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Abstract. This paper presents MQDSS, the first signature scheme with
a security reduction based on the problem of solving a multivariate sys-
tem of quadratic equations (MQ problem). In order to construct this
scheme we give a new security reduction for the Fiat-Shamir transform
from a large class of 5-pass identification schemes and show that a previ-
ous attempt from the literature to obtain such a proof does not achieve
the desired goal. We give concrete parameters for MQDSS and pro-
vide a detailed security analysis showing that the resulting instantiation
MQDSS-31-64 achieves 128 bits of post-quantum security. Finally, we
describe an optimized implementation of MQDSS-31-64 for recent Intel
processors with full protection against timing attacks and report bench-
marks of this implementation.

Keywords: post-quantum cryptography, Fiat-Shamir, 5-pass identifica-
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1 Introduction

Already since 1997, when Shor published a polynomial-time quantum algorithm
for factoring and discrete logarithms, it is known that an attacker equipped
with a sufficiently large quantum computer will be able to break essentially
all public-key cryptography in use today. More recently, various statements by
physicists and quantum engineers indicate that they may be able to build such a
large quantum computer within the next few decades. For example, IBM’s Mark
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Ketchen said in 2012 “I’m thinking like it’s 15 [years] or a little more. It’s within
reach. It’s within our lifetime. It’s going to happen.” In May this year, IBM gave
access to their 5-qubit quantum computer to researchers and announced that
they are expecting to scale up to 50–100 qubits within one decade [IBM16].

It is still a matter of debate when and even if we will see a large quantum
computer that can efficiently break, for example, RSA-4096 or 256-bit elliptic-
curve crypto. However, it becomes more and more clear that cryptography aim-
ing at long-term security can no longer discard the possibility of attacks by
large quantum computers in the foreseeable future. Consequently, NSA recently
updated their Suite B to explicitly emphasize the importance of a migration
to post-quantum algorithms [NSA] and NIST announced a call for submissions
to a post-quantum competition [NIS16]. Submissions to this competition will
be accepted for post-quantum public-key encryption, key exchange, and digital
signature. The results presented in this paper fall into the last of these three
categories: post-quantum digital signature schemes.

Most experts agree that the most conservative choice for post-quantum sig-
natures are hash-based signatures with tight reductions in the standard model to
properties like second-preimage resistance of an underlying cryptographic hash
function. Unfortunately, the most efficient hash-based schemes are stateful, a
property that makes their use prohibitive in many scenarios [MKF+16]. A rea-
sonably efficient stateless construction called SPHINCS was presented at Euro-
crypt 2015 [BHH+15]; however, eliminating the state in this scheme comes at
the cost of decreased speed and increased signature size.

The second direction of research for post-quantum signatures are lattice-
based schemes. Various schemes have been proposed with different security and
performance properties. The best performance is achieved by BLISS [DDLL13]
with improvements in [Duc14]. The security reduction of BLISS relies on the
hardness of R-SIS and NTRU; the reduction is non-tight. Furthermore, the per-
formance is achieved at the cost of being vulnerable against timing attacks as
demonstrated in [GHLY16]. A somewhat more conservative approach is the sig-
nature scheme proposed by Bai and Galbraith in [BG14] with improvements to
performance and security in [DBG+15,ABBD15,ABB+16]. The security reduc-
tion in [ABBD15] to LWE is tight; a similar reduction for the (more efficient)
ideal-lattice variant was presented in [ABB+16]. However, these schemes either
come with enormous key and signature sizes (e.g. sizes in [ABBD15] are in the
order of megabytes), or sizes are reduced at the cost of switching to assumptions
on lattices with additional structure like NTRU, Ring-SIS, or Ring-LWE.

The third large class of post-quantum signature algorithms is based on the
hardness of solving large systems of multivariate quadratic equations, the so-
called MQ problem. For random instances this problem is known to be NP-
complete [GJ79]. However, all schemes in this class that have been proposed
with actual parameters for practical use share two properties that often raise
concerns about their security: First, their security arguments are rather ad-hoc;
there is no reductionist argument to the hardness ofMQ. The reason for this is
the second property, namely that these systems require a hidden structure in the
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system of equations; this implies that their security inherently also relies on the
hardness of the so-called isomorphism-of-polynomials (IP) problem [Pat96] (or,
more precisely, the Extended IP problem [DHYC06] or the similar IP with partial
knowledge [Tho13] problem). Time has shown that IP in many of the proposed
schemes actually relies on the MinRank problem [Cou01,FLP08], and unfortu-
nately, more than often, on an easy instance of this problem. Therefore, many
proposed schemes have been broken not by targetingMQ, but by targeting IP
(and thus exploiting the structure in the system of equations). Examples of bro-
ken schemes include Oil-and-Vinegar [Pat97] (broken in [KS98]), SFLASH [CGP]
(broken in [DFSS07]), MQQ-Sig [GØJ+11] (broken in [FGP+15]), (Enhanced)
TTS [YCC04a,YC05b] (broken in [TW12]), and Enhanced STS [TGTF10] (bro-
ken in [TW12]). There are essentially only two proposals from the “MQ +IP”
class of schemes that are still standing: HFEv− variants [PCG01,PCY+15] and
Unbalanced Oil-and-Vinegar (UOV)variants [KPG99,DS05]. The literature does
not, to the best of our knowledge, describe any instantiation of those schemes
with parameters that achieve a conservative post-quantum security level.

Contributions of this paper. Obviously what one would want in the realm
ofMQ-based signatures is a scheme that has a tight reduction fromMQ in the
quantum-random-oracle model (QROM) or even better in the standard model,
and has small key and signatures sizes and fast signing and verification algo-
rithms when instantiated with parameters that offer 128 bits of post-quantum
security. In this paper we make a major step towards such a scheme. Specifically,
we present a signature system with a reduction fromMQ, a set of parameters
for this system that achieves 128 bits of post-quantum security according to our
careful post-quantum security analysis, and an optimized implementation of this
scheme.

This does not mean that our proposal is going quite all the way to the desired
scheme sketched above: our reduction is non-tight and in the ROM. Furthermore,
at the 128-bit post-quantum security level, the signature size is 40 952 bytes,
which is comparable to SPHINCS [BHH+15], but larger than what lattice-based
schemes orMQ +IP schemes achieve. However, the scheme excels in key sizes:
it needs only 72 bytes for public keys and 64 bytes for private keys.

The basic idea of our construction is to apply a Fiat-Shamir transform to the
MQ-based 5-pass identification scheme (IDS) that was presented by Sakumoto,
Shirai, and Hiwatari at Crypto 2011 [SSH11]. In principle, this idea is not new; it
already appeared in a 2012 paper by El Yousfi Alaoui, Dagdelen, Véron, Galindo,
and Cayrel [EDV+12]. In their paper they use the 5-pass IDS from [SSH11] as
one example of a scheme with a property they call “n-soundness”. According
to their proof in the ROM, this property of an IDS guarantees that it can be
used in a Fiat-Shamir transform to obtain an existentially unforgeable signature
scheme. They give such a transform using the IDS from [SSH11] in Section 4.2.

One might think that choosing suitable parameters for precisely this trans-
form (and implementing the scheme with those parameters) produces the results
we are advertising in this paper. However, we show that not only is the construc-
tion from [EDV+12, Section 4.2] insecure (because it ignores the requirement of
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an exponentially large challenge space), we also show that the proof based on
the n-soundness property does not apply to a corrected Fiat-Shamir transform of
the 5-pass IDS from [SSH11]. The reason is that the n-soundness property does
not hold for this IDS. More than that, we show that any (2n+1)-pass scheme for
which the n-soundness property holds can trivially be transformed into a 3-pass
scheme. This observation essentially renders the results of [EDV+12] vacuous,
because the declared contribution of that paper is to present “the first transfor-
mation which gives generic security statements for SS derived from (2n+1)-pass
IS”.

To solve these issues, we present a new proof in the ROM for Fiat-Shamir
transforms of a large class of 5-pass IDS, including the targeted 5-pass scheme
from [SSH11]. This proof is of independent interest; it applies also, for ex-
ample, to the IDS from [CVE10], [Ste93] and (with minor modifications) to
[PP03]. Equipped with this result, we fix the signature scheme from [EDV+12]
and instantiate the scheme with parameters for the 128-bit post-quantum secu-
rity level. We call this signature scheme MQDSS and the concrete instatiation
with the proposed parameters MQDSS-31-64. Our optimized implementation
of MQDSS-31-64 for Intel Haswell processors takes 25 513 544 cycles for sign-
ing and 18 216 296 cycles for verification; key generation takes 1 867 816 cycles.
These cycle counts include full protection against timing attacks.

Organization of this paper. We start with some preliminaries in Section 2.
In Section 3, we recall the 5-pass IDS as introduced in [SSH11]. We present
our theoretical results in Section 4. We discuss the problems with the result
from [EDV+12] in Subsection 4.1, and resolve them by providing a new proof in
Subsection 4.3. We present a description and implementation of the transformed
5-pass signature scheme in Section 5. In Section 6 we finally present a concrete
instantiation and implementation thereof.

Availability of the software. We place all software described in this paper
into the public domain to maximize reusability of our results. The software is
available online at https://joostrijneveld.nl/papers/mqdss.

Acknowledgements. The authors would like to thank Marc Fischlin for helpful
discussions, the anonymous reviewers for valuable comments and Arno Mittel-
bach for the cryptocode package.

2 Preliminaries

In the following we provide basic definitions used throughout this work.

Digital signatures. The main target of this work are digital signature schemes.
These are defined as follows.

Definition 2.1 (Digital signature scheme). A digital signature scheme Dss
is a triplet of polynomial time algorithms Dss = (KGen,Sign,Vf) defined as fol-
lows:
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– The key generation algorithm KGen is a probabilistic algorithm that on input
1k, where k is a security parameter, outputs a key pair (sk, pk).

– The signing algorithm Sign is a possibly probabilistic algorithm that on input
a secret key sk and a message M outputs a signature σ.

– The verification algorithm Vf is a deterministic algorithm that on input a
public key pk, a message M and a signature σ outputs a bit b, where b = 1
indicates the signature is accepted and b = 0 indicates a reject.

For correctness of a Dss, we require that for all k ∈ N, (sk, pk) ← KGen(1k), all
messages M and all signatures σ ← Sign(sk,M), we get Vf(pk,M, σ) = 1, i.e.,
that correctly generated signatures are accepted.

Existential Unforgeability under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [GMR88] which is de-
fined using the following experiment. By Dss(1k) we denote a signature scheme
with security parameter k.

Experiment Expeu-cma
Dss(1k)(A)

(sk, pk)← KGen(1k)
(M?, σ?)← ASign(sk,·)(pk)

Let {(Mi, σi)}Qs1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}Qs1 .

For the success probability of an adversary A in the above experiment we write

Succeu-cma
Dss(1k) (A) = Pr

[
Expeu-cma

Dss(1k)(A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT adversary has only
negligible success probability:

Definition 2.2 (EU-CMA). Let k ∈ N, Dss a digital signature scheme as de-
fined above. We call Dss EU-CMA-secure if for all Qs, t = poly(k) the maximum
success probability InSeceu-cma (Dss(1k); t, Qs

)
of all possibly probabilistic classi-

cal adversaries A running in time ≤ t, making at most Qs queries to Sign in the
above experiment, is negligible in k:

InSeceu-cma (Dss(1k); t, Qs
) def
= max

A
{Succeu-cma

Dss(1k) (A)} = negl(k) .

Identification Schemes An identification scheme (IDS) is a protocol that al-
lows a prover P to convince a verifier V of its identity. More formally this is
covered by the following definition.

Definition 2.3 (Identification scheme). An identification scheme consists of
three probabilistic, polynomial-time algorithms IDS = (KGen,P,V) such that:

– the key generation algorithm KGen is a probabilistic algorithm that on input
1k, where k is a security parameter, outputs a key pair (sk, pk).
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– P and V are interactive algorithms, executing a common protocol. The prover
P takes as input a secret key sk and the verifier V takes as input a public key
pk. At the conclusion of the protocol, V outputs a bit b with b = 1 indicating
“accept” and b = 0 indicating “reject”.

For correctness of the scheme, we require that for all k ∈ N and all (pk, sk)←
KGen(1k) we have

Pr [〈P(sk),V(pk)〉 = 1] = 1,

where 〈P(sk),V(pk)〉 refers to the common execution of the protocol between P
with input sk and V on input pk.

In this work we are only concerned with passively secure identification schemes.
We define security in terms of two properties: soundness and honest-verifier zero-
knowledge.

Definition 2.4 (Soundness (with soundness error κ)). Let k ∈ N, IDS =
(KGen,P,V) an identification scheme. We say that IDS is sound with soundness
error κ if for every PPT adversary A

Pr

[
(pk, sk)← KGen(1k)〈
A(1k, pk),V(pk)

〉
= 1

]
≤ κ+ negl(k) .

Of course, the goal is to obtain an IDS with negligible soundness error. This can
be achieved by running r rounds of the protocol for an r that fulfills κr = negl(k).

For the following definition we need the notion of a transcript. A transcript of
an execution of an identification scheme IDS refers to all the messages exchanged
between P and V and is denoted by trans(〈P(sk),V(pk)〉).

