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Abstract

Cryptocurrencies like Bitcoin have proven to be a phenomenal success. Bitcoin-like systems use proof-
of-work mechanism which is therefore considered as 1-hop blockchain, and their security holds if the
majority of the computing power is under the control of honest players. However, this assumption has
been seriously challenged recently and Bitcoin-like systems will fail when this assumption is broken.

We propose the �rst provably secure 2-hop blockchain by combining proof-of-work (�rst hop) and
proof-of-stake (second hop) mechanisms. On top of Bitcoin’s brilliant ideas of utilizing the power of the
honest miners, via their computing resources, to secure the blockchain, we further leverage the power of
the honest users/stakeholders, via their coins/stake, to achieve this goal. �e security of our blockchain
holds if the honest players control majority of the collective resources (which consists of both computing
power and stake). �at said, even if the adversary controls more than 50% computing power, the honest
players still have the chance to defend the blockchain via honest stake.

∗An early version with title “Securing Bitcoin-like Blockchains against a Malicious Majority of Computing Power” appeared in
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1 Introduction

Cryptocurrencies like Bitcoin [29] have proven to be a phenomenal success. �e underlying techniques hold
a huge promise to change the future of �nancial transactions, and eventually our way of computation and
collaboration. At the heart of the Bitcoin system is a global public distributed ledger, called blockchain, that
records transactions between users in consecutive time windows. �e blockchain is maintained by a peer-to-
peer network of nodes called Bitcoin miners via the so-called proof-of-work (PoW) mechanism: in each time
window, cryptographic puzzles (also called proof-of-work puzzle [14, 1]) are generated, and all miners are
encouraged/incentivized to solve the puzzles; the �rst miner who �nds a puzzle solution is allowed to extend
the blockchain with a block of transactions, and at the same time he can collect a reward. It is easy to see that
the more computing power a miner invests, the be�er his chances are at solving a puzzle �rst.

Bitcoin is an open system; any player who invests a certain amount of computing resources is allowed
to join the e�ort of maintaining the blockchain. �is unique “easy come easy go” feature along with a smart
incentive strategy help the system “absorb”1 a huge amount of computing resources over the past several
years. Intuitively, the security of blockchain is backed up by a signi�cant network of physical resources —
computing power.

�is intuition has recently been investigated in academia. For example, Garay et al [17] and then Pass
et al [33] looked into the “core” of the Bitcoin system, the Nakamoto consensus protocol; they showed that,
assuming the majority of mining power in the Bitcoin system is controlled by the honest miners, then the
Nakamoto consensus indeed satis�es several important security properties as de�ned in their comprehensive
cryptographic models. On the other hand, if this assumption does not hold, then the security of the Bitcoin
system cannot be guaranteed.

�is assumption has been seriously challenged: the mining power can be dangerously distributed in the
system. For example, in 2014, the mining pool GHash.io exceeded 50% of the computational power in Bit-
coin [18]. Currently, top mining pools including F2Pool, AntPool, BTCC and BW, are all in China; they
collectively control about 60% mining power. It is not clear if those mining pools collude. E�orts have been
made to address this crisis. In [27], novel ideas are introduced to discourage the formation of mining pools.
However, it is not clear in practice how to utilize these ideas to protect the system if the adversary controls
the majority of mining power. We here ask the following question:

Is that possible to strengthen Bitcoin-like system so that it can be secure even when the adversary
controls more than 50% computing power in the system?

1.1 Our Considerations

Before giving a proper solution to the above question, we need to understand Nakamoto’s design more. Only
then, we might be able to mimic Nakamoto’s footprint and push this line of design further.
Leveraging the power of virtual resources in the system. Ideally, we would like to construct Bitcoin-like
blockchain which is secure against a very strong adversary even from the beginning. However, it is easy to see
that cryptocurrency systems are very fragile in their early stage. It will be extremely di�cult, if not impossible,
to “grow” a stable, Bitcoin-like blockchain if the adversary controls the majority of computing power at the
very beginning. In this work, we consider how to make an already mature cryptocurrency system such as
Bitcoin to be more robust in the sense that the system remains stable even the adversary controls the majority
of computing power. As mentioned, Bitcoin already “absorbed” a huge amount of honest computing power;
note that these physical resources have been converted into “virtual resources”, i.e., the coins. It is fairly
reasonable to say the coins are nicely distributed in the system and most of them are controlled by honest
users. A natural way to go is to use this huge amount of honest virtual resources as a bu�er to defend against
the adversary who can dominate the network of computing power.

1You may also say the system cost a huge amount of computing resources in the past years.
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�e di�erence between physical resources and virtual resources. It is de�nitely desirable to utilize
the power of virtual resources to secure a blockchain. If successful, the new system will be “green” in the
sense that it does not require a huge amount of physical resources, which cannot be recycled, to back up its
security. A�empts have been made. For example, proof-of-stake mechanisms have been widely discussed
in the cryptocurrency community. In a nutshell, proof-of-stake mechanisms for consensus require protocol
players to prove ownership of a certain amount of virtual resources. Only those that can provide such a
proof can participate in maintaining the blockchain. However, no practical solution to an open blockchain is
known via any proof-of-stake mechanism. At a very intuitive level, virtual resources, which proof-of-stake
mechanisms are based on, are very di�cult to manage in a practical protocol.

On the other hand, physical resources are relatively easier to manage. Indeed, Nakamoto demonstrates to
us an amazingly practical protocol via the proof-of-work mechanism to manage physical computing resource
e�ectively. Alternative physical resources such as a publicly available random beacon or secure hardware
can also allow us to construct fast protocols. See Section 1.5 (Related Work) for more discussion about open
blockchain via alternative physical resources.

One may wonder if it is possible to emulate physical resources via virtual resources �rst, and then con-
struct a fast protocol based on the emulated physical resources. �is can be an interesting approach. However,
solutions via high communication between players (e.g., using secure multi-party computation or similar tech-
niques to generate a random beacon, then constructing a blockchain via the beacon) won’t be practical because
our goal is to enable an open blockchain. Communication overhead which depends on the number of players
will limit the scope of the system immediately. A closed system may help manage the virtual resources; but
then “converting” a closed system into an open blockchain could be very di�cult which may introduce lots
of communication between the protocol players; again, if the introduced communication overhead depends
on the number of players, the designed protocol may not be scalable to a huge network like Bitcoin. In one
word, it seems it is extremely di�cult to mimic Nakamoto’s footprint via virtual resources only.2

�e practical elegance of using random oracle for cryptocurrency. Although fast blockchain protocols
can be constructed via physical resources such as random beacon or trusted hardware, there is a signi�cant
drawback in these solutions. �at is, the trapdoor information of the system is possessed by a single party.
Currently, it is not clear how to eliminate such trapdoor information. Interestingly, blockchain via the proof-
of-work mechanism can avoid such issue in practice: the underlying proof-of-work puzzles can be constructed
by hash functions, and the security of the system can be argued in the so-called random oracle model. �eo-
retical cryptographers may criticize random oracle methodology since it is not sound [10]. However, random
oracles do enable an elegant solution to open blockchains in practice.3

Additional considerations. �ere are many reasons that Bitcoin has become a successful system. Besides
the points we discussed above, to design a practical blockchain, we in general should avoid heavy crypto-
graphic tools, and use only standard cryptographic primitives such as hash functions and digital signature
schemes. Secondly, the design should be simple. Finally, the provable security approach should be taken to
develop blockchain techniques. We eventually should move these powerful blockchain techniques from an
art to a science.

Next, we provide our solution which meets all above considerations.

1.2 Our Scheme

From 1-hop to 2-hop blockchain. Nakamoto’s system is powered by physical computing resources, and
the blockchain is maintained by PoW-miners; there, each winning PoW-miner can extend the blockchain with
a new block. In our design, as argued above, we (intend to) use both physical resources and virtual resources.
�at means, in addition to PoW-miners, a new type of players — PoS-holder (stakeholder) — is introduced

2Claims of building secure pure proof-of-stake blockchain have been made in the cryptocurrency community [6, 5, 12]. But, at
the moment of writing the paper, no practical open blockchains are available.

3 We note that Nakamoto’s design is consistent with the folklore wisdom of a “nothing up my sleeve number” [38] which has
been widely used in practical cryptographic designs.
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in our system. Now a winning PoW-miner cannot extend the blockchain immediately. Instead, the winning
PoW-miner provides a base which enables a PoS-holder to be “selected” to extend the blockchain. In short, in
our system, a PoW-miner and then a PoS-holder jointly extend the blockchain with a new block. If Nakamoto’s
consensus can be viewed as a 1-hop protocol, then ours is a 2-hop protocol.

A pictorial illustration of our 2-hop blockchain structure can be found in Figure 1: green blocks are gen-
erated by PoW-miners in the �rst hops, while red blocks are produced by PoS-holders in the second hops;
now naturally a PoW-chain consists the sequence of green blocks B1, B2, B3, · · · , and a PoS-chain consists
the sequence of red blocks B̃1, B̃2, B̃3, · · · . In fact, our 2-hop blockchain is bootstrapped from an “already
mature” blockchain denote as B−N . . . , B−1, B0 for an integer N ; see the blue blocks in the �gure.

