i (Crhnh

, Crdnd
,Kpv,Kpb)}nh,nd,m∈N

for 1 ≤ i ≤ 2 which are voting-friendly for checki, {Testm}m∈N, {Policyn,m}n,m∈N,
Extractmi , {Count`i}`∈N. Note that we assume the same public test for both protocols.
Moreover we assume that nh ≥ 2 and m ≥ nh + nd.

Let E0 be a set of names, and Φ0 a ground substitution representing the initial at-
tacker knowledge. {Anh,nd,m

0 }nh,nd,m∈N and {Bnh,nd,m
0 }nh,nd,m∈N are two families

of extended processes defined as follows

Anh,nd,m
0

def
= (E0 ∪ Crhnh

, Πnh,nd,m
1 (Crhnh

, Crdnd
,Kpv,Kpb), Φ0, 0) ∀nh, nd,m ∈ N

Bnh,nd,m
0

def
= (E0 ∪ Crhnh

, Πnh,nd,m
2 (Crhnh

, Crdnd
,Kpv,Kpb), Φ0, 0) ∀nh, nd,m ∈ N

Our reduction results apply to equivalences of the form Anh,nd,m
0 ≈ Bnh,nd,m

0 for all
m,nh, nd. Vote privacy is typically modelled in this way [5]. The proofs of the results
presented in this section are detailed in Appendinces ?? and ??.

Our first result states that attacks on such equivalences require at most 3 voters.

Proposition 1. If Akh,kd,`0 6≈ Bkh,kd,`0 then A
2,k′d,`
0 6≈ B2,k′d,`

0 for k′d = 0 or k′d = 1.

Note that this case does not yet bound the number of ballots to be considered. In
particular, when re-voting is allowed the attacker may a priori need to submit several
ballots in order to distinguish the two processes. In other words, the ballot box is still
parameterized by the number of ballots to be received. However, whenever we assume
that Π1 and Π2 do not allow voters to revote, we can deduce immediately that 3 ballots
suffice to capture any attack. More formally, we encode this situation by letting k = `
and considering the re-vote policy that only keeps the first vote of each voter.

Theorem 1. If {Policyn,m}n,m∈N = {Policyn,mfirst }n,m∈N and Akh,kd,k0 6≈ Bkh,kd,k0

where k = kh + kd, then A2,k′d,k
′

0 6≈ B2,k′d,k
′

0 for k′d = 0 or k′d = 1 and k′ = 2 + k′d.

Intuitively, the case where k′d = 0 corresponds to the case where an attacker can
distinguish the processes playing only with two honest voters. This case for instance
arises when analyzing a naive protocol where each voter simply signs his vote, hence
offering no anonymity at all. The case where k′d = 1 corresponds to the case where the
attacker computes a vote which depends on the honest votes. The above results state
that an attacker does not need more then one ballot in that case. An example of such
an attack is the vote copy attack on Helios described in [13]. We could actually encode
any attack with 2 voters into an attack with 3 voters by letting the adversary play like a
useless, honest, voter. This would require however to formalize the fact that the attacker
may always simulate an honest voter, that is, the voting process.

We now consider the case where re-voting is allowed. In this case we can bound the
number of ballots that need to be considered to 4+2k (for k number of voters in total).



Proposition 2. If Akh,kd,`0 6≈ Bkh,kd,`0 , then there exists `min ≤ 4 + 2k such that
Akh,kd,`min

0 6≈ Bkh,kd,`min

0 where k = kh + kd.

Combining the reductions on the number of voters and the number of ballots we
obtain the following theorem.

Theorem 2. If Akh,kd,`0 6≈ Bkh,kd,`0 , then there exists k′d ∈ {0, 1}, `min ≤ 4+2k such

that A2,k′d,`min

0 6≈ B2,k′d,`min

0 where k = 2 + k′d.

This is an immediate consequence of Propositions 1 and 2 and yields a bound of
4+2×3=10. When protocols have identifying ballots (Definition 7) we can tighten our
reduction of the number of ballots: we only need to consider 4 + k ballots.

Corollary 1. If Π1 and Π2 have identifying ballots and Akh,kd,`0 6≈ Bkh,kd,`0 , then
∃`min ≤ 4 + k. Akh,kd,`min

0 6≈ Bkh,kd,`min

0 where k = kh + kd.

This is a corollary of the proof of Proposition 2. With identifiable ballots, we know that
the ballots selected by the revoting policy on the left and on the right hand-side are the
same. Again, we combine this result with the reduction on the number of voters.

Theorem 3. IfΠ1 andΠ2 have identifying ballots andAkh,kd,`0 6≈ Bkh,kd,`0 then ∃k′d ∈
{0, 1}, `min ≤ 4 + k such that A2,k′d,`min

0 6≈ B2,k′d,`min

0 where k = 2 + k′d.

This is an immediate consequence of Corollary 1 and Proposition 1 and yields a bound
of 4+3=7 ballots.

5 Case studies

We apply our results on several case studies: several versions of Helios [18, 19, 27]
and Prêt-à-Voter [20], as well as the JCJ protocol [28] implemented in the Civitas sys-
tem [29]. For some of these protocols we show that the ProVerif verification tool [1] can
be used to perform a security proof that, thanks to our results, is valid for an arbitrary
number of voters and ballots.

For the other protocols, ProVerif is not able to verify the protocols, either due to the
fact that equational theories with AC symbols are not supported by ProVerif or simply
because of a state explosion problem. In these cases we show that our results never-
theless apply. Given recent progress in automated verification for equivalence proper-
ties [9,10,30] we hope that verification of some of these protocols will be possible soon.
Our results would also be useful to simplify proofs by hand.

The results in this section are summarized in Figure 2. Our hypotheses were always
satisfied wherever applicable. For several protocols, we could not conduct the analysis
with ProVerif, either because the equational theory is out of reach of the tool or because
we had to stop ProVerif execution after a couple of hours. The case studies are further
detailed in Appendices ??, ??, and ??. The results presented in this section rely on
ProVerif scripts available at http://3voters.gforge.inria.fr.



3 ballots
(Theorem 1)
Hyp ProVerif

PaV (DM) X X
PaV (RM) X ×
Helios mix (weeding) X X
Helios mix (id in zkp) X X
Helios hom (weeding) X ×
Helios hom (id in zkp) X ×
Belenios mix X X
Belenios hom X ×

(a) Protocols without revoting.

7 ballots
(Theorem 3)

10 ballots
(Theorem 2)

Hyp ProVerif Hyp ProVerif
Helios mix (weeding) X X X ×
Helios mix (id in zkp) X X X ×
Helios hom (weeding) X × X ×
Helios hom (id in zkp) X × X ×
Belenios mix X X X ×
Belenios hom X × X ×
JCJ X × X ×

(b) Protocols with revoting.

Fig. 2. Summary of application of our results on case studies. A × in the “ProVerif” column
indicates that we could not successfully run the analysis with ProVerif.

6 Conclusion

In this paper we propose reduction results for e-voting protocols that apply to vote pri-
vacy. We believe they also apply to stronger properties such as receipt-freeness. Our
first reduction result states that whenever there is an attack, there is also an attack with
only two honest voters and at most one dishonest voter. This considerably simplifies the
proofs and encodings otherwise needed to verify such protocols using automated veri-
fication tools. We moreover consider the case where the protocol allows a voter to cast
multiple votes and selects one vote according to a given re-vote policy, e.g. select the
last vote casted. In that case verifying privacy is still complicated even when restricted
to three voters. We therefore show a second reduction result that allows to consider at
most 10 ballots. In case the protocol has identifiable ballots we reduce the number of
necessary ballots to 7. We have shown that the hypotheses of our theorems are satis-
fied by many protocols: several variants of Helios, Prêt-à-Voter, as well as Civitas. For
several of these protocols we were able to apply automated tool verification and pro-
vide the first automated proofs for an unbounded number of voters and ballots. For the
decryption mixnets-based PaV protocol, we even provide the first proof of vote privacy.

An interesting direction for future work is to further tighten the bound on the num-
ber of ballots, possibly characterizing properties enjoyed by voting protocols. We also
foresee to show similar reduction results for other properties of e-voting, such as veri-
fiability. Given that the result is stated in a symbolic model, we also plan to investigate
if the result can be transposed to a computational model.
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A Operational semantics

The operational semantics of our calculus is defined by a labelled transition system that
allows to reason about processes which interact with their environment. The transition
relation is defined by the set of labelled rules given in Figure ??. These rules define
the relation A `−→ B where A and B are ground extended processes and the label ` is
either an input (c(M)), an output (νx.c〈x〉), or a silent action (τ ). The silent actions
are mostly standard, while visible input and output actions are interactions with the
adversary on public channels. The label reflects the adversary’s view of this interaction.
The output label νx.c〈x〉 indeed reflects that messages are output “by reference”: the
label merely contains the variable in the domain of Φ which maps to the corresponding
ground message. The input label c(M) contains the term M used by the adversary to
compute the message: in his computation the adversary may indeed use terms that were



(E ; {i : if M = N then Q1 else Q2 } ] P;Φ; i)
τ−→ (E ; i : Q1 ] P;Φ; i) if M =E N (THEN)

(E ; {i : if M = N then Q1 else Q2 } ] P;Φ; i)
τ−→ (E ; i : Q2 ] P;Φ; i) if M 6=E N (ELSE)

(E ; {i : c〈M〉.Q1; i : c(x).Q2} ] P;Φ; i)
τ−→ (E ; {i : Q1; i : Q2{x 7→M}} ] P;Φ; i) (COMM)

(E ; {i : c〈M〉.Q} ] P;Φ; i) νy.c〈y〉−−−−−→ (E ; {i : Q} ] P;Φ ∪ {y 7→M}; i) (OUT)
if c 6∈ E

(E ; {i : c(x).Q} ] P;Φ; i) c(M)−−−→ (E ; {i : Q{x 7→MΦ}} ] P;Φ; i) (IN)
if c 6∈ E , fv(M) ⊆ dom(Φ), fn(M) ∩ E = ∅, and y is a fresh variable

(E ; {i : ν n.Q} ] P;Φ; i) τ−→ (E ∪ {m}; {i : Q{n 7→ m}} ] P;Φ; i) (NEW)
if m is a fresh name

(E ; {i :!Q} ] P;Φ; i) τ−→ (E ; {i :!Q; i : Q} ] P;Φ; i) (REPL)

(E ; {i : (P1 | P2)} ] P;Φ; i)
τ−→ (E ; {i : P1; i : P2} ] P;Φ; i) (PAR)

(E ;P;Φ; i) phase j−−−−→ (E ;P;Φ; j) if j > i (PHASE)

(E ; {i : j : P} ] P;Φ; i) τ−→ (E ; {j : P} ] P;Φ; i) (MOVE)

where c is a channel, M , N , N1, N2 are terms, x is a variable, and i is an integer.