Definition 2.5 ((statistical) Honest-verifier zero-knowledge). Let k ∈ N,
IDS = (KGen,P,V) an identification scheme. We say that IDS is statistical
honest-verifier zero-knowledge if there exists a probabilistic polynomial time al-
gorithm S, called the simulator, such that the statistical distance between the
following two distribution ensembles is negligible in k:{

(pk, sk)← KGen(1k) : (sk, pk, trans(〈P(sk),V(pk)〉))
}

{
(pk, sk)← KGen(1k) : (sk, pk,S(pk))

}
3 Sakumoto et al. 5-pass IDS scheme

In [SSH11], Sakumoto et al. proposed two new identification schemes, one 3-
pass and one 5-pass IDS, based on the intractability of theMQ problem. They
showed that assuming existence of a non-interactive commitment scheme that
is statistically hiding and computationally binding, their schemes are statistical
zero knowledge and argument of knowledge, respectively. They further showed
that the parallel composition of their protocols is secure against impersonation
under passive attack.
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Let us quickly recall the basics of the construction. Let x = (x1, . . . , xn) and
letMQ(n,m,Fq) denote the family of vectorial functions F : Fnq → Fmq of degree
2 over Fq:

MQ(n,m,Fq) = {F(x) = (f1(x), . . . , fm(x))|fs(x) =
∑
i,j

ai,jxixj +

+
∑
i

bixi, s ∈ {1, . . . ,m}}

The function G(x,y) = F(x+ y)− F(x)− F(y) is called the polar form of the
function F. TheMQ problemMQ(F,v) is defined as follows:

Given v ∈ Fmq find, if any, s ∈ Fnq such that F(s) = v.
The decisional version of this problem is known to be NP -complete [GJ79].

It is widely believed that the MQ problem is intractable i.e. that there does
not exist a polynomially bounded adversary A that given F←RMQ(n,m,Fq),
s ←R Fnq and v = F(s) outputs a solution s′ to the MQ(F,v) problem with
non-negligible probability.

The novelty of the approach of Sakumoto et al. [SSH11] is that unlike previ-
ous public key schemes, their solution provably relies only on theMQ problem
(and the security of the commitment scheme), and not on other related problems
in multivariate cryptography such as the Isomorphism of Polynomials (IP) prob-
lem [Pat96], the related Extended IP [DHYC06] and IP with partial knowledge
[Tho13] problems or the MinRank problem [Cou01,FLP08]. The key for this is
the introduction of a technique to split the secret using the polar form G(x,y)
of a system of polynomials F(x).

In essence, with their technique, the secret s is split into s = r0+ r1, and the
public v = F(s) can be represented as v = F(r0) + F(r1) +G(r0, r1). In order
for the polar form not to depend on both shares of the secret, r0 and F(r0) are
further split as αr0 = t0+ t1 and αF(r0) = e0+e1. Now, due to the linearity of
the polar form it holds that αv = (e1+αF(r1)+G(t1, r1))+(e0+G(t0, r1)), and
from only one of the two summands, represented by (r1, t1, e1) and (r1, t0, e0),
nothing can be learned about the secret s.

The 5-pass IDS is given in Figure 1. Let (pk, sk) = (v, s)← KGen(1k).
Sakumoto et al. [SSH11] proved that their 5-pass scheme is statistically zero

knowledge when the commitment scheme Com is statistically hiding which im-
plies (honest-verifier) zero knowledge. Here we prove the soundness property of
the scheme4.

Theorem 3.1. The 5-pass identification scheme of Sakumoto et al. [SSH11]
is sound with soundness error 1

2 + 1
2q when the commitment scheme Com is

computationally binding.

Proof. Clearly, there exists an adversary C that can cheat with probability 1
2+

1
2q .

This cheater C simply follows the protocol using some random s′ with a little
4 Sakumoto et al. [SSH11] also sketched a proof that their 5-pass protocol is argument
of knowledge when Com is computationally binding. Our security arguments rely
on the weaker notion of soundness, therefore we include an appropriate proof.
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P V

r0, t0 ←R Fnq , e0 ←R Fmq
r1 ← s− r0
c0 ← Com(r0, t0, e0)

c1 ← Com(r1,G(t0, r1) + e0) (c0, c1)

α←R Fqα

t1 ← αr0 − t0
e1 ← αF(r0)− e0 resp1 = (t1, e1)

ch2 ←R {0, 1}ch2

If ch2 = 0, resp2 ← r0
Else resp2 ← r1 resp2

If ch2 = 0, Parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0)− e1)

Else Parse resp2 = r1, check

c1
?
= Com(r1, α(v− F(r1))−G(t1, r1)− e1)

Fig. 1. Sakumoto et al. 5-pass IDS

difference: It guesses α and manipulates the second part of the commitment
(c0, c1). The reason this works is that for ch2 = 0, nothing is checked using
the verification key v. Hence, in this case the cheater can always win. This
already gives a success probability of 1/2. Furthermore, manipulating c1 does
not influence the success probability in the case where ch2 = 0, but may increase
the success probability in case ch2 = 1.

More formaly, for the public pk = v, the cheater C chooses α∗ ∈ Fq as
a prediction of what the verifier V will use in the protocol later on. Then C
chooses s′, r0, t0 ∈ Fnq , e0 ∈ Fmq at random, and computes r1 ← s′ − r0, and
t1 ← α∗r0 − t0. Now C computes the commitment (c0, c1) as:

– c0 ← Com(r0, t0, e0),
– c1 ← Com(r1, α

∗(v − F(r1))−G(t1, r1)− α∗F(r0) + e0).

and computes e1 ← α∗F(r0)− e0. Then it follows the protocol as is.
Now, when ch2 = 0, C always wins, regardless of what α the verifier has

chosen. When ch2 = 1, C wins when α = α∗, i.e. the first challenge was correctly
guessed, which happens with probability 1/q.

So, 1
2 +

1
2q is a lower bound on the success probability of an adversary. What

we want to show now is that there cannot exist a cheater that wins with signif-
icantly higher success probability as long as the MQ problem is hard and the
used commitment is computationally binding.

Towards a contradiction, suppose there exists a malicious PPT cheater C
such that it holds that

ε := Pr[
〈
C(1k,v),V(v)

〉
= 1]− (

1

2
+

1

2q
) =

1

P (k)
.
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for some polynomial function P (k). We show that this implies that there exists
a PPT adversary A with access to C that can either break the binding property
of Com or can solve theMQ problemMQ(F,v).
A can achieve this if she can obtain four accepting transcripts from C with

same internal random tape, equation system F, and public key v, such that for
two different α there are two transcripts for each α with different ch2. This is done
by rewinding C and feeding it with all possible combinations of α ∈ [0, q−1] and
ch2 ∈ {0, 1}. That way we obtain 2q different transcripts. Now, per assumption
C produces an accepting transcript with probability 1

2 + 1
2q + ε. Hence, with

non-negligible probability ε we get at least q+2 accepting transcripts. A simple
counting argument gives that there has to be a set of four transcripts fulfilling the
above conditions. Let these transcripts be ((c0, c1), α

(i), (t
(i)
1 , e

(i)
1 ), ch

(i)
2 , resp

(i)
2 ),

where α(1) = α(2) 6= α(3) = α(4), t
(1)
1 = t

(2)
1 6= t

(3)
1 = t

(4)
1 , e

(1)
1 = e

(2)
1 6=

e
(3)
1 = e

(4)
1 , ch(1)2 = ch

(3)
2 = 0, ch(2)2 = ch

(4)
2 = 1, resp(1)2 = r

(1)
0 , resp(3)2 = r

(3)
0 ,

resp
(2)
2 = r

(2)
1 , resp(4)2 = r

(4)
1 . Since the commitment (c0, c1) is the same in all

four transcripts, we have

Com(r(1)0 , α(1)r(1)0 − t(1)1 , α(1)F(r(1)0 )− e(1)1 ) =

Com(r(3)0 , α(3)r(3)0 − t(3)1 , α(3)F(r(3)0 )− e(3)1 )
(1)

Com(r(2)1 , α(2)(v− F(r(2)1 ))−G(t(2)1 , r(2)1 )− e(2)1 ) =

Com(r(4)1 , α(4)(v− F(r(4)1 ))−G(t(4)1 , r(4)1 )− e(4)1 )
(2)

If any of the arguments of Com on the left-hand side is different from the one on
the right-hand side in (1) or in (2), then we get two different openings of Com,
which breaks its computationally binding property.

If they are the same in both (1) and (2), then from (1):

(α(1) − α(3))r(1)0 = t(1)1 − t(3)1 and (α(1) − α(3))F(r(1)0 ) = e(1)1 − e(3)1

and from (2):

(α(2) − α(4))(v− F(r(2)1 )) = G(t(2)1 − t(4)1 , r(2)1 ) + e(2)1 − e(4)1

Combining the two,

(α(2) − α(4))(v− F(r(2)1 )) = (α(2) − α(4))G(r(1)0 , r(2)1 ) + (α(2) − α(4))F(r(1)0 ),

and since α(2) 6= α(4) we get v = F(r(2)1 ) +G(r(1)0 , r(2)1 ) +F(r(1)0 ), i.e, r(1)0 + r(2)1

is a solution to the givenMQ problem. ut

We will look into the inner workings of the IDS in more detail in Section 5,
where we also introduce the related 3-pass scheme.
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4 Fiat-Shamir for 5-pass identification schemes

For several intractability assumptions, the most efficient identification schemes
are five pass schemes, i.e. IDS where a transcript consists of five messages. Here,
efficiency refers to the size of all communication of sufficient rounds to make the
soundness error negligible. This becomes especially relevant when one wants to
turn an IDS into a signature scheme as it is closely related to the signature size
of the resulting scheme.

In [EDV+12], the authors present a Fiat-Shamir style transform for (2n +
1)-pass IDS fulfilling a certain kind of canonical structure. To provide some
intuition, a five pass IDS is called canonical in the above sense if P starts with
a commitment com1, V replies with a challenge ch1, P sends a first response
resp1, V replies with a second challenge ch2 and finally P returns a second
response resp2. Based on this transcript, V then accepts or rejects. The authors
of [EDV+12] also present a security reduction for signature schemes derived
from such IDS using a security property of the IDS which they call special n-
soundness. Intuitively, this property says that given two transcripts that agree
on all messages but the last challenge and possibly the last response, one can
extract a valid secret key.

In this section we first show that any (2n + 1)-pass IDS that fulfills the
requirements of the security reduction in [EDV+12] can be converted into a 3-
pass IDS by letting P choose all but the last challenge uniformly at random
himself. The main reason this is possible is the special n-soundness. On the
other hand, we argue that existing 5-pass schemes in the literature do not fulfill
special n-soundness and prove it for the 5-passMQ-IDS from [SSH11]. Hence,
they can neither be turned into 3-pass schemes, nor does the security reduction
from [EDV+12] apply. Afterwards we give a security reduction for a less generic
class of 5-pass IDS which covers many 5-pass IDS, including [CVE10], [Ste93]
and [PP03]. In particular, it covers the 5-passMQ scheme from [SSH11].

4.1 The El Yousfi et al. proof

Before we can make any statement about IDS that fall into the case of [EDV+12]
we have to define the target of our analysis. A canonical (2n+1)-pass IDS is an
IDS where the prover and the verifier exchange n challenges and replies. More
formally:

Definition 4.1 (Canonical (2n+1)-pass identification schemes). Let k ∈
N be the security parameter, IDS = (KGen,P,V) a (2n + 1)-pass identification
scheme with n challenge spaces Cj , 0 < j ≤ n. We call IDS a canonical (2n+1)-
pass identification scheme if the prover can be split into n + 1 subroutines P =
(P0, . . . ,Pn) and the verifier into n + 1 subroutines V = (ChS1, . . . ,ChSn,Vf)
such that

– P0(sk) computes the initial commitment com sent as the first message.
– ChSj , j ≤ n computes the j-th challenge message chj ←R Cj, sampling a

random element from the j-th challenge space.
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– Pi(sk, trans2i), 0 < i ≤ n computes the i-th response of the prover given
access to the secret key and trans2i, the transcript so far, containing the first
2i messages.

– Vf(pk, trans), upon access to the public key and the whole transcript outputs
V’s final decision.

Figure 2 describes a canonical 5-pass IDS. The definition implies that a canonical
(2n + 1)-pass IDS is public coin. The public coin property just says that the
challenges are sampled from the respective challenge spaces using the uniform
distribution.

P V

com← P0(sk) com

ch1 ←R ChS1(1
k
)

ch1

resp1 ← P1(sk, com, ch1) resp1

ch2 ←R ChS2(1
k
)

ch2

resp2 ← P2(sk, com, ch1, resp1, ch2) resp2

b← Vf(pk, com, ch1, resp1, ch2, resp2)

Fig. 2. Canonical 5-pass IDS

El Yousfi et al. propose a generalized Fiat-Shamir transform that turns a
canonical (2n + 1)-pass IDS into a digital signature scheme. The algorithms of
the obtained signature scheme make use of the IDS algorithms as follows. The
key generation is simply the IDS key generation. The signature algorithm sim-
ulates an execution of the IDS, replacing challenge chj by the output of a hash
function (that maps into Cj) that takes as input the concatenation of the mes-
sage to be signed and all 2(j− 1)+ 1 messages that have been exchanged so far.
The signature just contains the messages sent by P. The verification algorithm
uses the signature and the message to be signed to generate a full transcript,
recomputing the challenges using the hash function. Then the verification algo-
rithm runs Vf on the public key and the computed transcript and outputs its
result.

El Yousfi et al. give a security reduction for the resulting signature scheme
if the used IDS is honest-verifier zero-knowledge and fulfills special n-soundness
defined below. The latter is a generalization of special soundness. Intuitively,
special n-soundness says that given two transcripts that agree up to the second-
to-last response but disagree on the last challenge, one can extract the secret
key.

Definition 4.2 (Special n-soundness). A canonical (2n+1)-pass IDS is said
to fulfill special n-soundness if there exists a PPT algorithm E, called the extrac-

11



tor, that given two accepting transcripts trans = (com, ch1, resp1, . . . , respn−1,
chn, respn) and trans′ = (com, ch1, resp1, . . . , respn−1, ch

′
n, resp

′
n) with chn 6= ch′n

as well as the corresponding public key pk, outputs a matching secret key sk for
pk with non-negligible success probability.

The common special soundness for canonical (3-pass) IDS is hence just special
1-soundness. Please note that El Yousfi et al. define special n-soundness for the
resulting signature scheme which in turn requires the used IDS to provide special
n-soundness. We decided to follow the more common approach, defining the
soundness properties for the IDS.

