A Unilateral-to-Mutual Authentication Compiler for Key Exchange
(with Applications to Client Authentication in TLS 1.3)

Hugo Krawczyk*

July 18, 2016

Abstract

We study the question of how to build “compilers” that transform a unilaterally authenti-
cated (UA) key-exchange protocol into a mutually-authenticated (MA) one. We present a simple
and efficient compiler and characterize the UA protocols that the compiler upgrades to the MA
model, showing this to include a large and important class of UA protocols. The question, while
natural, has not been studied widely. Our work is motivated in part by the ongoing work on
the design of TLS 1.3, specifically the design of the client authentication mechanisms including
the challenging case of post-handshake authentication. Our approach supports the analysis of
these mechanisms in a general and modular way, in particular aided by the notion of “functional
security” that we introduce as a generalization of key exchange models and which may be of
independent interest.

1 Introduction

A natural question in the area of key-exchange (KE) protocols is how to transform a given KE
protocol that is secure in the unilateral-authentication (UA) setting (where only one of the parties
authenticates and the other remains anonymous) into a secure mutual-authentication (MA) proto-
col. Somewhat surprisingly this question has not received much attention in the complexity-based
KE literature, in part since much of the work in this area has focused on the mutual authentication
case. In practice, however, the most widely used KE protocol, TLS, is centered around unilateral
(server-only) authentication, with optional upgrade to mutual authentication. Namely, one starts
from a core protocol where only the server authenticates and then extends it with an optional
mechanism for client authentication.

In this work we investigate the above question in the context of complexity-theoretic models of
KE, striving for results that are general as well as practically relevant to real-world protocols, in
particular to the ongoing work on the design of TLS 1.3 [33] which provides particular motivation
for this work. We think of this problem as developing compilers that extend secure unilateral
key-exchange protocols into secure mutual key-exchange protocols. We focus on signature-based
compilers, namely the case in which the second party to authenticate - which we refer to as the

*IBM Research. hugo@ee.technion.ac.il

client - uses a digital signature as the means for public-key for authentication (even though our
approach can potentially be extended to other forms of authentication).

The SIGMAC Compiler. Our compiler is simple: To upgrade a unilateral protocol II; into a
mutually authenticated Ily, upon completion of Iy the client sends a single message comprised of:
(i) the client’s signature on a portion of the IIy’s transcript; and (ii) a MAC value computed on
the client and server’s identities with a MAC key computed by II;. The intuition of the design is
simple too: First note that anyone can sign the transcript, hence just a signature by the client on
the transcript is not sufficient. Just MACing the identities is clearly not sufficient either since any
party that participated in the unilateral protocol can compute the MAC on any identities. Yet the
combination of signature and MAC ensures a binding between an identity and the knowledge of a
key (computed in the unilateral protocol). We call the compiler SIGMAC for SIGnature and MAc
Compiler, and also since it is reminiscent of the SIGMA protocol [24].

While intuitively appealing, proving the compiler, namely, showing that it can upgrade a secure
unilateral protocol into a secure mutual one turns out to be non-trivial, in particular regarding
what information needs to be covered by the signature. One can show examples, even in natural
and practical settings, where even signing the whole transcript is not enough to ensure client
authentication. Fortunately, we show that the compiler works for important classes of protocols,
including any protocol that derives its session key from a Diffie-Hellman exchange. A core issue is
to characterize what needs to be included under the signature. For this, we find a general sufficient
condition (through a notion we call transport replication security, abbreviated as “treplication
security”) that if satisfied by a unilateral KE protocol II, then applying the SIGMAC compiler to
II results in a provably secure mutually authenticated KE protocol. We then show extensive classes
of unilateral protocols to possess this property, including KE mechanisms used in TLS 1.3.

By characterizing the minimal amount of information to be included under the client’s signature,
we achieve more general results that not only apply to a wider class of protocols but also allow
to remove from the signature any information that the client may not want to sign with a non-
repudiable signature. In particular, signing the server’s identity leaves a transferable proof that the
client communicated with the specific server. While full deniability of communication is hard to
achieve against a malicious server [32], an explicit signature on the server’s identity fails deniability
even with a passive (or “honest-but-curious”) server. We show that signing the server’s identity can
be safely omitted. On the other hand, we stress that if the protocol contains specific information
that needs explicit authentication, e.g., the negotiation of security properties, these can and must
be included under the signature even if these elements are not essential for the correct functioning
of SIGMAC.

Finally, we comment on the use of a MAC function in the SIGMAC compiler. The essential
observation (see Section 3.1) is that even if the client’s signature covers both server’s and client’s
identities, omitting the MAC - in particular, the MACed client identity - voids the ability of the
compiler to produce a mutually authenticated protocol. As we note below, the use of a MAC
function fits particularly well with TLS and its Finished message.

TLS 1.3: Application and Motivation. While the main results in this paper are of general
applicability and intended to generically lift unilateral authentication protocols into mutual au-
thentication ones, one timely motivation and application of this work is the analysis of TLS 1.3
[33]. The TLS key exchange (or handshake) protocol in the current and prior versions is built as a

server-only authentication protocol with optional extension to client authentication. This approach
calls exactly for a unilateral-to-mutual compiler as studied here. In particular, the specific SIG-
MAC compiler captures the type of mechanism used in TLS which is based on the combination of
a signature and a MAC (the latter referred to as the client’s Finished message in TLS).

A challenging aspect of the new TLS 1.3 design is that the protocol allows for post-handshake
client authentication, namely, a setting where a session key, authenticated by the server only, is
used to protect TLS data (record layer) and only later is the client authentication extension applied.
This raises the question of what’s the value of this late authentication; can the exchanged data
be considered as mutually authenticated upon this late client authentication? Fortunately, our
compiler approach turns out to be particularly useful for analyzing this setting. It allows us to
show that upon client authentication and successful verification by the server, the data exchanged
and protected up to this point (as well as subsequent data) enjoys mutual authentication security
in the sense of “secure channels”. That is, it is guaranteed that only the parties that passed
authentication (the named server and client) are those generating the information and being able
to decrypt it. Of course, the server obtains this assurance for past data only a-posteriori, i.e., only
after verifying client authentication. Other questions our methodology helps addressing regard the
effect of late authentication on keys derived prior to the authentication (e.g., a “resumption key”)
or the validity of using a session key to encrypt the very messages that carry client authentication
(see Section 6).!

In all, our results are relevant to the analysis of client authentication for the PFS modes of TLS
1.3, namely, 1-RTT and PSK, and for PSK without PFS (hence, also for resumption mode). This
includes the cases of post-handshake authentication and the use of the session key (or application
key) for encrypting the client authentication message.

An important tool for analyzing the above complex questions is our “functional” generalization
of the key exchange model from [9] which may be of independent interest. It provides an abstraction
that frees the analysis from specific model and functionality details while at the same time adding
generality. For example, one can use this abstraction to reason about whether a session key used
to protect key exchange messages may still be secure for another purpose (say, to derive other
keys) or whether a late client authentication implies authentication of keys derived prior to the
authentication (e.g., a resumption key in TLS 1.3).

Final note: Familiarity with TLS 1.3 is not essential for understanding the results in this paper
that, while applicable and motivated by the TLS 1.3 design, are more general and emphasize the
conceptual aspects rather than the details of a specific protocol. Even in the context of the ongoing
specification of TLS 1.3, generality is a benefit for informing basic aspects of the design (such as
the complex issues related to late client authentication). At the same time, we stress that a full
analysis of TLS 1.3 is well beyond the scope of this work.

Related Work. The literature on key-exchange protocols is extensive with many different models
and many analyzed protocols. Yet, the number of papers dealing with unilateral authentication is
relatively small. In particular, the basic earlier models, such as those of Bellare-Rogaway [1] and
Canetti-Krawczyk (CK) [9], do not treat it. One exception is the work by Shoup [34] that deals with

! An immediate conclusion from these results is that it is not necessary to introduce a dedicated key for encrypting
post-handshake messages, a design choice being contemplated by the TLS working group. Avoiding such dedicated
key has the major advantage of dispensing with cumbersome mechanisms involving trial decryption and the like.

“anonymous protocols” explicitly. Halevi and Krawczyk [17] treat unilateral security in the context
of password protocols. Our treatment is based on the CK model which we specialize to the unilateral
case with minimal changes following the approach of [26, 25]. More recently, and motivated by the
increased interest in analyzing TLS, several papers study unilateral authentication. Particularly,
the works of Maurer et. al [29] and Goldberg et al. [16] center on this model but do not deal with
the question of building generic transformations from unilateral to mutual authentication.

Several works have presented authentication compilers for unauthenticated key-exchange pro-
tocols including [2, 9] and [19]. Authenticators from [2, 9] can be applied to upgrade unilateral
authentication (UA) to mutual authentication (MA) but since authenticators are applied sepa-
rately to each UA protocol message they result in added (and possibly interleaved) interaction,
hence necessitating of changes in the UA part of the protocol (rather than acting as an extension).
The compilers from [19] are intended to lift unauthenticated protocols to mutually authenticated
ones, but a closer look reveals that they do not achieve this goal except if identities are somehow
included under their signatures and MACs. Even if fixed, applying such compilers to a UA protocol
is “overkill” (in terms of communication and complexity, e.g., the compilers from [19] add 3-6 flows
to the protocol) and applying “half” compiler (in one direction only) does not necessarily work.
For example, the SIGMA protocol from [24] shows that if each party signs the transcript (but not
the identities) and also applies a MAC on its own identity then the protocol is secure. However,
if we used the same technique for one party only to upgrade a UA protocol to MA we would end
with an insecure protocol (see Section 3.1). The recent work of Kohlweiss et al. [23] analyzes a
UA-to-MA transformation based on client passwords.

Analyses of TLS that address unilateral authentication include [30, 26, 21, 5, 22, 6, 3] and work
directly relevant to TLS 1.3 [28, 14, 12, 23, 25, 13, 11]. Of particular relevance to the present
paper is the work of Cremers et al. [11] who present a detailed formal analysis of TLS 1.3 (draft
10) using the Tamarin prover. It includes a formulation of delayed client authentication whose
analysis uncovered a surprising attack on an early TLS 1.3 version of this mechanism which we use
as a motivating example in Section 3.1. Additional work related to post-authentication in different
protocol settings is the design of “channel binding” protocols whose track record of repeated breaks
illustrates the misleading intuition behind many of these techniques - see Bhargavan et al. [7, 4]. Tt
will be interesting to apply the treplication-security notion as a formal basis for studying channel
binding and related notions. Finally, we point out that our “functional” approach from Section 6.1
bears resemblance to Shoup’s model [34] and to the “suitable for” notion from [8].

2 Unilateral and mutually authenticated key-exchange models

This section presents an abridged description of the Canetti-Krawczyk security model for key-
exchange protocols [9, 10] which serves as the basis for the formal security treatment in this paper.
Please consult [9] for complete details.