In our protocol, PoW-chains and PoS-chains are plaited together in every time step, and these PoW/PoS-
chains are extended alternately. In order to plait them tightly, we expect that in our scheme, each proof-
of-work block (PoW-block) can be mapped to no more than one proof-of-stake block (PoS-block) and each
PoW-block is linked to both previous PoW-block and PoS-block (See Figure 1). In this way, all valid PoS-chains
will have nearly the same length as their corresponding PoW-chains. Naturally, a chain-pair consists of a valid
PoS-chain and its corresponding PoW-chain.

Next, we provide more formal details. As mentioned above, the PoW/PoS-chains in the 2-hop protocol
are extended alternately. �us, the protocol consists of PoW-rounds and PoS-rounds, which execute alter-
nately. In each round, each player (PoW-miner or PoS-holder) �rst determines a valid chain-pair with the
longest PoW-chain; then the player a�empts to extend the chain-pair. More concretely, in each PoW-round,
PoW-miners extend the best valid chain-pair via proof-of-work (i.e., solving a hash inequality) where each
new PoW-block is pointed to the previous PoW-block and PoS-block (Note that, this is the di�erence of our
PoW-block from ordinary PoW-block); on the other hand, in the next PoS-round, a PoS-holder is chosen
(i.e., based on the proof-of-work chain), and this PoS-holder then has the privilege to extend the best valid
chain-pair on its view. We point out that, very intuitively here we treat the proof-of-work blockchain as a
biased random beacon for electing a stakeholder in the corresponding PoS-round. We may view our scheme
as a proof-of-stake scheme which uses a proof-of-work chain as a biased random beacon. Our scheme enjoys
almost the same e�ciency and scalability as the original Nakamoto scheme.

Rounds

B−1 B0 B1 B2 B3 B4 B5

B̃1 B̃2 B̃3 B̃4

. . .

. . .

. . .

Figure 1: 2-hop blockchain structure
Here, dot arrows denote the �rst hops, and solid arrows denote the second hops. Green blocks Bi’s denote the proof-
of-work blocks, and red blocks B̃i’s denote the corresponding proof-of-stake blocks. Note that the blue blocks are from
the “mature blockchain”.

Why the scheme works? We here present the basic intuition for arguing the security of our scheme. Based
on the protocol description above, although we do not link the PoS-chain explicitly, the adversary cannot
manipulate an existing PoS-block because it is locked by the next PoW-block in the chain (i.e., each PoW-block
is linked to its previous PoW-block and PoS-block.) In addition, in order to extend a PoW/PoS chain-pair, the
adversary needs to control both hops: the adversary needs to �rst �nd a valid PoW solution (which de�nes a
valid PoW block); this PoW block speci�es a valid stakeholder; and now the adversary also needs to control
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such stakeholder to complete the chain-pair extension. Intuitively, it is di�cult to predict the identity of the
speci�ed stakeholder. Even in the se�ing that the adversary can �nd many PoW solutions, if he controls
a very small portion of stakeholders, then the adversary may still not be able to produce more PoS-blocks
than the honest players do. Based on this intuition, we can essentially prove the security of our blockchain if
the honest players control majority of the collective resources (which consists of both computing power and
stake). �at said, even if the adversary controls more than 50% computing power, the honest players still have
the chance to defend the blockchain via honest stake.

1.3 Our Modeling

We take the provable security approach in our design. Inspired by Garay et al [17] and Pass et al [33], we
introduce a new analysis framework for (more involved) blockchain protocols. Under this framework, we
prove the security for our proof-of-work/proof-of-stake 2-hop blockchain.

Along the way, we identify and formulate a set of resource setup functionalities, including resource ran-
dom oracle functionalityF∗rRO and resource certi�cation functionalityF∗rCERT. �ose resource setup function-
alities precisely describe real world physical resources and virtual resources which are suitable for blockchain
protocols. We note that these resource functionalities can be instantiated in the real world without introduc-
ing any trapdoor. More precisely, the resource random oracle functionality F∗rRO can be implemented via a
random oracle and physical computing resource. On the other hand, the resource certi�cation functional-
ity F∗rCERT can be implemented via a “mature blockchain” (which can be further implemented via a random
oracle and physical computing resource) and digital signature scheme.

We remark that identifying these “blockchain friendly” resource setup functionalities will signi�cantly
simplify the design and analysis of blockchain protocols since the details of managing physical/virtual re-
sources are encapsulated inside these setup functionalities. We believe our way of formulating resource setup
functionalities will help us identify and then formulate more useful resource setup functionalities (for, e.g.,
physical memory resources). Our way of formulating resource setup functionalities may eventually help us
unify many di�erent assumptions such as “honest majority of players”, and “honest majority of computing
power”.

1.4 Summary of Our Contributions

Let’s summarize our contributions here. In this work, we mimic Nakamoto’s footprint and for the �rst time
securely extend Nakamoto’s idea beyond the proof-of-work mechanism, and design a simple, provably secure
2-hop consensus protocol by utilizing both physical computing resources and virtual resources (i.e., coins).
We note that, this is the �rst e�ort to leverage the power of virtual resources for building provably secure
open blockchains. Although the ideas of leveraging the power of virtual resources have been discussed in
Bitcoin community, most of them cannot lead to scalable open blockchains; and before our work, none of
them has been carefully analyzed. We also note that, ours is the �rst e�ort to combine two type of di�erent
resources for building practical open blockchains with provable security.

In addition, in this work, we put forth a rigorous framework which is suitable for analyzing more
blockchain protocols. Previous analysis frameworks [17, 33] can be extended for achieving this goal but
here we make it explicit. We want to emphasize that, we identify and formulate several resource setup func-
tionalities which capture the exact intuition of real world physical resources and virtual resources. Put it
di�erently, we are making e�ort, thru these resource setup functionalities, to mathematically describe real
world assumptions such as the assumption of “honest majority of computing power in Bitcoin system”. It
is important to note that, our resource setup functionalities will much simplify our design and analysis of
blockchain protocols.

Finally, we remark that leveraging virtual resources for building provably secure, open blockchain is a
subtle and di�cult task. Not very careful treatments may lead to non-scalable4 open blockchains, or make it

4Blockchain protocols such as PoW-based blockchains [29] that utilize physical assumptions (e.g., computational power) have a
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di�cult/infeasible to achieve provable security. Our 2-hop design bene�ts from our careful understanding of
the power of physical resources and virtual resources.5 Note that, our 2-hop design can be viewed as a natural
extension of Nakamoto’s 1-hop design via proof-of-work mechanism (i.e., the second hop is deterministic and
always true.) Our 2-hop design can also be viewed as a proof-of-stake scheme (which uses a proof-of-work
chain as a biased random beacon.) However, we explicitly remark here that our design will not lead to any
pure proof-of-stake blockchain.

1.5 Related Work

We list closely related work below. A more comprehensive related work will be included in a future version.
Digital currency and Bitcoin. Anonymous digital currency was introduced by Chaum [11] in the early
1980s. �e �rst decentralized currency system, Bitcoin [29], was launched about 30 years later, by incentiviz-
ing a set of players to solve moderately-hard cryptographic puzzles (also called proofs-of-work puzzles [14, 1]).
Recently, the security of Bitcoin system has been analyzed in the rational se�ing, e.g., [16, 15, 30, 21, 34, 35],
and also in cryptographic se�ing [17, 33, 36, 22, 23]. �ree important security properties, common pre�x,
chain growth, and chain quality, have been considered for secure blockchain protocols. �e common pre�x
and chain quality properties were originally formalized by Garay et al [17]. �e chain growth property was
�rst formally de�ned by Kiayias et al [22]. �e common pre�x property was later strengthened by Pass et
al [33]. In our study, we adopt the stronger variant of the common pre�x property by Pass et al [33] together
with the chain quality and chain growth from [22, 17].
Cryptocurrency via alternative physical resources. Similar to PoW, alternative consensus techniques
via di�erent physical resources have been considered to replace computing power. For example, the physical
storage resource (as opposed to PoW’s computational time,) is used in [32, 26]. Between the use of space/mem-
ory and the use of time, are proofs of space time introduced in [28]. �is is a hybrid proof system utilizing
both computational and space resources. Intel proposes the use of trusted hardware for blockchain protocols
in [20].
Cryptocurrency via virtual resources. �e �nal proof system we consider, proof-of-stake (PoS), is a
relatively inexpensive technique in computational overhead when compared to PoW as it relies on internal
resources to the system. In a nutshell, the PoS mechanisms for consensus require a protocols’ players to
prove ownership of virtual resources. Only those that can provide such proofs can participate in maintaining
the protocol’s blockchain, their ability to do so is proportional to the stake owned. Since the inception of
the idea in an online forum [4], several variants of PoS that have been proposed and implemented in real
cryptocurrencies including [12, 25, 37, 2]. In general, a PoS proof system simulates random leader election,
where each participants’ chance of being elected is proportional to the amount of stake that they control
in the system. �e chosen leader proves that they were elected by providing a cryptographic proof (a digital
signature) that they own a speci�c share of stake. Interesting ideas of combining virtual resource with physical
resource are also proposed. For example, in [24, 13, 3], the proof of work and proof of stake can be combined
together. We remark that, there is no known practical PoS related consensus with provable security.