From (2n+1) to three passes. We now show that every canonical (2n+1)-
pass IDS that fulfills special n-soundness can be turned into a canonical 3-pass
IDS fulfilling special soundness.

Theorem 4.3. Let IDS = (KGen,P,V) be a canonical (2n + 1)-pass IDS that
fulfills special n-soundness. Then, the following 3-pass IDS IDS′ = (KGen,P ′,V ′)
is canonical and fulfills special soundness.

IDS′ is obtained from IDS by just moving ChSj , 0 < j < n, (i.e. all but
the last challenge generation algorithm) from V to P: P ′ computes com′ =
(com, ch1, resp1, . . . , respn−1, chn−1) using P0, . . . ,Pn−1 and ChS1, . . . ,ChSn−1.
After P ′ sent com′, V ′ replies with ch′1 ← ChSn(1

k). P ′ computes resp′1 ←
Pn(sk, trans2n) and V ′ verifies the transcript using Vf.

Proof. Clearly, IDS′ is a canonical 3-pass IDS. It remains to prove that it is
honest-verifier zero-knowledge and that it fulfills special soundness. The latter
is straight forward as two transcripts for IDS′, that fulfill the conditions in the
soundness definition, can be turned into two transcripts for IDS fulfilling the
conditions in the n-soundness definition, splitting com′ = (com, ch1, resp1, . . . ,
respn−1, chn−1) into its parts. Consequently, we can use any extractor for IDS
as an extractor for IDS′ running in the same time and having the exact same
success probability.

Showing honest-verifier zero-knowledge is similarly straight forward. A sim-
ulator S ′ for IDS′ can be obtained from any simulator S for IDS. S ′ just runs S
to obtain a transcript and regroups the messages to produce a valid transcript
for IDS′. Again, S ′ runs in essentially the same time as S and achieves the exact
same statistical distance. ut

The Sakumoto et al 5-pass IDS does not fulfill special n-soundness. The
above result raises the question whether this property was overlooked and we
can turn all the 5-pass schemes in the literature into 3-pass schemes. This would
have the benefit that we could use the classical Fiat-Shamir transform to turn
the resulting schemes into signature schemes.

Sadly, this is not the case. The reason is that the extractors for those IDS
need more than two transcripts. For example, the extractor for the 5-pass IDS
by Sakamoto et al needs four transcripts such that they all agree on com. The
transcripts have to form two pairs such that in a pair the transcripts agree on

12



ch1 but not on ch2 and the two pairs disagree on ch1. The proof given by El
Yousfi et al. is flawed. The authors miss that the two secret shares r0 and r1
obtained from two different transcripts do not have to be shares of a valid secret
key. We now give a formal proof.

Theorem 4.4. The 5-pass identification scheme from [SSH11] does not fulfill
special n-soundness if the computationalMQ-problem is hard.

Proof. We prove this by showing that there exist pairs of transcripts, fulfilling
the special n-soundness criteria that can be generated by an adversary without
knowledge of the secret key simulating just two executions of the protocol. As
a key pair for the MQ-IDS is a random instance of the MQ problem, special
n-soundness of the 5-passMQ-IDS would imply that theMQ problem can be
solved in probabilistic polynomial time.

Towards a contradiction, assume there exists a PPT extractor E against the
5-passMQ-IDS that fulfills Definition 4.2. We show how to build a PPT solver
A for theMQ problem. Given an instance of theMQ problem v, A sets pk = v
which is a valid public key for theMQ-IDS. Next, A computes two transcripts
as follows. A samples a random α ∈ Fq and random s, r0, t0 ∈ Fnq , e0 ∈ Fmq ,
and computes r1 ← s− r0, and t1 ← αr0 − t0. Then A simulates two successful
protocol executions, one for ch2 = 0, one for ch2 = 1. To do so, A impersonates
P and replaces the first challenge with α and the second with 0 in the first run
and 1 in the second run. In addition, A uses the knowledge of α to compute the
commitments as:

– c0 ← Com(r0, t0, e0),
– c1 ← Com(r1, α(v − F(r1))−G(t1, r1)− αF(r0) + e0).

Then A computes e1 ← αF(r0) − e0 and sets the second commitment in both
runs to (t1, e1). For ch2 = 0, A sets resp = r0, and for ch2 = 1, A sets resp = r1.

Now, the first transcript (when ch2 = 0) is valid, since t0 = αr0 − t1 and
e0 = αF(r0)−e1. The second transcript (when ch2 = 1) is also valid as a straight
forward calculation shows.

Finally, A feeds the transcripts to E and outputs whatever E outputs. A
has the same success probability as E and runs in essentially the same time.
As E is a PPT algorithm per assumption, this contradicts the hardness of the
computationalMQ problem. ut

Clearly, we can also use A to deal with a parallel execution of many rounds
of the scheme. A similar situation arises for all the 5-pass IDS schemes that we
found in the literature.

4.2 A Fiat-Shamir transform for most (2n + 1)-pass IDS

By now we have established that we are currently lacking security arguments
for signature schemes derived from (2n+ 1)-pass IDS. We now show how to fix
this issue for most (2n + 1)-pass IDS in the literature. As most of these IDS
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are 5-pass schemes that follow a certain structure, we restrict ourselves to these
cases. There are some generalizations that are straight-forward and possible to
deal with, but they massively complicate accessibility of our statements.

We will consider a particular type of 5-pass identification protocols where
the length of the two challenges is restricted to q and 2.
Definition 4.5 (q2 -Identification scheme). Let k ∈ N. A q2 -Identification
scheme IDS(1k) is a canonical 5-pass identification scheme where for the chal-
lenge spaces C1 and C2 it holds that |C1| = q and |C2| = 2. Moreover, the
probability that the commitment com takes a given value is negligible (in k),
where the probability is taken over the random choice of the input and the used
randomness.

To keep the security reduction below somewhat generic, we also need a prop-
erty that defines when an extractor exists for a q2-identification scheme. As we
have seen special n-soundness is not applicable. Hence, we give a less generic
definition.

Definition 4.6 (q2-Extractor).We say that a q2-Identification scheme IDS(1k)
has a q2-extractor if there exists a PPT algorithm E, the extractor, that given
a public key pk and four transcripts trans(i) = (com, ch

(i)
1 , resp

(i)
1 , ch

(i)
2 , resp

(i)
2 ),

i ∈ {1, 2, 3, 4}, with
ch

(1)
1 = ch

(2)
1 6= ch

(3)
1 = ch

(4)
1 ,

ch
(1)
2 = ch

(3)
2 6= ch

(2)
2 = ch

(4)
2 ,

(3)

valid with respect to pk, outputs a matching secret key sk for pk with non-
negligible success probability (in k).

In what follows, let IDSr = (KGen,Pr,Vr) be the parallel composition of
r rounds of the identification scheme IDS = (KGen,P,V). As the schemes we
are concerned with only achieve a constant soundness error, the construction
below uses a polynomial number of rounds to obtain an IDS with negligible
soundness error as intermediate step. We denote the transcript of the j-th round
by transj = (comj , ch1,j , resp1,j , ch2,j , resp2,j).

Construction 4.7 (Fiat-Shamir transform for q2 -IDS). Let k ∈ N the se-
curity parameter, IDS = (KGen,P,V) a q2-Identification scheme that achieves
soundness with soundness error κ. Select r, the number of (parallel) rounds of
IDS, such that κr = negl(k), and that the challenge spaces of the composition
IDSr, Cr1,Cr2 have exponential size in k. Moreover, select cryptographic hash func-
tions H1 : {0, 1}∗ → Cr1 and H2 : {0, 1}∗ → Cr2. The q2-signature scheme q2-
Dss(1k) derived from IDS is the triplet of algorithms (KGen,Sign,Vf) with:
– (sk, pk)← KGen(1k),
– σ = (σ0, σ1, σ2) ← Sign(sk,m) where σ0 = com ← Pr0 (sk), h1 = H1(m,σ0),
σ1 = resp1 ← Pr1 (sk, σ0, h1), h2 = H2(m,σ0, h1, σ1), and σ2 = resp2 ←
Pr2 (sk, σ0, h1, σ1, h2).

– Vf(pk,m, σ) parses σ = (σ0, σ1, σ2), computes the values h1 = H1(m,σ0),
h2 = H2(m,σ0, h1, σ1) as above and outputs Vr(pk, σ0, h1, σ1, h2, σ2).

Correctness of the scheme follows immediately from the correctness of IDS.
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4.3 Security of q2-signature schemes.

We now give a security reduction for the above transform in the random oracle
model assuming that the underlying q2-IDS is honest-verifier zero-knowledge,
achieves soundness with constant soundness error, and has a q2-extractor. More
specifically, we prove the following theorem:

Theorem 4.8 (EU-CMA security of q2-signature schemes). Let k ∈ N,
IDS(1k) a q2-IDS that is honest-verifier zero-knowledge, achieves soundness with
constant soundness error κ and has a q2-extractor. Then q2 -Dss(1k), the q2-
signature scheme derived applying Construction 4.7 is existentially unforgeable
under adaptive chosen message attacks.

In the following, we model the functions H1 and H2 as independent random
oracles O1 and O2. To proof Theorem 4.8, we proceed in several steps. Our
proof builds on techniques introduced by Pointcheval and Stern [PS96]. As the
reduction is far from being tight, we refrain from doing an exact proof as it does
not buy us anything but a complicated statement. We first recall an important
tool from [PS96] called the splitting lemma.

Lemma 4.9 (Splitting lemma [PS96]). Let A ⊂ X × Y , such that
Pr[A(x, y)] > ε. Then, there exists Ω ⊂ X, such that

Pr[x ∈ Ω] > ε/2,

Pr[A(a, y)|a ∈ Ω] > ε/2.

We now present a forking lemma for q2-signature schemes. The lemma shows
that we can obtain four valid signatures which contain four valid transcripts of
the underlying IDS, given a successful key-only adversary. Moreover, these four
traces fulfill a certain requirement on the challenges (here the related parts of
the hash function outputs) that we need later.

Lemma 4.10 (Forking lemma for q2-signature schemes). Let k ∈ N,
Dss(1k) a q2-signature scheme with security parameter k.

If there exists a PPT adversary A that can output a valid signature message
pair (m,σ) with non-negligible success probability, given only the public key as
input, then, with non-negligible probability, rewinding A a polynomial number
of times (with same randomness) but different oracles, outputs 4 valid signature
message pairs (m,σ = (σ0, σ

(i)
1 , σ

(i)
2 ), i ∈ {1, 2, 3, 4}, such that for the associated

hash values it holds that

h
(1)
1,j = h

(2)
1,j 6= h

(3)
1,j = h

(4)
1,j ,

h
(1)
2,j = h

(3)
2,j 6= h

(2)
2,j = h

(4)
2,j ,

(4)

for some round j ∈ {1, . . . , r}.

Proof. To prove the Lemma we need to show that we can rewind A three times
and the probability that A succeeds in forging a (different) signature in all four

15



runs is non-negligible. Moreover, we have to show that the signatures have the
additional property claimed in the Lemma, again with non-negligible probability.

Let ω ∈ Rw be A’s random tape with Rw the set of allowable random tapes.
During the attack A may ask polynomially many queries (in the security param-
eter k) Q1(k) and Q2(k) to the random oracles O1 and O2. Let q1,1, q1,2, . . . ,
q1,Q1 and q2,1, q2,2, . . . , q2,Q2 be the queries to O1 and O2, respectively. More-
over, let (r1,1, r1,2, . . . , r1,Q1

) ∈ (Cr1)
Q1 and (r2,1, r2,2, . . . , r2,Q2

) ∈ (Cr2)
Q2 the

corresponding answers of the oracles.
Towards proving the first point, we assume that A also outputs h1, h2 with

the signature and a signature is considered invalid if those do not match the
responses of O1 and O2, respectively. This assumption is without loss of gen-
erality as we can construct such A from any A′ that does not output h1, h2.
A just runs A′ and given the result queries O1 and O2 for h1, h2 and outputs
everything. Clearly A succeeds with the same success probability as A′ and runs
in essentially the same time, making just one more query to each RO.

Denote by F the event thatA outputs a valid message signature pair (m,σ(1) =

(σ0, σ
(1)
1 , σ

(1)
2 )) with the associated hash values h(1)1 , h

(1)
2 . Per assumption, this

event occurs with non-negligible probability, i.e., Pr[F] = 1
P (k) , for some polyno-

mial P (k). In addition, F implies h(1)1 = O1(m,σ0) and h
(1)
2 = O2(m,σ0, h

(1)
1 , σ

(1)
1 ).

As h(1)1 , h
(1)
2 are chosen uniformly at random from exponentially large sets Cr1,Cr2,

the probability that A did not query O1 for h(1)1 and O2 for h(1)2 is negligible.
Hence, there exists a polynomial P ′ such that the event F′ that F occurs and A
queried O1 for h(1)1 and O2 for h(1)2 has probability

Pr[F′] =
1

P ′(k)
, (5)

For the moment only consider the second oracle. As of equation 5 there exists
at least one β 6 Q2 such that

Pr[F′ ∧ q2,β = (m,σ0, h
(1)
1 , σ

(1)
1 )] >

1

Q2(k)P ′(k)
(6)

where the probability is taken over the random coins of A and O2. Informally,
the following steps just show that the success of an algorithm with non-negligible
success probability cannot be conditioned on an event that occurs only with neg-
ligible probability (i.e. the outcome of the q2,β query landing in some negligible
subset).

