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Abstract—Elliptic Curve Cryptography (ECC) has gained
much recognition over the last decades and has established itself
among the well known public-key cryptography schemes, not
least due its smaller key size and relatively lower computational
effort compared to RSA. The wide employment of Elliptic Curve
Cryptography in many different application areas has been
leading to a variety of implementation types and domains ranging
from pure software approaches over hardware implemenations
to hardware/software co-designs. The following review provides
an overview of state of the art hardware implemenations of ECC,
specifically in regard to their targeted design goals. In this context
the suitability of the hardware/software approach in regard to the
security challenges opposed by the low-end embedded devices of
the Internet of Things is briefly examined. The paper also outlines
ECC’s vulnerability against quantum attacks and references one
possible solution to that problem.

Index Terms—Elliptic Curve Cryptography, public key, cryp-
toprocessor, cryptographic coprocessor, instruction set extension,
hardware/software codesign

I. INTRODUCTION

Elliptic curve cryptography (ECC) has gained much recog-
nition over the last decades and has established itself among
the well known public-key cryptography schemes. The fact
that ECC can have smaller key sizes than RSA, while main-
taining comparable levels of security, makes it well suited
for use in a variety of application areas [1]. Being deployed
to effectively provide a means of public-key encryption, key
establishment or signature schemes it can drastically enhance
the overall security level of an application. The benefits of
ECC gave rise to a variety of applications areas ranging from
securing internet protocols such as HTTPS or SSH over inter-
net currencies such as Bitcoin1 to embedded systems in form
of smart cards, RFID devices and wireless sensor networks
[2]. The numerous application areas and environments lead
to different forms of implementation, each of them tailored
towards the specific use-case and optimized in some manner,
be it cost, area, performance or energy efficiency.

The performance of Elliptic Curve Cryptography systems is
determined by the efficient implementation of the arithmetic in
the underlying finite field [3]. ECC systems that are completely
realized in software offer lowest cost and a high degree of
flexibility [4]. They can effectively adapt to changes in current
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standards, making them well suited for fast prototyping. De-
tailed information about efficient software implementations of
ECC can be found in [5]. However these are usually of several
orders slower than hardware implementations which makes
their use impractical for applications in time-constrained
computing environments that require fast responsiveness and
processing. Under these restrictions hardware implementations
turn out to be the more suited alternative. There are mainly two
approaches to adapt ECC into hardware. The first approach
uses dedicated hardware in form of a coprocessor or hardware
acceleration block. This application specific and modular
hardware design can achieve extraordinary performance and
offers high reliability but comes with higher cost due to the
need of additional hardware. The second approach enhances
an existing processor architecture by extending its instruction
set to speed up certain operations of finite field arithmetic.
This is often referred to as a hardware/software co-design as
the ECC scheme is implemented by combining both domains
[6].

Existing designs mostly vary in the underlying finite field
(GF (2m) and GF (p)), implementation of the arithmetic al-
gorithms in these fields and key sizes. The following review
provides an overview of current hardware implementations
of ECC. Both dedicated hardware in form of a coprocessor
and the hardware/software co-approach realized through an
enhanced architecture is examined. Section II presents a brief
introduction to the theoretical background and motivation for
Elliptic Curve Cryptography. Section III gives an overview
of state of the art implementations of cryptographic copro-
cessors followed by reviewing current architectures for hard-
ware/software co-design in section IV. Having talked about
the vulnerability of ECC systems against quantum attacks in
section V the conclusion in section VI provides a summary of
ECC and gives glimpse of future application areas.

II. THEORETICAL BACKGROUND AND MOTIVATION

The Elliptic Curve Cryptography scheme is built on the
mathematical properties of elliptic curves and was proposed
by Victor Miller [7] and Neal Koblitz [8] in 1985. An elliptic
curve over any field K can be defined as the set of all solutions
(x, y) ∈ K x K that fullfill the following general Weierstraß



equation, where ai lie in K.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

Note that in cryptographic applications mostly non-
supersingular elliptic curves are considered (a1 = 0, a4 = 0)
as they provide the highest security. When K is a finite
field, often denoted as a Galois field GF (q), the order q is
equal to the number of elements in the finite field. A Galois
field of order q only exits if q is a prime power (q = pm),
where p and m denote a prime number and a positive integer
respectively. O denotes the point at infinity and is also
considered as a point on the curve. Finite fields used for
cryptographic applications mainly consist of prime fields
GF (p), binary fields GF (2m) and extension fields. However
the use of extension fields is not as common as the first two.
Each field is equipped with a set of arithmetic operations,
mainly defined by multiplications and additions. Elliptic curve
additions and multiplications make use of the underlying
finite field arithmetic. As elliptic curve point multiplication
(ECPM) is the computationally most demanding operation
of ECC it is often used as a means of comparing designs
regarding performance.