Organization. In Section 2, we present our analysis framework. In Section 3, we present the details of our
construction. �en, in Section 4 we analyze the security of our construction.

very e�cient communication complexity in terms of the number of players. �ose feature more than thousands of network nodes,
demonstrating node scalability in practice. A not careful design may not be able to give us a communication e�cient, thus scalable,
protocol as (or close to) Nakamoto’s.

5Our protocol achieves the node scalability. We utilize physical computing resources to maintain a proof-of-work blockchain
which is informally treated as a biased random beacon to elect stakeholders for maintaining a proof-of-stake blockchain.
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2 Model

2.1 2-hop Blockchain Protocol Executions

In order to study the security of Bitcoin-like protocols, Garay et al [17] and then Pass et al [33] set up the �rst
cryptographic models by following Cane�i’s formulation of the “real world” executions [7, 8]. In this section,
we borrow many ideas from their formulations. We further extend their models so that more blockchain
protocols, e.g., 2-hop blockchains, are allowed.
Network communication. �e underlying communication for blockchain protocols are formulated via a
functionality FNET which captures the atomic unauthenticated “send-to-all” broadcast in this asynchronous
communication model. �e functionality is parameterized by an upper bound ∆ on the network latency, and
interacts with players under the direction of the adversary. More concretely, the functionality proceeds as
follows. Whenever it receives a message from a player, it would contact the adversary to ask the adversary
specify the delivery time to each player in the system. Note that, if the delivery time speci�ed by the adversary
exceeds the delay upper bound ∆, the functionality would not follow the adversary’s instruction, and only
delay the message to a maximum number of ∆ rounds. �at said, no messages are delayed more than ∆
rounds. In addition, the adversary could read all messages sent by all honest players’ messages before deciding
his strategy; the adversary may “spoof” the source of a message they transmit and impersonate the (honest)
sender of the message. In more detail, each player may request FNET to broadcast a message m by command
(Broadcast,m); on the other hand, the functionality may deliver a message m to a player P by command
(Message, P,m).
PoW-miners and PoS-holders. We specify two types of players PoW-miner and PoS-holder which corre-
spond to two types of chains, speci�cally, PoW-chain and PoS-chain; and two types of rounds that execute in
turn: PoW-round and PoS-round. �ese two types of chains are tied and grow together (at the same rate.) �at
said, a chain-pair including a PoW-chain and a PoS-chain should have two member chains of the roughly simi-
lar length. If the PoW-chain or PoS-chain in this pair grows too fast, this chain-pair becomes invalid. Note that
the PoW-miners and PoS-holders are playing di�erent roles in our model; however, without the collaboration
of these two types of players, our model cannot be secure.

In our model, without loss of generality, we assume all PoW-miners have the same amount of comput-
ing power and all PoS-holders have the same amount of stake. Note that this is an “idealized model”. In
the reality, each di�erent honest PoW-miners/PoS-holders may have a di�erent amount of computing pow-
er/stake; nevertheless, this idealized model does not sacri�ce generality since one can imagine that real
honest PoW-miners/PoS-holders are simply clusters of some arbitrary number of honest idealized-model
PoW-miners/PoS-holders. We note that the protocol’s players may never be certain about the number of
participants in the protocol execution, given the unauthenticated nature of the communication model. More-
over, for simplicity, only a standalone static model is considered in this model, and the number of players is
�xed during the course of the protocol execution.

In each PoW-round, PoW-miners have ability proportionally to their computing power to produce proof-
of-work blocks. More concretely, upon receiving messages which are chain-pairs from the network, each
PoW-miner would choose a best valid chain-pair, and then exploit its computing power to solve the PoW puz-
zle in order to extend the best chain-pair in this round. On the other hand, in each PoS-round, the PoS-holder
with the derived identity from the new PoW-block of the previous PoW-round is able to generate a new
PoS-block, and then appends the new block to the best chain-pair on its local view. Note that, for each
PoS-holder, the probability of being chosen is based on the amount of stake that party has. �e detail of our
blockchain execution is presented below.
�e {F1,F2,FNET}-hybrid execution of 2-hop blockchain protocol. Existing rigorous formulations (e.g.,
[17, 33]) apply for 1-hop protocols (e.g., Nakamoto’s protocol) where the system is maintained by a single type
of players, i.e., PoW-miners. Here, we move from 1-hop protocols to 2-hop protocols (i.e., hybrid proof-of-
work/proof-of-stake protocols) and present a formal treatment for it.

Following the framework for Universal Composability [8], we present an abstract model for hybrid proof-
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of-work/proof-of-stake blockchain protocol Π = (Πw,Πs) in the {F1,F2,FNET}-hybrid model where Πw

and Πs denote the code run by PoW-miners and by PoS-holders respectively. We consider the execution
of the blockchain protocol Π = (Πw,Πs) that is directed by an environment Z(1κ) (where κ is a security
parameter), which activates a n number of PoW-miners and ñ number of PoS-holders. �e execution proceeds
in rounds. Without lost of generality, we assume that even rounds correspond to PoW-miners, and odd rounds
correspond to PoS-holders. �e environment Z can “manage” protocol players thru a mobile adversary [31]:
the adversaryA can corrupt an honest party and uncorrupt a corrupted party. Note that, here, the blockchain
protocol Π is parameterized by a predicate V (·) which determines the proper structure of the information
that is stored into the blockchain.

More concretely, the {F1,F2,FNET}-hybrid execution proceeds as follows. �e environment Z �rst ac-
tives the adversary A and provides instructions for the adversary. �e execution proceeds in rounds, and in
each round, a protocol party could be activated by the environment or the functionalities.

1. In each odd round, each PoW-miner Wi, for 1 ≤ i ≤ n, proceeds as follows.

• When PoW-miner Wi is activated by the environment Z with message (Input-Work,Wi, x )
where x is the input of the execution, and potentially receive incoming message (Message,Wi,m)
from FNET where m is the message received from the network. It then interacts with the func-
tionality F1 and receives some output y .

• �en execute the protocol Πw on input its local state statei, the value y received from the
functionality F1, the input from the environment Z , and the message m received from the
functionality FNET; and then output an update local state statei and an outgoing message m′,
i.e.,{statei,m′} ← Πw(statei, x , y ,m). A�er that, send (Broadcast,m′) to FNET and then send
(Return-Work,Wi) to the environment Z .

2. In each even round, each PoS-holder Sj , for n+ 1 ≤ j ≤ n+ ñ , proceeds as follows.

• When PoS-holder Sj is activated by the environmentZ with message (Input-Stake, Sj , x̃ ) where
x̃ is the input from the environment, and potentially receive subroutine output message (Message, Sj ,m)
from FNET. It then interacts with the functionality F2 and receives some output ỹ .

• Next, execute the protocol Πs on input its local state statej , the value ỹ received from the func-
tionalityF2, an input from the environment x̃ , and the message m received from the functionality
FNET; and then obtain an update local state statej and an outgoing messagem′, i.e.,{statej ,m′} ←
Πs(statej , x̃ , ỹ ,m). A�er that, send (Broadcast,m′) toFNET and then return (Return-Stake, Sj)
to the environment Z .

3. At any point of the execution, Z can send message (Corrupt,Wi) or (Corrupt, Sj) to adversary A
instruct A to corrupt a PoW-miner Wi or PoS-holder Sj . From that point, A has access to the party’s
local state and controls Wi.

4. At any point of the execution,Z can send message (Uncorrupt,Wi) or (Uncorrupt, Sj) to adversary
A instruct A to uncorrupt a PoW-miner Wi or PoS-holder Sj . �is means that A no longer controls
Wi/Sj and instead player Wi starts executing Πw/Πs with a fresh state.

Let EXECF1,F2,FNET
Π,A,Z be a random variable denoting the joint view of all parties (i.e., all their inputs, ran-

dom coins and messages received, including those from the random oracle and signatures) in the above
{F1,F2,FNET}-hybrid execution; note that this joint view fully determines the execution. WheneverF1,F2,FNET

are clear from context we o�en write EXECΠ,A,Z or EXEC(Πw,Πs),A,Z .
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2.2 Resource Random Oracle Functionality F∗rRO
In our se�ing, the PoW-miners have limited ability to produce proofs of work. To capture this, all PoW-miners
are assumed to have access to a physical resource setup F∗rRO which manages a huge “farm of computing
devices”, and these devices are provided by the environment Z through the adversary. In order to exploit
the computing power of the functionality, each player needs to register the computing services of F∗rRO (by
paying money in reality). In addition, he can disconnect the services (by stopping the payment). Indeed,
this captures the dynamic computing power se�ing where di�erent players could consume the computing
resource for di�erent windows of time. Functionality F∗rRO abstracts out of the Bitcoin like mining process;
this will simplify the design and analysis of protocols based on such mining ecosystem. Here, each PoW-miner
is able to queryF∗rRO one search which consumes one unit of computing power granted in each round. Besides
the computing services, the setup also provides the veri�cation services which allow any player to verify
solutions in many times, or computing services which allow any player to perform regular random oracle
queries in many times.