2.1 Mutual Authentication (MA) Model

We start by presenting the original CK model for mutual authenticated KE, and then specialize
this model to the case of unilateral authentication. For the purpose of this paper we will refer to

this model as MA (for mutual authentication) and differentiate it from the unilateral authentication
model denoted UA.

A key-exchange (KE) protocol is run in a network of interconnected parties (all of which, in-
cluding adversaries, are modeled as probabilistic polynomial-time machines) where each party can
be activated to run an instance of the protocol called a session. Within a session a party can
be activated to initiate the session or to respond to an incoming message. As a result of these
activations, and according to the specification of the protocol, the party creates and maintains a
session state, generates outgoing messages, and eventually completes the session by outputting a
session key sk and erasing the session state. A session may not complete (e.g., if authentication
fails) in which case it is aborted without generating a session key (output sk =1). A KE session
is associated with its owner (the party at which the session exists), a peer (the party with which
the session key is intended to be established), and a session identifier, denoted sid. A KE protocol
defines the contents of sid, typically including nonces and other transcript information. We name
sessions by their owner and sid, and if the session peer is identified then also by the peer identity.
For example, (5,sid) for a session at party S or (S, C,sid) if the peer to the session is identified as
C'. Tt is assumed (and enforced by the protocol) that any two sessions at the same (honest) party
have different identifiers.

Credentials. We consider the public key setting where parties possess public keys of their choice
and parties can verify the authentic binding between identities and public keys, be it either a
certification authority (CA) or other means such as out-of-band distribution. ~We also consider
the “pre-shared key setting” where pairs of parties share a secret symmetric key that they use for
authentication.

Attacker model. The attacker, denoted A, is an active “man-in-the-middle” adversary with
full control of the communication links between parties. A can intercept and modify messages sent
over these links, it can delay or prevent their delivery, inject its own messages, interleave messages
from different sessions, etc. (Formally, it is A to whom parties hand their outgoing messages for
delivery.) A also schedules all session activations and session-message delivery. In addition, the
attacker is allowed access to secret information via the following attacks:

e A Reveal query can be performed against an individual session after completion and the result
is that the attacker learns the corresponding session key sk.

e A Corrupt against a party means that the attacker learns the long-term secret of that party;
in addition, from the moment a party is corrupted all its actions may be controlled by the
attacker. Non-corrupted parties are referred to as uncorrupted or honest.

For simplicity, in the current presentation we do not consider the CK StateReveal query.

Basic security (mutual authentication). To define security, we establish a notion of matching
defined via session identifiers. If session (C, S, sid) completes at party C, then session (S, C,sid), if
it exists at S and completes, is said to be matching to (C, S, sid) (note the correspondence of peers
and equality of sid and that only complete session have matching sessions).

Sessions against which any one of the attacks Reveal or Corrupt is performed (including sessions
compromised via party corruption) are called exposed. A session is called fresh if it is complete and
not exposed, and its matching session (if it exists) is also not exposed.

The security of session keys generated in fresh sessions is captured via the inability of the
attacker A to distinguish the session key of a test session, chosen by A among all fresh sessions in
the protocol, from a random value. This is captured via a Test query. This query may only be
asked once during the security game. It sets K := sk (or random if sk =_1) as the real session key,
and sets K7 < {0,1}*. Then, it picks b <—g {0,1} and returns K,. The attacker can continue
with the regular actions against the protocol also after the Test query; at the end of its run A
outputs a bit o/, which is meant as a guess for the value of b.

A key-exchange protocol 7 is secure if for polynomial-time attackers A running against 7 it
holds:

1. If two uncorrupted parties complete matching sessions in a run of protocol 7 under attacker
A then they output the same key (except for a negligible probability).

2. The probability that A wins the Test experiment, namely, it outputs a correct guess b =¥’ is
at most 1/2 plus a negligible fraction.”

We note that this model is general enough to capture protocols with implicit or explicit authenti-
cation and with and without key confirmation (or liveness). This is important since it makes our
results more general, showing that our compiler applies to a UA protocol with any of the above
characteristics.

A key-exchange protocol is said to achieveperfect forward secrecy (PFS) if it satisfies the above
definition when relaxing the notion of fresh sessions to allow a Corrupt query against the owner of
the session but only upon completion of the session.

2.2 Unilateral Authentication (UA) KE Model

The model as described above is intended to capture protocols where both peers authenticate to
each other. Here we specialize this model to the case of unilateral authentication (UA), namely,
when only one party authenticates to its peer (but the second party remains “anonymous”). The
treatment is similar to [25].

The unilateral setting is best described by client-server terminology. We denote by C, S the
client-server parties to the protocol as well as their identities, and refer to the authenticating party
as the server. In the public key setting servers have public keys and in the case of a server and
client sharing a symmetric key (the pre-shared key setting) we assume that the client associates
the key to a server identity but not (necessarily) the other way. Sessions at a client are denoted
as triples (C, S, sid) as in the regular MA model but sessions at servers do not have a named peer
hence they are denoted (.5, sid).

The essential characteristic of the UA model is that only (fresh) client sessions are allowed as
test sessions.> Thus, matching is defined only for client sessions, namely, if session (C, S, sid) exists
and completes, and session (.5, sid) exists and completes then (5,sid) is called a matching session
to (C, S, sid).

2We use asymptotic, polynomial-time, terminology throughout the paper as it simplifies presentation. Moving to
a concrete security setting is mostly straightforward.

3An equivalent definition would allow also to test server sessions but only if they have a matching fresh client
session.

SIGMAC applied to UA protocol II; uses the following components:

e A key derivation function KDF applied to session keys output by II; for producing two keys
K, and K, (this can be as simple as computing K, = fx(0) and K = fx (1) where f is a
PRF, or any other derivation of mutually pseudorandom values K,, Ky).

e A signature algorithm and a MAC algorithm (with the usual chosen message security re-
quirements for both).

e A value sid* defined for each session in II; and consisting of the concatenation of the session
id sid and a subset of transcript information, called a transcript core, specifically defined for
each protocol II; (see Section 4).

o Identities and keys for clients: Clients are anonymous in I, but in Il they have identities
and signature keys whose public keys other parties can obtain and validate. Servers have
same identities and keys as in II;.

Protocol I, is defined identically to II; except for the following extension:

e When a client C' completes a session (C, S,sid) in II; with peer S and outputs a session key
K, it performs the following operations in Il,. It derives keys K, and K, from K using KDF
sends a message, denoted CSM, consisting of a signature on the value sid* and a MAC value,
MACk, (C, S), on the identities C' and S it erases K, and completes session (C, .S, sid) in II,
with session key K.

e When a server S would establish a session (5, sid) with session key K according to IIy, in Iy
it does not complete the session but computes K and keeps it in the session’s state. When
a CSM message (allegedly) from client C is delivered to a session (S,sid), S checks that a
key K was previously computed for this session and if so it derives keys K, and K, form K
using KDF. Tt then checks that the incoming signature is valid (under the public key of C')
and that it covers the appropriate value sid* (including the session id sid). Finally, it verifies
that the MAC computed with key K, covers the client identity C' and its own identity S. If
all checks succeed, S completes session (.9, C,sid) with session key K.

Figure 1: The SIGMAC Compiler.

3 The SIGMAC Compiler

We present our signature-based compiler that we call SIGMAC and which augments a UA-secure
protocol II; into a MA-secure protocol IIo. Roughly, protocol Il is obtained via the SIGMAC
compiler by adding to II; a single message sent from client C' to server S upon completion of a
session in II;, where the message, denoted CSM (for “client sign-and-mac”), comprises a signature
of C and a MAC (with a key derived from II;’s session key). The signature is applied to a value sid*
defined for II; while the MAC is applied on the identities of C and S. The compiler is presented
in Figure 1.

We stress that the value sid* plays an essential role in the security of SIGMAC and its re-
quirements are presented in detail in Section 4 via the notions of a transcript core and treplication
security. We simplify some of our treatment by assuming that the session identifiers sid in protocol
II; include unique random nonces contributed by C and S.

Another simplification in our treatment is that we assume that the signature keys used by

clients for the SIGMAC signature are not used for other purposes or as part of protocol IT;. This
limitation is not essential as long as different uses are properly insulated via domain separation or
similar methods.

More generally, we require that no two sessions at a party will have the same sid (except for
negligible probability); also, we assume that sid* includes a fresh session-specific value from S
(needed, in particular, against replay attacks).

Note on preserving the session key from I1;. The above specification of SIGMAC defines the keys
K,, K, used by Ily as derived from the session key K output by II;. Alternatively, one can specify
that II; outputs K,, K, where K serves as the session key in both II; and Ils while K, is only
used in Iy as a MAC key. We chose the former approach as it allows us to keep IT; unmodified
and is somewhat more convenient in the formal treatment. On the other hand, if one requires that
II; and Ils use the exact same session key, one needs to accommodate the generation of key K,
already as part of II; (this would be the case in TLS 1.3).

Note on (not) signing the server’s identity. If one wants to provide some deniability against a
passive adversary as discussed in the introduction, one should avoid entering the identity of S into
the signature (i.e., into sid*).

On (hashing) the identities included under SIGMAC’s MAC. The identities C' and S
included under the MAC computation in SIGMAC can have different forms, e.g., a subject name
in a public key certificate, a whole certificate, an email address, etc. However, we note that an
identity of a party X can be replaced, for the sake of including it under the SIGMAC MAC, by
H(X) if H is a collision resistant function (this is similar to the use of hash functions for generating
inputs to digital signatures). Moreover, hashing X with additional information is also acceptable
as long as the parsing of the input to the hash function is defined as to uniquely determine the
identity included in the hash. Such hashing of identities is used in many protocols including TLS.
As a subtle example, resumption mode of TLS 1.3, replaces the server’s identity included in the
client’s Finished message (that implements the SIGMAC’s MAC functionality) with a unique value,
resumption_context, computed as a hash of the server’s identity and carried from a prior exchange
between this client and server. For this to be secure one has to assume that the function used to
compute resumption_context is collision resistant. In the case of TLS 1.3 this function is based
on HKDF-Expand which can be shown to be collision resistant if the underlying hash is collision
resistant. We stress that it is imperative in all uses of hashed identities that the output from the
hash function not be truncated in a way that weakens the collision resistance property.

3.1 Rationale and examples

As explained in the introduction, the intuition behind SIGMAC is that the matching of the same
client identity as the signer as well as under the MAC creates the needed binding between the client
and the session key. Adding the server’s identity to the MAC is needed to prevent UKS attacks (see
below), namely, ensuring the server that the client’s view of the peer is correct. Alternatively, one
can include the server’s identity under the signature which raises some privacy issues as discussed
earlier.