Let B = {(ω, r2,1, r2,2, . . . , r2,Q2
)|ω ∈ Rw ∧ (r2,1, r2,2, . . . , r2,Q2

) ∈ (Cr2)
Q2 ∧

F′ ∧ q2,β = (m,σ0, h
(1)
1 , σ

(1)
1 )}, i.e., the set of random tapes and oracle responses

such that F′ ∧ q2,β = (m,σ0, h
(1)
1 , σ

(1)
1 ). This implies that there exists a non-

negligible set of “good” random tapes Ωβ ⊆ Rω for which A can provide a valid
signature and q2,β is the oracle query fixing h(1)2 . Applying the splitting lemma,
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we get that

Pr[w ∈ Ωβ ] >
1

2Q2(k)P ′(k)
(7)

Pr[(ω, r2,1, r2,2, . . . , r2,Q2
) ∈ B|w ∈ Ωβ ] >

1

2Q2(k)P ′(k)
(8)

Applying the same reasoning again we can derive from the later probability being
non-negligible that there exists a non-negligible subset Ωβ,ω of the “good” oracle
responses (r2,1, r2,2, . . . , r2,β−1) such that (ω, r2,1, r2,2, . . . , r2,Q2) ∈ B. Applying
the splitting lemma again, we get

Pr[(r2,1, . . . , r2,β−1) ∈ Ωβ,ω] >
1

4Q2(k)P ′(k)
(9)

Pr[(ω, r2,1, . . . , r2,Q2) ∈ B|(r2,1, . . . , r2,β−1) ∈ Ωβ,ω)] >
1

4Q2(k)P ′(k)
(10)

This means that rewinding A to the point where it made query q2,β and run-
ning it with new, random r′2,β , . . . , r

′
2,Q2

has a non-negligible probability of A
outputting another valid signature.

Therefore, we can use A to find two valid signature message pairs with asso-
ciated hash values (m,σ = (σ0, σ

(1)
1 , σ

(1)
2 ), h

(1)
1 , h

(1)
2 ), (m,σ(2) = (σ0, σ

(2)
1 , σ

(2)
2 ),

h
(2)
1 , h

(2)
2 ), with h(1)2 6= h

(2)
2 and such that (σ0, h

(1)
1 , σ

(1)
1 ) = (σ0, h

(2)
1 , σ

(2)
1 ), with

non-negligible probability.
We can now rewind the adversary again using exactly the same technique

as above but now considering the queries to O1 and its responses. In the replay
we change the responses of O1 to obtain a third signature that differs from the
previously obtained ones in the first associated hash value. It can be shown that
with non-negligible probability A will output a third signature on m, (σ(3) =

(σ0, σ
(3)
1 , σ

(3)
2 ), with associated hash values (h

(3)
1 , h

(3)
2 ) such that h(3)1 6= h

(2)
1 =

h
(1)
1 .
Finally, we rewind the adversary a third time, keeping the responses of O1

from the last rewind and focusing on O2 again. Again, with non-negligible prob-
ability A will produce yet another signature on m, σ(4) = (σ0, σ

(4)
1 , σ

(4)
2 ) with

associated hash values (h(4)1 , h
(4)
2 ) such that h(4)1 = h

(3)
1 and h(4)2 6= h

(3)
2 .

Summing up, rewinding the adversary three times, we can find four valid
signatures σ(1), σ(2), σ(3), σ(4) with the above property on the associated hash
values with non-negligible success probability 1

P (k) for some polynomial P (k).
Let us denote this event by Eσ. So we have that

Pr[Eσ] >
1

P (k)
.

What remains is to show that the obtained signatures satisfy the particular
structure from the lemma (Equation 4) with non-negligible probability.
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Let H be the event that there exists a j ∈ {1, . . . , r} such that (4) is satisfied.
We have that

Pr[Eσ ∧H] = Pr[Eσ]− Pr[¬H ∧ Eσ] = Pr[Eσ]− Pr[¬H|Eσ]Pr[Eσ]

>
1

P (k)
− Pr[¬H|Eσ]

We will now give a statistical argument why Pr[¬H|Eσ] is negligible.
As argued above, the hash values associated with the signatures must be

outcomes of the RO queries of A. During its first run, A can choose the first
hash value h(1)1 from his Q1 queries to O1 and the second hash value h(1)2 from
his Q2 queries to O2. The total number of possible combinations is Q1Q2. The
hash values associated with the second signature are h(2)1 = h

(1)
1 (as Eσ) and

h
(2)
2 . So, the first hash value is fixed and the second is chosen from a set of no

more than Q2 responses from O2. Following the same arguments, the hash pair
associated with the third signature is chosen from a set of size Q1Q2 and the one
associated with the fourth signature from a set of size Q2. The oracle outputs
are uniformly distributed within Cr1 and Cr2, respectively. Hence, the set of all
possible combinations of hash values that A could output has size

λ(k) ≤ Q1Q2 ·Q2 ·Q1Q2 ·Q2,

which is a polynomial in k as Q1 and Q2 are.
Recall C1 has size q and C2 size 2. The probability that the required pattern

did not occur in the four-tupel of challenges derived from random hash values
for one internal round j is

Pr[¬Hj ] = 1− Pr[Hj ] = 1− q − 1

22q
=

3q + 1

4q
.

The last follows from the fact that out of all 24q2 4-tuples

((α1, β1), (α1, β2), (α2, β3), (α2, β4)) ∈ (C1 × C2)
4

exactly 22q(q − 1) satisfy α1 6= α2, β1 6= β2, β3 6= β4.
Hence, the probability that a random four-tuple of hash values does not have

a single internal round that satisfies (4) and hence fulfills ¬H is

Pr[¬H] =
(
3q + 1

4q

)r
= negl(k) .

According to Construction 4.7, the number of rounds r must be super-logarithmic
(in k), to fulfill Cr2 being exponentially large (in k). Hence, the above is negligible
for random hash values.

Finally, we just have to combine the two results. The adversary can at most
choose out of a polynomially bounded number of four-tuples of hash pairs. Each
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of these four-tuples has a negligible probability of fulfilling ¬H. Hence, the prob-
ability that all the possible combinations of query responses even contain a four-
tuple that does not fulfill H is negligible. So,

Pr[¬H|Eσ] = negl(k) ,

and hence, the conditions from the lemma are satisfied with non-negligible prob-
ability. ut

With Lemma 4.10 we can already establish unforgeability under key only
attacks:

Corollary 4.11 (Key-only attack resistance). Let k ∈ N, IDS(1k) a q2-IDS
that achieves soundness with constant soundness error κ and has a q2-extractor.
Then q2 -Dss(1k), the q2-signature scheme derived applying Construction 4.7 is
unforgeable under key-only attacks.

A straight forward application of Lemma 4.10 allows to generate the four traces
needed to apply the q2-extractor. The obtained secret key can then be used to
violate soundness.

For EU-CMA security, we still have to deal with signature queries. The follow-
ing lemma shows that a reduction can produce valid responses to the adversarial
signature queries if the identification scheme is honest-verifier zero-knowledge.

Lemma 4.12. Let k ∈ N the security parameter, IDS(1k) a q2-IDS that is
honest-verifier zero-knowledge. Then any PPT adversary B against the EU-CMA-
security of q2 -Dss(1k), the q2-signature scheme derived by applying Construc-
tion 4.7, can be turned into a key-only adversary A with the properties described
in Lemma 4.10. A runs in polynomial time and succeeds with essentially the
same success probability as B.

Proof. By construction. We show how to construct an oracle machine AB,S,O1,O2

that has access to B, an honest-verifier zero-knowledge simulator S, and random
oracles O1,O2. A produces a valid signature for q2 -Dss(1k) given only a public
key running in time polynomial in k and achieving essentially the same success
probability (up to a negligible difference) as B.

Upon input of public key pk, A runs BO′1,O′2,Sign(pk) simulating the random
oracles (ROs) O′1,O′2, as well as the signing oracle Sign towards B. When B
outputs a forgery (m∗, σ∗), A just forwards it.

To simulate the ROs, A keeps two initially empty tables of query-response
pairs, one per oracle. Whenever B queries O′b, A first checks if the table for O′b
already contains a pair for this query. If such a pair exists, A just returns the
stored response. Otherwise, A forwards the query to its own Ob.

As IDS is honest-verifier zero-knowledge there exists a PPT simulator S that
upon input of a IDS public key generates a valid transcript that is indistin-
guishable of the transcripts generated by honest protocol executions. Whenever
B queries the signature oracle with message m, A runs S r times, to obtain r
valid transcripts. A combines the transcripts to obtain a valid signature with
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associated hashes σ = ((σ0, σ1, σ2), h1, h2). Before outputting σ, A checks if
the table for O′1 already contains an entry for query (m,σ0). If so, A aborts.
Otherwise, A adds the pair ((m,σ0), h1). Then, A checks the second table
for query (m,σ0, h1, σ1). Again, A aborts if it finds such an entry and adds
((m,σ0, h1, σ1), h2), otherwise.

The probability that A aborts is negligible in k. When answering signature
queries, A verifies that certain queries were not made before. Both queries con-
tain σ1 which takes any given value only with negligible probability. On the
other hand, the total number of queries that B makes to all its oracles is polyno-
mially bounded. Hence, the probability that one of the two queries was already
made before is negligible. If A does not abort, it perfectly simulates all oracles
towards B. Hence, B – and thereby A – succeeds with the same probability as
in the real EU-CMA game in this case. Hence, A succeeds with essentially the
same probability as B. ut

We now got everything to prove Theorem 4.8. The proof is a straight forward
application of the previous two lemmas.

Proof (of Theorem 4.8). Towards a contradiction, assume that there exists a
PPT adversary B against the EU-CMA-security of q2 -Dss succeeding with non-
negligible probability. We show how to construct a PPT impersonator C breaking
the soundness of IDS. Applying Lemma 4.12, C can construct a PPT key-only
forger A, with essentially the same success probability as B. Given a public key
for IDS (which is a valid q2 -Dss public key) C runsA as described in Lemma 4.10.
That way C can use A to obtain four signatures that per (4) lead four transcripts
as required by the q2-extractor E . Running E , C can extract a valid secret key
that allows to impersonate P with success probability 1.
C just runsA and E , two PPT algorithms. Consequently, C runs in polynomial

time. Also, A and E both have non-negligible success probability implying that
also C succeeds with non-negligible probability. ut

5 Our proposal

In the previous sections, we have given security arguments for a Fiat-Shamir
transform of 5-pass IDS that contain two challenges, from {0, . . . , q − 1} and
{0, 1} respectively (where q ∈ Z∗). In this section we apply the transform to
the 5-pass IDS from [SSH11] (as introduced in Section 3 and Figure 1). Before
discussing the 5-pass scheme, which we dub MQDSS, we first briefly examine
the signature scheme obtained from the 3-pass IDS in [SSH11] to get a baseline.
Then we give a generic description of MQDSS and prove it secure.

General design decisions. Let us first motivate some general design choices
so as not to derail throughout the algorithm descriptions.

The IDS requires an MQ system F as input, potentially system-wide. We
could simply select one function F and define it as a system parameter for all
users. Instead, we choose to derive it from a unique seed that is included in each
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public key. This increases the size of pk by k bits, and adds some cost for seed
expansion when signing and verifying. However, selecting a single system-wide
F might allow an attacker to focus their efforts on a single F for all users, and
would require whoever selects this system parameter to convince all users of its
randomness (which is not trivial [BCC+14]). For consistency with literature, we
still occasionally refer to F as the ‘system parameter’.

Note that the signing procedure described below is slightly more involved
than is suggested by Construction 4.7. Where the transformed construction op-
erates directly on the message m, we first apply what is effectively a randomized
hash function. As discussed in [HK06], this extra step provides resilience against
collisions in the hash function at only little extra cost. A similar construction
appears e.g. in SPHINCS [BHH+15]. We still derive the digest in a deterministic
manner from m and sk, however, so as to allow for deterministic signatures on
m.

5.1 Establishing a baseline using the 3-pass scheme over F2

In order to establish a baseline for the 5-pass signature scheme, we first applied
the traditional Fiat-Shamir transform to the 3-pass scheme. In the interest of
brevity, we will not go into the details of the derived signature scheme here –
instead, we refer to Appendix A. While large parts of the 3-pass and 5-pass
signature schemes overlap, the presentation of the 5-pass scheme in the rest of
this section is aimed to be self-contained.

For the 3-pass scheme, we selected n = m = 256 over F2. This results in
signatures of 54.81KB, and a public and private key of 64 bytes each. We ran
benchmarks on a single 3.5GHz core of an Intel Core i7-4770K CPU, measuring
118 088 992 cycles for signature generation, 8 066 324 cycles for key generation
and 82 650 156 cycles for signature verification (or 31.4 ms, 2.15 ms and 22.0 ms,
respectively).

5.2 The 5-pass scheme over F31

As can be seen from the results above, the plain 3-pass scheme over F2 is quite
inefficient, both in terms of signature size and signing speed. This is a direct
consequence of the large number of variables and equations required to achieve
128 bits of post-quantum security usingMQ over F2, as well as the high number
of rounds required (see Appendix A for an analysis). Using a 5-pass scheme over
F31 allows for a smaller n and m, as well as a smaller number of rounds. One
might wonder why we do not consider different fields for the 3-pass scenario,
instead. This turns out to be suboptimal: contrary to the 5-pass scheme, this
does not result in a knowledge error reduction, but does increase the transcript
size per round.

The MQDSS signature scheme. We now explicitly construct the functions
KGen, Sign and Vf in accordance with Definition 2.1. Specific values for the
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parameters that achieve 128 bit post-quantum security are given in the next
section. We start by presenting the parameters of the scheme in general.

Parameters. MQDSS is parameterized by a security parameter k ∈ N, and the
parameters m,n ∈ N such that the security level of the MQ-problem instance
MQ(n,m,F2) ≥ k. The latter fix the description length of the equation system
F, Flen = m · n·(n+1)

2 .

– Cryptographic hash functions H : {0, 1}∗ → {0, 1}k, H1 : {0, 1}2k → F31
r,

and H2 : {0, 1}2k → {0, 1}r.
– two string commitment functions Com0 : F31

n×F31
n×F31

m → {0, 1}k and
Com1 : F31

n × F31
m → {0, 1}k,

– pseudo-random generators GSF : {0, 1}k → F31
Flen , GSK : {0, 1}k → F31

n,
and Gc : {0, 1}2k → F31

r·(2n+m).