More concretely, at any time, a PoW-miner Wi can send a register command (Work-Register,Wi) to
ask for registration. �e functionality then asks the adversary to specify whether the player can register or
not. If the adversary allows Wi to use the computing resource (Wi is granted the computing resource), the
functionality would record (Wi, bi) where bi = 1. If the player unregisters the services, this bit would be
set to 0 indicating that the resource will not be granted to this player any longer. Note that, here, we follow
Universal Composability [8] le�ing the environment Z (though the adversary) specify who will receive the
computing resource and who will not.

�e protocol executes in rounds, and for each round, the functionality sets a bit bwi = 0 for every regis-
tered player Wi meaning that the player Wi is granted one unit of computational resource. Note that if the
computational unit has been used by Wi by issuing a search query, the bit bwi = 0 is set to 1, and then this
player will not be able to request any other search query. A registered PoW-miner Wi may request the query
to search for a PoW solution, and he can only �nd it with a certain probability p. More precisely, once he
queried the computing services from the functionality by command (Search, h,Wi), the functionality then
checks if there exists a record (Wi, bi); this means the functionality checks if this player is already granted
the required computing resource. If the resource is granted, and bwi = 0 meaning that this player has not used
the resource allocated in the current round, the functionality would then with probability p, choose a random
pair (w, h) and record an entry (Wi, 〈h,w〉, h). �ere, if Wi queries more than one time in this round, the
functionality would not perform any computation since the resource is exploited.

In contrast to the computing services, every player has access to the veri�cation or regular random oracle
services many times by sending command (RO-Verify, B) or (Compute, B,X ) to the functionality where
B is a PoW-block and X is a generic payload. In regular random oracle services, the functionality on the
command (Compute, B,X ), where (B,X ) is speci�ed by the environment, executes an ordinary random
oracle query (i.e., check if (B,X ) is queried and returns a random string corresponding to (B,X )). In veri-
�cation services, the functionality F∗rRO then returns the random string mapped to B = 〈h,w〉 if stored. We
emphasize that the regular random oracle queries are independent from the search queries. �is implies that
the random oracle used for the search query is di�erent from that for the regular query. We then denote h as
the random string returned by the random oracle for the regular query, and denote h ′ as that for the search
query. Please refer to Figure 2 for more details.

As discussed above, this is an “idealized” interpretation of the se�ing where all miners have the same
amount of computing power; nevertheless, this idealized model does not sacri�ce generality. �e adversary
A is allowed to perform at most t queries per round, where t is the number of corrupted PoW-miners. �us,
the computing power is consumed by querying the functionality in a bounded number of times.

Roughly, our F∗rRO is closely related to FTree in [33]. In [33], a “per protocol” approach is taken. �at is,
for di�erent blockchain protocol, say GHOST protocol [36], a di�erent variant of FTree should be de�ned. We
take a di�erent approach; we abstract the essence of the underlying resources, and our resource random oracle
functionality F∗rRO can be used for di�erent PoW based blockchain protocols, and we don’t need to revise the
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Functionality F∗rRO

�e functionality is parameterized by a PoW hardness parameter p, a PoW security parameter κ, and inter-
acts with PoW-miners, PoS-holders, as well as an adversary A.
Computing Resource Registration.

1. Upon receiving a message (Work-Register,Wi) from party Wi, it then passes the message to the
adversary. Upon receiving a message (Work-Registered,Wi) from the adversary, set bi := 1, record
(Wi, bi), and pass the message to the party Wi (the party Wi registered.)

2. Upon receiving a message (Work-Unregister,Wi) from party Wi, it then sets bi := 0, and updates
(Wi, bi), and then sends (Work-Unregistered,Wi) to the party Wi(the party Wi unregistered.)

For each round, set bwi := 0 for every registered party Wi, then proceed as follows.
Regular�ery. Upon receiving (Compute, B,X ) from a party P , if there is record of the form (B,X , h),
send (Computed, h) to the player P . Otherwise, choose random h ∈ {0, 1}κ, send (Computed, h) to the
player P and record (B,X , h).
Work �ery. Upon receiving (Search,Wi, h) from a PoW-miner Wi where h ∈ {0, 1}κ, proceed as
follows.

1. If (Wi, bi) is recorded where bi = 1 and bwi = 0 (the party Wi registered and granted one unit of
computational resource), then

• with probability p, choose uniformly a pair (w, h ′) wherew, h ′ ∈ {0, 1}κ. �en set bwi := 1, and
record (Wi, 〈h,w〉, h ′). �en send (Searched,Wi,w) to the player Wi (the party Wi discovers
the solution,)

• with probability 1 − p, set bwi := 1, and send (Searched,Wi,⊥) to the player Wi (the party
Wi does not discover the solution.)

2. Otherwise, if any of the following cases occur:

• if (Wi, bi) is not recorded (the party Wi is not registered yet),
• or if (Wi, bi) is recorded and bi = 0 (the party Wi registered and then unregistered),
• or if bwi = 1 (the party Wi already used the granted computational resource in this round),

�en send (Searched,Wi,⊥) to the player Wi (the party Wi does not discover the solution.)

WorkVeri�cation�ery. Upon receiving (RO-Verify, B) from a partyP , parseB as 〈h,w〉 check if there
exists a recorded entry (·, 〈h,w〉, ·) (the party Wi found the solution.) If yes and the entry is (Wi, 〈h,w〉, h ′)
send (RO-Verified, h ′) to the party P . Otherwise, send (RO-Verified,⊥) to P .

Figure 2: Resource Random Oracle Functionality.

setup per protocol. Furthermore, we note that, we push the functionality even more formal by modeling the
distribution of computing resource from the environment to parties. In our model, each party can register
and receive the computing resource under the control of the environment. �at said, this model naturally
captures the joining of new players or the rejoining of old players.

We remark that our F∗rRO is a very costly setup in the sense that, lots of computing resources can be
provided in each time window. In our paper, we will use this physical resource (i.e., computing power) setup
together with another virtual resource (i.e., stake) setup F∗rCERT to design Bitcoin like blockchain. Note that
virtual resource setup F∗rCERT is much less costly.

2.2.1 How to Implement F∗rRO
As discussed in section 2.2, the functionality F∗rRO is implemented by a random oracle functionality FRO [19].
We denote φ∗rRO as the ideal protocol for an ideal functionalityF∗rRO and πRO as the protocol in theFRO-hybrid
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model. In the ideal protocol φ∗rRO, players are dummy since they just forward the messages received from the
environment Z to the functionality F∗rRO, and then forward the messages received from the functionality to
the environment. On the other hand, upon receiving messages from the environment, the players in πRO
execute the protocol and then pass the outputs to the environment. Note that, we allow each PoW-miner to
receive only one unit of computing power (one chance of querying the random oracle) per round. �e protocol
πRO is described in Figure 3.

Protocol πRO

�e protocol is parameterized by a PoW parameter p, a PoW security parameter κ.
Each PoW-minerWi proceeds as follows.

1. Upon receiving (Work-Register,Wi) from the environment Z , pass the message to the adversary.
Upon receiving (Work-Registered,Wi) from the adversary, set bi := 1, record bi, and pass the
message (Work-Registered,Wi) to the environment.
Upon receiving (Work-Unregister,Wi) from the environmentZ , pass the message to the adversary.
Upon receiving (Work-Unregistered,Wi) from the adversary set bi := 0, record bi, and pass the
message (Work-Unregistered,Wi) to the environment.

2. For each round, each registered party Wi sets bwi := 0 , then proceeds as follows. Upon receiving
(Search,Wi, h) from the environment Z ,

• If bi = 1 and bwi := 0, choose random w ∈ {0, 1}κ, and then query the functionality FRO on
input (h,w) and then obtain output h ′. If h > D where D = p · 2κ, set w :=⊥. �en send
(Searched,Wi,w) to the environment.

• Otherwise, if bi is not recorded, or if bi is recorded and bi = 0, or if bwi = 1, send
(Searched,Wi,⊥) to the environment.

Each player P proceeds as follows.

1. Upon receiving (Compute, B,X ) from the environment Z , send (B,X ) to the functionality FRO

and receive h . �en record h and send (Computed, h) to the environment.

2. Upon receiving (RO-Verify, B) from the environment Z , send B to the functionality FRO and re-
ceive h ′. If h ′ ≤ D, send (RO-Verified, h ′) to the environment. Otherwise, if h ′ > D, send
(RO-Verified,⊥) to the environment.

Figure 3: Resource Random Oracle Protocol.

Let S be the adversary in the protocol φ∗rRO, and A be the adversary in the hybrid protocol πRO. We
now show that πRO is as “ secure” as φ∗rRO with respect to the adversary S . Let EXECFRO

πRO,A,Z denote random
variable denoting the joint view of all parties in the execution ofπRO with the adversaryA and an environment
Z . Let EXECF

∗
rRO

φ∗rRO,S,Z
denote random variable denoting the joint view of all parties in the execution of φ∗rRO

with the adversary S and an environment Z .
Lemma 2.1. Consider φ∗rRO described above and πRO in Figure 3. It holds that the two ensembles EXECFRO

πRO,A,Z

and EXECF
∗
rRO

φ∗rRO,S,Z
are perfectly indistinguishable.