The actual considerations in analyzing the compiler are more subtle particularly with respect
to what needs to be covered by the signature. In some cases, even covering the whole transcript is

insufficient to ensure mutual authentication via SIGMAC while in other cases covering part of the
transcript is enough. We strive to identify the essential parts of a transcript that need to be signed
(this adds to the generality of the compiler and to our understanding of this mechanism, and can
help achieving some level of deniability).

We illustrate some of the subtleties through some important examples serving as motivation
for the notion of transcript replication attacks introduced in the next section and central to our
analysis (and with direct implications to the security of client authentication in TLS 1.3).

MACing the server identity S. We show a UA protocol that when upgraded to MA via
SIGMAC but without including the server’s identity under the client’s MAC, results in a MA
protocol that is open to a UKS attack (the necessity of including C' under the MAC is more
obvious since anyone can sign the transcript hence such a signature has no binding to the UA run).
The UA protocol is a simple server-authenticated DH exchange where the client sends a DH value
g® to which the server responds with ¢g¥ and a signature on g* and ¢¥. The session key K is derived
from ¢™¥. If we extend this to a MA protocol via SIGMAC but removing S from the MAC, namely,
C sends M ACk,(C) and its signature on both ¢* and ¢g¥ (whose concatenation defines sid), the
resultant protocol is open to a UKS attack as follows. A malicious server S’ relays ¢¥ to C but
signs it with its own signature. When C' responds with M ACk, (C), S’ sends this message to S.
In this case K is computed by both C' and S. But while S has C as the peer to the exchange, C
has S as the peer, hence resulting in a UKS attack.

Pre-shared key protocols and why sometimes even signing the whole transcript is not
enough. We show an example of a UA protocol where applying the SIGMAC compiler with the
entire transcript under the client’s signature does not result in a MA-secure protocol. For this
we consider a UA-secure protocol II; where the client uses as the server’s credentials the server’s
identity and a symmetric pre-shared key (PSK). We assume that this key, that might have been
previously shared by C with S through another UA key exchange protocol, has been authenticated
only by S (as in the resumption mode of TLS 1.3). We define II; as an implicitly-authenticated
protocol where the parties just exchange nonces (which form the whole transcript) and the session
key is derived by applying a PRF keyed with PSK to the nonces. It is not hard to show that
II; with sid set to the concatenation of the nonces is UA-secure. Now, consider the protocol Il
resulting from applying SIGMAC to II; where we set the transcript core included in sid* to the
entire transcript. Let S’ be an attacker that has a shared key with C' and one with S (the two
keys may be random and independent) and interacts as a MitM between C' and S, acting as the
server with C' and as a client with S. S’ simply relays without modification the nonces chosen by
C and S. In addition, S’ forwards C’s signature on sid* to S but replaces the MAC generated by C
with a MAC computed by S’ on identities (C,S) using a MAC key derived from the PSK that S’
shares with S. As a result S ends its session with peer C but with a session key that is known to
S’ Note that if we add explicit authentication to II; by sending a MAC from the server to client
(using a key derived from the PSK) but this MAC is not included in sid* then the above attack
works as well. Moreover, as we will see in Section 4.2, in some cases even including the server’s
MAC under the signature is still not enough to provide MA security (in particular, this indicates
that the source of problem was not in the implicit authentication nature of II;).

Interestingly, this attack scenario was discovered by the Tamarin team [11] in their formal
analysis of an early draft of TLS 1.3, showing that this is not just an hypothetical concern but

something that can arise in practice.

SIGMAC security for DH-based protocols (and some more subtleties). An important
and extensive class of protocols where SIGMAC can be applied to lift a protocol from UA to MA
are protocols that provide forward secrecy by deriving the session key from a DH value ¢g*¥, where
g%, g¥ are exchanged between C' and S and ¢¥ is authenticated by S. We show in Section 4.1 that
defining sid* to include both values g%, ¢¥ is sufficient for SIGMAC to ensure MA security.

As yet another interesting subtlety regarding SIGMAC, we can show that without including ¢¥
under the client’s signature, MA-security is not guaranteed (this is somewhat counter-intuitive as
one could expect that signing the client’s message, with some freshness information from the server,
would suffice). For this we consider a simple UA protocol, namely, a DH exchange between C' and
S where the server signs the whole transcript. If g¥ is not included under the client’s signature, an
attacker S’ can change ¢¥ to g?¥ leading C to compute its MAC using a key derived from ¢?*¥ while
S derives the verification key from ¢*¥. Using ideas similar to the example used in [26] to show
the necessity of the PRF-ODH assumption in the analysis of TLS 1.2, one can build a KDF and
MAC so that the MAC computed on (chosen) values C' and S’ with a key derived from ¢%*¥ results
in the same MAC tag as when computed on values C and S with key derived from ¢*¥. Also, the
session key computed through the KDF is the same when derived from ¢*¥ and ¢?*Y. This results
in a UKS attack where both C' and S compute the same session key but while S binds it to peer
C, C binds it to peer S’ (which signed ¢g?¥). While clearly unnatural, this attack shows that if one
does not include ¢¥ in sid*, the SIGMAC compiler cannot be proved to work in this case (at least
without assuming additional properties of the KDF and MAC functions).

Implicit authentication and 0-RTT. We stress that SIGMAC applies to UA protocols in
the CK model which include both implicit and explicit authentication (and with or without key
confirmation)* and we have seen such examples above. An interesting application case is the 0-RTT

mode of TLS 1.3, a one-pass protocol with implicit server authentication. In Section 4.3, we discuss
the applicability SIGMAC to this case.

4 Transcript-Replication (Treplication) Security

As shown in Section 3.1, the information that needs to be signed by the client in the SIGMAC
compiler, namely sid*, plays an essential role in the security of the compiler. The value sid* is
comprised of the session id sid and a subset of transcript elements as defined next via the notion
of treplication security.

Definition 1 (Treplication security). We say that a UA protocol 11 is secure against transcript
replication (treplication) attacks with respect to a transcript subset T (called a transcript core)® if
any efficient UA-attacker S’ against I1 has only negligible probability to win the Test experiment on
a fresh session (S,sid) for which there is a session (C,S’,sid) with same session identifier sid and
same transcript core T as (S,sid), and where C' is a honest client.

4 With SIGMAC one gets explicit authentication and key confirmation on the client side.
5That is, we view the protocol transcript as an ordered set of (possibly optional) elements and define the transcript
core as a specified subset or projection.

10

Note that while S’ is given the same capabilities of a UA attacker and the same indistinguisha-
bility Test, the conditions for the choice of the test session are very different than in the regular UA
model (in particular, this is a server’s session, not a client’s one). Essentially, the requirement is
that if S” acts as a man-in-the-middle between honest parties C' and S but cannot change or choose
the session id sid and transcript core 7 sent between C and S, then S’ cannot learn information on
the session key computed by S. This requirement is incomparable to UA security, namely, it is not
implied by nor it implies UA security.

The importance of the treplication security notion is demonstrated by Theorem 6 where we
show that joint UA and treplication security suffices for the successful use of the SIGMAC compiler.
Here we prove some important classes of UA protocols to be treplication-secure (with respect to
specific defined transcript cores), hence upgradeable to mutual authentication via SIGMAC. These
protocols include those discussed in Section 3.1 and those with direct application to TLS 1.3 client
authentication (particularly to the PFS modes of the protocol as well as the non-PFS PSK mode
which also functions as session resumption).

4.1 Treplication security of Diffie-Hellman Protocols

In Section 3.1 we showed some of the subtleties arising in proving treplication security of DH
protocols. Here we show how such security can be achieved. We consider three cases: (i) plain DH
where ¢™¥ is only used to derive the session key; (ii) in addition to deriving the session key from
g™, additional keys used during the key exchange protocol itself are derived from g*¥ - however, we
assume that the session key is secure (indistinguishable from uniform) even if these additional keys
are provided to the attacker; (iii) the exponent x (and/or y) is used for additional computation
(not just for computing ¢g*¥). We note that case (i), while being the simplest and more natural, is
generally insufficient for addressing real-world protocols. Case (ii) is directly relevant to TLS 1.3
in its 1-RTT mode and in the pre-shared key mode with PFS (the additional g*¥-derived keys are
used for handshake traffic protection). Case (iii) would show up in a protocol like QUIC [27], or
a similar extension to TLS 1.3, where two DH keys involving ¢g* are derived: an ephemeral ¢*¥ as
well as a key ¢®° that combines ¢® with a public key ¢* of the server.

Lemma 2. Let II be a UA-secure Diffie-Hellman protocol of the above types over a group G. Then,
under the DDH assumption on G, 11 is treplication-secure if one defines the transcript core T to
include the session identifier sid of Il as well as the two DH values g* and gY.

Proof (sketch). Case (i): We sketch the proof of treplication security by reduction from DDH.
Let T'= (g%, ¢¥, g%) be a triple where g is a generator of G of order ¢ and either z = xy or z +R Z,.
Let S” be a treplication attacker against protocol IT with sid* defined to include the DH values
exchanged by the parties. We build a DDH distinguisher SIM that simulates a run of S’ against
I1. SIM chooses a honest server’s session at random as its guess for the test session (5, sid) to be
chosen by S’. By the rules of the replication game, the test session will have an incoming message
g” sent by a honest client C' and which S’ is not allowed to change. SIM also guesses which client
and session will send such a message and it uses ¢* from the triple T as this message. Similarly, S’
cannot change the response g¥ coming out of S, so SIM uses ¢g¥ from T for this purpose. If SIM has
all these guesses correct then the simulation of S’ is same as in the real protocol. SIM then uses g*
from the triple T to answer the test query of S’. Clearly, if z = xy the response corresponds to the

11

real session key while if z is random so is SIM’s response. In all, we get that the advantage of S’
in the treplication game is (up to a polynomial factor introduced by the guessing of test session)
the same as the distinguishing advantage in the DDH game, hence negligible.

Case (ii): Here, in addition to using ¢g™¥ to derive the session key, g™V is used to derive other
keys used during the execution of protocol II. We assume that the output from the key derivation
function KDF on either g*¥ or a random group element is pseudorandom. The proof is similar to
the above but we define a hybrid game where keys that are used during II's execution and which
include ¢*¥ in their derivation are replaced with random values. The hybrid game argument is
standard and omitted.