The mathematical problem that equips ECC with its high
security level is the elliptic curve discrete logarithm problem
(ECDLP). Consider an elliptic curve E and a point P ∈ E of
order m (point is of order m if mP = O and m is the smallest
integer statisfying this equation). Let Q ∈ 〈P 〉, so that Q =
aP for any integer a, 0 ≤ a < m. The ECDLP is defined as the
problem to find a given the points Q and P . Currently the two
fastest algorithms that can solve the ECDLP are the Number
Field Sieve and Pollard’s rho algorithm. Especially for longer
key sizes however the problem of solving the ECDLP remains
intractable [3].

III. REVIEW OF ECC COPROCESSORS

Elliptic Curve Cryptography processors (ECP), often re-
ferred to as cryptoprocessors can provide the immense perfor-
mance that is often required in server-based domains such as
e-commerce or online banking systems. They can maintain the
high throughput while offering the robustness and reliability
needed in this area but usually involve the highest cost.
High-speed ECP implementations generally operate on elliptic
curves over binary fields GF (2m) as the carry-free arithmetic
often leads to a more efficient hardware architecture [9],
however elliptic curves over prime fields GF (p) are often
preferred due to standards in Europe and the US [10].

A. Implementation over binary fields

Although the paper of Orland and Paar [9] was introduced
sixteen years ago, it is still regarded as relevant and is thus
extensively referenced. Orlando and Paar designed a reconfig-
urable elliptic curve architecture and verified it over GF (2167),
but pointed out that their design can be effectively reconfigured
to any arbitrary binary field GF (2m). The proposed design,
containing two loosely coupled processors, consists of three

main components and can perform ECPM in 210 µs when im-
plemented on a Xilinx FPGA XCV400E. The main controller
(MC) initiates the elliptic curve point multiplication aP and
acts as an interface to the surrounding circuitry. While the
arithmetic unit (AU) takes care of all finite field operations,
an arithmetic unit controller (AUC) performs the remaining
subroutines. Their design is highly reconfigurable and can
according to them be easily adapted for more efficient elliptic
curve algorithms, however the use of two processors leads to
high area overhead and ultimately to higher costs and only
one prime field is supported at a time.

Khan and Benaissa [11] presented an ECC processor mak-
ing use of a novel algorithm for point additions and doublings.
Their work focused on maintaining high throughput at low area
and outperformed the previously introduced implementations
both in area and speed. This was mainly achieved by com-
bining an optimized and efficient memory unit, a pipelined
digit-serial multiplier and careful scheduling of the arithmetic
logic blocks in order to avoid idle clock cyles. They adapted
the LD modified Montgomery point multiplication algorithm
as it offers adequate speed and allows parallelization at a low
area overhead. They claim that their design has led to the best
throughput / area efficiency figure reported to date. A point
multiplication aP over GF (2163) takes 10.51 µs while only
using 1476 slices on a Virtex4 LX2512 FPGA.

Lijuan and Shuguo [12] recently proposed a pipelined archi-
tecture for ECPM over GF (2m) making use of bit-parallel fi-
nite field multipliers based on the Karatsuba-Ofman algorithm.
They investigated in both finding the most efficient number of
pipeline stages and the best placement of the pipeline registers
by evaluating different scheduling algorithms. Their architec-
ture supports all five binary fields recommended by NIST2 and
was implemented on the Virtex4 XC4VLX200 FPGA, using a
three-staged pipeline which according to them gave the most
efficienct performance. An ECPM over GF (2163) could be
performed in 6.1 µs on the Virtex4. Compared to the ECC
processor presented by [11] this architecture lead to a speed
increase of a factor close to two, however by using 7365 slices
they also increased resource utilisation by a factor of 5.

Table I provides a summary of state of the art binary field
coprocessor implementations of Elliptic Curve Cryptography.
It highlights the different key lengths, the platform it was
implemented on including the maximum frequency it can run
on and furthermore the time required for an elliptic curve point
multiplication.