Proof. We show that the two executions are perfectly close by the following simulation. Consider the PPT
adversary A for πRO, we now construct a PPT adversary S on input 1κ and a PoW parameter p for φ∗rRO as
follows. �e adversary S stores a table T .

1. Upon receiving (Work-Register,Wi) fromA, pass the message to the functionality F∗rRO and receive
(Work-Registered,Wi) from the functionality. �en output (Work-Registered,Wi) to A.

2. Upon receiving (Work-Unregister,Wi) from A, pass the message to the functionality F∗rRO and re-
ceive (Work-Unregistered,Wi) from the functionality. �en output (Work-Unregistered,Wi) to

10



A.

3. Upon receiving (B,X ) fromA, if there is a record ((B,X ), h) inT , then send h toA. Otherwise, if there
is no record of the form ((B,X ), ·) in T , send (Compute, B,X ) to F∗rRO and receive (Computed, h).
�en record ((B,X ), h) and send h to A.

4. Upon receiving (h,w) from A in the name of Wi, if there is a record ((h,w), h ′) in T , then send
h ′ to A. Otherwise, if there is no record ((h,w), h ′), send (Search,Wi, h) to F∗rRO and receive
(Searched,Wi,w′). If w′ =⊥, choose random h ′ ∈ {0, 1}κ such that h ′ > D where D = p · 2κ.
Otherwise, if w′ 6=⊥, choose random h ′ ∈ {0, 1}κ such that h ′ ≤ D. �en record ((h,w), h ′), and send
h ′ to A.

5. Upon receiving B from A where B = 〈h,w〉, if there is a record of the form (B, h ′′) in T , send h ′′ to
A. Otherwise, if there is no record of the form (B, ·) in T , send (RO-Verify, B) to F∗rRO and receive
(RO-Verified, h ′); if h ′ =⊥, choose random h ′′ ∈ {0, 1}κ such that h ′′ > D, otherwise, if h ′ 6=⊥,
choose random h ′′ ∈ {0, 1}κ such that h ′′ ≤ D; record (B, h ′′) and send h ′′ to A.

We demonstrate that EXECFRO
πRO,A,Z and EXEC

F∗rRO
φ∗rRO,S,Z

are perfectly indistinguishable. �is is done by showing
that the joint view of all parties in the execution of πRO with adversary A and environment Z is perfectly
indistinguishable from the joint view of all parties in the execution of φ∗rRO with S and Z . We can easily see
that (1) each random oracle query from A is sampled uniformly at random from a set {0, 1}κ, and (2) each
regular query, work query, or veri�cation query to F∗rRO is also sampled uniformly at random from the set
{0, 1}κ. �erefore, the two ensembles EXECFRO

πRO,A,Z and EXEC
F∗rRO
φ∗rRO,S,Z

are perfectly close.

2.3 Resource Certi�cation Functionality F∗rCERT
In this subsection, we introduce our resource certi�cation functionality F∗rCERT describing the usage of vir-
tual resource in our system. Essentially, at any time step, a PoS-holder Sj can send a register command
(Stake-Register, Sj) to F∗rCERT for registration. Similarly to F∗rRO, the functionality then records (Sj , bj)
where bj = 1, if permi�ed by the adversary. If the player discontinues the services, this bit is set to 0 indicat-
ing that the stake would not be granted to this player any longer. �en, for each execution round, a registered
PoS-holder Sj is granted one unit of the virtual resource, and he can then request the functionality for leader
election in this round. Speci�cally, he can send message (Elect, Sj , B) to the functionality; the functionality
then with probability p̃ selects this party as the leader and noti�es the player whether he is selected or not.
Next, if the party Sj is elected by the functionality as the leader, the elected party then asks the functionality
F∗rCERT to provide the signature of (B,X, Sj). �e functionality therefore requests the adversary to produce
the signature by command (Sign, (Sj , B,X)), and then waits until the adversary responds by a signature σ.
�e functionality a�er that checks if no entry ((Sj , B,X), σ, 0) has been recorded. Note that, the indicator 0
implies that this is not a valid signature (the veri�cation fails). If this entry is not recorded, then the function-
ality simply passes the signature σ to Sj and stores ((Sj , B,X), σ, 1). If entry ((Sj , B,X), σ, 0) is already
recorded, this implies no signature has been generated for (Sj , B,X) yet. �en, the functionality outputs an
error and halts.

Next, the veri�cation process of F∗rCERT proceeds as follows. Upon receiving a veri�cation request, the
functionality then asks the adversary verify the signature. �e functionality, upon receiving the veri�ca-
tion decision from the adversary, would ensure the completeness, unforgeability, and guarantees consistency
properties of the signature scheme. Please refer to Figure 4 and [9] for more details.

2.3.1 How to Implement F∗rCERT
Our functionality F∗rCERT can be a “resource” analog of the certi�cate functionality FCERT in [9]. Note that
FCERT can be implemented in the {FCA,FSIG}-hybrid model [9]. We can follow the approach to implement
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Functionality F∗rCERT

�e functionality is parameterized by an election parameter p̃, a security parameter κ, and interacts with
PoS-holders, PoW-miners, as well as an adversary A.
Stake Resource Registration.

1. Upon receiving a message (Stake-Register, Sj) from party Sj , it then passes the message to the
adversary. Upon receiving a message (Stake-Registered, Sj) from the adversary, set bj := 1, record
(Sj , bj), and pass the message to the party (the party Sj registered.)

2. Upon receiving a message (Stake-Unregister, Sj) from party Sj , it then sets bj := 0, and updates
(Sj , bj), and sends (Stake-Unregistered, Sj) to the party (the party Sj unregistered.)

For each round, set bsj := 0 for every registered party Sj , then proceed as follows.
Stake Election: Upon receiving (Elect, Sj , B) from a PoS-holder Sj , proceed as follows.

1. If (Sj , bj) is recorded where bj = 1 and bsj = 0 (the party Sj registered and granted one unit of
virtual resource), then

• with probability p̃, choose random h ∈ {0, 1}κ. �en set bsj := 1, and record (B, Sj , h). �en
set f := 1, send (Elected, Sj , f) to Sj , and record the entry (B, Sj , h) (the party Sj is elected.)

• with probability 1− p̃, set bsj := 1 and f := 0, and send (Elected, Sj , f) to Sj (the party Sj is
not elected.)

2. Otherwise, if any of the following cases occur:

• (Sj , bj) is not recorded (the party Sj is not registered yet),
• or (Sj , bj) is recorded and bj = 0 (the party Sj registered and then unregistered),
• or bsj = 1 (the party Sj already used the granted resource unit),

�en set f := 0 and send (Elected, Sj , f) to Sj (the party Sj is not elected.)

Signature Generation: Upon receiving (Sign, Sj , B,X) from a party Sj , send (Sign, (Sj , B,X))
to the adversary. Upon receiving (Signature, (Sj , B,X), σ) from the adversary, verify that no en-
try ((Sj , B,X), σ, 0) is recored. If it is, then output an error message and halt. Else, output
(Signed, (Sj , B,X), σ) to Sj , and record the entry ((Sj , B,X), σ, 1).
Stake Veri�cation: Upon receiving (Stake-Verify, (Sj , B,X), σ) from a party P ,

1. If there exists a record of the form (B, Sj , ·) (the party Sj is elected), hand
(Stake-Verify, (Sj , B,X), σ) to the adversary. Upon receiving (Stake-Verified, (Sj , B,X), φ)
from the adversary, do:

• If ((Sj , B,X), σ, 1) is recorded, then set f := 1.
• Else, if Sj is not corrupted, and no entry ((Sj , B,X), σ′, 1) for any σ′ is recorded, then set
f := 0 and record the entry ((Sj , B,X), σ, f).

• Else, if there is an entry ((Sj , B,X), σ, f ′), then set f := f ′.
• Else, set f := φ, and record the entry ((Sj , B,X), σ, f).

Output (Stake-Verified, (Sj , B,X), f) to the party P .

2. Otherwise, if there is no record of the form (B, Sj , ·) (the party Sj is not elected), set f := 0 and
output (Stake-Verified, (Sj , B,X), f) to the party P .

Figure 4: Resource Certi�cation Functionality.

our functionality F∗rCERT. Here, the functionality F∗rCERT can be instantiated in the {F∗rCA,FSIG}-hybrid
model, where F∗rCA can be implemented by a “mature” blockchain and a random oracle. Please refer to Ap-
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pendix A for more details about F∗rCA and FSIG; note that F∗rCA can be viewed as a “resource” analog of the
certi�cate authority functionality FCA in [9]. In Appendix A, we will further show that F∗rCA can be instan-
tiated via a mature blockchain and digital signature scheme.

We denote φ∗rCERT as the ideal protocol for an ideal functionality F∗rCERT and πCERT as protocol in
{F∗rCA,FSIG}-hybrid model. In the ideal protocol φ∗rCERT, the dummy players only forward the messages
received from the environment to the functionalityF∗rCERT, and then forward the messages received from the
functionality to the environment.