Case (iii): We consider a specific setting (e.g., QUIC) where parties compute two values from
which keys are derived: ¢™¥ and ¢*®, where ¢g° is the server’s static public key. Other cases can
be treated similarly. For this case we use a somewhat different but equivalent formulation of the
DDH assumption where a tuple (g%, ¢¥, 9%, %%, g*) with random z,y, s is given and the task is to
distinguish between the case where z = zy or z is random. Clearly, the addition of g%, g** does not
change the hardness of DDH as these two values can be “simulated” by choosing s and adding to
a regular DDH triple the values ¢g° and (¢”)°. The only change to the proof of case (i) is that we
now include gm/ in the input DDH tuple where gsl is the public key used by S’ in its attack. Given
gm/, the simulation can proceed as in the above lemma (one needs this value as input so that SIM
can follow the actions of C' which depend on g“/). O

4.2 Treplication security of Pre-Shared Key Protocols

Here we consider pre-shared key (PSK) key-exchange protocols, namely, protocols where the parties
use as their credentials a symmetric key they previously shared by some method (e.g., out-of-band
or a previous key exchange execution). We are interested in protocols that are UA-secure, hence we
assume the shared key to have been authenticated only by the server (TLS 1.3 resumption presents
such a case).

PSK protocols that offer forward secrecy (i.e., derive their session key through a DH exchange)
are treplication-secure under the conditions demonstrated earlier. Thus, here we focus on UA PSK
protocols without forward secrecy and investigate under which conditions they are treplication-
secure. We've seen in Section 3.1 that the basic implicitly-authenticated PSK protocol where the
parties exchange nonces and derive a session key from their PSK and nonces (without further
authentication) cannot be made treplication-secure even if the full transcript (the nonces in this
case) is included in sid*. Thus we consider an extension of this protocol that is UA-secure with
explicit authentication where S sends a MAC computed on the nonces with a MAC key derived
from the PSK (this MAC would correspond to the server’s Finished message in TLS). For the
moment we restrict the transcript to only include the random nonces of C' and S, denoted n¢, ng,
and the server’s MAC. We refer to this protocol as Basic-UA-PSK and define the whole transcript
as the transcript core 7.

Interestingly, this protocol is not treplication-secure for generic MAC functions. However, we
can prove its security under the following assumptions on the MAC function.

Definition 3. We say that a MAC function is collision safe if any efficient algorithm for choosing
keys K1, Ko has only negligible probability to find K1 # Ks such that for random nonces nc,ng

12

(chosen independently of the keys), it holds that MACk, (nc,ns) = MACk, (nc,ng).

Note that this property does not follow from the definition of a MAC function. For example,
there can be a secure MAC function where keys that differ only by the least significant bit produce
the same results, hence making it trivial to choose colliding keys K7, Ks. Yet for natural MAC
functions the above property is expected to hold. We note that in practical settings the finding
algorithm (in the treplication setting this algorithm corresponds to the attacker S’) may be further
limited in the choice of Ki, Ko, e.g., these keys may need to be set through the run of a key-
exchange protocol with honest parties (this is the case of the resumption protocols in TLS 1.3).
This weakens the requirement from the MAC function, yet, for simplicity and generality, we will
use the above more stringent definition.

Lemma 4. Protocol Basic-UA-PSK where the transcript core T includes the whole transcript (i.e.,
the parties’ nonces and the server’s MAC) is treplication-secure provided the MAC function in use
is collision safe.’

Proof: According to the definition of treplication security we have a setting where an attacker
S’ runs concurrent executions of protocol Basic-UA-PSK with honest parties C' and S, where S’
acts as server with C' and as a client with S. In the present case, S’ has a PSK K7 shared with C
and a PSK K5 shared with S where K; # K. Since the whole transcript is included under the
signed sid*, S” can only relay the messages between C and S. In particular, S’ must send as its
MAC value to C the same MAC value sent by S. However, while S computed the MAC with (a
key derived from) K, C' will check the MAC with (a key derived from) Ks. The only way S’ can
succeed is by finding keys K7, K5 that result in the same MAC value when applied on the nonces
chosen by the honest parties C' and S. By the collision safeness assumption of the MAC, there is
only negligible probability of the two MAC values be equal hence only negligible probability for S’
to win the treplication game. [J

We now consider more realistic extensions of Basic-UA-PSK where in addition to the nonces,
the parties exchange other information (e.g., algorithm negotiation or security parameters) which
may or may not be included under the server’s MAC. We denote by m¢ (resp. mg) the transcript
values (other than the nonces) sent by C' (resp. S) that are included under the server’s MAC.

Note that if the values m¢, mg are not included under sid* they may be chosen by S’ in a way
that can lead to a MAC collision (particularly if these values can be chosen after seeing the parties’
nonces). Namely, S’ can choose values m¢, mg that lead to a collision MACk, (n¢, ng, mg, mg) =
MACk, (n¢,ng, mc, mg). In particular, this is the case if the MAC is short, say 128 bits or even
96 bits as in some protocols and m¢, mg have enough entropy.” The solution to this attack avenue
is to define that all data included under the server’s MAC is also part of the transcript core, hence
included under sid* (so that S’ cannot choose this data; we note that values that are part of m¢e, mg
but that are of low entropy may be omitted from 7).

With the above precautions, Basic-UA-PSK remains treplication-secure even with additional
information exchanged between the parties and included under the server’s MAC.

5We exclude the case where the attacker has the same PSK key shared with both C' and S in which case a
transcript replication attack is unavoidable.

"We note that while short MACs have been the subject of attack for their wrong use in protocols - see [31, 7],
there is nothing inherently insecure in short MACs (of length not less than the security parameter) for the purpose
of message authentication.

13

Lemma 5. Consider a UA-secure PSK-based protocol I1 where parties exchange random nonces as
well as other information and the server computes a MAC (with a key derived from PSK) on the
nonces and possibly other information denoted mc, mg. Assume the MAC is collision safe when
applied to random nonces and to these values mc,mg. Then protocol 11 is treplication-secure if the
transcript core includes all information under the MAC.

4.3 One-pass (0-RTT) Protocols

TLS 1.3 supports a so called 0-RTT handshake consisting of a one-pass authenticated key-exchange
protocol where authentication is carried through the use of a pre-shared key that client and server
exchange in a previous regular handshake, typically with server-only authentication. In particular,
this mode is used to instantiate session resumption in TLS 1.3. The 0-RTT handshake essentially
consists of the client sending a key identifier (that allows the server to identify or compute the
pre-shared key K) and a nonce. The session key (used to immediately encrypt client’s data) is
derived from a combination of the key K and the client’s nonce. Note that there is no server’s
nonce assumed in the protocol which opens this mode to replay attacks. Here we discuss how client
authentication could be added to such a mode, although TLS 1.3 does not currently support client
authentication for 0-RTT.

We first note that one-pass protocols can be framed in the CK model through an adaptation as
presented in [18], and the above nonce-based protocol can be proven to be UA-secure in this model.
Thus, we can apply SIGMAC to this protocol MAC-ing the identities of C' and S (in the case of
TLS 1.3, the MAC would be implemented via the client’s Finished message that is part of the
0-RTT exchange) and signing the client’s nonce (which acts as sid). Note, however, that SIGMAC
assumes a server’s nonce which is not present here but this requirement can be relaxed if one accepts
replay attacks in the model (as in [18]). More fundamentally, the above one-pass protocol is not
treplication secure for reasons similar to (and more straightforward than) the interactive PSK case
discussed in Section 3.1. Specifically, the attacker S’ would establish separate pre-shared keys with
both C and S (with S’ acting as server and client, respectively) and later run a 0-RTT handshake
with both parties, relaying the client-chosen nonce to S. Clearly, S’ learns the key computed by S
as it knows the pre-shared key used by S, hence breaking treplication security.® Unfortunately, and
in contrast to the interactive PSK case treated earlier, this treplication insecurity cannot be fixed
without including the server’s identity (or a value derived from it, such as resumption_context
discussed before) in the transcript core. Thus, client authentication for 0-RTT would need to
include the server’s identity (and nonce) under the client’s signature. Fortunately, in the next
section we show that when the server’s identity is signed by C', SIGMAC ensures MA security even
if the base UA protocol is not treplication secure.

Finally, we comment on a variant of 0-RTT, not currently supported by TLS 1.3, that replaces
the pre-shared key with a server’s public key ¢g° (stored by the client) and an ephemeral value g*
provided by the client (see [25]). This mode is not treplication secure if the attacker S’ is allowed
to choose a public key related to that of a honest S (by reasons similar to the DH case treated in
Section 3.1, e.g., by S’ setting its public key to ¢?%). Yet, as in the above pre-shared key 0-RTT
case, one can leverage SIGMAC to provide MA security but only if one includes the server’s identity

8The attack is possible even if a nonce by S is involved and may even work if the key identifier is part of the
transcript core as long as S’ can choose the same key identifier as S did.

14

or a derived value such as resumption_context under the client’s signature.

5 Proof of the SIGMAC Compiler

We prove the security of the SIGMAC compiler defined in Section 3 for treplication-secure protocols.
We assume the MAC and signature functions used in SIGMAC to be secure in the standard chosen-
message unforgeability sense.

Theorem 6. Let II; be a secure unilaterally authenticated KE protocol that is also treplication-
secure with transcript core T and set sid* to the concatenation of the session id sid and 7. Then
protocol 1y resulting from the application of the SIGMAC compiler with this sid* is a secure mutually
authenticated KE protocol.

Before proving the theorem we recall some of the adversarial actions in each model and how
they differ in the case of IIy and Il,.

e Party activation for session initiation and message receiving/sending: This is same in II; and
I15 except for the CSM message sent by C' upon receiving the last message from S (in case C'
sends the last message in 1Ty then CSM is sent immediately after this last message).

e Party corruption: In both cases this includes revealing to the attacker all secret material of
the corrupted party (and subsequent full control of that party by the attacker). Note that in
the case of Ila, client corruption includes revealing the signing key of C.

e Reveal queries: This can be applied to any completed session (other than the test session) at
a honest party and returns the session key (note that the timing of completion for S may be
different in II; and IIy).

e Session tests: In II; session tests are only allowed against (C, S, sid) while in Il they are also
allowed against (.5, C,sid).

5.1 The simulator

For the proof of Theorem 6 we specify a simulator that given an MA-attacker Ay against protocol
II, it defines a UA-attacker A; against II; such that if Il wins a test session in Iy so does Ay
in IT;. The simulator SIM acts as the challenger (i.e., the orchestrator of the protocol run) for a
given MA-attacker A9 against protocol ITy and uses A9 actions to implement the UA-attacker Aq
against II;. We think of the parties running II; as real parties, with their own secret keys, and
those running Il as simulated by SIM with the same keys as in II; except for clients’ signature
keys (that exist in I but not in II;). The latter are chosen by SIM for honest clients in Iy while
public keys for corrupted parties are chosen by the attacker.