Key generation. Given the security parameter k, we randomly sample a secret
key of k bits SK ←R {0, 1}k as well as a seed SF ←R {0, 1}k. We then select a
pseudorandom MQ system F from MQ(n,m,F31) by expanding SF . In total,
we must generate Flen = m · (n·(n+1)

2 + n) elements for F, to use as coefficients
for both the binomials and the monomials. We use the pseudorandom generator
GSF for this.

In order to compute the public key, we want to use the secret key as input for
theMQ function defined by F. As SK is a k-bit string rather than a sequence of
n elements from F31, we instead use it as a seed for a pseudorandom generator
as well, deriving SKF31

= GSK(SK). It is then possible to compute PKv =
F(SKF31

). The secret key sk = (SK,SF ) and the public key pk = (SF ,PKv)
require 2 · k and k + 5 ·m bits respectively, assuming 5 bits per F31 element.

Signing. The signature algorithm takes as input a message m ∈ {0, 1}∗ and
a secret key sk = (SK,SF ). As was done during key generation, we derive
F = GSF (SF ). Then, we derive a message-dependent random value R = H(SK
‖ m), where “‖” is string concatenation. Using this random value R, we compute
the randomized message digest D = H(R ‖ m). The value R must be included
in the signature, so that a verifier can derive the same randomized digest.

As mentioned in Definition 2.4, the core of the derived signature scheme
essentially consists of iterations of the IDS. We refer to the number of required
iterations to achieve the security level k as r (note that this should not be
confused with r0 and r1, which are vectors of elements of F31).

Given SK and D, we now compute Gc(SK,D) to produce the values (r(0,0),
. . . , r(0,r), t(0,0), . . . , t(0,r), e(0,0), . . . , e(0,r)). Using these values, we compute
c(0,i) and c(1,i) for each round i, as defined in the IDS. Recall that G(x,y) =
F(x + y) − F(x) − F(y), and that Com0 and Com1 are string commitment
functions.

c(0,i) = Com0(r(0,i), t(0,i), e(0,i))
c(1,i) = Com1(r(1,i),G(t(0,i), r(1,i)) + e(0,i))
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As mentioned in [SSH11], it is not necessary to include all 2r commitments
in the transcript. Instead, we include a digest over the concatenation of all com-
mitments σ0 = H(c(0,0)‖c(1,0)‖ . . . ‖c(0,r−1)‖c(1,r−1)). We derive the challenges5
αi ∈ F31 (for 0 ≤ i < r) by applying H1 to the pair h1 = (D,σ0). Using these
αi, the vectors t(1,i) = αi · r(0,i) − t(0,i) and e(1,i) = αi · F(r(0,i))− e(0,i) can be
computed.

Let σ1 = (t(1,0)‖e(1,0)‖ . . . ‖t(1,r−1)‖e(1,r−1)). We compute h2 by applying H2

to the tuple (D,σ0, h1, σ1) and use it as r binary challenges ch2,i ∈ {0, 1}.
Now we define σ2 = (r(ch2,i,i), . . . , r(ch2,i,r−1), c1−ch2,i , . . . , c1−ch2,r−1

). Note
that here we also need to include the challenges c1−ch2,i that the verifier cannot
recompute. We then output σ = (R, σ0, σ1, σ2) as the signature. At 5 bits per
F31 element, the size of the signature is (2 + r) · k + 5 · r · (2 · n+m) bits.

Verification. The verification algorithm takes as input the message m, the sig-
nature σ = (R, σ0, σ1, σ2) and the public key PK = (SF ,PKv). As above, we
use R and m to compute D, and derive F from SF using GSF . As the signature
contains σ0, we can compose h1 and, consequentially, the challenge values αi for
all r rounds by using H1. Similarly, the values ch2,i are computed by applying
H2 to (D,σ0, h1, σ1). For each round i, the verifier extracts vectors ti and ei
(which are always t(1,i) and e(1,i)) from σ1 and ri from σ2. Depending on ch2,i,
half of the commitments can now be computed:

if ch2,i = 0 c(0,i)= Com0(ri, α · ri − ti, α · F(ri)− ei)

if ch2,i = 1 c(1,i)= Com1(ri, α · (PKv − F(ri))−G(ti, ri)− ei)

Extracting the missing commitments c(1−ch2,i,i) from σ2, the verifier now
computes σ′0 = H(c(0,0)‖c(1,0) . . . ‖c(0,r−1)‖c(1,r−1)). For verification to succeed,
σ′0 = σ0 should hold.

5.3 Security of MQDSS

We now give a security reduction for MQDSS in the ROM. As our results from
the last section are non-tight we only prove an asymptotic statement. While this
does not suffice to make any statement about the security of a specific parame-
ter choice, it provides evidence that the general approach leads a secure scheme.
Also, the reduction is in the ROM, not in the QROM, thereby limiting appli-
cability in the post-quantum setting. As already mentioned in the introduction,
we consider it important future work to strengthen this statement.

In the remainder of this subsection we prove the following theorem.

Theorem 5.1. MQDSS is EU-CMA-secure in the random oracle model, if

– the search version of theMQ problem is intractable,
– the hash functions H, H1, and H2 are modeled as random oracles,

5 Note that the concatenation of all αi was previously referred to as ch1.

23



– the commitment functions Com0 and Com1 are computationally binding,
computationally hiding, and the probability that their output takes a given
value is negligible in the security parameter,

– the pseudorandom generator GSF is modeled as random oracle, and
– the pseudorandom generators, GSK , and Gc have outputs computationally

indistinguishable from random.

To prove this theorem we would like to apply Theorem 4.8. However, The-
orem 4.8 was formulated for a slightly more generic construction. The point is
that we apply an optimization originally proposed in [Ste96]. So, in our actual
proposal, the parallel composition of the IDS is slightly different as, instead of
the commitments, only the hash of their concatenation is sent. Also, the last
message now contains the remaining commitments.

While we could have treated this case in Section 4, it would have limited the
general applicability of the result, as the above optimization is only applicable
to schemes with a certain, less generic, structure. However, it is straightforward
to redo the proofs from Section 4 for the optimized scheme. When modeling
the hash function used to compress the commitments as RO, the arguments are
exactly the same with one exception. The proof of Lemma 4.12 uses that the
commitment scheme – and thereby the first signature element σ1 – only takes a
given value with negligible probability. Now this statement follows from the same
property of the commitment scheme and the randomness of the RO. Altogether
this leads to the following corollary:

Corollary 5.2 (EU-CMA security of q2-signature schemes). Let k ∈ N,
IDS(1k) a q2-IDS that is honest-verifier zero-knowledge, achieves soundness with
constant soundness error κ and has a q2-extractor. Then opt - q2 -Dss(1k), the
optimized q2-signature scheme derived by applying Construction 4.7 and the op-
timization explained above, is existentially unforgeable under adaptive chosen
message attacks.

Based on this corollary we can now prove the above theorem.

Proof (of Theorem 5.1). Towards a contradiction, assume there exists an adver-
sary A that wins the EU-CMA game against MQDSS with non-negligible suc-
cess probability. We show that this implies the existence of an oracle machine
MA that solves theMQ problem, breaks a property of one of the commitment
schemes, or distinguishes the outputs of one of the pseudorandom generators
from random.

We first define a series of games and argue that the difference in success
probability of A between these games is negligible. We assume thatM runs A
in these games.

Game 0: Is the EU-CMA game for MQDSS.
Game 1: Is Game 0 with the difference that M replaces the outputs of GSK

by random bit strings.
Game 2: Is Game 1 with the difference thatM replaces the outputs of Gc by

random bit strings.

24



Game 3: Is Game 2 with the difference that M takes as additional input a
random equation system F. M simulates GSF towards A, programming
GSF such that it returns the coefficients representing F upon input of SF
and uniformly random values on any other input.

Per assumption, A wins Game 0 with non-negligible success probability. Let’s
call this probability ε. If the difference in A’s success probability playing Game 0
or Game 1 was non-negligible, we could use A to distinguish the outputs of GSK
from random. The same argument applies for the difference between Game 1 and
Game 2, and Gc. Finally, the output distribution of GSF in Game 3 is exactly
the same as in previous games. Hence, there is no difference for A between Game
2 and Game 3. Accordingly, A’s success probability in these two games is exactly
the same.

Now, Game 3 is exactly the EU-CMA game for the optimized q2 signature
scheme that is derived from MQ - IDS, the 5-pass IDS from [SSH11]. We ob-
tain the necessary contradiction if we can apply Corollary 5.2. For this, it just
remains to be shown that MQ - IDS is a q2-IDS that is honest-verifier zero-
knowledge, achieves soundness with constant soundness error κ and has a q2-
extractor. Clearly, MQ - IDS is a q2-IDS under the given assumptions on the
commitment schemes. Sakumoto et al. [SSH11] show that MQ - IDS is honest-
verifier zero-knowledge. Theorem 3.1 shows that MQ - IDS achieves soundness
with constant soundness error κ = q+1

2q . Finally, the proof of Theorem 3.1 pro-
vides a construction of a q2-extractor. ut

6 Instantiating the scheme

In this section, we provide a concrete instance of MQDSS. We discuss a suitable
set of parameters to achieve the desired security level, discuss an optimized
software implementation, and present benchmark results.

Parameter choice and security analysis. For the 5-pass scheme, the sound-
ness error κ is affected by the size of q. This motivates a field choice larger than
F2 in order to reduce the number of rounds required. From an implementation
point of view, it is beneficial to select a small prime, allowing very cheap mul-
tiplications as well as comparatively cheap field reductions. We choose F31 with
the intention of storing it in a 16 bit value – the benefits of which become clear
in the next subsection, where we discuss the required reductions.

We now consider the choice of MQ(n,m,F31), i.e. the parameters n and
m. There are several known generic classical algorithms for solving systems of
quadratic equations over finite fields, such as the F4 algorithm [Fau99] and the
F5 algorithm [Fau02,BFS15] using Gröbner basis techniques, the Hybrid Ap-
proach [BFP09,BFP12] that is a variant of the F5 algorithm, or the XL algo-
rithm [CKPS00,Die04] and its variants [YC05a].

Currently, for fields Fq where q > 4, the best known technique for solving
overdetermined systems of equations over Fq is combining equation solvers with
exhaustive search. The Hybrid Approach [BFP09,BFP12] and the FXL variant
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of XL [YC05a] use this paradigm. Here we will analyze the complexity using the
Hybrid approach. Note that the complexity for the XL family of algorithms is
similar [YCY13].

Roughly speaking, for an optimization parameter `, using the Hybrid ap-
proach one first fixes ` among the n variables, and then computes q` Gröbner
bases of the smaller systems in n− ` variables. Hence, the improvement over the
plain F5 algorithm comes from the proper choice of the parameter `. It has been
shown in [BFP12] that the best trade-off is achieved when the parameter ` is
proportional to the number of variables n, i.e when ` = τn.

Let 2 6 ω 6 3 be the linear algebra constant. The complexity of computing
a Gröbner basis of a system of m equations in n variables, m > n, using the F5
algorithm is given by

CF5(n,m) = O
((

m

(
n+ dreg(n,m)− 1

dreg(n,m)

))ω)
(11)

where dreg(n,m) is the degree of regularity of the system which can be approx-
imated as

dreg(n,m) ≈ (
m

n
− 1

2
−
√
m

n
(
m

n
− 1)) +O

(
n1/3

)
(12)

For a fixed 0 < τ < 1, the complexity of the Hybrid approach is

CHyb(n,m, τ, dreg(n(1−τ),m)) = qτn·CF5(n(1−τ),m, dreg,τ (n(1−τ),m)) (13)

It is well known (and can be seen from the complexity above) that the F5
algorithm as well as the Hybrid approach perform better when the number of
equations is bigger than the number of variables, so from this point of view there
is no incentive in choosing m > n. On the other hand, if m < n, then we can
simply fix n − m variables and reduce the problem to a smaller one, with m
variables. Therefore, in terms of classical security the best choice is m = n.

Following the analysis from [BFP09,BFP12], we calculated the best trade-off
for τ for the family of functionsMQ(n, n,F31), when ω = 2.3. Asymptotically,
τ → 0.16, although for smaller values of n (e.g n = 32) we find τ = 0.13.

Since our goal is classical security of at least 128 bits, we need to choose
n ≥ 51, so that for any choice of the linear algebra constant 2 6 ω 6 3 the
Hybrid approach would need at least 2128 operations. Note that if we set the
more realistic value of ω = 2.3, the minimum is n = 45.

For implementation reasons, we choose n = 64. In particular, a multiple of
16 suggests efficient register usage for vectorized implementations. In this case,
for ω = 2.3, the complexity of the Hybrid approach is ≈ 2177 and the best result
is obtained for τ = 0.14, which translates to fixing 9 variables in the system.

Regarding post-quantum security, at the moment there is no dedicated quan-
tum algorithm for solving systems of quadratic equations. Instead, we can use
Grover’s search algorithm [Gro96] to directly attack the MQ problem, or use
Grover’s algorithm for the search part in a quantum implementation of the Hy-
brid method. Note that the later requires an efficient quantum implementation
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of the F5 algorithm, that we will assume provides no quantum speedup over the
classical implementation.

Grover’s algorithm searches for an item in a unordered list of sizeN = 2n that
satisfies a certain condition given in the form of a quantum black-box function
f : {0, 1}n → {0, 1}. If the condition is satisfied for the i-th item, then f(i) = 1,
otherwise f(i) = 0. The complexity of Grover’s algorithm is O(

√
N/M), where

M is the number of items in the list that satisfy the condition, i.e. the algorithm
provides a quadratic speed-up compared to classical search.

First we will consider a direct application of Grover’s algorithm on theMQ
problem in question. In this case, f should provide an answer whether a given
n-tuple x from Fn31 satisfies the system of equations F(x) = v. Since the domain
is not Boolean, we need to convert it one, so we get a domain of size n log 31.