Fig. 3. Semantics

previously output, i.e., terms in Φ adressed through variables in dom(Φ), while he is
not allowed to directly use a private name.

B Some more detailed definitions

Definition 8. A check check is a predicate on a sequence of terms V1, . . . , Vm such that

– there exists 1 ≤ i1 < i2 ≤ m, such that for any 1 ≤ j1 < · · · < j` ≤ m,

if check([V1, . . . , Vm]) = > and {i1, i2} ⊆ {j1, . . . , j`}
then check([Vj1 , . . . , Vj` ]) = >

– for any V1, . . . , Vm, any 1 ≤ j1 < · · · < j` ≤ m,

if check([V1, . . . , Vm]) = ⊥ then check([Vj1 , . . . , Vj` ]) = ⊥
– for any V1, . . . , Vm, any W1, . . . ,Wm such that for all i ∈ {1, . . . ,m}, Wi ∈
{Vi,⊥}
if check([V1, . . . , Vm]) = ⊥ then check([W1, . . . ,Wm]) = ⊥

Definition 9. An e-voting protocol

{Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)}nh,nd,m∈N



is voting-friendly w.r.t. check, {Testm}m∈N, {Policyn,m}n,m∈N, Extractm, {Count`}`∈N
if it is almost determinate, if {Testm}m∈N, {Policyn,m}n,m∈N, Extractm, are voting-
friendly, and if for all

(tr′·tall : bb(RB1). . .bb(RBm), A1) ∈ traces(Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb))

and BB = [B1, . . . , Bm] where Bi = RBiφ(A1) for all 1 ≤ i ≤ m we have that

1. (νy.tal〈y〉, A2) ∈ traces(A1) iff Testm(BB) = > ∧ check(BB) = >
2. for all (νy.tal〈y〉, A2) ∈ traces(A1), we have that yφ(A2) = 〈res, nvotes, zkp〉

and
– nvotes = k, [V1, . . . , Vk] = Policyn,m(Extractm(BB,Kpv,Kpb), Crn) where
Crn = Crhnh

∪ Crdnd
, and res =# Countk([V1, . . . , Vk]);

– φ(A2) = νr.νñ.(σ∪{〈res, nvotes, zkp〉/y}) and zkp = zkp(r,M1, . . . ,M`)
for some terms M1, . . . ,M` and some fresh name r;

– checkzkp(zkp, (BB,Kpb)) = okzkp and
checkzkp(zkp, (BB′,Kpb), zkp) 6= okzkp for all BB′ 6= BB;

– either for all (νy.tal〈y〉, A′2) ∈ traces(A1) we have that yφ(A2) = yφ(A′2)
or for all res′ =# res there exists (νy.tal〈y〉, A′2) ∈ traces(A1) such that
yφ(A′2) = 〈res′, nvotes, zkp〉.

The definition states that we only consider voting protocols that

1. output a result if and only if the public test and property are satisfied;
2. the result is a triple 〈res, nvotes, zkp〉 where res is the result computed by apply-

ing the extraction function on the bulletin board, the revote policy and the counting
function; nvotes is the number of votes that has been counted; and zkp is a zero
knowledge proof (computed using some fresh randomness) which only holds on the
current bulletin board. Moreover, for a given bulletin board either all possible traces
yield the same result, or all permutations of the result are possible: if for example
a trace yields the result [V1, V2, V3] and another trace gives [V1, V3, V2] then there
exist traces for the results [V2, V1, V3], [V2, V3, V1], [V3, V1, V2] and [V3, V2, V1].
Note that we leave the equational theory of zkp unspecified. Which proof to use
depends on the protocol under consideration. Our reduction result would also for
protocols without proof of correct decryption.

C Properties of e-voting protocols

Before proving our results in the next sections we state three basic properties enjoyed
by voting-friendly protocols.

Our first property states that frames obtained during the voting phase are indepen-
dent of the number of (dishonest) voters or even of ballots to be tallied.

Lemma 1. Let {Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)}nh,nd,m∈N be a voting-friendly elec-
tronic voting protocol, E0 a set of names, and Φ0 a ground substitution representing the
initial attacker knowledge. Let nh, nd, n′d,m,m

′ ∈ N such that nh ≥ 2 and let

A0 = (E0, Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb), Φ0, ∅) and
A′0 = (E0, Πnh,n

′
d,m

′
(Crhnh

, Crdn′
d
,Kpv,Kpb), Φ0, ∅).



For all traces (tr, A) ∈ traces(A0), if phase tall does not occur in tr, then there exists
A′ such that (tr, A′) ∈ traces(A′0) and φ(A) = φ(A′).

Proof. The lemma follows from the semantics of our calculus and the structure of the
voting protocols we consider. In particular, as tr does not contain phase tall all transi-
tions are on the nh honest voter processes, which coincide for all nd, n′d. (Recall that
dishonest voters are subsumed by the environment and not modelled.)

The second property states that once the tally starts the voting process accepts to
input any k votes for k ≤ m without modifying the frame any further, i.e. no outputs
are produced while collecting the votes.

Lemma 2. Let {Πnh,nd,m(Crhnh
, Crdnd

,Kpv,Kpb)}nh,nd,m∈N be a voting-friendly elec-
tronic voting protocol, E0 a set of names, and Φ0 an active substitution representing the
initial attacker knowledge. Let nh, nd,m,∈ N such that nh ≥ 2. Finally, let A0 =
(E0, Πnh,nd,m(Crhnh

, Crdnd
,Kpv,Kpb), Φ0, ∅). For all traces (tr, A) ∈ traces(A0) with

A = (E ;P;Φ), if
tr = tr′ · phase tall

then for all recipes RB1, . . . , RBk (i.e. fv(RBj) ⊆ dom(Φ) and fn(RBj)∩E = ∅ for
all j ∈ {1, . . . , k}) with 1 ≤ k ≤ m, there exists A′ such that (tr′′, A′) ∈ traces(A′0)
and φ(A) = φ(A′) where

tr′′ = tr · bb(RB1) · . . . · bb(RBk)

Proof. Again the lemma follows from the semantics of our calculus and the structure
of the voting protocols (and in particular of the tallying process) we consider.

The final property states that adding a zero knowledge proof does not break static
equivalence, unless the proof holds in one frame and not in the other.

Lemma 3. Let φ1 = νω1. θ1 and φ2 = νω2. θ2 be two frames, r be a fresh name, and
x a fresh variable. Let

Ri = zkp(r,M i
1, . . . ,M

i
`) ↓ for 1 ≤ i ≤ 2

such that for all recipes R (i.e. for 1 ≤ j ≤ 2, fv(R) ⊆ dom(φj) and fn(R)∩ωj = ∅),

(checkzkp(R1, R) = okzkp)φ1 iff (checkzkp(R2, R) = okzkp)φ2.

We have that

φ1 ∼ φ2 iff νω1.νr. (θ1 | {R1/x}) ∼ νω2.νr. (θ2 | {R2/x})

Proof. Let φ′i = νωi.νr. (θi | {Ri/x}) for 1 ≤ i ≤ 2. Note first that for i ∈ {1, 2} we
have Ri = zkp(r,M i

1 ↓, . . . ,M i
` ↓).

We define T as follows:

T =


r0 if T ∈ {R1, R2}
T if T ∈ N ∪ X
g(T1, . . . , Tk) if T = g(T1, . . . , Tk)



as well as T
i

for i ∈ {1, 2} as follows

T
i
=


Ri if T = r0
T if T ∈ N ∪ X r {r0}
g(T1

i
, . . . , Tk

i
) if T = g(T1, . . . , Tk)

We prove this lemma by contradiction. Assume φ′1 6∼ φ′2 and let (M ′, N ′) be a
minimal witness of that, that is two terms such that (M ′ =E N

′)φ′1 but (M ′ 6=E N
′)φ′2,

and such that further for all term K and L if (K =E L)φ′1 but (K 6=E L)φ′2 then
|M ′|+ |N ′| ≤ |K|+ |L|. Let r0 be a fresh name.

Claim 1. Let L be a ground term. If L is in normal form, then so is L.

Claim 2. Let L be a ground term such that for any position p ∈ pos(L) if L|p ∈
{R1, R2} then for any position q < p L|q 6=E okzkp. Let L′ be a ground term such that
L→∗ L′. Then

– for any position p ∈ pos(L′) if L′|p ∈ {R1, R2} then for any position q < p
L′|q 6=E okzkp, and

– L→∗ L′.

Proof (Proof of Claim 2). Let L = L0 → L1 . . . L − n− 1 → Ln = L be a valid
derivation. The proof of Claim 2 is done by induction on the size n of this derivation.

Base case (n = 0). In that case we have L = L′, and thus L = L′. So we can
trivially conclude.

Inductive case (n > 0). In that case we know by induction hypothesis that

– for any position p ∈ pos(Ln−1) if Ln−1|p ∈ {R1, R2} then for any position q < p
Ln−1|q 6=E okzkp, and

– L→n−1 Ln−1.

We prove that Ln, Ln−1 and Ln satisfy the two desired properties by induction on
the size of Ln−1. The base case |Ln−1| = 1 cannot occur. Indeed, in that case we would
have Ln−1 ∈ N wich is in normal form and thus cannot be reduced to a different Ln.
Let us now consider the inductive case |Ln−1| > 1, i.e. Ln−1 = g(W1, . . . ,Wm). We
distinguish several case depending on the function symbol g.