SIM implements the CSM message in Il as follows. Upon completion of a session (C, S, sid) by
a client C' in II;, SIM invokes A; to run a reveal query on that session to obtain the corresponding
session key K. From it, SIM derives keys K, and K, and uses K, and the signature key of C' to
compute the CSM message that it hands to As. Completion of sessions by honest parties in Il

15

is decided by SIM. In the case of a client, a session is completed if and only if the corresponding
session completes in II;. Completion of a session (S, C,sid) at a honest server in IIy depends on
receiving a valid CSM message, namely with a valid signature on sid* and the MAC under K,. If
this message is not originated with a honest client (e.g., it is sent by a corrupted client) then SIM
verifies it by invoking A; to reveal the corresponding completed server’s session (S,sid) in II; and
deriving K, from it. The validity of this action follows from Lemma 7 (c).

The actions of A; as decided by SIM mostly mimic those of A, with some important differences
in the handling of the corrupt, reveal and test queries that we specify next. After each action
we argue informally the validity of the action (showing that the attackers’ actions and views are
consistent with the protocol and the attack model). The formal proof of validity follows from
Lemma 7 below. Throughout, we say that keys K,, K5 in a session in Ils are consistent with a
session key K in Ily if K,, K, are derived from K using the KDF function.

1. When Aj corrupts a party, SIM invokes 4; to do the same. Ay receives the secret information
from this party as received by A; and, in the case of clients, it receives from SIM the party’s
signature key.

2. When A; reveals a session (C,S,sid) at honest client C' in Ils, SIM invokes .4; to reveal
(C,S,sid) in II;; A; is handed the session key K from II; while Ay is handed the derived
session key K from Il,.

e Validity (Lemma 7 (b)): We use the fact that these two sessions exist and complete
together and have consistent keys.

3. When Ay reveals a session (S, C,sid) at honest server S in IIy, SIM invokes A; to reveal
session (.9,sid) in II;; A; is handed session key K while Ay is handed the derived key K.

e Validity (Lemma 7 (c)): We use the fact that if S is honest and session (S, C,sid)
completes in IIy then session (9,sid) exists and completed in II;, and the two sessions
have consistent keys.

4. The processing of the Test query and test sessions is handled by SIM as follows. At the onset
of the protocol run, SIM selects a random session, called the guess session, from all sessions
to be created during the run of protocol Il under Ay (this assumes an a-priori bound on the
number of sessions to be created by As). If at any point, A9 issues an action that disqualifies
the guess session as a test session, SIM instructs A; to output a random bit b and aborts.
The guess session may be at a client or server:

(a) If the session is at a client, call it (C, S, sid), then as soon as Ay delivers the last incoming
message to this session (from server S), SIM invokes A; to deliver this last message
(which, if the guess session is correct, results in C' completing) and to issue a Test query
on (C,S,sid) in IIj.

(b) If the session is at a server, call it (S, C,sid), then as soon as Ay delivers the last message
from S to session (C,.S,sid), SIM invokes A; to deliver this last message and to issue a
Test query on (C, S,sid) in II;.

16

In both cases SIM learns from 4; the value of the real-or-random key K returned by the
Test query in II;. SIM derives from K keys K, and K and uses K, to compute the outgoing
CSM message from C in IIy and for checking the validity of a CSM message delivered by A,
to session (S, C,sid). When Aj issues a Test query against the guess session (at C or), SIM
provides K as the answer to that query.

e Validity: We will show that the test sessions invoked by Ay are valid test sessions under
Aj’s run and that K isreal if K is real and (pseudo) random otherwise. See Lemma 7 (f).

5. When A stops its run with an output bit b, SIM instructs A; to stop with the same bit.

e We need to show that A; wins whenever Az wins, hence proving that the advantage of
A against Ils is bounded (up to a polynomial factor induced by the probability of a
correct test session guess) by the advantage of A; against II;.

5.2 Validity of SIM’s actions

The proof of Theorem 6 uses the following properties of the simulator’s actions and those induced
on attacker A1, in particular showing the validity of these actions in the corresponding models.

Lemma 7. The following properties hold based on the simulation actions.

(a) 11y and Iy as run under Ay and As, respectively, have the same set of parties, including the
same honest and same corrupted parties.

(b) If C is honest, then when a session (C,S,sid) completes in Ila, a session (C, S,sid) exists and
has completed in 111; in particular, the two sessions have consistent session keys.

(¢) If S is honest, if a session (S,C,sid) completes in Ily then session (S,sid) exists and has
completed in Ily; in particular, the two sessions have consistent session keys.

(d) If (C, S,sid) is a valid test session chosen by A in Iy then, except for negligible probability,
(C, S,sid) is fresh in 111 and (by part (b)) the two sessions have consistent session keys.

(e) Assuming I1; is treplication-secure, if session (S, C,sid) is a valid test session chosen by A
in Iy, then, except for negligible probability, session (C,S,sid) exists, completes and is fresh
in I1I; and both sessions have consistent session keys.

(f) If the test session chosen by As in Iy is a valid test session and SIM guessed this session
correctly then, except for negligible probability, the test session chosen by SIM is a valid test
session under Ay’s run, and if the key K returned to Ay is real (resp. random) then K is
real (resp. pseudo-random,).

Proof: Claims (a)-(c) can be verified by simple inspection of the simulator actions.

Proof of part (d). By part (b), if (C,S,sid) completes in IT5 then it also completes in IT;. Thus, we
need to show that the validity of (C,S,sid) as a test session in IIy implies freshness of (C, S, sid)
in IT;. Since (C, S,sid) is fresh in I then C' and S are uncorrupted in Il and by part (a) they

17

are also uncorrupted in II;. In addition, since Az does not reveal (C,S,sid) in IIy, this session
is not revealed in II; as part of item 2 of the simulation. Nor is this session revealed in II; for
obtaining the key K, needed for simulating the CSM message (in this case, SIM derives K, from
the real-or-random key K). We conclude that (C, S,sid) is not exposed in IIj. It remains to show
that the matching session to (C,S,sid) in II;, namely, (5,sid), was not revealed. In Lemma 8 we
will prove that if both (S,sid) and (C, S,sid) completed in II; and (C, S,sid) is unrevealed in II;,
then in IIy either S did not complete session sid or, if it did, it completed it as (S, C,sid). Thus,
since (C, S,sid) is complete and unrevealed in II; (follows from (C,S,sid) being fresh in Ils), we
can apply Lemma 8 to show that if (S5,sid) completed in II; and in IIy, then in II it completed
with peer C (i.e., establishing session (.5, C,sid)). Thus, the only way (S, sid) would be revealed in
IT; is if (S, C,sid) was revealed in Ily; but this is not possible since (S, C,sid) is matching to the
fresh session (C, S, sid).

Proof of part (e). In Lemma 9 we show that, except for negligible probability, if (S, C,sid) is fresh
in IIy then (C,S,sid) exists and completes in IIy. In this case the sessions are matching hence
they have the same key. By part (b) above, we then have that (C,S,sid) completes in II; and
has consistent keys with (C, S,sid) in I, hence also consistent with the keys from (S, C,sid) in
II; (note that part (b) assumes C' to be honest which follows here from the fact that (S, C,sid)
is fresh in Ilp). It remains to show that (C,S,sid) is fresh in II;. First note that C' and S are
honest in Iy (follows from (.9, C,sid) being fresh in Ily), hence, by part (a) they are also honest in
IT;. Next, note that SIM does not reveal (C, S,sid) in IT; in order to obtain K, for simulating the
CSM message (for this session, SIM derives K, from the real-or-random K). Thus, the only case
in which (C, S,sid) would be revealed in II; is if A3 revealed it in IIs but this would contradict the
freshness of (S, C,sid) in IIy. Finally, the matching session of (C,S,sid) in II;, namely (5, sid), is
also unrevealed since such session can only be revealed if session sid of S in Ily is revealed. But
this session is (S, C,sid) which is fresh, hence unrevealed.

Proof of part (f). We assume that SIM does not abort, namely, it guesses correctly the test session.
In item 4 of the simulation, if the test session chosen by Aj in Ils is at a client, namely (C, S, sid),
then SIM chooses (C, S,sid) in II; as the test session. We show that if As’s choice of a test session
is valid, then, except for negligible probability, (C,S,sid) is a valid test session for A;. Indeed,
by Lemma 7 (b), if (C, S,sid) completed in Ilg, it also completed in II; and the two sessions have
consistent keys. By Lemma 7 (d), if (C, S,sid) is a valid test session in Il then (C,S,sid) is fresh
in ITy, hence a valid test session. If the test session chosen by A2 in Iy is a valid session (5, C,sid),
then we need to show that (C,S,sid) in II; is a valid test session for A;. Indeed, by Lemma 7 (e),
if (S, C,sid) is a valid test session in I then, except for negligible probability, (C, S, sid) is fresh in
II;, hence a valid test session, and the two sessions have consistent keys.

O

The next two lemmas, needed to complete the proof of Lemma 7 (parts (d) and (e)) and
Theorem 6, show, respectively, the need to include the identities C' and S under the CSM MAC.

Lemma 8. If C and S are honest, session (C, S,sid) is complete and unrevealed in 11y, and session
(S,sid) is complete in 1y, then in Il either S does not complete session sid or, if it does, it completes
it as (S, C,sid) (except for a negligible probability).

Proof: = We are interested in the case where (S,sid) and (C,S,sid) complete in II; (hence by
Lemma 7 (part b) (C,S,sid) also completes in IIz) and S completes session sid in Iy with some

18

peer C’. We need to show that C’ = C. Note that S will complete its session only if it received
a CSM message signed by C’ and with a MAC that included S and C’ (actually, for this lemma,
including S under the MAC is unnecessary so we will ignore it here). We assume C’ # C and
consider two cases: C’ is honest and C’ is corrupted.

Note that C' completed session (C, .S, sid) hence sid includes a random nonce chosen by C (fol-
lowing our convention that sid includes random nonces by the peers to the session). This means
that (up to a negligible nonce collision probability or signature forgery) no other honest party will
create such sid and, in particular, no honest client will sign such sid as part of sid*. Since, by
assumption, party C’ did sign sid* then C’ cannot be honest.

In the case where C’ is corrupted, we have that S got a CSM message with a signature of
a corrupted C’ on sid* (any C’ can do that) and a MAC on C’ under the key K, computed in
session (.9, sid). We show that such ability of C’ (i.e., of A2) to compute a MAC under K, (with
non-negligible probability) would allow SIM to make A; win in II; as soon as (.S, C’,sid) completes
in IIy by testing session (C,S,sid) in II;. Indeed, if the Test query on (C,S,sid) in II; returns
the real session key then, by assumption, As has non-negligible probability to compute the above
MAC. However, if the response is random then also K, in (C, S, sid) in II3 is random and by MAC
security Ag cannot compute MACk, (C’). So the ability to compute this MAC distinguishes the
real session key in II; from random with non-negligible probability, contradicting the UA-security
of I1;. It remains to show that (C, S,sid) can be chosen as the test session in Iy, namely, that it is
fresh at the time when (5, C’,sid) completes in II,. Since (C, S,sid) is complete and unrevealed in
IT;, we only need to show that its matching in IIy, namely (S, sid), is unrevealed. However, since
(S,sid) can only be revealed in II; after (S, C’,sid) is revealed in Ily, which can only happen after
(S, C’,sid) completed in IIg, then at the time that (S, C’,sid) completes, (S,C’,sid) is unrevealed
and so is (9, sid) in II;. O

Lemma 9. If Ty is treplication-secure and (S,C,sid) is fresh in Iy then, except for negligible
probability, (C, S,sid) exists and completes in 1.