To estimate the complexity of the algorithm, we need the number of solutions
M to the given system of equations. Determining the exact M requires expo-
nential time [Val79], but it was shown in [FB07] that the number of solutions
of a system of n equations in n variables follows the Poisson distribution with
parameter λ = 1. Therefore the expected value is 1. Furthermore, the probability
that there are at least M solutions can be estimated as the tail probability of a
Poisson random variable P [X > M ] > (eλ)M

eλMM = 1
e (

e
M )M which is negligible in

M . In practice, we can safely assume that M 6 4, since P [M > 5] > 2−8.
In total, Grover’s algorithm takes O(2n log 31/2/4) ≈ 2156 operations.
As said earlier, we can also use a quantum version of the Hybrid approach

for m = n. In this case the complexity will be

CHyb,quantum(n, τ, dreg(n(1−τ), n)) =
√
qτn

M
·CF5(n(1−τ), n, dreg,τ (n(1−τ), n))

(14)
Taking again M 6 4, the optimal value for the optimization parameter is τ =
0.39, which means we should fix 25 variables in the system. Hence, the quantum
version of the Hybrid method has a complexity of O(2139) operations.

To achieve EU-CMA for 128 bits of post-quantum security, we require that
kr ≤ 2−256, as an adversary could perform a preimage search to effectively
control the challenges. As κ = q+1

2q with q = 31, we need r = 269. To complete
the scheme, we instantiate the functionsH, Com0 and Com1 with SHA3-256, and
use SHAKE-128 for H1, H2, GSF , Gc, and GSK [BDPV11]. In order to convert
between the output domain of SHAKE-128 and functions that map to vectors
over F31, we simply reject and resample values that are not in F31 (effectively
applying an instance of the second TSS08 construction from [WHCB13]).

We refer to this instance of the scheme as MQDSS-31-64.

Implementation. The central and most costly computation in this signature
scheme is the evaluation of F (and, by corollary, G). The signing procedure
requires one evaluation of each for every round, and the verifier needs to compute
either F (if ch2 = 0) or both F and G (if ch2 = 1), for each round. Other than
these functions, the computational effort is made up of seed expansion, several
hash function applications and a small number of additions and subtractions.
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For SHA3-256 and SHAKE-128, we rely on existing code from the Keccak Code
Package [BDP+16]. Clearly, the focus for an optimized implementation should
be on theMQ function. Previous work [CCC+09] has shown that modern CPUs
offer interesting and valuable methods to efficiently implement this primitive, in
particular by exploiting the high level of internal parallelism.

Compared to the 3-pass scheme, the implementation of the 5-pass scheme
over F31 presents some more challenges. As F31 does not have closure under
regular integer multiplication and addition, results of computations need to be
reduced to smaller representations. To avoid having to this too frequently, we
represent field elements as signed 16 bit values. As n = 64, we require 1024 bits
of storage for each vector, precisely fitting four SIMD registers.

In the 3-pass case, we rotated a 256 bit vector register to efficiently compute
all binomials (see Appendix A, in particular Figure 5 and 6). While that was
already somewhat expensive, rotating four 256 bit registers as if it were one
1024 bit value is much more costly. Additionally, storing both the original and
rotated state would require many registers. Instead, we arrange the products in
such a way that the blocks of 16 elements do not need to be mixed, but can
each be rotated individually and multiplied with the unrotated originals. This
is especially beneficial when computing G, in which we process 8 blocks of 256
bits. Two caveats appear in the first and last rows: duplicates need to be avoided
when unrated originals are combined in the first row, while the last (half-)row
needs to be used to produce missing products by pairwise multiplying the high
half of each register with every low half. See Figure 3 for an intuition of this
arrangement with 4 registers containing 4 field elements. The software that is
part of this work (see “Availability of the software” in the Section 1) includes a
script that generates this arrangement.

& 0 1 2 3 4 5 6 7 8 9 A B C D E F
00 11 22 33 04 15 26 37 08 19 2A 3B 0C 1D 2E 3F
10 21 32 03 14 25 36 07 18 29 3A 0B 1C 2D 3E 0F

- - - - 44 55 66 77 48 59 6A 7B 4C 5D 6E 7F
50 61 72 43 54 65 76 47 58 69 7A 4B 5C 6D 7E 4F

- - - - - - - - 88 99 AA BB 8C 9D AE BF
90 A1 B2 83 94 A5 B6 87 98 A9 BA 8B 9C AD BE 8F

- - - - - - - - - - - - CC DD EE FF
D0 E1 F2 C3 D4 E5 F6 C7 D8 E9 FA CB DC ED FE CF
02 13 - - 42 53 - - 82 93 - - C2 D3 - -
06 17 - - 46 57 - - 86 97 - - C6 D7 - -
0A 1B - - 4A 5B - - 8A 9B - - CA DB - -
0E 1F - - 4E 5F - - 8E 9F - - CE DF - -

Fig. 3. Efficient arrangement of and of 4 registers with 4 F31 elements each.

While it saves reductions, representing field elements as signed shorts does
not mean we never have to reduce to smaller representation at all. As input to
theMQ function, we assume signed values in redundant but partially reduced
representation (in particular: in {−16, . . . , 15}). This is more convenient than
fully unique representation, as these inputs are typically the result of previous
computations over F31. For the system parameter, we can freely assume reduced
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representation values, as these are the direct result of a pseudo-random gener-
ator. It turns out to be efficient to immediately reduce the product binomials
back to {−15, . . . , 15}. Even though going to unique representation is slightly
more costly than a regular reduction, it comes with a large benefit: when we now
multiply such a product with an element from the system parameter and add it
to the accumulators, the maximum value of each accumulator word will be at
most6 (122 + 16) · 152 = 31050. As this does not exceed 32768, we only have to
perform reductions on each individual accumulator vector when summing the
internal words at the very end.

One should note that [CCC+09] approaches this problem from a slightly
different angle. In particular, they accumulate each individual output element
sequentially, allowing them to keep the intermediate results in the 32 bit repre-
sentation that is the output of combined multiplication and addition instructions.
This has the natural consequence of also avoiding early reductions.

Finally, it is important to take explicit note of (non)-unique representation
when including group elements in the signature. Besides potentially leaking in-
formation on how the elements were computed, these values are used as input
for a hash function to generate challenges, making it necessary to reduce them
to unique elements of F31. Thus, the signature must only contain fully reduced
elements.

Benchmark results. The MQDSS-31-64 implementation has been optimized
for large Intel processors, notably supporting AVX2 instructions. Benchmarks
were carried out on a single core of an Intel Core i7-4770K CPU, running at 3.5
GHz.

Signature and key sizes. The signature size of MQDSS-31-64 is considerably
smaller than that of the 3-pass scheme. The obvious factor in this is the decreased
ratio between the element size (which, in packed form, now require 64 · 5 = 320
bits each) and the number of rounds, resulting in a signature size of 2 · 256 +
269 · (256 + (5 · 3 · 64)) = 327 616 bits, or 40 952 bytes (39.99KB). The shape
of the keys does not change compared to 3-pass scheme, but since a vector of
field elements now requires 320 bits, the public key is 72 bytes. The secret key
remains 64 bytes.

Performance. As theMQ function is the most costly part of the computation,
parameters are chosen in such a way that its performance is maximized. The
required number of multiplications and additions does not change dramatically
compared to the 3-pass baseline7, but the actual values n and m are only a
quarter of what they were. As the relation between n and m and the number of
multiplications is quadratic for the binomials and cubic for the system parameter
masking, while we see only a linear increase in the number of registers needed to
operate on, the entire sequence of multiplications and additions becomes much
6 The “122+16” is a result of the binomial arrangement discussed before; the first step
adds 122 elements to each word in each accumulator, while the second step adds 16
elements to only half of its words. The maximum value defines the required space.

7 A slight difference is introduced by cancellation of the monomials in the F2 setting.
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cheaper. This especially impacts the loading and storing into the m accumula-
tors. As the representation allows us to keep reductions out of this innermost
repeated loop, we perform a total of (only) 532 reductions, 138 of which spend an
additional vectorized add and sub to go to signed representation. Furthermore,
as we were able to arrange the registers in such a way that they do not need to
communicate when rotating elements, we only have to perform 28 vector register
rotations (instead of 127 in the 3-pass scenario).

For one iteration of theMQ function, we measure 34 580 cycles (G is slightly
less costly, at 33 702 cycles). We measure a total of 25 513 544 cycles for the com-
plete signature generation. Key generation costs 1 867 816 cycles, and verification
consumes 18 216 296 cycles. On the given platform, that translates to roughly
6.79 ms, 0.50 ms and 4.85 ms, respectively. Note that verification is expected
to require on average 3

2 calls to an MQ function per round, whereas signature
generation always requires two. This explains the ratio; note that both signer
and verifier incur similar constant costs besides theMQ functions, for example
for seed expansion.

In order to compare these results to the state of the art, we consider the
performance figures reported in [CCC+09]. In particular, we examine the Rain-
bow(31, 24, 20, 20) instance, as the ‘public map’ in this scheme is effectively the
MQ function over F31 with n = 64, as used above. The number of equations
differs (i.e. m = 40 as opposed to m = 64), but this can be approximated by
normalizing linearly. In [CCC+09], the authors report a time measurement of
17.7µs, which converts to 50 144 cycles on their 2.833 GHz Intel C2Q Q9550.
After normalizing for m, this amounts to 80 230 cycles. Results from the eBACS
benchmarking project further show that running the Rainbow verification func-
tion from [CCC+09] on a Haswell CPU requires approximately 46 520 cycles (and
thus 74 432 after normalizing); verification is dominated by the public map. Us-
ing their SSE3-based code to evaluate a public map with m = 64 consumes
60 968 cycles on our Intel Core i7-4770K (i.e. the CPU that was used above). All
of these results provide confidence in the fact that our implementation, which
makes extensive use of AVX2 instructions, is performing in line with expecta-
tions.

References
ABB+16. Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and

Giorgia Azzurra Marson. An efficient lattice-based signature scheme
with provably secure instantiation. In David Pointcheval, Abderrah-
mane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology –
AFRICACRYPT 2016, volume 9646 of LNCS, pages 44–60. Springer,
2016. https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_
upload/Group_CDC/An_Efficient_Lattice-Based_Signature_Scheme_
with_Provably_Secure_Instantiation.pdf.

ABBD15. Erdem Alkim, Nina Bindel, Johannes Buchmann, and Özgür Dagdelen.
TESLA: tightly-secure efficient signatures from standard lattices. Cryp-
tology ePrint Archive, Report 2015/755, 2015. http://eprint.iacr.org/
2015/755/.

30

https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/An_Efficient_Lattice-Based_Signature_Scheme_with_Provably_Secure_Instantiation.pdf
https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/An_Efficient_Lattice-Based_Signature_Scheme_with_Provably_Secure_Instantiation.pdf
https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/An_Efficient_Lattice-Based_Signature_Scheme_with_Provably_Secure_Instantiation.pdf
http://eprint.iacr.org/2015/755/
http://eprint.iacr.org/2015/755/


BCC+14. Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas
Hülsing, Tanja Lange, Ruben Niederhagen, and Christine van Vredendaal.
How to manipulate curve standards: a white paper for the black hat. Cryp-
tology ePrint Archive, Report 2014/571, 2014. https://eprint.iacr.org/
2014/571.pdf.

BDP+16. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Keccak Code Package, 2016. http://keccak.noekeon.
org, Retrieved on April 13, 2016.

BDPV11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
Keccak reference, January 2011. http://keccak.noekeon.org/.

BFP09. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach
for solving multivariate systems over finite fields. Journal of Mathemati-
cal Cryptology, pages 177–197, 2009. http://www-polsys.lip6.fr/~jcf/
Papers/JMC2.pdf.

BFP12. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polyno-
mial systems over finite fields: improved analysis of the hybrid approach. In
Joris van der Hoeven and Mark van Hoeij, editors, ISSAC’12 – Proceedings
of the 37th International Symposium on Symbolic and Algebraic Compu-
tation, pages 67–74. ACM, 2012. https://hal.inria.fr/hal-00776070/
document.

BFS15. Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complex-
ity of the F5 Gröbner basis algorithm. Journal of Symbolic Computation,
70:49–70, 2015. https://hal.inria.fr/hal-01064519/document.

BFSS13. Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaen-
lehauer. On the complexity of solving quadratic boolean systems. Jour-
nal of Complexity, 29(1):53–75, 2013. www-polsys.lip6.fr/~jcf/Papers/
BFSS12.pdf.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, Topics in
Cryptology – CT-RSA 2014, volume 8366 of LNCS, pages 28–47. Springer,
2014. https://eprint.iacr.org/2013/838.pdf.

BHH+15. Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based sig-
natures. In Marc Fischlin and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2015, volume 9056 of LNCS, pages 368–397.
Springer, 2015. http://cryptojedi.org/papers/#sphincs.

CCC+09. Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou
Cheng, Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-
Yin Yang. SSE implementation of multivariate PKCs on modern x86
CPUs. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2009, volume 5747 of LNCS, pages 33–
48. Springer, 2009. https://www.iacr.org/archive/ches2009/57470031/
57470031.pdf.

CGP. Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFLASH, a
fast asymmetric signature scheme for low-cost smartcards - primitive
specification and supporting documentation. http://www.minrank.org/
sflash-b-v2.pdf.