If g = zkp. In that case Ln−1 6= Ri, and the last reduction cannot occur in head
position, i.e. there exists i ∈ {1, . . . ,m} such that Wi →1 W ′i . We can thus conclude
by induction.

If g = checkzkp. If the reduction does not occur in head position we conclude by
induction. Otherwise Ln = okzkp, but then we know that W1 6∈ {R1, R2} and because
by assumtion on E the zkp symbols are not inspected further inside Ln−1, we know that
Ln → okzkp. Finally Ln = okzkp trivially satisfies the first property.

Otherwise we distinguish two cases. If the reduction does not occur in head position
we conclude by induction. If the reduction occurs in head position we know the zkp
symbols are not inspected further inside Ln−1 nor introduced in Ln, we can thus finish
by induction.



Claim 3 Let L be any ground term and L′ a ground term such that L →∗ L′. Then
for i ∈ {1, 2}

– L
i →∗ L′i.

Proof (Proof of Claim 3). Let L = L0 → L1 . . . L − n− 1 → Ln = L be a valid
derivation. The proof of Claim 2 is done by induction on the size n of this derivation.

Claim 4. For any position p ∈ pos(M ′),M ′|pφ′1 =E okzkp if and only ifM ′|pφ′2 =E

okzkp. Similarily, for any position p ∈ pos(N ′), N ′|pφ′1 =E okzkp if and only if
N ′|pφ′2 =E okzkp.

Proof (Proof of Claim 1). We prove this by contradiction. Assume there exists a po-
sition p ∈ pos(M ′) such that M ′|pφ′1 =E okzkp but M ′|pφ′2 6=E okzkp. If p > ε
then (M ′, N ′) is not a minimal witness of φ′1 6∼ φ′2. So p = ε and for all positions
q ∈ pos(M ′) with q 6= ε, M ′|qφ′1 =E okzkp if and only if M ′|qφ′2 =E okzkp. But then
for (M ′, N ′) to be minimal, it must further be that for all positions q ∈ pos(M ′) with
q 6= ε, if M ′|qφ′1 =E okzkp then M ′|q = okzkp.

If M ′ was a variable. Then by assumption on E, M ′ 6= x and thus M ′φ′1 =
M ′φ1 =E okzkp but M ′φ′2 = M ′φ2 6=E okzkp. However, this would be a witness
of φ1 6∼ φ2 with contradicts our hypothesis. Thus M ′ = checkzkp(U, V1, . . . , Vm). We
distinguish several cases.

Case U = x. Then for i ∈ {1, 2}, Uφ′i = Ri and by hypothesis we have that
checkzkp(R1, V1φ1, . . . , Vmφ1) =E okzkp if and only if checkzkp(R2, V1φ2, . . . , Vmφ2) =E

okzkp. So this case cannot occur.
CaseU 6= x. Then there exists in E a rule checkzkp(zkp(UE

1 , . . . , U
E
n), V

E
1 , . . . , V

E
m)→

okzkp and a substitution σ such that Uφ′1 ↓=AC zkp(UE
1 σ, . . . , U

E
nσ), V1φ

′
1 ↓=AC

V E
1 σ, . . . , and Vmφ′1 ↓=AC V E

mσ. Now according to Claim 2 and 1 and because zkp
does not occur in U1, . . . , Un, V1, . . . , Vm and are not AC, Uφ′1 →∗ Uφ′1 ↓ =AC

Uφ′1 ↓ ↓=AC zkp(UE
1 σ, . . . , U

E
nσ), V1φ′1 →∗ V1φ′1 ↓ =AC V1φ′1 ↓ ↓=AC V E

1 σ,
. . . , Vmφ′1 →∗ Vmφ′1 ↓ =AC Vmφ′1 ↓ ↓=AC V E

mσ. But then we have that Mφ1 =
M ′φ′1 →∗ checkzkp(Uφ′1, V1φ

′
1, . . . , Vmφ

′
1) → okzkp. Now since φ1 ∼ φ2, it must

also be the case that Mφ2 →∗ okzkp, from which we can trivially conclude that
M ′φ′2 →∗ okzkp which contradicts our hypothesis.

Note that by Claim 4 and by minimality of (M ′, N ′), it must be that for any i ∈
{1, 2} and any position p in M ′ (resp. in N ′) if M ′φ′i =E okzkp (resp. N ′φ′i =E okzkp
) then M ′ = okzkp (resp. N ′ = okzkp). In particular this means that for any i ∈ {1, 2}
and any position p in M ′φ′i (resp. N ′φ′i) if M ′φ′i|p = Ri (resp. M ′φ′i|p = Ri) then for
any position q < p M ′φ′i|q 6=E okzkp (resp. N ′φ′i|q 6=E okzkp).

We are now going to show that for M = M ′{r0/x} and N = N ′{r0/x} we have
(M =E N)φ1 but (M 6=E N)φ2. More precisely what we are going to show is that for
i ∈ {1, 2}, (M ′ =E N

′)φ′i if and only if (M =E N)φi.

(M ′ =E N
′)φ′i ⇒ (M =E N)φi.

According to this Claim 2 we haveMφi =M ′φ′i →∗ M ′φ′i ↓ andNφi = N ′φ′i →∗
N ′φ′i ↓. Now by hypothesis we have thatM ′φ′i ↓=AC N

′φ′i ↓, and thus thatM ′φ′i ↓ =AC



N ′φ′i ↓ because checkzkp and zkp are not AC. Moreover by Claim 1, we also have that
M ′φ′i ↓ andN ′φ′i ↓ are in normal form. So we can conclude that M ′φ′i ↓ =Mφi ↓ and
N ′φ′i ↓ = Nφi ↓. Combining all these we derive that Mφi ↓=AC Nφi ↓ and thus that
(M =E N)φ.

(M =E N)φi ⇒ (M ′ =E N
′)φ′i.

Assume (M =E N)φi, this by definition means that Mφi ↓=AC Nφi ↓. Now
by Claim 3 we have that M ′φ′i = Mφi

i → Mφi ↓
i

and N ′φ′i = Nφi
i → Nφi ↓

i
.

Thus, because our rewritte theory is AC-convergent, M ′φ′i ↓=AC Mφi ↓
i ↓=AC

Nφi ↓
i ↓=AC M

′φ′i ↓ which by definition means that (M ′ =E N
′)φ′i.

D Bounding the number of voters (proof of Proposition 1)

This section is dedicated to the proof that if there is an attack involving n voters, then
there is an attack involving at most 3 voters.

We first start by establishing that trace equivalence is closed under application of
evaluation contexts.

Definition 10. An evaluation context (E ∪ ;P ∪ ;Φ ∪ ; ) is an extended process
with holes “ ” for bound names, plain processes, ground substitution, and phase. Let
C[ ] = (E ∪ ;P ∪ ;Φ∪ ; ) be an evaluation context and A = (EA;PA;ΦA; iA) be a
closed extended process with EA ∩ (E ∪ fn(Φ) ∪ fn(P)) = dom(ΦA) ∩ dom(Φ) = ∅.
Applying C[ ] to A gives the extended process:

C[A] = (E ∪ EA;P ∪ PA;Φ ∪ ΦA; iA)

An evaluation context C[ ] closes A when C[A] is a closed extended process.

Lemma 4. Let A = (EA;PA;ΦA; i) and B = (EB ;PB ;ΦB ; i) be two closed extended
processes, and let C[ ] be a closing evaluation context for A and B. If A ≈ B, then
C[A] ≈ C[B].

Proof. The proof is similar to the proof of Proposition 1 in [31].

The following lemma allows to reduce from kh honest voters and kd dishonest ones,
to only 2 honest voters and the other kh + kd − 2 voters being dishonest.

Lemma 5. If Akh,kd,`0 6≈ Bkh,kd,`0 then A2,kh+kd−2,`
0 6≈ B2,kh+kd−2,`

0 .

Proof. This is because trace equivalence is closed under application of evaluation con-
texts (Lemma ??).

Proof (of Proposition 1). Suppose there exists a trace (trC , C) ∈ traces(A
nh,n

′
d,m

0 ),
such that for any processD, if (trC , D) ∈ traces(B

nh,n
′
d,m

0 ), thenC 6∼ D, i.e. (trC , C)
is an attack involving nh honest voters, n′d dishonest voters, and m ballots. Let nd =
nh + n′d − 2. By Lemma ?? we know that we have an attack that involves the same



number of voters but only two of them being honest. In other words, there exists a trace
(tr, A) ∈ traces(A2,nd,m

0 ), such that for any process B, if (tr, B) ∈ traces(B2,nd,m
0 ),

then A 6∼ B, i.e. (tr, A) is an attack involving 2 honest voters, nd = nh + n′d − 2
dishonest voters, and m ballots.

Let us consider (tr, A) to be minimal w.r.t. the length of tr. According to the struc-
ture of a voting protocol all traces are of the form

tr = tr′·phase tall·bb(RB1). . .bb(RBm)·νy.tal〈y〉

and we distinguish four cases:

1. phase tall does not occur in tr, i.e. the attack has occured during the vote casting
phase. By Lemma ??, there exists A′ such that (tr, A′) ∈ traces(A2,0,m

0 ) and φ(A) =
φ(A′). If (tr, A′) is not an attack, then there existsB′ such that (tr, B′) ∈ traces(B2,0,m

0 )
and φ(A′) ∼ φ(B′). But then, by Lemma ?? again there should exist B such that
(tr, B) ∈ traces(B2,nd,m

0 ) and φ(B′) = φ(B). Therefore B would be such that
φ(A) = φ(A′) ∼ φ(B′) = φ(B) which contradicts our hypothesis that (tr, A) is
an attack. Hence, we can conclude that (tr, A′) is an attack involving only 2 voters
(both honest).