Proof: Since (5, C,sid) completes in I, then S received a signature of C' on sid* and a MAC
on identities C' and S under the key K, of session (S, C,sid). Since C is honest, its signature on
sid*, if not forged, must have been generated by C after completing a session (C,S’,sid) for some
S’ If 8" = S then we are done showing that (C,S,sid) exists in IIy and is complete. If S' # S
then C' computed MACg, (C,S") but not MACg, (C,S) as received and verified by S. Since the
value MACg, (C, S) is delivered by Az, this constitutes a MAC forgery by Ay under key K,. We
show that such a forgery has negligible probability of success by showing a treplication attacker
that succeeds against protocol IIy with this same probability (and by treplication security this
probability is negligible).

We consider the UA attacker A; defined in the simulation of Section 5.1 as a treplication
attacker. By the above analysis, A; induced the creation of sessions (C,S’,sid) and (.5, sid) with
same session id sid and same sid*. To see that the two sessions have the same sid*, note that in the
CSM extension of the IIy run into a IIy run, S accepts the signature of C' on sid* (hence showing
that except for a signature forgery event both parties ended the II; run with the same view of sid*).
It remains to show that A; can win a Test experiment on (5, sid). Let K be the response to the test
query received by A;, namely, either the real session key computed by (.5, sid) or a random value.
To decide on “real” or “random”, A; completes a simulated run of Ay on IIs. When As delivers a

19

MAC value M as part of the CSM message into session (.9,sid), A; derives a key K, from K and
checks that M passes MACg, (C, S) verification. If so, A; guesses “real”, else it guesses "random”.
Thus, when K is random, the MAC is correct with negligible probability (by MAC security), while
if K isreal, a MAC is correct with the same probability of a successful MAC forgery by A;. Thus,
this probability is the same (up to negligible difference) as the treplication advantage of A, hence
negligible. [

5.3 Proof of Theorem 6

Consider simulation executions where SIM does not abort (i.e., SIM guesses correctly the test
session) and in which the negligible probability events from the proofs of Lemmas 8 and 9 do not
happen. In this case, Lemma 7 shows the validity of the actions of both adversaries, A; and As,
as set by the simulator actions, and their consistency with the UA and MA models, respectively.
In particular, the views of A; and A under the simulated games are exactly as those of a real
run of protocols II; and Ils, respectively. Thus, the winning probability of A5 is the same as in a
real run of protocol IIy and by Lemma 7 (part f) .A; wins its test session whenever A4y does. We
conclude that the winning advantage of A5 is upper bounded by that of A;. In all, we have that if
m is an upper bound on the number of sessions initiated by A, then the winning advantage of As
against Il is at most m times the winning advantage of A; against II; plus a negligible fraction.
Hence, if any UA-attacker A; against II; has only negligible advantage, then so is the case for any
MA-attacker Ay against IIs. This completes the proof of MA-security of the compiled protocol Il5.

Note on security quantification. The proofs of Lemmas 8 and 9 show events where the
selection of a test session for A; fails due to some adversarial action. The lemmas show these
events to have negligible probability. An examination of the proof shows this probability to be at
most 2 - (1 - €59 + €mac + €kdf) + €UA + €4 + €nc Where the € values denote the security of various
elements in the protocol: the unforgeability of the signature and MAC schemes used in SIGMAC,
the pseudorandomness of the KDF, the UA-security of protocol I, and the treplication security
of II; (these bounds represent the attackers’ advantage for a given time bound); €,. bounds the
probability of nonce collision among honest clients and n bounds the number of clients (the latter is
needed in the client’s signature-forging reduction for which one needs to guess the client in the test
session in order to embed the attacked signature key). The above expression is further multiplied
by factor m (denoting an upper bound on the number of sessions established by adversary A,
running against II) to account for the probability 1/m that SIM does not abort its run, namely,
it guesses correctly the session that A4, will choose as its test session.”

Note on signing S and C. Inspection of the proof of Lemma 9 shows that if the server’s
identity S is included under sid*, i.e., signed by the client, then there is no need to include that
identity under the MAC or to resort to treplication security. Yet, our results show that if signing
this identity is omitted (for privacy reasons or simply because the identity is not part of the signed
transcript - as in the resumption mode of TLS 1.3) its inclusion under the MAC is sufficient. As
for the client’s identity, we note that including this identity under the client’s signature but not
under a MAC would fail to provide MA security.

9This may result in a m - n factor multiplying €s;, but in this case one can set m to be the maximal number of
sessions established by a single client rather than representing the total number of sessions.

20

6 Post-Handshake and Encrypted Authentication

In this section we adapt the analysis of the SIGMAC compiler to some specific settings arising in
the ongoing specification of TLS 1.3 [33]. We also introduce the functional CK model which may
be of independent interest.

The SIGMAC compiler as analyzed in previous sections can be readily applied in the context
of TLS 1.3 in the case that the client sends its authentication message (the signature and Finished
message, or CSM in our terminology'’) in the third handshake flight, i.e., immediately upon ver-
ification of server authentication. However, TLS 1.3 also includes some cases where the SIGMAC
analysis from Section 5 does not apply directly. We identify three such cases. The first considers
the fact that TLS 1.3 always encrypts the CSM message for reasons of identity protection. In
the regular handshake case, the encryption key, or “handshake transport key (HTK)”, is derived
from the same intermediate key from which K, and K are derived, and by the properties of the
key derivation function HTK is (computationally) independent from K, and K. Extending the
SIGMAC proof for this case is immediate: the simulator derives the HTK key from the UA session
key K, as it does with K, and K, and uses it to encrypt/decrypt the CSM message. Due to the
independence of HTK from K, and Kj, the proof holds with minor adjustments.

In the second case the CSM message is also encrypted but in this case the encryption uses
the same key K, that the protocol outputs as the session key. This immediately violates key
indistinguishability since by the time the client establishes the session key (which is when the key
can be tested for indistinguishability), this key has been used already. We show how to adapt
the analysis of SIGMAC to this case, at the cost of reducing the security guarantee. Rather than
ensuring generic security of Ky (as induced by the regular indistinguishability property of key-
exchange protocols), we show that K can be used as a key to an authenticated encryption scheme
for implementing secure channels. Our analysis is general and can be applied to different modelings
of secure channels (e.g. [20, 15]) as well as to other applications of the session key'! as long as the
security of such application is not voided by the use of K for encrypting CSM. Our formalization
introduces the notion of functional tests (Section 6.1) that abstracts out details of applications and
implementations.

The third case is the so called “post-handshake client authentication”. Here, the client authenti-
cates with a CSM message but only after the server and client have already exchanged application
data (i.e., record layer communication in the TLS context) protected with the session key K.
The encrypted data exchange starts after the parties compute the session key but before the client
authenticates. This raises questions about the notion of security that can be claimed and the level
of protection provided to the exchanged data (to which we will refer as pre-authentication data).
One can see that since the handshake protocol without client authentication provides unilateral
authentication, then the data gets the assurance of unilateral authentication (server authentication
in the case of TLS). However, the SIGMAC analysis from previous sections showing that the CSM
message upgrades the protocol to MA security does not hold anymore once the session key K
is used to protect data before CSM is delivered and verified. Yet, we are able to show that the

10WWe take the liberty of referring to the signature and MAC combination used in TLS 1.3 as “the CSM message”.

"1n the case of TLS 1.3, such applications may include the derivation/update of keys or the issuing of resumption
keys via a New Session Ticket Message. Here the session key can be the application key or other keys computed in
the protocol such as the exporter master secret.

21

CSM message does provide mutual authentication of the exchanged data but only in the sense of
secure channels, and only after the CSM message is verified by the server. Namely, the parties get
the guarantee (delayed for the server) that only the named party that passed authentication can
authenticate and decrypt the exchanged information (including data sent before client authentica-
tion). Here too, our treatment via functional tests adds generality and allows us to abstract the
details of the secure channels modeling and implementation.

Finally, combining the last two cases one obtains secure channels security for the case (also in
TLS 1.3) where in addition to the exchange of pre-authentication data, the post-handshake CSM
message itself is encrypted with the session key.

Fortunately, we can address all these scenarios with simple adaptations of the analysis of the
SIGMAC compiler. We do so in the following subsections.

6.1 Functional Queries and Functional Tests

Since our goal is to show that the above authentication variants are sufficient to ensure “secure
channels” functionality, it is worth recalling how such functionality is modeled. Take as example
the ACCE model of Jager et al. [20] that has been used to prove security of several variants of
TLS 1.2. Such model extends the usual key exchange security formalism with the ability of the
attacker to run Encrypt and Decrypt queries on messages of its choice where the session key (or keys
derived from it) serves as the authenticated encryption key. In addition, to capture the inability
of the attacker to subvert the desired secure channels functionality, the attacker is tested through
a dedicated game that replaces the standard indistinguishability test of key exchange models. In
the ACCE model this test is adapted from the treatment of stateful authenticated encryption by
Paterson et al. [31]. Other secure channels models differ in their details and scope but they follow
a similar approach.

To increase generality and simplicity, our treatment abstracts out the details of implementation
of secure channels, framing the above model ingredients in an abstract way. That is, we extend the
capabilities of a key exchange attacker with the ability to query abstract “functional queries” on
session keys and we replace the usual indistinguishability test with an abstract “functional test” that
is run on a session chosen by the attacker (the “test session”) and where the input to the test is the
test session key. The only condition on such a test is that if one replaces the input session key with
a random independent key, then the advantage of the attacker in winning the test is negligible. The
ACCE model is an instantiation of this abstract framework where the functional queries represent
the Encrypt/Decrypt queries and the session key experiment is modeled as a stateful authenticated
encryption test (note that this test has the required property from a functional test, namely, if
the authenticated encryption scheme is keyed with a random value then the attacker has negligible
advantage in winning the ACCE game). This abstraction frees our analysis from dealing with
specific details and models while at the same time adding generality. For example, one can use this
abstraction to reason about whether a session key used to protect key exchange messages may still
be secure for another purpose (say, to derive other keys) or whether a late client authentication
implies authentication of keys derived prior to the authentication (e.g., a resumption key in TLS
1.3).