Note that, in πCERT, we represent the mature blockchain by a set of stake identities S which can be
derived from the mature blockchain. More precisely, each stakeholder Sj is assigned with a unique identity
vkj where (vkj , skj) ← Gen(1κ) with the amount of stake sj . We de�ne the set of valid stakeholders as
S = {Sj , vkj , sj}j∈{0,1}κ . Note that, the stake identities could be changed in any round capturing the
dynamic stake se�ing where stake changes over time. We emphasize that our mechanism for leader election
is a�ected by changes in the stake distribution . Without loss of generality, we consider the static stake se�ing
where there are no changes in the stake distribution, and assume all stakeholders have the same amount of
stake in πCERT (i.e., sj = 1). �e protocol πCERT is described in Figure 5.

Protocol πCERT

�e protocol is parameterized by a parameter p̃, a PoW security parameter κ.
Each PoS-holder Sj proceeds as follows.

1. Upon receiving (Stake-Register, Sj) from the environment Z , forward the message to the adver-
sary. Upon receiving (Stake-Registered, Sj) from the adversary, bj := 1, record bj , and pass
(Keygen) to the functionality FSIG. Upon receiving (Verification-Key, vkj) from FSIG where
vkj ∈ {0, 1}poly(κ), record vkj and send (Stake-Registered, Sj) to the environment Z .
Upon receiving a message (Stake-Unregister, Sj) from the environmentZ , forward the message to
the adversary. Upon receiving (Stake-Unregistered, Sj) from the adversary, bj := 0, and updates
bj , and sends (Stake-Unregistered, Sj) to the environment Z .

2. For each round, each registered party Sj sets bsj := 0, then proceeds as follows. Upon receiving
(Elect, Sj , B) from the environment Z ,

• If bj = 1 and bsj := 0, send (CA-Register, Sj , B, vkj) to the functionalityF∗rCA. Upon receiving
(CA-Registered, Sj , f) from the functionality F∗rCA, send (Elected, Sj , f) to the environment
Z .

• Otherwise, if bj is not record, or if bj is recorded and bj = 0, or if bsj = 1, set f := 0 and send
(Elected, Sj , f) to the environment Z .

3. Upon receiving (Sign, Sj , B,X) from the environment Z , send (Sign, Sj , B,X) to the functional-
ity FSIG. Upon receiving (Signature, (Sj , B,X), σ) from FSIG, send (Signed, (Sj , B,X), σ) to the
environment Z .

Each player P proceeds as follows. Upon receiving (Stake-Verify, (Sj , B,X), σ) from the environment Z ,
send (Retrieve, Sj , B) to the functionality F∗rCA. Upon receiving (Retrieved, vkj) from the functionality.

• If vkj 6=⊥, send (Verify, (Sj , B,X), σ, vkj) to the functionality FSIG. Upon receiving
(Verified, (Sj , B,X), f) from the functionality FSIG, send (Stake-Verified, (Sj , B,X), f) to the
environment.

• Else, if vkj =⊥, set f = 0, send (Stake-Verified, (Sj , B,X), f) to the environment.

Figure 5: Resource Certi�cation Protocol.

Let S be the adversary in the ideal protocol φ∗rCERT, and A be the adversary in protocol πCERT. Let
EXEC

F∗rCERT
φ∗rCERT,S,Z

denote random variable denoting the joint view of all parties in the execution of φ∗rCERT with

the adversary S and an environment Z . Let EXECF
∗
rCA,FSIG

πCERT,A,Z denote random variable denoting the joint view
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of all parties in the execution of πCERT with the adversary A and an environment Z .
Lemma2.2. Considerφ∗rCERT described above andπCERT in Figure 5. It holds that the two ensemblesEXECF

∗
rCERT

φ∗rCERT,S,Z

and EXECF
∗
rCA,FSIG

πCERT,A,Z are perfectly indistinguishable.

Proof. We show that the two executions are computationally indistinguishable by the following simulation.
Consider the PPT adversaryA for πCERT, we now construct a PPT adversary S on input 1κ a parameter p̃ for
φ∗rCERT as follows. �e adversary S stores a table T .

1. Upon receiving (Stake-Register, Sj) fromA, pass the message to the functionalityF∗rCERT and receive
(Stake-Registered, Sj) from the functionality. �en output (Stake-Registered, Sj) to A.

2. Upon receiving (Stake-Unregister, Sj) fromA, pass the message to the functionalityF∗rRO and receive
(Stake-Unregister, Sj) from the functionality. �en output (Stake-Unregister, Sj) to A.

3. Upon receiving (Keygen) from the adversary A, choose random vk ∈ {0, 1}poly(κ), and then send
(Verification-Key, vk) to A.

4. Upon receiving (CA-Register, Sj , B, vk) from the adversary A, send (Elect, Sj , B) to the function-
ality F∗rCERT and then receive (Elected, Sj , f). �en if f = 1, record (Sj , B, vk) in table T , and send
(CA-Registered, Sj , f) to A.

5. Upon receiving (Sign, Sj , B,X) fromA, send (Sign, Sj , B,X) to the functionalityF∗rCERT and receive
(Signed, (Sj , B,X), σ). �en send (Signature, (Sj , B,X), σ) to A.

6. Upon receiving (Retrieve, Sj , B) from A,

• If there is no record of the form (Sj , B, ·), send (Retrieved,⊥) to A.
• Otherwise, if there is a record of the form (Sj , B, vk), send (Retrieved, vk) to A.

7. Upon receiving (Verify, (Sj , B,X), σ, vkj) from A, send (Stake-Verify, (Sj , B,X), σ) to the func-
tionality F∗rCERT. Upon receiving (Stake-Verified, (Sj , B,X), f) from the functionality F∗rCERT, send
(Verified, (Sj , B,X), f) to A.

In the simulation above, the adversary S simulate the ideal functionalities FSIG and F∗rCA for the hybrid
protocol πCERT. It is clearly that the two two ensembles EXEC

F∗rCERT
φ∗rCERT,S,Z

and EXEC
F∗rCA,FSIG

πCERT,A,Z are perfectly
indistinguishable since (1) the string vk is randomly choose from a set {0, 1}poly(κ), and (2) other than that,
the adversary S only need to query the functionality F∗rCERT and forward messages (with di�erent headers)
to A. �is completes the proof.

2.4 Blockchain Security Properties

Previously, several fundamental security properties for 1-hop blockchain protocols have been de�ned: com-
mon pre�x property [17, 33], chain quality property [17], and chain growth property [22]. Intuitively, the chain
growth property for PoS-chains argues that the PoS-chains of honest players should grow linearly to the
number of rounds. �e common pre�x property for PoS-chains indicates the consistency of any two honest
PoS-chains except the last κ blocks. �e chain quality property for PoS-chains, aims at expressing the number
of honest PoS-holders contributions that are contained in a su�ciently long and continuous part of an honest
PoS-holder’s chain. Speci�cally, for parameters ` ∈ N and µ ∈ (0, 1), the ratio of honest input contributions
in a continuous part of an honest PoS-holder’s chain has a lower bounded µ.
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We follow the same spirit to de�ne the security properties for our 2-hop blockchain protocol. Since each
valid PoS-chain and PoW-chain exist in our system as a pair having the same structure and growth at the same
rate, we mainly focus on the common pre�x, chain quality, and chain growth properties for the PoS-chain.
Interestingly, the common pre�x and chain growth for PoW-chain are explicitly implied from the PoS-chain,
but the chain quality for PoW-chain cannot be shown from the PoS-chain since the adversary could control
the majority of computing power in our se�ing. We therefore separately consider the chain growth property
for PoW-chain. �e de�nitions for these properties are formally given as follows.
De�nition 2.3 (Chain Growth Property for PoS-chain). �e chain growth property Qcg states that for any
honest PoS-holder Swith the local PoS-chain C̃ in round r and C̃′ in round r′ where s = r′−r > 0, in EXECΠ,A,Z .
It holds that len(C̃′)− len(C̃) ≥ g · s where g is the growth rate.
De�nition 2.4 (Common Pre�x Property for PoS-chain). �e common pre�x property Qcp with parameter
κ ∈ N states that for any two honest PoS-holders Si in round ri and Sj in round rj with the local PoS-chains
C̃i, C̃j , respectively, in EXECΠ,A,Z where i, j ∈ {n + 1, . . . , n + ñ}, ri ≤ rj , it holds that C̃i[1, `i] � C̃j where
`i = len(C̃i)−Θ(κ).
De�nition 2.5 (Chain �ality Property for PoS-chain). �e chain quality propertyQcq with parameters µ ∈ R
and ` ∈ N states that for any honest PoS-holder S with PoS-chain C̃ in EXECΠ,A,Z , it holds that for large enough
` consecutive PoS-blocks of C̃ the ratio of honest blocks is at least µ.