2. tr = tr′·phase tall for some sequence of labels tr′. This case cannot occur. Indeed,
letA′ be the process such that (tr′, A′) ∈ traces(A2,nd,m

0 ), (phase tall, A) ∈ traces(A′),
and φ(A) = φ(A′). By minimality of tr we know that (tr′, A′) is not an attack, i.e. there
exists B′ such that (tr′, B′) ∈ traces(B2,nd,m

0 ) and φ(A′) ∼ φ(B′). But by the struc-
ture of an e-voting protocol (Section 3) the phase change phase tall can be executed at
any time. Hence, there exists B such that (tr, B) ∈ traces(B2,nd,m

0 ), φ(B′) = φ(B).
For (tr, A) to be an attack, it must be that A 6∼ B. This contradicts the hypothesis that
(tr, A) is minimal as it would mean that (tr′, A′) is a “smaller” attack.

3. tr = tr′·phase tall·bb(RB1)·. . .·bb(RBk) for some sequence of labels tr′, some 1 ≤
k ≤ m, and some recipesRB1, . . . , RBk, i.e. the attack has occured during the tallying
phase but before the output of the final tally. This case cannot occur either. Indeed, letA′

be the process such that (tr′·phase tall, A′) ∈ traces(A2,nd,m
0 ), (bb(RB1)·. . .·bb(RBk), A) ∈

traces(A′), and φ(A) = φ(A′). By minimality of tr we know that (tr′·phase tall, A′)
is not an attack, i.e. there exists B′ such that

(tr′·phase tall, B′) ∈ traces(B2,nd,m
0 )

and φ(A′) ∼ φ(B′). As, according to our semantics, all bound names are chosen freshly
we assume without loss of generality that bn(B′)∩ fn(RB1, . . . , RBk) = ∅. But then,
by Lemma ?? there exists B such that (tr, B) ∈ traces(B2,nd,m

0 ) and φ(B) = φ(B′).
Therefore, we have that B is such that φ(A) = φ(A′) ∼ φ(B′) = φ(B) which con-
tradicts our hypothesis that (tr, A) is an attack. Hence, we can conclude that this case
cannot occur.

4. tr = tr′·phase tall·bb(RB1). . .bb(RBm)·νy.tal〈y〉 for some sequence of labels tr′,
some variable y and some recipes RB1, . . . , RBm, i.e. the attack has occured after the
output of the final tally.



Let t̂r = tr′·phase tall·bb(RB1). . .bb(RBm). And let A′ be such that (t̂r, A′) ∈
traces(A2,nd,m

0 ), (νy.tal〈y〉, A) ∈ traces(A′), and φ(A) = νr̃.νñ.(σ ∪ {yφ(A)/y})
with φ(A′) = νñ.σ. Because Π1 complies with {Testm}m∈N and check (Definition 6),
it must be that Testm(BB1) = > and check(BB1) = > for BB1 = [B1

1 ; . . . ;B
1
m] and

B1
i = RBiφ(A

′) for all 1 ≤ i ≤ m. We distinguish two cases.

4.1. For all B, (tr, B) 6∈ traces(B2,nd,m
0 ). BecauseΠ2 complies with {Testm}m∈N and

check (Definition 6), it must be that for all B′ such that (t̂r, B′) ∈ traces(B2,nd,m
0 ) ei-

ther Testm(BB2) = ⊥ or check(BB2) = ⊥ for BB2 = [B2
1 ; . . . ;B

2
m] and B2

i =
RBiφ(B

′) for all 1 ≤ i ≤ m. But knowing Testm is public we can conclude that
Testm(BB2) = ⊥ would contradict the minimality of tr. Thus it must be the case that
Testm(BB2) = > and check(BB2) = ⊥.

Let 1 ≤ w1 < w2 ≤ m witness that BB1 satisfies check, that is such that
check([B1

w1
;B1

w2
]) = >. By the semantics of our calculus, as well as Lemmas ??

and ??, there must exist A′′ such that (t̂r, A′′) ∈ traces(A2,m
0 ) and φ(A′) = φ(A′′).

Assume there exists a process B′′ such that (t̂r, B′′) ∈ traces(B2,0,m
0 ) and with

check([RBw1
φ(B′′);RBw2

φ(B′′)]) = >. Then by the semantics of our calculus, and
Lemmas ?? and ??, there exists B′ such that (t̂r, B′) ∈ traces(B2,nd,m

0 ) and φ(B′) =
φ(B′′). Then this would mean that check([RBw1φ(B

′);RBw2φ(B
′)]), and by the sec-

ond item of the definition of a property (Definition ??) that check(BB2) = > for
BB2 = [B2

1 ; . . . ;B
2
m] and B2

i = RBiφ(B
′) for all 1 ≤ i ≤ m. But we have already

established that no such B′ exists.
We have hence proved that (tr, A′′) ∈ traces(A2,0,m

0 ) is an attack that involves only
the 2 honest voters (and m ballots tallied).

4.2. For some B, (tr, B) ∈ traces(B2,nd,m
0 ). Let BB1 = [B1

1 ; . . . ;B
1
m] with B1

i =

RBiφ(A
′). Then yφ(A) = 〈res1, nv1, zkp1〉 for some res1, nv1, zkp1 (Definition 6)

such that

B1
1
· · ·
B1

m

Extractm1 (BB1,Kpv,Kpb)−−−−−−−−−−−−−−−−→
V 1
1
· · ·
V 1
m

Policy
n,m
1 (V V1,Crn)

−−−−−−−−−−−−−−→

V 1

i11
· · ·
V 1

i1
h1

−→ 〈res1, nv1, zkp1〉
s.t. res1 =# Counth1 (WW1)
and nv1 = h1

BB1 VV1 WW1

Similarily, letBB2 = [B2
1 ; . . . ;B

2
m] withB2

i = RBiφ(B
′). Then yφ(B) = 〈res2, nv2, zkp2〉

for some res2, nv2, zkp2 (Definition 6) such that

B2
1
· · ·
B2

m

Extractm2 (BB2,Kpv,Kpb)−−−−−−−−−−−−−−−−→
V 2
1
· · ·
V 2
m

Policy
n,m
2 (V V2,Crn)

−−−−−−−−−−−−−−→

V 2

i21
· · ·
V 2

i2
h2

−→ 〈res2, nv2, zkp2〉
s.t. res2 =# Counth2 (WW2)
and nv2 = h2

BB2 VV2 WW2

According to Lemma ?? it either the case that nv1 6=E nv2 or that res1 6=E res2.

By Lemmas ?? and ??, we know that for some C ′

(tr′·phase tall·bb(RB1). . .bb(RBm), C ′) ∈ traces(A2,0,m
0 )



with φ(C ′) = φ(A′). Thus RBiφ(C ′) = RBiφ(A
′) for all 1 ≤ i ≤ m. Also for some

D′

(tr′·phase tall·bb(RB1). . .bb(RBm), D′) ∈ traces(B2,0,m
0 )

with φ(D′) = φ(B′). Thus RBiφ(D′) = RBiφ(B
′) for all 1 ≤ i ≤ m. We further

know that Testm1 (BB1) = Testm1 (BB2) = > and check1(BB1) = check2(BB2) =
>. Because Π1 and Π2 comply with {Testm}m∈N and check (Definition 6) we know
that for some C

(tr, C) ∈ traces(A2,0,m
0 )

with yφ(C) = 〈res′1, nv′1, zkp′1〉, and that for some D

(tr,D) ∈ traces(B2,0,m
0 )

with yφ(D) = 〈res′2, nv′2, zkp′2〉. If for all suchD, either res′1 6=E res
′
2 or nv′1 6=E nv

′
2,

then (tr, C) ∈ traces(A2,m
0 ) is an attack involving only the 2 voters.

Otherwise, there exists such a D with res′1 =E res′2 and nv′1 =E nv′2. The first
and last policies are such that Policy2,m1 (V V1) = [V1, Vnv′1 ] and Policy2,m2 (V V2) =
[V ′1 , V

′
nv′2

] with V1, Vnv′1 , V
′
1 , V

′
nv′2
∈ {(c, c̃r) | c ∈ C and c̃r ∈ { ˜cr1, ˜cr2}}. Further-

more Count
nv′1
1 =# Count

nv′2
2 . We now show that in that case there must exist an

attack involving only 3 voters (the two honest and one dishonest). We here assume that
nv′1 = nv′2 = 2 but the cases nv′1 = nv′2 = 1 and nv′1 = nv′2 = 0 can be handled in a
similar way.

Indeed, it must be that there exists 3 ≤ iatt ≤ n such that for some c ∈ C, it is
the case that (c, c̃riatt) ∈ WW1 but (c, c̃riatt) 6∈ WW2 (or that (c, c̃riatt) ∈ WW2 but
(c, c̃riatt) 6∈ WW1). Otherwise, because {Countmi }m∈N are voting friendly it couldn’t
be that (tr, A) ∈ traces(A2,nd,m

0 ) is an attack.

Let 1 ≤ i11 < · · · < i1
h1
1
≤ m, be the ballots considered as casted by c̃r1, i.e.

{i11, . . . , i1h1
1
} = {1 ≤ i ≤ m | Extract1(B1

i ,Kpv,Kpb) = (ci, c̃r1) for some ci ∈ C}.
And let i1 be ˜cr1’s ballot selected by the policy.

Let 1 ≤ j11 < · · · < j1
h1
2
≤ m, be the ballots considered as casted by c̃r2, i.e.

{j11 , . . . , j1h1
2
} = {1 ≤ i ≤ m | Extract1(B1

i ,Kpv,Kpb) = (ci, c̃r2) for some ci ∈ C}.
And let j1 be ˜cr2’s ballot selected by the policy.

Let 1 ≤ `11 < · · · < `1
h1
3
≤ m, be the ballots considered as casted by c̃riatt , i.e.

{`11, . . . , `1h1
2
} = {1 ≤ i ≤ m | Extract1(B1

i ,Kpv,Kpb) = (ci, c̃riatt) for some ci ∈ C}.
And let `1 be ˜criatt ’s ballot selected by the policy.