Functional family F. Let F' be a parametrized family of (possibly randomized) functions that

22

accept a single input to which we refer as a session key. Given a parameter p and a session key k,
fp denotes a member of F' and f,(k) denotes an output distribution (or, more commonly, it denotes
a specific value sampled from that distribution).

Functional queries and tests. We present a modification of the CK model of key exchange
security [9] (which we recalled in Section 2). The only changes to the model are as follows (we refer
by Ap to the attacker in this setting):

e We add a new adversarial query type, called a functional query FQuery, associated to a
functional family F. Ap can issue FQuery against any session eligible for a Reveal query and
also against the test session. In it, Apr provides a session identifier, a parameter p and gets
back f,(k) where f, is an element of F' and k is the session key of the named session.

e We change the test session experiment: A test session can be chosen under the same rules
as in the CK model but the regular indistinguishability-based Test query is replaced with a
functional test FTest. This can be an arbitrary test taking the form of an interactive game
between a challenger and attacker Ap, where the challenger’s input is the test session key
and a random bit b, and the output of Ap is a bit . We say that Ap wins if b = &’. The
only condition on a functional test is that if one replaces the input to the challenger with a
random independent key then the advantage of Ar in winning the game is negligible.

We allow the functional queries to use a shared state (formally accommodated through the
parameter p that can be seen as a generalized second input to the function) and also allow the
functional test to share such state. This adds generality to our treatment and is needed, in partic-
ular, for the formalization of stateful authenticated encryption as used in the definition of ACCE
security.

Functional CK model. The security definition in this functional model remains the same as
in the original CK model (end of Section 2.1) except that the notion of winning for the attacker
changes from the indistinguishability Test experiment to a given functional test FTest. We will refer
to this notion as Functional CK security and we will denote the MA and UA variants by F-MA
and F-UA (as in the regular CK model of Section 2, the main difference between UA and MA is
that only clients have a defined peer and only client sessions can be chosen as test sessions).

Remark: For sessions other than the test session, the functional queries seem redundant as the
attacker can always query these sessions via a SK reveal query and compute the functional query
by itself. However, note that information learned via functional queries on a session can help the
attacker choose that session as the test session (running a reveal query on a session would disqualify
that session for testing). Moreover, quantifying security via the number of functional queries in an
attack (e.g., number of encrypt and decrypt queries) can be an important measure. On the other
hand, one may simplify the model by assuming that the attacker chooses its test session at random
(at the cost of a number-of-sessions factor loss in the attacker’s advantage) in which case functional
queries are not needed, except for the test session and as part of defining a functional test.

Remark: We note that the above formalism via a bit-guessing game can be generalized. First,
one can replace such a game with any experiment (not necessarily bit-guessing) where the winning
probability of Az on a run over a random independent key is negligible. Second, it would be enough

23

to require that the difference between the success of the attacker on a run over the real session
key be negligibly higher than on a run over a random key (even if the latter case is not in itself
negligible). Finally, note that the functional approach can be applied to other key exchange models
such as the Bellare-Rogaway [1]; a notion similar to functional queries was considered by Shoup [34].
One may also be able to use the "suitable for” notion from Brzuska et al. [8] as a replacement for
our functional tests. The two notions differ in their approaches but have a motivation in common,
namely, replacing pure key indistinguishability with more limited functionalities where the use of
the session key during the KE process does not void the security of the task at hand.

Secure channels via functional security. As discussed above, we are interested in freeing our
results from the specific details of a secure channels model or its implementation. The idea is that
any such formalism can be framed via the above functional model. Specifically, when referring to
secure channels we will define two abstract functional queries, Encrypt and Decrypt, and will assume
a given functional test. Encrypt and Decrypt will have the regular functionality of encrypting and
decrypting messages but their implementation can take different forms (e.g., they can be defined via
general authenticated encryption or with a more specific scheme, they can be stateless or stateful,
apply to full messages or fragments, etc.). The functional test can also take different forms, e.g.
[20, 15]. For example, [20] defines its model, ACCE security, through a semantic security game that
mimics the game used to define the security of the underlying (stateful) authenticated encryption
scheme [31] and relies on the fact that no attacker can win the latter game if the key in use is fresh
and random. Our formalism can represent such a model by instantiating the functional test via
this particular ACCE game.

6.2 SIGMAC with encrypted CSM

We consider a variant of the SIGMAC compiler in which the CSM message is encrypted with
the session key K, from the same session to which the CSM message belongs. We show that
any application whose security can be defined via a functional test as in Section 6.1, and where
the encryption and decryption of CSM are included in the functional queries of the model, enjoys
mutual authentication in the sense of F-MA. As an application, instantiating our abstract formalism
with a secure channels model (e.g., [20, 15]), we get that the session key validated via SIGMAC
with encrypted CSM implements secure channels with mutual authentication (it is assumed that
the secure channels mechanism enforces domain separation between the encryption of CSM and
encryption of application data, for example as the ACCE model does via stateful encryption).

Let IIy" be a protocol resulting from applying SIGMAC with encrypted CSM to a UA-secure
IT; protocol. (It is possible to include further information under this encryption such as the client’s
identity or certificate to protect it from eavesdroppers.) The encryption of CSM is generated by the
client and the corresponding decryption and verification is performed by the receiving server. We
prove this modified compiler following the original proof of Theorem 6 but we replace the regular
indistinguishability-based security test with a functional test as defined in Section 6.1; we also
assume Encrypt and Decrypt operations as part of the allowed functional queries'?. We prove:

12Note that the attacker does not provide the message CSM for encryption, but rather the functional query is
defined as the application of Encrypt to the value CSM generated by the client and possibly unknown to the attacker.

24

Lemma 10. The SIGMAC compiler with message CSM encrypted under session key K and applied
to a treplication-secure UA-secure protocol (under the conditions of Theorem 6) results in a F-MA-
secure protocol where the session indistinguishability test is replaced with a functional test (defined
by the protocol) and the Encrypt and Decrypt operations applied to CSM are considered as valid
functional queries on session key K.

Proof (sketch). The proof follows the same simulation argument as the proof of Theorem 6 with
two important adjustments. The first refers to the handling of CSM encryption and decryption.
As before, SIM learns keys K and K, by invoking A; to issue reveal queries to the appropriate
sessions, but now SIM also uses K to encrypt outgoing CSM messages from client’s sessions as well
as to decrypt incoming CSM messages in servers’ sessions. The second change regards replacing
the Test query in the original model with a functional test FTest defined by the protocol. The
actions of SIM related to the choice and handling of the test session are the same as in the original
simulation’s step 4 with the addition that the key K derived from the real-or-random key K (that
A, received as a response to its Test query) is now used also for the encryption and decryption of
the CSM message. When F-MA attacker Ay’ running against ITy’ chooses its test session (if this is
not the guess session then SIM aborts) and issues a FTest query, SIM chooses a random bit b and
uses this bit and the real-or-random K as its inputs to the functional test experiment. When A5’
stops with output bit &', SIM instructs A; to output “real” if b = b/ and “random” otherwise.

We have that in the case that K is real then the run of As’ as orchestrated by SIM corresponds
to a real run of As’. If we assume that As’ wins the real game with non-negligible advantage then
this is the case here when K is real. On the other hand, if K is random, then A5’ is being tested on
a functional test with a (pseudo) random key, hence by definition, A5’ has only negligible winning
advantage. This translates into a non-negligible advantage of A; in responding correctly to the
real-or-random test, in contradiction to the UA-security of II;. The formalization of this argument
is standard and omitted from this proof outline.

0

Application to ACCE security. As previously stated our functional security model allows us
to frame secure channel formalisms. One specific instance is the ACCE model from [20] that has
been successfully applied to the analysis of TLS protocols (but see the refined definitions of [15]).
We omit the ACCE details here and informally claim the following corollary. Please consult [20]
for the model (including a definition of pre-accept and post-accept phases), the definition of the
Encrypt and Decrypt operations (that we represent as functional queries), and their security game
that instantiates our functional test.

Corollary 11 (informal). Let IT be a protocol resulting from the application of the SIGMAC com-
piler with encrypted CSM to a treplication-secure UA-secure protocol, and let Encrypt and Decrypt
denote a stateful encryption scheme as considered by the ACCE model [20]. Consider protocol TI'
that runs I1 in the pre-accept phase of ACCE and uses the resultant session key as the key for the
Encrypt and Decrypt operations in the post-accept phase as well as for the encryption of CSM 3.
Then, II' is secure according to the (mutual authentication) ACCE model.

131t is assumed that the Encrypt state is initialized and used first for encrypting the CSM message and then applied
to messages exchanged in the post-accept phase.

25

6.3 Security under post-handshake authentication

Here we address the third case discussed in this section’s introduction, namely, where data protected
under the session key is exchanged between server and client after the server computed the session
key but before the client sends the CSM message. This case, known as “post-handshake client
authentication” in the context of TLS 1.3, requires a weakening of the security guarantees as the
early use of the session key voids key indistinguishability. Clearly, since the protocol is UA-secure
even without the CSM message then the data exchanged prior to the sending of CSM is UA-secure.
But what notion of security can one claim once the client authenticates? Fortunately, using a
simple adaptation of the proof of the SIGMAC compiler to the present setting, we are able to show
that the data exchanged before the sending of CSM (as well as later data) can be considered to
be protected by mutually authenticated secure channels, with the assurance for the server delayed
until it verifies the client’s CSM message. We frame this result in our more general functional
setting (Section 6.1).

Let Iy be a protocol resulting from applying SIGMAC to a UA-secure protocol II;, namely,
Iy consists of running II; and adding to it the CSM message from client to server with a defined
sid* value. Let Iy’ be a modification of II, where between the last message of II; and the CSM
message from the client, data (referred to as pre-authentication data) is exchanged encrypted under
the session key K generated at the end of the II; run. We frame this protocol in our functional
setting by modeling the encryption and decryption operations applied to the pre-authentication
data with abstract Encrypt and Decrypt functional queries.

We say that a functional test is consistent with a set of functional queries if the advantage of
any adversary to win the test with a random key remains negligible even when allowed to issue
functional queries from this set.

Lemma 12. Given a treplication-secure UA protocol 11} (i.e., one that satisfies the conditions
of Theorem 6), Protocol Tls’ as defined above is F-MA-secure with respect to any functional test
consistent with the Encrypt and Decrypt functional queries defined by the protocol.