Here, we mainly consider the three properties for PoS-chains. �e chain growth and common pre�x for
the PoW-chains would be implied from the PoS-chain except the chain quality property since the adversary
could be able to a�ach more malicious PoW-blocks to the PoW-chain in case he controls the majority of
computing power.
De�nition 2.6 (Chain �ality Property for PoW-chain). �e chain quality propertyQ′cq with parametersµ ∈ R
and ` ∈ N states that for any honest PoW-miner W with PoW-chain C in EXECΠ,A,Z , it holds that for large
enough ` consecutive PoW-blocks of C the ratio of honest blocks is at least µ′.

3 Construction

We start by de�ning blocks, proof-of-work chains, and proof-of-work mechanism in Section 3.1; in Section 3.3,
we design a process to choose the best valid chain-pair among a set of chain-pairs; �nally, we present our
main protocol in Section 3.2.

3.1 Proof-of-Work and Proof-of-Stake

As in the original Bitcoin white paper [29], a proof-of-work (PoW) blockchain is de�ned as a sequence of
ordered blocks. �is blockchain is created and maintained by a set of players called PoW-miners. In this
subsection, for completeness, we �rst restate the format of a proof-of-work block and blockchain, and then
show proof-of-stake related notations.
Proof-of-work. A PoW-block B is a pair of the form B = 〈h,w〉 where h ∈ {0, 1}κ denotes the pointer to
the previous block, w ∈ {0, 1}κ is a random nonce. A PoW-chain C consists of a sequence of ` concatenated
PoW-blocks B1‖B2‖ · · · ‖B`, where ` ≥ 0. For each blockchain, we specify several notations such as head,
length, and subchain:

blockchain head, denoted head(C), refers to the topmost block B` in chain C;
blockchain length, denoted len(C), is the number of blocks in blockchain C, and here len(C) = `;
subchain, refers to a segment of a blockchain; we use C[1, `] to denote an entire blockchain, and use
C[j,m], with j ≥ 1 and m ≤ `, to denote a subchain Bj‖ · · · ‖Bm; in addition, we use C[i] to denote the
i-th blockBi in blockchain C; �nally, if blockchain C is a pre�x of another blockchain C′, we write C � C′.

Proof-of-stake. In our cryptocurrency system, along with the proof-of-work blockchain, there is another
type of chains called Proof-of-Stake blockchain, which is maintained by a set of stakeholders (also called
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PoS-holders).
We now introduce the format of a PoS-block. In our system, each valid PoS-blocks is coupled with a valid

PoW-block. Based on a given PoW-block B, a stakeholder can produce a PoS-block which is de�ned as a
tuple of the form B̃ = 〈S, B,X , σ〉. Here, S ∈ {0, 1}κ is the pseudonym of the stakeholder who generates
this block, X ∈ {0, 1}∗ is the payload of the proof-of-stake block B̃ (also denoted as payload(B̃)); and σ is a
signature for 〈S, B,X 〉.

�e structure of a PoS-chain is very similar to the PoW-chain, and many notations such as head, length,
and subchain can be de�ned in the same way. We note that, in PoS-chain, payload is stored, and we use
payload(C̃) to denote the information we store in C̃. If len(C̃) = `, then we have payload(C̃) = ||`i=1payload(B̃i).

3.2 �e Main Protocol

2-hop blockchain. It is important to note that in the Nakamoto PoW-based blockchain the assumption to
secure the system is that malicious miners control less than the half of computing power since if so they can
fork a valid blockchain which breaks the consensus of the blockchain protocol. In our system, in order to
resistant against such a�ack, we need to combine two di�erent resources: physical resource (i.e., computing
power) and virtual resource (i.e., stake). Sequentially, we have two types of blockchains (PoW-chain and
PoS-chain) corresponding to two types of rounds — PoW-round and PoS-round executing in turn — making
2-hop blockchain. Note that, in reality, one player could play both roles, PoW-miner and PoW-miner; however,
without loss of generality, we treat the two roles separately. In order to tie them tightly, the scheme maps each
PoW-block to no more than 1 stakeholder. Only the stakeholder who has the privilege is able to generate the
corresponding PoS-block of each PoW-block. Note that PoW-chains and PoS-chains existing in our system
are represented as pairs, and each player locally stores a chain-pair. �erefore, the two member chains of
each valid chain-pairs should have the same structure.

We now present our main protocol that describes the behavior of PoW-miners and PoS-holders. �e PoW
and PoS executions vary slightly. On one hand, in the PoW execution, PoW-miners searche for proof-of-work
solutions. On the other hand, in the PoS execution, PoS-holders follow the growth of the PoW-chain and use
that to extend the PoS-chain. In general, PoW-miners and PoS-holders collect blockchain information from
the broadcast channel, perform some validation and generating blocks, and then share their states with the
network through FNET. Please see Figure 6 for a pictorial illustration of our main protocol.

F∗rCERT

F∗rRO

r − 2 r − 1 r r + 1 r + 2 r + 3

. . . . . .W BestValid
PoW block gen.

S BestValid
PoS block gen.

Search

ElectElect

Search

Search

Elect

time

S BestValid
PoS block gen.

W BestValid
PoW block gen.

Figure 6: Round Progression in Our Protocol.
�is �gure depicts the progression of protocol Π through round r. We assume that in each round, each party com-
municates with two functionalities F∗rRO and F∗rCERT. More speci�cally, in each round, an online player complete two
tasks: (1) determining the best valid chain-pair, (2) a�empting to extend either the PoS-chain or PoW-chain of the best
chain-pair.

�e protocol Π is parameterized by a content validation predicate V (·), which determines the proper
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structure of the information that is stored into the blockchain as in [17, 33]. Initialization of each party’s
execution sets the round clock to zero and sets the local chain-pair 〈Ci, C̃i〉, for 1 ≤ i ≤ n + ñ (n is the
number of PoW-miners and ñ is the number of PoS-holders), such that Ci := Cinit, C̃i := C̃init, where Cinit is
our initial blockchain, i.e., Cinit = B−N‖ . . . ‖B−1‖B0, C̃init = 0‖ . . . ‖0‖0, and len(Cinit) = len(C̃init).

PoW-Miner Πw. For each PoW-miner Wi, with an initial local chain-pair 〈Ci, C̃i〉, if he is activated by the
environment on command (Input-Work,Wi), and received a set of chains C from the network functionality
FNET. �en he chooses the best valid chain-pair over the chain set C including his local chain-pair 〈Ci, C̃i〉 by
executing BestValid (See Figure 8.) We note that, on each PoW-miner’s view, the best chain-pair should have
two members chains (PoW-chain and PoS-chain) of the same length.

A�er that, he updates his local chain-pair as the best valid chain-pair, and a�empts to extend his updated
chain-pair. Here, he needs to generate a new PoW-block by outsourcing the functionality F∗rRO. Note that,
he needs to register to the setup before querying. Intuitively, once he registered, he is granted the needed
computing power, and the functionality then uses this computing power to mine for a PoW puzzle solution.

More concretely, for each new PoW-block is linked to the heads of Ci and C̃i by storing a pointer h to
the head of both Ci and C̃i (note that, len(Ci) = len(C̃i).) �us, he �rst sends a regular random oracle query
(Compute, head(Ci), head(C̃i)) to F∗rRO, and then receives the digest h . Intuitively, we treat head(C̃i) as a
payload X in the Compute command. He further uses this digest to request F∗rRO to mine a PoW puzzle
solution in the current round by message (Search, h,Wi). If he receives a message (Searched,w) from
F∗rRO such that w 6=⊥. �is implies he found the solution. Sequentially, a new valid block B with the form
B = 〈h,w〉 is a�ached to Ci generating a new PoW-chain Ci = Ci‖B. �e player therefore requests FNET to
broadcast his local chain-pair by message (Broadcast, 〈Ci, C̃i〉).

PoS-Holder Πs. �is is carried out by PoS-holders. Similarly to Πws, once activated by the environment
on (Input-Stake, Sj ,X ), where X denotes the payload would be stored in the chain, and received a chain-pair
set C from FNET, each PoS-holder Sj �nds the best valid chain-pair 〈Cbest, C̃best〉 through BestValid, and then
updates his local chain-pair 〈Cj , C̃j〉.

We remark that, we only interested in the case where there is a new PoW-block in the best chain-pair. In
other word, we interest in the chain-pair in which the PoW-chain is longer than his corresponding PoS-chain
by one block. Consider there is a new PoW-block B in the best PoW-chain. Here, PoS-holders have access
to the functionality F∗rCERT. �e players need to register to the functionality F∗rCERT before requesting the
functionality. Note that only the elected PoS-holders are allowed to generate new PoS-blocks where B is
treated as a biased random beacon for the leader election; thus, each registered PoS-holder Sj can query
F∗rCERT for leader election by command (Elect, Sj , B). If this PoS-holder is the lucky stakeholder (with
probability p̃), he would receive a message (Elected, Sj , f) from F∗rCERT such that f = 1. He therefore
requests the functionality to generate a signature for (Sj , B,X) by command (Sign, Sj , B,X) where B is
the new PoW-block and X is the payload from the environment. Once the party received the signature σ
from the functionality, he generates a new PoS-block B̃ := 〈Sj , B,X , σ〉, updates his PoS-chain C̃ and then
broadcasts his local pair to the network.

Please refer to Figure 7 for more details of our main protocol.