B1
1
· · ·
B1

`11
· · ·
B1

j11
· · ·
B1

i11
· · ·
B1

i1
h1
1

· · ·
B1

j1
h1
2

· · ·
B1

`1
h1
3

· · ·
B1

m

Extractm(BB1,Kpv,Kpb)−−−−−−−−−−−−−−−−→

V 1
1
· · ·
V 1

`11
· · ·
V 1

j11
· · ·
V 1

i11
· · ·
V 1

i1
h1
1

· · ·
V 1

j1
h1
2

· · ·
V 1

`1
h1
3

· · ·
V 1
m

Policyn,m(V V1,Crn)
−−−−−−−−−−−−−−→

· · ·
V 1
`1

· · ·
V 1
j1

· · ·
V 1
i1

· · ·

−→ 〈res1, nv1, zkp1〉
s.t. res1 =# Counth1 (WW1)
and nv1 = h1

BB1 VV1 WW1

Let 1 ≤ i21 < · · · < i2
h2
1
≤ m, be the ballots considered as casted by c̃r1, i.e.

{i21, . . . , i2h2
1
} = {1 ≤ i ≤ m | Extract1(B2

i ,Kpv,Kpb) = (ci, c̃r1) for some ci ∈ C}.
And let i2 be ˜cr1’s ballot selected by the policy.

Let 1 ≤ j21 < · · · < j2
h2
2
≤ m, be the ballots considered as casted by c̃r2, i.e.

{j21 , . . . , j2h2
2
} = {1 ≤ i ≤ m | Extract1(B2

i ,Kpv,Kpb) = (ci, c̃r2) for some ci ∈ C}.
And let j2 be ˜cr2’s ballot selected by the policy.

Let 1 ≤ `21 < · · · < `2
h2
3
≤ m, be the ballots considered as casted by c̃riatt , i.e.

{`21, . . . , `2h2
3
} = {1 ≤ i ≤ m | Extract1(B2

i ,Kpv,Kpb) = (ci, c̃riatt) for some ci ∈ C}.
And let `2 be ˜criatt ’s ballot selected by the policy.

B2
1
· · ·
B2

`21
· · ·
B2

j21
· · ·
B2

i21
· · ·
B2

i2
h2
1

· · ·
B2

j2
h2
2

· · ·
B2

`2
h2
3

· · ·
B1

m

Extract(BB2,Kpv,Kpb)−−−−−−−−−−−−−−→

V 2
1
· · ·
V 2

`21
· · ·
V 2

j21
· · ·
V 2

i21
· · ·
V 2

i2
h2
1

· · ·
V 2

j2
h2
2

· · ·
V 2

`2
h2
3

· · ·
V 2
m

Policyn,m(V V2,Crn)
−−−−−−−−−−−−−−→

· · ·
V 2
`2

· · ·
V 2
j2

· · ·
V 2
i2

· · ·

−→ 〈res2, nv2, zkp2〉
s.t. res2 =# Counth2 (WW2)
and nv2 = h2

BB2 VV2 WW2

By Lemmas ?? and ??, we know that for some C ′

(tr′·phase tall·bb(RB1). . .bb(RBm), C ′) ∈ traces(A2,1,m
0 ) // Cr3 = { ˜cr1, ˜cr2, ˜criatt}



with RBiφ(C) = RBiφ(A) for all 1 ≤ i ≤ m, and that for some D′

(tr′·phase tall·bb(RB1). . .bb(RBm), D′) ∈ traces(B2,1,m
0 ) // Cr3 = { ˜cr1, ˜cr2, ˜criatt}

with RBiφ(D) = RBiφ(B) for all 1 ≤ i ≤ m. We further know that Testm1 (BB1) =
Testm1 (BB2) = > and check1(BB1) = check2(BB2) = >. Thus, becauseΠ1 andΠ2

comply with {Testm}m∈N and check, we know that for some C

(tr, C) ∈ traces(A2,1,m
0 ) // Cr3 = { ˜cr1, ˜cr2, ˜criatt}

with yφ(C) = 〈res′1, nv′1, zkp′1〉, and that for some D

(tr,D) ∈ traces(B2,1,m
0 ) // Cr3 = { ˜cr1, ˜cr2, ˜criatt}

with yφ(D) = 〈res′2, nv′2, zkp′2〉.
Furthermore, by Definition 6 we know that

B1
1
· · ·
B1

`11
· · ·
B1

j11
· · ·
B1

i11
· · ·
B1

i1
h1
1

· · ·
B1

j1
h1
2

· · ·
B1

`1
h1
3

· · ·
B1

m

Extractm(BB1,Kpv,Kpb)−−−−−−−−−−−−−−−−→

V 1
1
· · ·
V 1

`11
· · ·
V 1

j11
· · ·
V 1

i11
· · ·
V 1

i1
h1
1

· · ·
V 1

j1
h1
2

· · ·
V 1

`1
h1
3

· · ·
V 1
m

Policy3,m(V V1,Cr3)
−−−−−−−−−−−−−→

V 1
`1

V 1
j1

V 1
i1

−→ 〈res′1, nv
′
1, zkp1〉

s.t. res′1 =# Counth
′
1 (WW1)

and h′
1 = 3

BB1 VV1 WW′
1

B2
1
· · ·
B2

`21
· · ·
B2

j21
· · ·
B2

i21
· · ·
B2

i2
h2
1

· · ·
B2

j2
h2
2

· · ·
B2

`2
h2
3

· · ·
B1

m

Extract(BB2,Kpv,Kpb)−−−−−−−−−−−−−−→

V 2
1
· · ·
V 2

`21
· · ·
V 2

j21
· · ·
V 2

i21
· · ·
V 2

i2
h2
1

· · ·
V 2

j2
h2
2

· · ·
V 2

`2
h2
3

· · ·
V 2
m

Policy3,m(V V2,Cr3)
−−−−−−−−−−−−−→

V 2
`2

V 2
j2

V 2
i2

−→ 〈res′2, nv
′
2, zkp2〉

s.t. res′2 =# Counth
′
2 (WW2)

and h′
2 ∈ {2, 3}

BB2 VV2 WW′
2



We distinguish two cases according to if voter ˜criatt voted in WW2 or not.
4.2.1. There exists c′ ∈ C such that (c′, ˜criatt) ∈WW2. In that case, V 1

`1 = (c, ˜criatt)

and V 2
`2 = (c′, ˜criatt) with c 6= c′. But then because the counting functions are vot-

ing friendly (Definition 4), we know that there is no permutation of res′2 equal to res′1
Finally, by determinacy of e-voting protocols, we know that for all E such that

(tr, E) ∈ traces(B2,nd,h), it must be that yφ(E) = 〈res′′2 , nv′2, zkp′′2〉 and that res′′2
is a permutation of res′2. We can thus conclude that for all E such that (tr, E) ∈
traces(B2,nd,h

0 ), C 6∼ E which ends the proof that (tr, C) ∈ A2,1,m
0 is an attack in-

volving 3 voters (2 honests and 1 dishonest) and m ballots.
4.2.2. There exists no c′ ∈ C such that (c′, ˜criatt) ∈WW2. In that case V 1

`1 = (c, ˜criatt)

, and h′2 = 2. But then by determinacy of e-voting protocols, we know that for all E
such that (tr, E) ∈ traces(B2,nd,h), it must be that yφ(E) = 〈res′′2 , nv′2, zkp′′2〉. We
can thus conclude that for all E such that (tr, E) ∈ traces(B2,nd,h

0 ), C 6∼ E which
ends the proof that (tr, C) ∈ A2,1,m

0 is an attack involving 3 voters (2 honests and 1
dishonest) and m ballots.

E Bounding the number of ballots (proof of Proposition 2)

We prove here that if there is an attack involving n voters, then there is an attack in-
volving n voters and at most 4 + 2n ballots tallied.

Proof (of Proposition 2). Suppose there exists a trace (tr, A) ∈ traces(Anh,nd,m
0 ),

such that for any process B, if (tr, B) ∈ traces(Bnh,nd,m
0 ), then A 6∼ B, i.e. (tr, A)

is an attack involving n = nh + nd voters and m ballots. Let us consider (tr, A) to be
minimal w.r.t. the length of tr. According to the structure of a voting protocol all traces
are of the form

tr = tr′·phase tall·bb(RB1). . .bb(RBm)·νy.tal〈y〉

and we distinguish four cases:

1. phase tall does not occur in tr, i.e. the attack has occured during the votes casting
phase. Letmmin = 4+2n. By Lemma ??, we know there existsA′ such that (tr, A′) ∈
traces(Anh,nd,mmin

0 ) and φ(A) = φ(A′). If (tr, A′) is not an attack, then there exists
B′ such that (tr, B′) ∈ traces(Bnh,nd,mmin

0 ) and φ(A′) ∼ φ(B′). But then accord-
ing to Lemma ?? again there should exist B such that (tr, B) ∈ traces(Bnh,nd,m

0 )
and φ(B′) = φ(B). Combining all these we have that B would be such that φ(A) =
φ(A′) ∼ φ(B′) = φ(B) which contradicts our hypothesis that (tr, A) is an attack.
Hence, we can conclude that (tr, A′) is an attack involving only 4 + 2n ballots.

2. tr = tr′·phase tall for some sequence of labels tr′. This case cannot occur. Indeed,
letA′ be the process such that (tr′, A′) ∈ traces(Anh,nd,m

0 ), (phase tall, A) ∈ traces(A′),
and φ(A) = φ(A′). By minimality of tr we know that (tr′, A′) is not an attack, i.e. there
exists B′ such that (tr′, B′) ∈ traces(Bnh,nd,m

0 ) and φ(A′) ∼ φ(B′). But by the struc-
ture of an e-voting protocol (Section 3) the phase change phase tall can be executed at
any time. So there exists B such that (tr, B) ∈ traces(Bnh,nd,m

0 ), φ(B′) = φ(B). This



contradicts the hypothesis that (tr, A) is minimal as it would mean that (tr′, A′) is a
“smaller” attack.