B. Implementation over prime fields

Chi et al. [13] proposed a scalable cryptographic processor
that supports all five prime fields that are recommended by
NIST. The ECP can perform at high speed by massive par-
alellizing of prime field operations. Furthermore area is saved
by using the same arithmetic buildings blocks for modular
addition/subtraction and inversion. Point multiplications were
performed using the double-and-add algorithm while using
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TABLE I
COMPARISON OF BINARY FIELD HARDWARE IMPLEMENTATIONS

Ref. HW/SW Field Platform Frequency ECPM

5 HW GF (2167) Virtex4 XCV400E 76.7 MHz 210µs

6 HW GF (2163) Virtex4 LX25 290 MHz 14.39µs

7 HW GF (2163) Virtex4 LX200 222 MHz 6.1µs

13 HW GF (2160) 0.13µm CMOS ASIC 510.2 MHz 190µs

14 HW GF (2233) Virtex4 XC4VLX80 185 MHz n.a.

mixed Jacobian and affine coordinates for point additions and
Jacobian coordiantes for point doublings. They claim that their
processor is the fastest and smallest ECP that supports all
prime fields, being able to compute ECPM between 1.709 and
28.04 ms while only 8 DSP slices on a Virtex4 XC4VFX100
FPGA. The implementation however is not generic but specific
to only Xilinx FPGAs as the required DSP48 slices are only
available on these chips. As all key sizes are supported this
scalable implementation offers the option of small key sizes
that are currently used and will still be able to adapt to
satisfy the demand for higher security levels in regard to future
applications.

The ECP proposed by Güneysu and Paar [10] significantly
exceeds the speed of the previously mentioned design but
uses more than three times the amount of DSP slices on a
Virtex4 XC4VFX12 FPGA. It operates over GF (224) and
GF (256) and can finish high-performant ECPM in 0.452 and
0.620 ms, depending on the chosen prime field. This is mainly
achieved by making extensive use of parallely working DSP
slices for the modular multiplication implementing the school-
book multiplication as the underlying algorithm. Most modern
FPGAs are equipped with hardware specific DSP blocks so
their design might be adaptable to a wide range of available
FPGAs. The implementation furthermore uses the concept of
asynchronous clocks which drives the DSP blocks at higher
frequencies than the remaining modules and uses multicore
processing to achieve exceptional performance. However the
ECP needs to be reconfigured when changing prime fields
contrary to the design of Chi et al. [13] that supports all prime
fields without the need of hardware reconfiguration.

Martin and Andreas [14] implemented the elliptic curve
cryptosystem on an FPGA for prime fields. The main goal of
their implementation was to provide a basic understanding for
people in the academic sector so that if someone wants to start
research in this field, this can be a good starting point. Due
to this design goal, preference was given to simplicity rather
than performance or low cost. This implementation supports
all prime fields recommended by NIST, i.e. 192, 224, 256,
384 and 521 bits. Fairly simple algorithms were used for the
modular arithmetic. Modular multiplication was done using the
shift-and-add method. For point multiplication, double and add
algorithm was used. The implementation made sure that the
hardware was as lightweight as possible and no importance
was given to the speed of the algorithms. The paper said
that the security of the implementation could be improved

by adding dummy operations protecting against side channel
attacks. Due to this it would be really difficult for the attacker
to evaluate timing and power consumption information which
could help him in decrypting or getting the secret key.

Table II gives an overview of state of the art prime field co-
processor implementations of ECC. It highlights the different
key lengths, the platform it was implemented on including the
maximum frequency it can run on and furthermore the time
required for an elliptic curve point multiplication. Comparing
table II to table I we can observe that prime field implemen-
tations of ECC are generally slower than binary field systems.

TABLE II
COMPARISON OF PRIME FIELD HARDWARE IMPLEMENTATIONS

Ref. HW/SW Field Platform Frequency ECPM

2 HW GF (192) Virtex4 FX100 182 MHz 2.36ms

2 HW GF (256) Virtex4 FX100 182 MHz 5.457ms

3 HW GF (256) Virtex4 XC4VSX55 375 MHz 0.041ms

13 HW GF (192) 0.13µm CMOS ASIC 138 MHz 1.44ms

14 HW GF (256) Virtex5 45 MHz n.a.

C. Implementation over both prime and binary fields
There are some designs that aim to support a wide range of

curves both over prime fields and over binary fields. Satoh and
Takano [15] for example designed such a versatile coprocessor
that supports Galois fields GF (p) and GF (2n). They used
the Montgomery multiplier and a redundant binary converter
in their design which enables their building blocks to support
arithmetic over both fields. By this setup they reach operation
times of 1.21ms and 0.19ms for 160-bit elliptic curve point
multiplications over prime fields and binary fields respectively.
They boast that all of the popular cryptography functions like
DSA, RSA, CRT are supported by this setup. There is a lot of
flexibility for speed and area which allows the user to reach
the best suited trade-off in their own design. The main benefit
of this implementation is that it can support different fields,
curves and sizes without changing the hardware, provided that
the memory capacity of the target platform is sufficient. This
can be used as a starting point, if you want to use a general
purpose ECC coprocessor and adjust it to your requirements.