CKPS00. Nicolas Courtois, Er Klimov, Jacques Patarin, and Adi Shamir. Effi-
cient algorithms for solving overdefined systems of multivariate polyno-

31

https://eprint.iacr.org/2014/571.pdf
https://eprint.iacr.org/2014/571.pdf
http://keccak.noekeon.org
http://keccak.noekeon.org
http://keccak.noekeon.org/
http://www-polsys.lip6.fr/~jcf/Papers/JMC2.pdf
http://www-polsys.lip6.fr/~jcf/Papers/JMC2.pdf
https://hal.inria.fr/hal-00776070/document
https://hal.inria.fr/hal-00776070/document
https://hal.inria.fr/hal-01064519/document
www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf
www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf
https://eprint.iacr.org/2013/838.pdf
http://cryptojedi.org/papers/#sphincs
https://www.iacr.org/archive/ches2009/57470031/57470031.pdf
https://www.iacr.org/archive/ches2009/57470031/57470031.pdf
http://www.minrank.org/sflash-b-v2.pdf
http://www.minrank.org/sflash-b-v2.pdf


mial equations. In Bart Preneel, editor, Advances in Cryptology – EU-
ROCRYPT 2000, volume 1807 of LNCS, pages 392–407. Springer, 2000.
www.iacr.org/archive/eurocrypt2000/1807/18070398-new.pdf.

Cou01. Nicolas T. Courtois. Efficient zero-knowledge authentication based on a lin-
ear algebra problem MinRank. In Colin Boyd, editor, Advances in Cryptol-
ogy – ASIACRYPT 2001, volume 2248 of LNCS, pages 402–421. Springer,
2001. https://eprint.iacr.org/2001/058.

CVE10. Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui.
A zero-knowledge identification scheme based on the q-ary syndrome de-
coding problem. In Alex Biryukov, Guang Gong, and Douglas R. Stin-
son, editors, Selected Areas in Cryptography, volume 6544 of LNCS, pages
171–186. Springer, 2010. https://hal-univ-tln.archives-ouvertes.fr/
hal-00674249/document.

DBG+15. Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu,
Tobias Oder, Thomas Pöppelmann, Ana Helena Sánchez, and Peter
Schwabe. High-speed signatures from standard lattices. In Diego F.
Aranha and Alfred Menezes, editors, Progress in Cryptology – LATIN-
CRYPT 2014, volume 8895 of LNCS, pages 84–123. Springer, 2015. https:
//cryptojedi.org/papers/#lwesign.

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, volume 8042
of LNCS, pages 40–56. Springer, 2013. https://eprint.iacr.org/2013/
383/.

DFSS07. Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Prac-
tical cryptanalysis of SFLASH. In Alfred Menezes, editor, Advances in
Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages 1–12. Springer,
2007. https://eprint.iacr.org/2007/14.

DHYC06. Jintai Ding, Lei Hu, Bo-Yin Yang, and Jiun-Ming Chen. Note on Design
Criteria for Rainbow-Type Multivariates. Cryptology ePrint Archive, Re-
port 2006/307, 2006. https://eprint.iacr.org/2006/307.

Die04. Claus Diem. The xl-algorithm and a conjecture from commutative alge-
bra. In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004,
10th International Conference on the Theory and Application of Cryptology
and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceed-
ings, volume 3329 of Lecture Notes in Computer Science, pages 323–337.
Springer, 2004.

DS05. Jintai Ding and Dieter Schmidt. Rainbow, a new multivari-
able polynomial signature scheme. In John Ioannidis, Ange-
los D. Keromytis, and Moti Yung, editors, Applied Cryptogra-
phy and Network Security, volume 3531 of LNCS, pages 164–
175. Springer, 2005. https://www.semanticscholar.org/paper/
Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/
7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf.

Duc14. Léo Ducas. Accelerating bliss: the geometry of ternary polynomials. Cryp-
tology ePrint Archive, Report 2014/874, 2014. http://eprint.iacr.org/
2014/874/.

EDV+12. Sidi Mohamed El Yousfi Alaoui, Özgür Dagdelen, Pascal Véron, David
Galindo, and Pierre-Louis Cayrel. Extended security arguments for sig-
nature schemes. In Aikaterini Mitrokotsa and Serge Vaudenay, editors,

32

www.iacr.org/archive/eurocrypt2000/1807/18070398-new.pdf
https://eprint.iacr.org/2001/058
https://hal-univ-tln.archives-ouvertes.fr/hal-00674249/document
https://hal-univ-tln.archives-ouvertes.fr/hal-00674249/document
https://cryptojedi.org/papers/#lwesign
https://cryptojedi.org/papers/#lwesign
https://eprint.iacr.org/2013/383/
https://eprint.iacr.org/2013/383/
https://eprint.iacr.org/2007/14
https://eprint.iacr.org/2006/307
https://www.semanticscholar.org/paper/Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf
https://www.semanticscholar.org/paper/Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf
https://www.semanticscholar.org/paper/Rainbow-a-New-Multivariable-Polynomial-Signature-Ding-Schmidt/7977afcdb8ec9c420935f7a1f8212c303f0ca7fb/pdf
http://eprint.iacr.org/2014/874/
http://eprint.iacr.org/2014/874/


Progress in Cryptology – AFRICACRYPT 2012, volume 7374 of LNCS,
pages 19–34. Springer, 2012. https://eprint.iacr.org/2012/068/.

Fau99. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases (F4). Journal of Pure and Applied Algebra, 139:61–88, 1999. http:
//www-polsys.lip6.fr/~jcf/Papers/F99a.pdf.

Fau02. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In Proceedings of the 2002 inter-
national symposium on Symbolic and Algebraic Computation, pages 75–83.
ACM, 2002. http://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf.

FB07. Giordano Fusco and Eric Bach. Phase transition of multivariate polynomial
systems. In Jin-Yi Cai, Barry S. Cooper, and Hong Zhu, editors, Interna-
tional Conference on Theory and Applications of Models of Computation –
TAMC 2007, volume 4484 of LNCS, pages 632–645. Springer, 2007. https:
//minds.wisconsin.edu/bitstream/handle/1793/60544/TR1588.pdf.

FGP+15. Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret, , Simona Samard-
jiska, and Enrico Thomae. A polynomial-time key-recovery attack on
MQQ cryptosystems. In Jonathan Katz, editor, Public-Key Cryptogra-
phy – PKC 2015, volume 9020 of LNCS, pages 150–174. Springer, 2015.
https://eprint.iacr.org/2014/811.

FLP08. Jean-Charles Faugère, Françoise Levy-dit-Vehel, and Ludovic Perret.
Cryptanalysis of MinRank. In David Wagner, editor, Advances in Cryp-
tology – CRYPTO 2008, volume 5157 of LNCS, pages 280–296. Springer,
2008. http://www-polsys.lip6.fr/~jcf/Papers/crypto08.pdf.

GHLY16. Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, Gauss, and Reload – a cache attack on the BLISS lattice-based
signature scheme. Cryptology ePrint Archive, Report 2014/874, 2016.
http://eprint.iacr.org/2016/300/.

GJ79. Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A dig-
ital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.
https://people.csail.mit.edu/silvio/Selected%20Scientific%
20Papers/Digital%20Signatures/A_Digital_Signature_Scheme_
Secure_Against_Adaptive_Chosen-Message_Attack.pdf.

GØJ+11. Danilo Gligoroski, Rune S. Ødegård, Rune E. Jensen, Ludovic Perret, Jean-
Charles Faugère, Svein Johan Knapskog, and Smile Markovski. MQQ-SIG -
an ultra-fast and provably cma resistant digital signature scheme. In Liqun
Chen, Moti Yung, and Liehuang Zhu, editors, Trusted Systems, volume
7222 of LNCS, pages 184–203. Springer, 2011. https://hal.inria.fr/
hal-00778083/document.

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory
of Computing – STOC ’96, pages 212–219. ACM, 1996. https://arxiv.
org/pdf/quant-ph/9605043v3.pdf.

HK06. Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via
randomized hashing. In Cynthia Dwork, editor, Advances in Cryptology
– CRYPTO 2006, volume 4117 of LNCS, pages 41–59. Springer, 2006.
https://www.iacr.org/archive/crypto2006/41170039/41170039.pdf.

33

https://eprint.iacr.org/2012/068/
http://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf
http://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf
http://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf
https://minds.wisconsin.edu/bitstream/handle/1793/60544/TR1588.pdf
https://minds.wisconsin.edu/bitstream/handle/1793/60544/TR1588.pdf
https://eprint.iacr.org/2014/811
http://www-polsys.lip6.fr/~jcf/Papers/crypto08.pdf
http://eprint.iacr.org/2016/300/
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Digital%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Digital%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Digital%20Signatures/A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf
https://hal.inria.fr/hal-00778083/document
https://hal.inria.fr/hal-00778083/document
https://arxiv.org/pdf/quant-ph/9605043v3.pdf
https://arxiv.org/pdf/quant-ph/9605043v3.pdf
https://www.iacr.org/archive/crypto2006/41170039/41170039.pdf


IBM16. IBM. IBM makes quantum computing available on IBM cloud to accelerate
innovation, 2016. https://www-03.ibm.com/press/us/en/pressrelease/
49661.wss.

KPG99. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Jacques Stern, editor, Advances in Cryptology
– EUROCRYPT ’99, volume 1592 of LNCS, pages 206–222. Springer, 1999.
http://www.goubin.fr/papers/OILLONG.PDF.

KS98. Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil & Vinegar
signature scheme. In Hugo Krawczyk, editor, Advances in Cryptol-
ogy – CRYPTO ’98, volume 1462 of LNCS, pages 257–266. Springer,
1998. http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/
KyYeu/DuLieuNuocNgoai/3.Advances%20in%20cryptology-Crypto%
201998-LNCS%201462/14620257.PDF.

MKF+16. David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan-Lukas Gazdag,
Denis Butin, and Johannes Buchmann. State Management for Hash Based
Signatures. Cryptology ePrint Archive, Report 2016/357, 2016. https:
//eprint.iacr.org/2016/357.

NIS16. NIST. Post-quantum cryptography: NIST’s plan for the fu-
ture, 2016. http://csrc.nist.gov/groups/ST/post-quantum-crypto/
documents/pqcrypto-2016-presentation.pdf.

NSA. NSA. NSA suite B cryptography. https://www.nsa.gov/ia/programs/
suiteb_cryptography/, Updated on August 19, 2015.

Pat96. Jacques Patarin. Hidden field equations (HFE) and isomorphisms of poly-
nomials (IP): Two new families of asymmetric algorithms. In Ueli Maurer,
editor, Advances in Cryptology – EUROCRYPT ’96, volume 1070 of LNCS,
pages 33–48. Springer, 1996. http://www.minrank.org/hfe.pdf.

Pat97. Jacques Patarin. The Oil and Vinegar signature scheme. In Dagstuhl Work-
shop on Cryptography, 1997.

PCG01. Jacques Patarin, Nicolas Courtois, and Louis Goubin. QUARTZ, 128-bit
long digital signatures. In David Naccache, editor, Topics in Cryptology
– CT-RSA 2001, volume 2020 of LNCS, pages 282–297. Springer, 2001.
http://www.goubin.fr/papers/rsa2001b.pdf.

PCY+15. Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and
Jintai Ding. Design principles for HFEv- based multivariate signature
schemes. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptol-
ogy – ASIACRYPT 2015, volume 9452 of LNCS, pages 311–334. Springer,
2015. http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf.

PP03. David Pointcheval and Guillaume Poupard. A new NP-complete problem
and public-key identification. Designs, Codes and Cryptography, 28(1):5–31,
2003.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli Maurer, editor, Advances in Cryptology – EUROCRYPT ’96, volume
1070 of LNCS, pages 387–398. Springer, 1996. https://www.di.ens.fr/
~pointche/Documents/Papers/1996_eurocrypt.pdf.

SSH11. Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-key iden-
tification schemes based on multivariate quadratic polynomials. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of
LNCS, pages 706–723. Springer, 2011. https://www.iacr.org/archive/
crypto2011/68410703/68410703.pdf.

34

https://www-03.ibm.com/press/us/en/pressrelease/49661.wss
https://www-03.ibm.com/press/us/en/pressrelease/49661.wss
http://www.goubin.fr/papers/OILLONG.PDF
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuNuocNgoai/3.Advances%20in%20cryptology-Crypto%201998-LNCS%201462/14620257.PDF
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuNuocNgoai/3.Advances%20in%20cryptology-Crypto%201998-LNCS%201462/14620257.PDF
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuNuocNgoai/3.Advances%20in%20cryptology-Crypto%201998-LNCS%201462/14620257.PDF
https://eprint.iacr.org/2016/357
https://eprint.iacr.org/2016/357
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.minrank.org/hfe.pdf
http://www.goubin.fr/papers/rsa2001b.pdf
http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/1996_eurocrypt.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/1996_eurocrypt.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf
https://www.iacr.org/archive/crypto2011/68410703/68410703.pdf


Ste93. Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93,
volume 773 of LNCS, pages 13–21. Springer, 1993. https://www.di.ens.
fr/~stern/data/St47.pdf.

Ste96. Jacques Stern. A new paradigm for public key identification. IEEE Trans-
actions on Information Theory, 42(6):1757–1768, 1996. https://www.di.
ens.fr/users/stern/data/St55b.pdf.

TGTF10. Shigeo Tsujii, Masahito Gotaishi, Kohtaro Tadaki, and Ryou Fujita. Pro-
posal of a signature scheme based on STS trapdoor. In Nicolas Sendrier,
editor, Post-Quantum Cryptography, volume 6061 of LNCS, pages 201–217.
Springer, 2010. https://eprint.iacr.org/2010/118.

Tho13. Enrico Thomae. About the Security of Multivariate Quadratic
Public Key Schemes. PhD thesis, Ruhr-University Bochum, Ger-
many, 2013. https://www.iacr.org/phds/116_EnricoThomae_
AboutSecurityMultivariateQuadr.pdf.

TW12. Enrico Thomae and Christopher Wolf. Cryptanalysis of enhanced TTS,
STS and all its variants, or: Why cross-terms are important. In Aika-
terini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptology –
AFRICACRYPT 2012, volume 7374 of LNCS, pages 188–202. Springer,
2012.

Val79. Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

WHCB13. Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buch-
mann. Instantiating treeless signature schemes. Cryptology ePrint Archive,
Report 2013/065, 2013. http://eprint.iacr.org/2013/065/.