3. tr = tr′·phase tall·bb(RB1)·. . .·bb(RBk) for some sequence of labels tr′, some 1 ≤
k ≤ m, and some recipesRB1, . . . , RBk, i.e. the attack has occured during the tallying
phase but before the output of the final tally. This case cannot occur either. Indeed,
let A′ be the process such that (tr′·phase tall, A′) ∈ traces(Anh,nd,m

0 ), and such that
(bb(RB1)·. . .·bb(RBk), A) ∈ traces(A′), and φ(A) = φ(A′). By minimality of tr we
know that (tr′·phase tall, A′) is not an attack, i.e. there exists B′ such that

(tr′·phase tall, B′) ∈ traces(Bnh,nd,m
0 )

and φ(A′) ∼ φ(B′). As, according to our semantics, all bound names are chosen freshly
we assume without loss of generality that bn(B′)∩ fn(RB1, . . . , RBk) = ∅. But then,
according to Lemma ?? there should exist B such that (tr, B) ∈ traces(Bnh,nd,m

0 ) and
φ(B) = φ(B′). Combining all these we have that B is such that φ(A) = φ(A′) ∼
φ(B′) = φ(B) which contradicts our hypothesis that (tr, A) is an attack. Hence, we
can conclude that this case cannot occur.

4. tr = tr′·phase tall·bb(RB1). . .bb(RBm)·νy.tal〈y〉 for some sequence of labels tr′,
some variable y and some recipes RB1, . . . , RBm, i.e. the attack has occured after the
output of the final tally.

Let t̂r = tr′·phase tall·bb(RB1). . .bb(RBm). And let A′ be such that (t̂r, A′) ∈
traces(Anh,nd,m

0 ), (νy.tal〈y〉, A) ∈ traces(A′), and φ(A) = νr̃.νñ.(σ ∪ {yφ(A)/y})
with φ(A′) = νñ.σ. Because Π1 complies with {Testm}m∈N and check (Definition 6),
it must be that Testm(BB1) = > and check(BB1) = > for BB1 = [B1

1 ; . . . ;B
1
m] and

B1
i = RBiφ(A

′) for all 1 ≤ i ≤ m. We distinguish two cases.

4.1. For all B, (tr, B) 6∈ traces(Bnh,nd,m
0 ). Because Π2 complies with {Testm}m∈N

and check (Definition 6), it must be that for allB′ such that (t̂r, B′) ∈ traces(Bnh,nd,m
0 )

either Testm(BB2) = ⊥ or check(BB2) = ⊥ for BB2 = [B2
1 ; . . . ;B

2
m] and B2

i =
RBiφ(B

′) for all 1 ≤ i ≤ m. But knowing Testm is public we can conclude that
Testm(BB2) = ⊥ would contradict the minimality of tr. Thus it must be the case that
Testm(BB2) = > and check(BB2) = ⊥.

Let 1 ≤ w1 < w2 ≤ m witness that BB1 satisfies check, that is such that
check([B1

w1
;B1

w2
]) = >. Let also t̃r = tr′·phase tall·bb(RBw1

)·bb(RBw2
). By the

semantics of our calculus, as well as Lemmas ?? and ??, there must exist A′′ such that
(t̃r, A′′) ∈ traces(An,20 ) and φ(A′) = φ(A′′). Note that this implies, by compliance of
Π1 with {Testm}m∈N and check, that (tr′·phase tall·bb(RBw1

)bb(RBw2
)·νy.tal〈y〉, A′′′) ∈

traces(Anh,nd,2
0 ) for some A′′′.

Let’s now assume that there exists a processB′′′ such that (t̃r, B′′′) ∈ traces(Bnh,nd,2
0 )

with check([RBw1φ(B
′′′);RBw2φ(B

′′′)]) = >. Then by the semantics of our cal-
culus, as well as Lemmas ?? and ??, there should exist B′′ such that (t̃r, B′′) ∈
traces(Bnh,nd,m

0 ) and φ(B′′) = φ(B′′′). In turn, this implies there exists B′ such
that (t̂r, B′) ∈ traces(Bnh,nd,m

0 ) and φ(B′) = φ(B′′). Then this would mean that
check([RBw1

φ(B′);RBw2
φ(B′)]), and by the second item of the definition of a prop-

erty (Definition ??) that check(BB2) = > for BB2 = [B2
1 ; . . . ;B

2
m] and B2

i =



RBiφ(B
′) for all 1 ≤ i ≤ m. But we have already established that no such B′ ex-

ists.
We have hence proved that (tr′·phase tall·bb(RBw1

)bb(RBw2
)·νy.tal〈y〉, A′′′) ∈

traces(Anh,nd,2
0 ) is an attack that involves n voters but only two ballots tallied.

4.2. For some B, (tr, B) ∈ traces(Bnh,nd,m
0 ). We know by Definition 6 that yφ(A) =

〈res1, nvotes1, zkp1〉, yφ(B) = 〈res2, nvotes2, zkp2〉, and thus by Lemma ?? that
either nvotes1 6=E nvotes2 or res1 6=E res2.

Let 1 ≤ i11 < · · · < i1h1
≤ m, V 1

1 , . . . , V
1
m ∈ C ×Cr ∪ {⊥}, and 1 ≤ j11 < j12 ≤ m

such that check([V 1
j11
;V 1
j12
]) = > and

B1
1
· · ·
B1

j11
· · ·
B1

i11
· · ·
B1

i1
h1
· · ·
B1

j12
· · ·
B1

m

Extractm1 (BB1,Kpv,Kpb)−−−−−−−−−−−−−−−−→

V 1
1
· · ·
V 1

j11
· · ·
V 1

i11
· · ·
V 1

i1
h1
· · ·
V 1

j12
· · ·
V 1
m

Policy
n,m
1 (V V1,Crn)

−−−−−−−−−−−−−−→

V 1

i11

· · ·

V 1

i1
h1

−→ 〈res1, nv1, zkp1〉
s.t. res1 =# Counth1 (WW1)
and nv1 = h1

BB1 VV1 WW1

Let 1 ≤ i21 < · · · < i2h2
≤ m, V 2

1 , . . . , V
2
m ∈ C ×Cr ∪ {⊥}, and 1 ≤ j21 < j22 ≤ m

such that check2([V 2
j21
;V 2
j22
]) = > and

B2
1
· · ·
B2

j21
· · ·
B2

i21
· · ·
B2

i2
h2
· · ·
B2

j22
· · ·
B2

m

Extractm2 (BB2,Kpv,Kpb)−−−−−−−−−−−−−−−−→

V 2
1
· · ·
V 2

j21
· · ·
V 2

i21
· · ·
V 2

i2
h2
· · ·
V 2

j22
· · ·
V 2
m

Policy
n,m
2 (V V2,Crn)

−−−−−−−−−−−−−−→

V 2

i21

· · ·

V 2

i2
h2

−→ 〈res2, nv2, zkp2〉
s.t. res2 =# Counth2 (WW2)
and nv2 = h2

BB2 VV2 WW2

Let {`1, . . . , `h} = {i11, . . . , i1h1
}∪{i21, . . . , i2h2

}∪{j11 , j12 , j21 , j22}. And, letBB′1 =
[B1
`1
; . . . ;B1

`h
], and BB′2 = [B2

`1
; . . . ;B2

`h
].

– The first and last policies select at most n ballots, thus Policyn,m1 and Policyn,m2

select at most n ballots, so 1 ≤ h1, h2 ≤ n. And thus h ≤ 4 + 2n;
– Because Testm is voting friendly (see Section 3.1), we know that Testh(BB′1) =
Testh(BB′2) = >;

– By definition of a property (Definition ??), and because {j11 , j12 , j21 , j22} ⊆ {`1, . . . , `h}
with check([V 1

j11
;V 1
j12
]) = check([V 2

j21
;V 2
j22
]) = >, we also have that check(BB′1) =

check(BB′2) = >;



– Because by assumption, Extractm1 and Extractm2 handle each ballot independently
it is the case that Extracth1 (BB

′
1,Kpv,Kpb) = [V 1

`1
; . . . ;V 1

`h
], and Extracth2 (BB

′
2,Kpv,Kpb) =

[V 2
`1
; . . . ;V 2

`h
].

– The first and last policies are stable by extract, and {i11, . . . , i1h1
} ∪ {i21, . . . , i2h2

} ⊆
{`1, . . . , `h}with Policyn,m1 (V V1, Crn) = [V 1

i11
; . . . ;V 1

i1h1

] and Policyn,m2 (V V2, Crn) =

[V 2
i21
; . . . ;V 2

i2h2

]. Thus we know that Policyn,h1 ([V 1
`1
; . . . ;V 1

`h
], Crn) = [V 1

i11
; . . . ;V 1

i1h1

],

and Policyn,h2 ([V 2
`1
; . . . ;V 2

`h
], Crn) = [V 2

i21
; . . . ;V 2

i2h2

].

– We can thus trivially conclude that 〈res1, nv1, zkp′1〉 =# Tallyn,h1 (BB′1, Crn,Kpv,Kpb),
and 〈res2, nv2, zkp′2〉 =# Tallyn,h2 (BB′2, Crn,Kpv,Kpb) for some zkp′1 and zkp′2.