Nagaraja and Sridhar [16] also designed an unified architec-
ture supporting both fields. The proposed design is supposed to
be highly scalable and flexible. This implementation also used
Montgomery multiplier and redundant binary converter. In
order to be less susceptible to side channel attacks randomized
multiplication operations are inserted to cover up both timing
and power consumption which could help an attacker deduce
the secret key. The dual field ECC processor design can reach
operation frequencies up to 124.347 MHz while consuming
1.091W and occupying 3066 slices on a Xilinx 13.4 Virtex 5
FPGA.

IV. HARDWARE/SOFTARE CO-APPRAOCHES OF ECC
The hardware/software co-approach (HSC) has proven to

be an adequate alternative when a balance between cost,



performance and flexibillity is aimed for [6]. Enhancing the
existing instruction set of an architecture in order to accelerate
application-specific operations can lead to a significant gain in
performance compared to a software only implementation.

Großschädl and Kamendje [17] implemented a functional
model of a 16-bit RISC-like processor equipped with a single-
stage pipleine. It is able to perform usual arithmetic/logical
functions, however the use of a unified multiplier and a dual
field adder additionally enhances dual field multiplications and
additions using the same datapath with minor modifications
leading to minimal area overhead. The instruction set is
extended by a special MULGF2 instruction that initiates
and accelerates polynomial multiplication over binary fields
using the pencil-and-paper method. The oustanding feature of
their design that plays a major role regarding performance
is the employment of word-level operations instead of bit-
level operations which are slow on microprocessors. The
setup was evaluated by performing the elliptic curve digital
signature algorithm (ECDSA) over GF (2191) that includes
one ECPM in approximately 650 ms. They pointed out that
the performance of their design is comparable to the Infineon
SLE 66CL160S, a 16-bit smart card processor with an ECC
coprocessor which requires 436 ms for the same operation.

Großschädl and Savaş [18] evaluated and identified sev-
eral algorithms in respect to performance and suitability for
instruction set extension. In this manner they proposed five
custom instructions that can be easily implemented on a
RISC processor and help accelerating ECC operations both
over prime fields GF (p) and binary fields GF (2m). Comba’s
method was used for prime field multiplication and squaring
and the pencil-and-paper method for multiplication over binary
fields. They developped a functional SystemC model of a
single-stage pipeline MIPS32 core enhanced with their sug-
gested instructions which can perform ECPM over GF (2191)
and GF (192) in 21 and 36 msec (@33MHz) respectively.
Compared to the previous work more versatility and a higher
performance is achieved at the cost of higher area-overhead.
Both [17] and [18] verified their design in terms of a func-
tional model but did not provide a full implementation on a
commercial FPGA or ASIC.

The findings of [18] highly motivated the SmartMIPSTM,
an architecture that was originally developed for security en-
hancements in smartcards. Its extended instruction set is built
on the RISC MIPS32 architecture and facilitates arithmetic
of both private and public key cryptography schemes and in
regard to ECC allows acceleration in binary and prime fields.

Bartolini et al. [19] analyzed the employability of ECC on
another embedded processor architecture, namely the ARM.
They investigated the relationship between performance of
different finite field and ECP multiplication algorithms and the
micro-/architectural features of the ARM-based Intel XScale
processor. In this context they proposed an enhanced architec-
ture that contains a word-level finite field polynomial multi-
plier in its datapath accessed by a new MULGF instruction.
It was shown that the new design achieved a performance gain
of around 41% compared to a software-only implementation

on the same platform.
Instead of designing a coprocessor Hani et al. [20] intro-

duced custom instructions to the instruction set architecture
of the 32-bit Altera Nios II architecture. According to the
paper co-processors are slower than this approach because they
require separate registers and data paths which can ultimately
slow down the performance. Interprocessor communication be-
tween processor and coprocessor might also be another factor
that can have impact on the performance. The elliptic curve
arithmetic buildings blocks are tightly coupled to the main
Nios II processor in this setup. Custom logic was created for
field multiplication and field squaring. Least significant digit
first multiplication algorithm was used for field multiplication
while a simple custom made algorithm was used for field
squaring was used for field inversions. The implementation
supports ECC acceleration over the binary fields GF (2163)
and GF (2193). This implementation provides a good example
of how the HSC can be combined with an cryptographic
coprocessor design.