Proof (sketch). The proof follows the original proof of Theorem 6 with some important
adjustments in the simulator SIM’s actions. When the F-MA attacker Ay’ against IIy" invokes an
Encrypt or Decrypt query at a non-test session (5,sid), then do nothing if the session is not yet
complete. Else, reveal the session and use its value K with the Encrypt/Decrypt queries (if K
was previously revealed, use it). Similarly, for queries issued at a (C, S, sid) session, SIM reveals
that session to obtain K, and respond to the queries. When Ay’ invokes (C, S, sid) to send CSM,
reveal this session if K, is not yet revealed. The guessed test session is chosen as in the proof of
Theorem 6. If it is of the form (C,S,sid) or (S,C,sid), as soon as the server sends its last UA
message in session (S,sid), SIM delivers this message to C' and invokes A; to issue Test against
session (C, S,sid) in II;. Let K be the response to that query (i.e., the real-or-random key). SIM
derives from it keys K, and K, and uses K to respond to functional queries Encrypt and Decrypt
against the test session. When attacker Ay’ chooses its test session (if this is not the guess session
then SIM aborts) and issues a FTest query, SIM chooses a random bit b and uses this bit and K,
derived from the real-or-random K, as its inputs to the functional test experiment. When Ay stops
with output bit &', SIM instructs A; to output “real” if b = b’ and “random” otherwise.

We have that in the case that K is real (and so is K;) then the run of Ao’ as orchestrated

26

by SIM corresponds to a real run of Ay’ against protocol Ily'. If we assume that Ay’ wins the
real game with non-negligible advantage then this is the case here when K is real. On the other
hand, if K is random, then Ay’ is being tested on a functional test with a (pseudo) random key
K, hence by definition, A5’ has only negligible winning advantage. This translates into a non-
negligible advantage of A; in responding correctly to the real-or-random test, in contradiction to
the UA-security of ITy. The formalization of this argument is standard and omitted from this proof
outline. [

Application to ACCE security. A corollary of this lemma is that if we instantiate the func-
tional test with a security experiment for a given “secure channels” model then we obtain that the
encrypted pre-authentication data attains the same protection as guaranteed by the secure channels
model. Ilustrating this in the ACCE model [20] needs some adjustment since ACCE separates key
exchange (pre-accept phase) and encrypted message exchange (post-accept phase) while in our case
these two are interleaved. What we are really interested in is the security of the encrypted message
exchange protocol. To capture the latter form of security we could model the pre-accept phase with
an (idealized) trusted distribution of pairwise session keys between honest parties. If a post-accept
message exchange protocol has the property that when coupled with the idealized key exchange
results in an ACCE secure protocol then we say that the message exchange protocol is post-accept
ACCE secure. In this setting, what the above lemma says is that the encrypted pre-authentication
data in protocol IIy’ is post-accept ACCE secure. (Note that the ACCE model is defined with
mutual authentication which is ensured here, although the assurance for the server is delayed until
it verifies the client’s CSM message.) We omit a more formal treatment here.

On multiple client authentications. TLS 1.3 allows for multiple post-handshake client au-
thentication executions, with same or different client certificates, in the same session. The above
results can be applied also to this context. We note, however, that if the same client certificate is
used repeatedly then there must be a new server’s nonce (or other freshness value) included under
the signature and MAC or otherwise a trivial replay attack applies. TLS 1.3 includes such a value,
called a certificate_request_context.

6.3.1 Security under post-handshake authentication with encrypted CSM.

One can extend the result from Lemma 12 to the case where in addition to the encryption of pre-
authentication data, the CSM message itself is encrypted as in Section 6.2 (this corresponds to the
TLS 1.3 specification). The simulation combines the simulators from the proofs of Lemma 10 and
Lemma 12 using the key K to encrypt both pre-authentication data and the CSM message. Note
that the encrypted CSM is delivered only after the encryption of pre-authentication data, hence
in a stateful encryption its ciphertext will depend on prior encryptions. The simulation will also
deliver the encrypted CSM at this time, hence it will encrypt it correctly (a crucial point is that
there is no need to send CSM out of order in the simulation).

27

Acknowledgment.

This paper has benefited enormously from collaboration with Eric Rescorla and Hoeteck Wee on the
ongoing design of TLS 1.3, and from enlightening inputs from Bjorn Tackmann, Douglas Stebila,
Felix Giinther, Karthik Bhargavan, Kenny Paterson, Markulf Kohlweiss and many of the other
participants in the TRON workshop and the TLS working group.

References

[1]

9]
[10]
11]
12]
13]
[14]

[15]

M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson, editor,
CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 232-249. Springer, 1993. ISBN
3-540-57766-1.

M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of authen-
tication and key exchange protocols (extended abstract). In 30th ACM STOC, pages 419-428. ACM
Press, May 1998.

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub,
and J. K. Zinzindohoue. A messy state of the union: Taming the composite state machines of TLS. In
IEEE Symposium on Security and Privacy, 2015.

K. Bhargavan and G. Leurent. Transcript collision attacks: Breaking authentication in tls, IKE and SSH.
In 28nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, Cali-
fornia, USA, February 21-24, 2016. The Internet Society, 2016. URL http://www.internetsociety.
org/events/ndss-symposium-2016.

K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub. Implementing TLS with verified
cryptographic security. In IEEE Symposium on Security and Privacy, 2013. URL http://mitls.rocq.
inria.fr/.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P. Strub. Triple handshakes and cookie
cutters: Breaking and fixing authentication over TLS. In 2014 IEEE Symposium on Security and
Privacy, SP, pages 98113, 2014.

K. Bhargavan, A. Delignat-Lavaud, and A. Pironti. Verified contributive channel bindings for compound
authentication. In NDSS, 2015.

C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi, and S. C. Williams. Less is more: relaxed yet
composable security notions for key exchange. Int. J. Inf. Sec., 12(4):267-297, 2013. Cryptology ePrint
Archive, Report 2012/242.

R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In EUROCRYPT, pages 453-474, 2001. See also Cryptology ePrint Archive, Report 2001/040.

R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels. In
EUROCRYPT, pages 337-351, 2002. See also Cryptology ePrint Archive, Report 2002/059.

C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated verification of TLS 1.3: 0-RTT,
resumption and delayed authentication. In IEEE S&P 2016., 2016.

B. Dowling, M. Fischlin, F. Giinther, and D. Stebila. A cryptographic analysis of the TLS 1.3 handshake
protocol candidates. In ACM CCS, 2015. Also, Cryptology ePrint Archive, Report 2015/914.

B. Dowling, M. Fischlin, F. Giinther, and D. Stebila. A cryptographic analysis of the TLS 1.3 draft-10
full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081, 2016.

M. Fischlin and F. Giinther. Multi-stage key exchange and the case of Google’s QUIC protocol. In
ACM CCS, pages 1193-1204, 2014.

M. Fischlin, F. Ginther, G. A. Marson, and K. G. Paterson. Data is a stream: Security of stream-based

28

http://www.internetsociety.org/events/ndss-symposium-2016
http://www.internetsociety.org/events/ndss-symposium-2016
http://mitls.rocq.inria.fr/
http://mitls.rocq.inria.fr/

channels. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 545-564. Springer, Heidelberg, Aug. 2015. doi: 10.1007/978-3-662-43000-7_27.

1. Goldberg, D. Stebila, and B. Ustaoglu. Anonymity and one-way authentication in key exchange
protocols. Des. Codes Cryptography, 67(2):245-269, 2013. doi: 10.1007/s10623-011-9604-z. URL
http://dx.doi.org/10.1007/510623-011-9604-z.

S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM Transactions on
Information and System Security, 2(3):230-268, Aug. 1999.

S. Halevi and H. Krawczyk. One-pass HMQV and asymmetric key-wrapping. In PKC 2011, pages
317-334, 2011.

T. Jager, F. Kohlar, S. Schige, and J. Schwenk. Generic compilers for authenticated key exchange. In
M. Abe, editor, ASTACRYPT 2010, volume 6477 of LNCS, pages 232-249. Springer, Heidelberg, Dec.
2010.

T. Jager, F. Kohlar, S. Schige, and J. Schwenk. On the security of TLS-DHE in the standard model.
In CRYPTO, pages 273-293, 2012. Also Cryptology ePrint Archive, Report 2011/219.

F. Kohlar, S. Schige, and J. Schwenk. On the security of TLS-DH and TLS-RSA in the standard model.
Cryptology ePrint Archive, Report 2013/367, 2013. http://eprint.iacr.org/.

M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and D. Venturi. (De-)constructing TLS. Cryptology
ePrint Archive, Report 2014/020, 2014. revised Apr 2015.

M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, and D. Venturi. (de-)constructing TLS 1.3. In
Progress in Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryptology in India,
Bangalore, India, December 6-9, 2015, Proceedings, pages 85-102, 2015.

H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in
the IKE protocols. In CRYPTO, pages 400-425, 2003.

H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. In FuroSéP, 2016.

H. Krawczyk, K. G. Paterson, and H. Wee. On the security of the TLS protocol: A systematic analysis.
In CRYPTO (1), pages 429-448, 2013. Also, Cryptology ePrint Archive, Report 2013/339.

A. Langley and W.-T. Chang. QUIC crypto, 2013. URL http://tinyurl.com/lrrjyjs.

R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru. How secure and quick is QUIC? Provable security
and performance analyses. In IEEE Symposium on Security and Privacy, pages 214-231, 2015.

U. Maurer, B. Tackmann, and S. Coretti. Key exchange with unilateral authentication: Composable
security definition and modular protocol design. JACR Cryptology ePrint Archive, 2013:555, 2013. URL
http://eprint.iacr.org/2013/555.

P. Morrissey, N. P. Smart, and B. Warinschi. A modular security analysis of the TLS handshake
protocol. In ASIACRYPT, pages 55-73, 2008.

K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and proofs for the
TLS record protocol. In ASTACRYPT, pages 372-389, 2011.

M. D. Raimondo, R. Gennaro, and H. Krawczyk. Deniable authentication and key exchange. In ACM
CCS, 2006.

E. Rescorla. The transport layer security (TLS) protocol version 1.3 (draft 13), Dec. 2015. URL
https://tools.ietf.org/html/draft-ietf-tls-tls13-13.

V. Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report 1999/012,
1999. http://eprint.iacr.org/.

29

http://dx.doi.org/10.1007/s10623-011-9604-z
http://eprint.iacr.org/
http://tinyurl.com/lrrjyjs
http://eprint.iacr.org/2013/555
https://tools.ietf.org/html/draft-ietf-tls-tls13-13
http://eprint.iacr.org/

	Introduction
	Unilateral and mutually authenticated key-exchange models
	Mutual Authentication (MA) Model
	Unilateral Authentication (UA) KE Model

	The SIGMAC Compiler
	Rationale and examples

	Transcript-Replication (Treplication) Security
	Treplication security of Diffie-Hellman Protocols
	Treplication security of Pre-Shared Key Protocols
	One-pass (0-RTT) Protocols

	Proof of the SIGMAC Compiler
	The simulator
	Validity of SIM's actions
	Proof of Theorem 6

	Post-Handshake and Encrypted Authentication
	Functional Queries and Functional Tests
	SIGMAC with encrypted CSM
	Security under post-handshake authentication
	Security under post-handshake authentication with encrypted CSM.