Now, Lemmas ?? and ?? imply that there exists C ′ and D′ such that

(tr′·phase tall·bb(RB`1). . .bb(RB`h), C ′) ∈ traces(Anh,nd,h
0 ) and φ(C ′) = φ(A′)

(tr′·phase tall·bb(RB`1). . .bb(RB`h), D′) ∈ traces(Bnh,nd,h
0 ) and φ(D′) = φ(B′)

And because our protocols comply with {Testm}m∈N and check, that there exists C
and D such that

(tr′·phase tall·bb(RB`1). . .bb(RB`h)·νy.tal〈y〉, C) ∈ traces(Anh,nd,h
0 )

(tr′·phase tall·bb(RB`1). . .bb(RB`h)·νy.tal〈y〉, D) ∈ traces(Bnh,nd,h
0 )

with yφ(C) = 〈res1, nv1, zkp′1〉, and yφ(D) = 〈res2, nv2, zkp′2〉. In other words, we
have established, that if we restrict the tallying to the ballots {`1, . . . , `h} the result will
be the same as depicted by the following picture

B1

j11
· · ·
B1

i11
· · ·
B1

i1
h1
· · ·
B1

j12

Extracth1 (BB′
1,Kpv,Kpb)−−−−−−−−−−−−−−−→

V 1

j11
· · ·
V 1

i11
· · ·
V 1

i1
h1
· · ·
V 1

j12

Policy
n,h
1 (V V ′

1 ,Crn)
−−−−−−−−−−−−−→

V 1

i11

· · ·

V 1

i1
h1

−→ 〈res1, nv1, zkp′1〉
s.t. res1 =# Counth1 (WW1)
and nv1 = h1

BB′
1 VV′

1 WW1

B2

j21
· · ·
B2

i21
· · ·
B2

i2
h2
· · ·
B2

j22

Extracth2 (BB′
2,Kpv,Kpb)−−−−−−−−−−−−−−−→

V 2

j21
· · ·
V 2

i21
· · ·
V 2

i2
h2
· · ·
V 2

j22

Policyn.h
2 (V V ′

2 ,Crn)
−−−−−−−−−−−−−→

V 2

i21

· · ·

V 2

i2
h2

−→ 〈res2, nv2, zkp′2〉
s.t. res2 =# Counth2 (WW2)
and nv2 = h2

BB′
2 VV′

2 WW2

Finally, because our protocols are almost determinate (Definition 5), we know that
for allE such that (tr′·phase tall·bb(RB`1). . .bb(RB`h)·νy.tal〈y〉, E) ∈ traces(Bnh,nd,h),
it must be that yφ(E) = 〈res′′2 , nv2, zkp′′2〉 and that res′′2 is a permutation of res2. But
then we can conclude that for all processes E such that

(tr′·phase tall·bb(RB`1). . .bb(RB`h)·νy.tal〈y〉, E) ∈ traces(Bnh,nd,h
0 ),



then C 6∼ E.
Hence we have established that if there is an attack involving n voters (nh honest

and nd dishonest ones), then there is one that involves at most 4 + 2n ballots tallied.

F Case study: the Helios protocol

Notation. To simplify the presentation of the case studies, we consider without loss
of generality, elections with only two honest voters and any number of dishonest ones.
From Lemma ?? we know that if there is an attack involving nh honest voters and nd
dishonest ones, then there is an attack involving only 2 honest voters and the remaining
nd + nh − 2 voters being dishonest. We will write Πn,m(Crn,Kpv,Kpb) to denote
Π2,n−2,m(Crh2 , Crdn−2,Kpv,Kpb) where Crn = Ch2 ∪ Cdn−2.

We consider several versions of the Helios protocol depending on the revoting pol-
icy, as well as on the mechanisms employed to enforce ballot independence. Ballot in-
dependence avoids in particular that a honest ballot can be copied by a dishonest voter
which breaks privacy, see [13]. We also consider the two different tallying methods,
namely mixnets-based and homomorphic tallying. At a high level, all these versions of
Helios proceed as follows.

– The voter V computes her ballot by encrypting her vote with the public key pk(skE)
of the election. The corresponding secret key is shared among several election au-
thorities. Then, she casts her ballot and some auxiliary information on an authen-
ticated channel. Depending on the version of Helios, this information may include
her identity and a zero knowledge proof. Upon reception of the ballot, the admin-
istrator publishes the ballot and the auxiliary information on a public, append-only
bulletin board.

– Once the voting phase is over, weeding may be applied to remove duplicate votes
and a revote policy may remove ballots in case of multiple ballots correspond to
same credentials.

– Next the ballots are tallied. In case of a mixnet based tally, the ballots are shuffled
and their decryption is published together with a zero knowledge proof of correct
decryption and mixing. In case of a homomorphic tally, the talliers homomorphi-
cally combine the encrypted votes and decrypt the result (with a zero knowledge
proof of correct decryption).

A Helios election with n voters and m ballots to be tallied, can be modelled in our
calculus by the process Hn,m(Crn,Kpv,Kpb, va, vb) of the form:

Hn,m(Crn,Kpv,Kpb, va, vb)
def
= bb〈pk(skE)〉.

(1 : V (creda, ida, va) | 1 : V (credb, idb, vb) | 2 : Taln,m)

Crn
def
= {(ida, creda), (idb, credb), . . . , (idn, credn)}

Kpv
def
= {skE}

Kpb
def
= {pk(skE)}

This process represents two honests voters (ida voting for candidate va and idb voting
for candidate vb) and n − 2 dishonest voters under the intruder’s control. We assume



identities to be publicly known. Hence we consider Φ0 = {xida 7→ ida, xidb 7→ idb}∪
Φ for some Φ.

Several privacy properties are expressed as equivalences (like receipt-freeness or
coercion-resistance). For simplicity, we focus here on vote privacy.

Although the homomorphic variants of the Helios protocol would also satisfy our
hypotheses (and could thus benefit from our reduction results for their analysis), we
did not prove that they satisfy ballot privacy, as ProVerif cannot handle the equational
theory corresponding to a homomorphic encryption scheme. Therefore we focus on the
mixnet variant of Helios in the remaining of this section.

F.1 With weeding and no revoting

One of the Helios variants ensures ballot independance simply by having the tally-
ing authorities check that (i) encrypted ballot are pairwise distinct (this is also called
weeding), and (ii) by checking the zero knowledge proof that ensures knowledge of the
randomness used for encrypting the vote. This is captured by the family of public tests
{Testm}m∈N defined in Example 8. The no revote policy can be implemented by con-
sidering the first ballot casted by each voter as in the policy {Policyn,mfirst }n,m∈N defined
in Section 3.2. The extract function simply decrypts the encrypted vote and associates
the voter’s identity with it. This Extract function is formally defined in Example 9. Fi-
nally the count function depends on the tally. For a mixnet-based tally, this function is
defined by the familly of functions {CountmDM}m∈N introduced in Example 10.

The last thing we need to define is the property check that captures that the honest
voters have voted (their ballots are in the list of ballots to be tallied). For the versions of
Helios where the identity is included in the ballot, we consider check([B1, . . . , Bm])

def
=

> if ∃i. Extract(Bi) = (v1, (ida, creda))
and ∃j. Extract(Bj) = (v2, (idb, credb))
for some v1, v2 ∈ V

⊥ otherwise

Altogether we obtain a process modelling Helios with weeding, no revoting and
mixnet-based tally, denoted by

{Hn,n
w-nr(Crn,Kpv,Kpb, va, vb)}n∈N

The complete specification of this process may be found in our ProVerif file.

Proposition 3. The mixnet-based Helios protocol with weeding and no revoting satis-
fies ballot privacy, i.e. for all n ∈ N such that n ≥ 2

Hn,n
w-nr(Crn,Kpv,Kpb, va, vb) ≈ Hn,n

w-nr(Crn,Kpv,Kpb, vb, va)

Proof. We can easily check that Hn,n
w-nr is voting-friendly. Therefore. according to The-

orem 1 it is sufficient to consider n ∈ {2, 3}. We used ProVerif to prove that in both
cases the above equivalence is satisfied.



F.2 With weeding and revoting

When revoting is allowed, we consider the policy {Policyn,mlast }n,m∈N defined in Sec-
tion 3.2. It is easy to encode this policy in the Taln,m process. The resulting protocol
modelling Helios with weeding and revoting is then denoted

{Hn,m
w-r (Crn,Kpv,Kpb, va, vb)}m,n∈N

Proposition 4. The mixnet-based Helios protocol with weeding and revoting satisfies
ballot privacy, i.e. for all n,m ∈ N such that n ≥ 2

Hn,m
w-r (Crn,Kpv,Kpb, va, vb) ≈ Hn,m

w-r (Crn,Kpv,Kpb, vb, va)

Proof. Again, we can easily check that Hn,n
w-r is voting-friendly. Since each voter sends

her credentials (her identity) in plaintext, and since the Extract function associates this
identity with the submitted vote without further verification, we can conclude that the
Helios protocol has identifiable ballots. Now according to Theorem 3 it is sufficient to
consider n ∈ {2, 3} and m ∈ {1, . . . , 7}. We used ProVerif to prove that in any case
the above equivalence is satisfied.

F.3 With identities in zero knowledge proofs and no re-voting

A more efficient way of enforcing ballot independence is by including the identity of
the voter in the zero knowledge proof demonstrating the knowledge of the encryption
randomness. This assumes a slightly different equational theory for the zero knowledge
proofs sent by the voters

checkzkpE(zkpE(xr, xv, xid, aenc(xpk, xr, xv)), xid,
aenc(xpk, xr, xv)) = okzkpE

and adapting the zero knowledge proof in the ballot to include the identity. The family
of test functions does now not require the global weeding test anymore

Testm([B1, . . . , Bm])
def
=
∧i=m
i=1 lTest(Bi)

lTest(B)
def
=

> if B = 〈id, bal, prf 〉
and checkzkpE(prf , id, getmsg(bal)) = okzkpE

⊥ otherwise

The resulting protocol modelling Helios with identities in zero knowledge proofs and
no revoting is denoted

{Hn,n
s-nr (Crn,Kpv,Kpb, va, vb)}n∈N

Proposition 5. The mixnet-based Helios protocol with identities in zero knowledge
proofs and no revoting satisfies ballot privacy, i.e. for all n ∈ N such that n ≥ 2

Hn,n
id-nr(Crn,Kpv,Kpb, va, vb) ≈ Hn,n

id-nr(Crn,Kpv,Kpb, vb, va)

Proof. Since Hn,n
id-nr is voting-friendly and according to Theorem 1 it is sufficient to

consider n ∈ {2, 3}. We used ProVerif to prove that in both cases the above equivalence
is satisfied.



F.4 With identities in zero knowledge proofs and re-voting

The variant of Helios that relies on identities in zero knowledge proofs to enforce bal-
lot independence and allows revoting is also in the scope of our reduction results. We
denote this version of the protocol by

{Hn,m
id-r (Crn,Kpv,Kpb, va, vb)}m,n∈N

Proposition 6. The decryption mixnets-based Helios protocol with signatures and revot-
ing satisfies ballot privacy, i.e. for all n,m ∈ N such that n ≥ 2

Hn,m
id-r (Crn,Kpv,Kpb, va, vb) ≈ Hn,m

id-r (Crn,Kpv,Kpb, vb, va)

Proof. Because Hn,m
id-r has identifiable ballots and is voting-friendly, it is sufficient ac-

cording to to Theorem 3 to consider n ∈ {2, 3} and m ∈ {1, . . . , 7}. We used ProVerif
to prove that in any case the above equivalence is satisfied.