YC04. Bo-Yin Yang and Jiun-Ming Chen. Theoretical analysis of XL over small
fields. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors,
Information Security and Privacy, volume 3108 of LNCS, pages 277–288.
Springer, 2004. http://www.iis.sinica.edu.tw/papers/byyang/2386-F.
pdf.

YC05a. Bo-Yin Yang and Jiun-Ming Chen. All in the XL Family: Theory and
Practice, pages 67–86. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

YC05b. Bo-Yin Yang and Jiun-Ming Chen. Building secure tame-like multivari-
ate public-key cryptosystems: The new TTS. In Colin Boyd and Juan
Manuel González Nieto, editors, Information Security and Privacy, volume
3574 of LNCS, pages 518–531. Springer, 2005. http://www.iis.sinica.
edu.tw/papers/byyang/2381-F.pdf.

YCC04a. Bo-Yin Yang, Jiun-Ming Chen, and Yen-Hung Chen. TTS: High-speed
signatures on a low-cost smart card. In Marc Joye and Jean-Jacques
Quisquater, editors, Cryptographic Hardware and Embedded Systems –
CHES 2004, volume 3156 of LNCS, pages 371–385. Springer, 2004. https:
//www.iacr.org/archive/ches2004/31560371/31560371.pdf.

YCC04b. Bo-Yin Yang, Jiun-Ming Chen, and Nicolas Courtois. On asymptotic se-
curity estimates in XL and gröbner bases-related algebraic cryptanalysis.
In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, Information and
Communications Security, volume 3269 of LNCS, pages 401–413. Springer,
2004. http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf.

YCY13. Jenny Yuan-Chun Yeh, Chen-Mou Cheng, and Bo-Yin Yang. Operating De-
grees for XL vs. F4/F5 for GenericMQ with Number of Equations Linear
in That of Variables, pages 19–33. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

35

https://www.di.ens.fr/~stern/data/St47.pdf
https://www.di.ens.fr/~stern/data/St47.pdf
https://www.di.ens.fr/users/stern/data/St55b.pdf
https://www.di.ens.fr/users/stern/data/St55b.pdf
https://eprint.iacr.org/2010/118
https://www.iacr.org/phds/116_EnricoThomae_AboutSecurityMultivariateQuadr.pdf
https://www.iacr.org/phds/116_EnricoThomae_AboutSecurityMultivariateQuadr.pdf
http://eprint.iacr.org/2013/065/
http://www.iis.sinica.edu.tw/papers/byyang/2386-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2386-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2381-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2381-F.pdf
https://www.iacr.org/archive/ches2004/31560371/31560371.pdf
https://www.iacr.org/archive/ches2004/31560371/31560371.pdf
http://www.iis.sinica.edu.tw/papers/byyang/2384-F.pdf


A The 3-pass scheme over F2

In this appendix, we discuss the result of applying the Fiat-Shamir transform to
the 3-pass IDS introduced in [SSH11] (see Figure 4).

P V

r0, t0 ←R Fnq , e0 ←R Fmq
r1 ← s− r0, t1 ← r0 − t0
c0 ← Com(r1, G(t0, r1) + e0)

c1 ← Com(t0, e0)

c2 ← Com(t1, e1) (c0, c1, c2)

ch←R {0, 1, 2}ch

If ch = 0, resp← (r0, t1, e1)

If ch = 1, resp← (r1, t1, e1)

If ch = 2, resp← (r1, t0, e0) resp

If ch = 0, Parse resp = (r0, t1, e1), check

c1
?
= Com(r0 − t1, F (r0)− e1)

c2
?
= Com(t1, e1)

If ch = 1, Parse resp = (r1, t1, e1), check

c0
?
= Com(r1,v− F (r1)−G(t1, r1)− e1)

c2
?
= Com(t1, e1)

If ch = 2, Parse resp = (r1, t0, e0), check

c0
?
= Com(r1, G(t0, r1) + e0)

c1
?
= Com(t0, e0)

Fig. 4. Sakumoto et al. 3-pass IDS.

The signature scheme. As the resulting scheme is similar to the transformed
5-pass scheme (MQDSS) described in Section 5 in many ways, we occasionally
refer back to that description to prevent needless redundancy and duplication.

Parameters. The scheme is parameterized by k,m, n ∈ N in much the same way
as MQDSS. Whereas the 5-pass variant required several functions that ranged
over F31, however, a slightly simpler setup suffices for the 3-pass scheme. We
require the following functions:

– Cryptographic hash functions H : {0, 1}∗ → {0, 1}k and H1 : {0, 1}2k →
{0, 1, 2}r,

– a string commitment function Com : F2
n × F2

m → {0, 1}k,
– pseudo-random generators GF : {0, 1}k → F2

Flen and Gc : {0, 1}2k →
F2

r·(2n+m).

Key generation. As before, we randomly sample SK ←R {0, 1}k and SF ←R

{0, 1}k. Given parameters n,m ∈ N, we expand SF to obtain F = GSF (SF ),
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a random system from MQ(n,m,F2). The equation system F is defined by
Flen elements8 from F2. We then apply F to SK to obtain the rest of the
public key, PKv = F(SK). The key generation algorithm outputs (sk, pk) =
((SK,SF ), (SF ,PKv)) as the key pair.

Signing. The signature algorithm takes as input a message m ∈ {0, 1}∗ and a
secret key sk = (SK,SF ). The message-dependent randomness R and random-
ized message digest D are derived in the same way as was done for the 5-pass
scheme, and F = GSF (SF ) as was done during key generation. As before, let r
be the required number of rounds.

The pair (SK,D) is expanded using Gc to produce the values (r(0,0), . . . ,
r(0,r), t(0,0), . . . , t(0,r), e(0,0), . . . , e(0,r)). We then compute c(0,i), c(1,i) and c(2,i)
using the string commitment function Com, as follows:

c(0,i) = Com(r(1,i),G(t(0,i), r(1,i)) + e(0,i))
c(1,i) = Com(t(0,i), e(0,i))
c(2,i) = Com(t(1,i), e(1,i))

Furthermore, σ0 = H(c(0,0)‖c(1,0)‖c(2,0)‖ . . . ‖c(0,r−1)‖c(1,r−1)‖c(2,r−1)).
We now derive the challenges h1 from the pair (D,σ0) using H1. Then,

for each of the rounds, we include the responses for each challenge chi in σ1
(i.e. (r(0,i), t(1,i), e(1,i)), (r(1,i), t(1,i), e(1,i)) or (r(1,i), t(0,i), e(0,i)), respectively),
as well as the one commitment the verifier cannot recompute: cchi . The resulting
signature is σ = (R, σ0, σ1), for a total of 2 · k + r · (2 · n+m+ k) bits.

Verification. As above, the verifier uses R and m to compute D, deriving F
from SF (which is available in pk) using GSF .

The verification algorithm takes as input the message m, the signature σ =
(R, σ0, σ1) and the public key PK = (SF ,PKv). Again, we compute F =
GSF (SF ) and the randomized digest D = H(R ‖ m). As was done in the signing
procedure, the verifier can now derive chi for all r rounds using H1 and the pair
(D,σ0). The verifier then extracts (ri, ti, ei) from σ1, and, depending on the
values of chi, computes two thirds of the committed values as follows:

if chi = 0

{
c(1,i)= Com(ri − ti,F(ri)− ei)
c(2,i)= Com(ti, ei)

if chi = 1

{
c(0,i)= Com(ri,PKv − F(ri)−G(ti, ri)− ei)
c(2,i)= Com(ti, ei)

if chi = 2

{
c(0,i)= Com(ri,G(ti, ri) + ei)
c(1,i)= Com(ti, ei)

For each round, the other commitments c(chi,i) can be extracted from σ1, al-
lowing the verifier to compute σ′0 = H(c(0,0)‖ c(1,0)‖ c(2,0)‖ . . . ‖ c(0,r−1)‖ c(1,r−1)‖
c(2,r−1)). If σ′0 = σ0, verification succeeds.

8 As we are computing over F2, we have xi ·xi = xi ∧xi = xi. This allows us to merge
the monomial terms into the binomials, reusing n ·m field elements in F.
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Parameter choice and security analysis. As in the case of the 5-pass scheme
we motivate our choice of parameters both from security and from implementa-
tion point of view. First of all, the security arguments for n = m are the same as
for the 5-pass scheme. From an implementation point of view, choosing n = m
as a power of 2 provides various benefits. Most notably, the fact that we operate
over a binary field in combination with a number of elements that neatly fit typ-
ical registers greatly enhances the ease of using bitwise operations. Therefore,
we choose n = 256.

In terms of classical security, we can use the known generic algorithms for
solving systems of quadratic equations [Fau99,Fau02,CKPS00], or the recently
proposed algorithm BooleanSolve [BFSS13], crafted specifically for the Boolean
case. This algorithm performs similar to XL over F2. Indeed, the analysis in
[YC04,YCC04b] and that of [BFSS13] both show that for large enough systems
(i.e. where n > 200) it is possible to outperform exhaustive search in terms of
time complexity. When n = m, the asymptotic complexity of the FXL algorithm
is O(20.875n) [YC04], and of the BooleanSolve algorithm it is O(20.841n) in the
deterministic variant and O(20.792n) in the probabilistic variant [BFSS13]. Since
we have n = 256, the probabilistic variant of BooleanSolve, for example, is
expected to perform better than exhaustive search, but not bellow 2202 Boolean
operations, obtained from the asymptotic estimate.

Using the same reasoning as for the 5-pass scheme we have that the expected
number of solutions of the system is 1 and with great probability it is 6 4. Under
this assumption, the complexity of Grover’s algorithm will be ≈ 2128 operations.

Similarly, as was mentioned in Section 6, we must have κr ≤ 2−256 in order
to achieve EU-CMA for 128 bits of post-quantum security. Thus, for soundness
error κ = 2

3 , we must perform r = 438 rounds.
As before, we choose SHA3-256 for the functions H and Com. For H1, GSF

and Gc, we select the SHAKE-128 extendable output function [BDPV11]. To
map to the appropriate output domain, we reject and resample unusable output
from H1.

Implementation. As briefly mentioned above, we operate on n = 256 elements
from F2, which means that an input vector x fits precisely in one 256 bit SIMD
vector register. In essence, the computation of F comes down to computing the
product of all unique pairs of elements in x. Intuitively, one might visualize such a
multiplication as the triangle depicted in Figure 5 (note that we do not incur any
costs for register-wide gaps in the arrangement). As we are using vector registers,
we can perform 256 such multiplications (which are bitwise and operations in
F2) in parallel. To do this, we rearrange the products in a way that makes them
more easily computable – see Figure 6.

The careful reader will notice that the elements as arranged in Figure 6 can
be generated by rotating the original vector and computing the bitwise and
with the original after each rotation. Thus we require only n

2 +1 vectorized and
operations (one of which is the last half-row). After computing a row of products,
the result row can be multiplied with m bits from the system parameter F for
each of the output bits.
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& 0 1 2 3 4 5 6 7
0 00 01 02 03 04 05 06 07
1 - 11 12 13 14 15 16 17
2 - - 22 23 24 25 26 27
3 - - - 33 34 35 36 37
4 - - - - 44 45 46 47
5 - - - - - 55 56 57
6 - - - - - - 66 67
7 - - - - - - - 77

Fig. 5. Intuitive and of 8-bit vector.

& 0 1 2 3 4 5 6 7
00 11 22 33 44 55 66 77
10 21 32 43 54 65 76 07
20 31 42 53 64 75 06 17
30 41 52 63 74 05 16 27
40 51 62 73 - - - -

Fig. 6. Efficient and of 8-bit vector.

To compute G(x,y), one can iterate through two instances of Figure 6 in
parallel; one for each input. Computing ai,j,l∧((xi∧yj)⊕(xj∧yi)) (where ai,j,l is
an element of F) is then a matter of computing a crosswise xor before masking
with system parameter bits. The first row can be skipped, as (xi∧yi)⊕ (xi∧yi),
is always 0.

Benchmark results. As mentioned in Section 5.1, benchmarks were performed
on an Intel Core i7-4770K CPU at 3.5 GHz.

Signature and key sizes. For the 3-pass scheme, the signature size is fairly large
because of the high number of rounds required to achieve 128 bit post-quantum
security, as well as the large n and m. With each vector consuming 256 bits and
each of the 438 rounds adding three vectors and a commitment hash, the total
amounts to 2 · 256 + 438 · (3 · 256 + 256) = 449 024 bits, or 54.81KB. Both the
secret key and the public key are 64 bytes.

Performance. As one would expect, the calls to theMQ function are the most
time-consuming. Theoretically, we can calculate that we require n · n+1

2 and
operations to compute all binomials in a call to F. For each of the m output
bits, the results are masked with bits from the system parameter, incurring
another m · n · n+1

2 and operations, as well as m · (n · n+1
2 − 1) xor operations.

Using vector instructions, the most optimal scenario would allow us to do 256
such operations in parallel. While this is almost achieved (although not fully for
the half-row of binomials, and because the accumulators used to compute the
final result need to be folded onto themselves at the end), this is offset greatly
by the amount of loads and stores required to manage the 256 accumulators for
the output results. Some additional costs are also incurred for having to rotate
the vector register for every 256 binomials, at the cost of two shifts, a double-
quadword permute and an or operation. Costs of the application of the function
G are similar, although distributed slightly differently: each ‘binomial’ costs two
and operations and a xor operation, and two vectors need to be rotated, but
as the symmetric binomials can be omitted, one entire iteration of updating
accumulators can be spared.

For one iteration of theMQ function, we measure 122,564 cycles (again,G is
marginally cheaper: 121 928 cycles), while we measure 118 088 992 cycles for the
complete signature generation. Key generation comes in at 8 066 324 cycles, and
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verification costs 82 650 156 cycles. On the used CPU, that comes down to 31.4
ms, 2.15 ms and 22.0 ms, respectively. On average, verification should require
1 1
3 calls to anMQ function, varying with the challenge value.
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