Table III gives an overview of hardware/software co-designs
of ECC systems. It highlights the different finite fields,
key lengths, the reference platform including the maximum
frequency it can run on and furthermore the time required
for an elliptic curve point multiplication. It shows that the
hardware/software co-design is slower than both most prime
field and binary field coprocessors.

TABLE III
COMPARISON OF HSC IMPLEMENTATIONS

Ref. HW/SW Field Platform Frequency ECPM

8 HSC GF (2191) 16-bit RISC 5 MHz 650ms

9 HSC GF (2191) MISP32 33 MHz 21ms

9 HSC GF (192) MIPS32 33 MHz 36ms

V. SHOR’S ALGORITHM

In 2008 Proos and Zalka [21] published a paper which stated
that ECC was more vulnerable to quantum computing attacks
than a comparable RSA implementation by using the Shor’s
algorithm. According to Proos and Zalka it would take 4096
qubits (quantum bits) to break a 2048-bit RSA system while
only 1300 qubits would be needed to break a 224-bit ECC
system. Their findings could determine if ECC systems will
be still regarded as secure in future implementations.

In NSA’s B Suite [22] it was stated that they wanted to move
from ECC to encryption methods that would be invulnerable or
at least less susceptible to quantum attacks. According to them
the time of ECC has ended and it would be best to develop a
new public-key encryption algorithm for this purpose.

In 2011 however, four years before the announcement of
the NSA, Jao and Feo [23] published a paper proposing a
different approach for Elliptic Curve Cryptography systems
which would be resistant quantum attacks based on Shor’s
algorithm.



The sudden decision of the NSA to leave behind the well
established Elliptic Curve Cryptography scheme has been a
cause for a lot of criticism. People speculate that this sudden
decision may have been a result of the Edward Snowden
leaks [24]. According to the leaked information, one of the
algorithms created by the NSA and adapted as a NIST standard
had been equipped with a backdoor function known to the
NSA, enabling them to access secret information. Based on
this observation, NSA’s sudden move away from ECC and
towards a new public-key encryption scheme appears to not
be solely based on its vulnerability to quantum attacks.

VI. CONCLUSION

Pure software implementations of ECC, despite offering
best flexibility at lowest cost, cannot cope with the speed
demands of many application areas as general purpose proces-
sors are not designed for efficient handling of ECC’s underly-
ing finite field arithmetic. When performance and robustness
are of highest importance dedicated hardware in form of
cryptographic coprocessors are used and can effectively take
the workload off the main processing unit. Server systems,
like they are used in e-commerce and online banking, where
inefficiencies in thorughput and reliability can have negative
financial effects, drastically benefit from this setup. The ad-
ditional cost involved for a coprocessor stands in no relation
to the usefullnes of employment in these areas. This however
is not true for cost-sensitive embedded systems in which an
additional coprocessor often cannot be justified in terms of
cost-performance ratio. In this case the employment of a
hardware/software co-design could be a suitable alternative
as a god balance of performance, flexibility, area and cost
is achieved. Enhanced architectures employing instructions
specifically designed to accelerate computational expensive
operations of ECC have established themselves. The trend
has shown that in some embedded applications, such as
smart cards for example, where cost-performance ratio plays a
significant role due to high manufacturing volumes, the HSC
has been effectively replacing the standard approach consisting
of processor and supportive coprocessor.

The Internet of Thigns (IoT) expresses the idea of connec-
tivity that includes billions of embedded devices, sensors and
computers exchanging and collecting data. Experts claim that
there will be over 50 billion connected devices by the year
2020. Lack of appropriate security mechanisms could lead to
privacy breaches or in the worst case harm life and is one of the
major concerns of IoT but at the same time employing those
mechanisms in devices that are utterly constrained in resources
becomes a considerable challenge. The hardware/software co-
design for ECC schemes presents an attractive alternative,
especially in consideration of ECC’s lower key sizes and
relatively lower computational effort compared to RSA. In
combination with a lightweight RISC architecture, such as
MIPS or picoMIPS this approach can provide a means of
security with aedequate performance while overcoming the
challenges of low cost, low area and low power imposed by
the constraints of low-end IoT devices. The latter mentioned

architecture has not been used for instruction set extension in
regard to ECC yet and could be an interesting topic for future
research work.
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