F.5 Belenios

One limitation of Helios is that a dishonest bulletin board could perform ballot stuff-
ing for eligible voters that did not cast any vote. To overcome this problem, Cortier et
al. [19] proposed the Belenios system which builds on Helios. The main difference is
that the system relies on an additional authority, the credential issuer, which is assumed
not to collaborate with the bulletin board. The credential issuer distributes to each eli-
gible voter a signature key pair and publishes the list of public keys, which constitues
the list of eligible voters.

We can easily adapt our Helios model to Belenios and apply our result, yielding a
bound of 3 voters and a total of 3 ballots when no revoting is allowed and a total of 7
ballots otherwise.

Ballots are now signed with the private credential and the zero knowledge proof
also depends on the credential, instead of the identity. Signatures are straightforwardly
modeled by the equation

checksig(vk(xk), sig(xk, xm), xm) = oksig

and the ballot is of the form B = 〈vk(sk), bal, prf , sig〉 where

bal = aenc(pk(skE), r, v)
prf = zkp(r, v, vk(sk), aenc(pk(skE), r, v))
sig = sig(sk, 〈vk(sk), bal, prf 〉)

for some randomness r. The tests performed by the tallying authority and the extract
functions are also updated accordingly. The resulting protocol modelling Belenios with
either no revoting or revoting are denoted by

{Bn,nnr (Crn,Kpv,Kpb, va, vb)}n∈N

respectively,
{Bn,mr (Crn,Kpv,Kpb, va, vb)}m,n∈N



Proposition 7. The Belenios protocol with no revoting, respectively revoting, satisfies
ballot privacy, i.e. for all n,m ∈ N such that n ≥ 2

Bn,nnr (Crn,Kpv,Kpb, va, vb) ≈ Bn,nnr (Crn,Kpv,Kpb, vb, va)

and
Bn,mr (Crn,Kpv,Kpb, va, vb) ≈ Bn,mr (Crn,Kpv,Kpb, vb, va)

Proof. The proof is done using ProVerif relying on Theorems 1 and 3 as for other
versions of Helios.

G Case study: the Juels, Catalano, and Jakobsson (JCJ) protocol

The JCJ protocol relies on anonymous credentials to enforce privacy. They simply con-
sist of random values encrypted under the election authorities public key. Legitimacy
of ballots is ensured by mixing and blind comparisons (plaintext equivalence tests) be-
tween credentials used for casting ballots and the list of legitimate ones. This allows
authorities to check the presence of a concealed credential in a list of valid ones. Such
anonymous credentials, further allow for a voter under coercion to transmit a fake cre-
dential to her coercer, without the coercer being able to tell whether the credential is
valid or not. The following equations capture the properties of the encryption scheme
and zero knowledge proofs used in JCJ:

adec(xsk, aenc(pub(xsk), xr, xm)) = xm
pet(xsk, aenc(pub(xsk), xr1, xm), aenc(pub(xsk), xr2, xm)) = okpet
checkzkp(

zkp(xrv, xrc, xv, xc, aenc(xpkT, xrv, xv), aenc(xpkR, xrc, xc)),
xpkT, aenc(xpkT, xrv, xv),
xpkR, aenc(xpkR, xrc, xc)) = okzkp

For an election with n voters, the set of credentials is

Crn
def
= {aenc(pub(skR), ra, ca), aenc(pub(skR), rb, cb),
aenc(pub(skR), r3, c3), . . . , aenc(pub(skR), rn, cn)}

where skR denotes the secret key of the registrars. The encrypted credentials of the two
honest voters is made public, as well as the public keys of the registrars and talliers. So
we consider

E0
def
= {skT, skR, ca, ra, cb, rb}

Φ0
def
= {xpkT 7→ pub(skT ), xpkR 7→ pub(skR),

xca 7→ aenc(pub(skR), ra, ca),
xcb 7→ aenc(pub(skR), rb, cb)}

To cast a ballot, a voter encrypts her choice of candidate with the talliers’ public
key. She also encrypts her credential with the registrars’ public key, and builds a zero
knowledge proof to demonstrate knowledge of the randomness used in these two en-
cryptions. She then sends to the talliers, her encrypted vote, together with her encrypted
credential and the corresponding proof.



Once the casting phase is over, the talliers proceed as follow. For each ballot they
check the accompanying zero knowledge proof. This is captured by the following fam-
ily of public tests

Testm([B1, . . . , Bm])
def
=
∧i=m
i=1 lTest(Bi)

lTest(B)
def
=


> if B = 〈ev, ec, prf 〉

and checkzkp(prf , pub(skT ), ev,
pub(skR), ec) =E okzkp

⊥ otherwise

They then determine the set of valid votes. That is the votes submitted with a valid
credential. This is captured by the following Extract function

Extract(B,Kpv,Kpb)
def
=


> if B = 〈ev, ec, prf 〉

and pet(skR, ev, ev′ =E okpet
for some ev′ ∈ Crn

⊥ otherwise

where Kpv = {skT, skR} and Kpb = {pub(skT ), pub(skR)}. The Extract function
performs a plaintext equivalence test between the submitted encrypted credential and
the list of legitimate encrypted credentials. If this test succeeds for one of the valid
credentials then the ballot is considered to be valid.

The revoting policy of JCJ retains only the last vote, which is formalised by the
family of functions {Policyn,mlast }n,m∈N, introduced in Section 3.2. Finally, the tallying
authorities publish the set of valid votes in a random order. This is captured by the
family of count functions {CountmDM}m∈N introduced in Example 10.

The last thing we need to define is the check check that captures that the honest
voters have voted (their ballots are in the list of ballots to be tallied)

check([B1, . . . , Bm])
def
=



> if ∃i. Extract(Bi) = (cra, v1)
and ∃j. Extract(Bj) = (crb, v2)
where cra = aenc(pub(skR), ra, ca)
and crb = aenc(pub(skR), ra, ca)
for some v1, v2 ∈ V

⊥ otherwise

The resulting family of processes modelling the JCJ protocol is denoted

{JCJn,m(Crn,Kpv,Kpb, va, vb)}n∈N.

To prove that the JCJ protocol satisfies ballot privacy, the following equivalence
would need to be established. For all n,m ∈ N such that n ≥ 2

JCJn,m(Crn,Kpv,Kpb, va, vb) ≈ JCJn,m(Crn,Kpv,Kpb, vb, va)

JCJn,m is voting friendly thus according to Theorem 2 it would be sufficient to
consider n ∈ {2, 3} and m ∈ {1, . . . , 10}. Unfortunately, due to state explosion,



ProVerif is not able to prove this equivalence for m ≥ 3. This may sound surprising
since Backes et al. [11] conducted an analysis of JCJ for an arbitrary numer of vot-
ers. The major difference with our approach is that they consider anonymous channels,
that is, they assume that voters communicate their ballots anonymously to the ballot
box, which considerably simplifies the model. While anonymous channels are indeed
assumed in the original presentation of the JCJ protocol to avoid forced abstention, it
is not needed for vote secrecy and anonymous channels are not part of the the Civitas
system [29], implementing JCJ. As it seems unreasonable to assume that most voters’
connections are anonymous, we analyse here a more practical variant of JCJ, without
anonymous channels. Unsurprisingly, it is harder to prove vote secrecy without this
assumption.

H Case study: the Prêt-à-Voter (PaV) protocol

The main idea of PaV is that an election authority creates ballots that contain the names
of the candidates in a random order on the left-hand side and their corresponding en-
cryption in the same order on the right-hand side. This allows the voter to mark a vote
for the desired candidate and scan only the encrypted part of the ballot, the right-hand
side, to be posted on the bulletin board. The random order of candidates in the ballot
and the decryption key are assumed to be secret. Moreover, ballot forms are assumed to
be unforgeable, ensuring vote privacy, and even coercion-resistance, if care is taken to
destroy the left-hand side.

After the encrypted votes get to the bulletin board, the design of PaV is similar
to other voting systems like JCJ/Civitas or Helios: ballots are either decrypted by a
decryption mixnet ensuring privacy; or are first anonymized by a re-encryption mixnet
and then decrypted by the owners of the secret key.

Unforgeability of paper ballots can be captured in a formal model by (i) having
the talliers check that all submitted ballots are different, but also (ii) relying on a zero
knowledge proof demonstrating knowledge of the randomness used to create the ballot.
We can in that case consider the family of public tests {Testm}m∈N defined in Exam-
ple 8. As PaV does not allow revoting, the policy can just select the first submitted vote
by each voter. This is captured by the family of policy functions {Policyn,mfirst }n,m∈N
described in Section 3.2. The Extract function simply decrypts the encrypted vote, as
specified at Example 9; and the mixnets-based tallying of votes is captured by the fam-
ily of functions {CountmDM}m∈N introduced in Example 10. Ballot privacy is captured
by the same check as for the Helios protocol (see Section ??).

The resulting protocol modelling decryption mixnets-based tallying is denoted

{PaV n,nDM (Crn,Kpv,Kpb, va, vb)}n∈N

It satisfies our assumption, so 3 voters and 3 ballots are sufficient.

Proposition 8. The decryption mixnets-based PaV protocol satisfies ballot privacy, i.e.
for all n ∈ N such that n ≥ 2

PaV n,nDM (Crn,Kpv,Kpb, va, vb) ≈ PaV n,nDM (Crn,Kpv,Kpb, vb, va)



Proof. According to Theorem 1 it is sufficient to consider n ∈ {2, 3}. We used ProVerif
to prove that in both cases the above equivalence is satisfied.

Note that this yields the first proof of vote privacy for the decryption mixnets-based
PaV protocol.

The reencryption mixnets-based variant (RM) of the PaV protocol also satisfy our
hypotheses (and could thus benefit from our reduction results for their analysis). But,
we did not prove that it satisfies ballot privacy, as ProVerif cannot handle the equational
theory corresponding to reencryption.