3.3 Consensus: the Best Chain-pair Strategy

In this subsection, we describe the rules in which a single valid chain-pair is selected for consensus. Roughly
speaking, a chain-pair is the best valid pair if it has the longest valid PoW-chain. We introduce process
BestValid, which is run locally by PoW-miners or PoS-holders, to select the best chain-pair. �e BestValid
process is parameterized by a content validation predicate V (·) and an initial chain Cinit where V (·) deter-
mines the proper structure of the information that is stored into the blockchain as in [17], and takes as input
chain-pair set C′. Intuitively, the process validates all chain-pair 〈C, C̃〉 in C′, then �nds the valid chain-pairs
with the longest PoW-chain.
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Protocol Π = (Πw,Πs)

�e protocol is parameterized by a content validation predicate V (·). Initially, set Ci := Cinit, C̃i := C̃init,
where Cinit = B−N‖ . . . ‖B−1‖B0 and C̃init = 0‖ . . . ‖0‖0, len(Cinit) = len(C̃init), and then set statei :=
{〈Ci, C̃i〉} for 1 ≤ i ≤ n+ ñ .

PoW-Miner Πw. Each PoW-miner Wi, for 1 ≤ i ≤ n, proceeds as follows. Without lost of generality,
we assume that the PoW-miners already registered to the functionality F∗rRO. For each odd round, upon
receiving message (Input-Work,Wi) from the environment Z , proceed as follows.

1. Select the best local chain-pair: Upon receiving (Message,Wi,C) from FNET, compute
〈Cbest, C̃best〉 := BestValid(C ∪ 〈Ci, C̃i〉, PoW-miner); then set Ci := Cbest and C̃i := C̃best.

2. A�empt to extend PoW-chain:

• Compute the point to the precious block: Send (Compute, head(Ci), head(C̃i)) to the ideal func-
tionality F∗rRO and receive (Computed, h) from F∗rRO.

• Search for a puzzle solution: If h 6=⊥, then send (Search,Wi, h) to the ideal functionalityF∗rRO,
and then receive (Searched,Wi,w) from F∗rRO.

• Generate a new PoW-block: If w 6=⊥, set B := 〈h,w〉 (which means Wi is the player who found
the puzzle solution in this round), set Ci := Ci‖B, and statei := statei ∪ {〈Ci, C̃i〉}. �en send
(Broadcast, 〈Ci, C̃i〉) to FNET.

Return (Return-Work,Wi) to the environment Z .

PoS-Holder Πs. Each PoS-holder Sj , for n + 1 ≤ j ≤ n + ñ , proceeds as follows. Without lost of
generality, we assume that the PoS-holders already registered to the functionality F∗rCERT. For each even
round, upon receiving message (Input-Stake, Sj ,X ) from the environment Z where X denotes the block-
payload, proceed as follows.

1. Select the best local chain-pair: Upon receiving (Message, Si,C) fromFNET, compute 〈Cbest, C̃best〉 :=
BestValid(C ∪ 〈Cj , C̃j〉, PoS-holder), then set Cj := Cbest and C̃j := C̃best.

2. A�empt to extend PoS-chain: Consider there is a new PoW-block B in Cbest.

• Stake election: Send (Elect, Sj , B) to the ideal functionality F∗rCERT, and receive
(Elected, Sj , f) from F∗rCERT.

• Generate a signature: If f = 1, send (Sign, Sj , B,X) to the ideal functionality F∗rCERT, and
receive (Signed, (Sj , B,X), σ) from F∗rCERT.

• Generate a new PoS-block: Set B̃ := 〈Sj , B,X , σ〉. Next, set C̃j = C̃j‖B̃, and statej := statej ∪
{〈Cj , C̃j〉}. �en send (Broadcast, 〈Cj , C̃j〉) to FNET.

Return (Return-Stake, Sj) to the environment Z .

Figure 7: Our main protocol in the {F∗rRO,F∗rCERT,FNET}-hybrid model with respect to the local process
BestValid (See Figure 7).

We emphasize that since each valid PoS-block is tied to a PoW-block, and each PoW-block or PoS-block
is valid if their peers are valid. �us, a chain-pair is valid if all block-pairs in this chain-pair are valid. A
valid chain-pair with respect to PoW-miners should have two member chains (PoW-chain and PoS-chain) of
the same length. On the other hand, a valid chain-pair with respect to PoS-holders may have the PoW-chain
longer than the PoS-chain by one block since the PoW-chain might be extended by one new block in the
previous PoW-round. �at said, if the player who executes this process is a PoS-holder and if there exists
a new PoW-blocks, this block would be validated separately since its corresponding PoS-block has not been
generated yet. �us, for every chain-pair, the process �rst checks if the length of the PoW-chain in the pair
is longer than the PoS-chain by one block and validates this new PoW-block �rst, and then evaluates every
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block-pair of this chain-pair. As said, PoS-blocks are generated from PoW-block; thus, PoS-blocks without
corresponding PoW-blocks are not valid.

In more detail, BestValid proceeds as follows. On input a set of chainsC′ and an index Type where Type ∈
{PoW-miner, PoS-holder}. For each chain-pair 〈C, C̃〉, the process validates every PoW-block together with its
corresponding PoS-block. However, in every round, there may a new PoW-block without any PoS-block
(this only happens in PoS-rounds.) �erefore, if len(C) − 1 = len(C̃) and Type = PoS-holder (this means
there is a new PoW-block), then it would validate this block separately and then validate every block-pair in
the considered chain-pair. Let `-th block of C is the new block, we need to verify that (1) C[`] is linked to
the previous PoW-block and PoS-block correctly, (2) the PoW puzzle is solved properly. To verify the �rst
condition, BestValid queries the resource random oracle F∗rRO by command (Compute, C[`− 1], C̃[`− 1]) to
compute the correct pointer. If this pointer is not equal to the pointer stored in C[`], this chain-pair is invalid
and will be removed from the chainset C′. To verify the second condition, BestValid queries the resource
random oracle F∗rRO by command (RO-Verify, C[`]), if it receives (RO-Verified,⊥) from the functionality,
C[`] is invalid making the whole chain-pair chain-pair 〈C, C̃〉 invalid.

A�er checking the new block, the process then evaluates every block-pair of the chain-pair 〈C, C̃〉 sequen-
tially by the following. It �rst applies the validation predicate V (·) to check the payload in the PoS-chain C̃.
If the payload is valid, then starting from the head of C, for every PoW-block C[i], for 1 ≤ i ≤ len(C), in
the PoW-chain C, BestValid proceeds as follows. �e process �rst ensures that C[i] is linked to the previous
PoW-block C[i− 1] and PoS-block C̃[i− 1] correctly, (2) the PoW puzzle is solved properly as in checking the
new block above. It then tests if (1) the corresponding PoS-block C̃[i] stores the examined PoW-block, and (2)
whether the stakeholder who generates PoS-block C̃[i] is the valid PoS-holder (by outsourcing F∗rCERT), and
(3) the signature generated by that stakeholder is veri�able (by outsourcing F∗rCERT).

A�er the validation, the best valid chain-pair is the one with the longest PoW-chain. Please refer to Figure
8 for more details.
Remark 3.1 (Tie Breaking). Our protocol primarily deals with length so it makes sense to adopt a simple tie
breaking strategy to choose the best chain from two chains of equal length. While there is work that show the
advantages of choosing a chain randomly (viz. [16]), we follow the simple strategy considered in [17]; in which
the best chain is the one that is lexicographically the smallest.

4 Security Analysis

Our 2-hop blockchain can be viewed as a natural generalization of Nakamoto’s famous 1-hop blockchain. In
order to improve the readability, in general, we use the original le�ers to denote the PoW parameters for the
�rst hop, e.g., α; we use le�ers with tilde to denote the PoS parameters for the second hop, e.g., α̃; �nally, we
use le�ers with hat to denote the collective parameters for both hops, e.g., α̂.

Our security analysis of the 2-hop blockchain here is inspired and in�uenced by previous analysis of
Nakamoto’s 1-hop protocol [17, 33]. Before stating our main theorems, we �rst recall the important parame-
ters in the �rst hop of our protocol (i.e., proof-of-work blockchain); these parameters are the same as that in
the Nakamoto protocol and we borrow them from the previous analysis [17, 33]. Consider the total number
of PoW-miners is n, the portion of malicious computing power is ρ, and a mining hardness parameter p.

• Let α = 1 − (1 − p)(1−ρ)n be the probability that some honest PoW-miners mine a block successfully
in a round .

• Let β = ρnp be the expected number of PoW-blocks that malicious PoW-miners can �nd in a round.

Here, when pn � 1, we have α ≈ (1 − ρ)np, and thus α
β ≈

1−ρ
ρ . We assume 0 < α � 1, 0 < β � 1 and

α = λβ where λ ∈ (0,∞). We expect less than one proof of work solution to be produced in each round. We
note that, in Nakamoto protocol, λ must be greater than 1; but in our se�ing λ could be less than 1, i.e., the
malicious parties could control more computing resources.
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Process BestValid

�e process BestValid is parameterized by a content validation predicate V (·) and an initial chain Cinit. �e
input is (C′,Type).
For every chain-pair 〈C, C̃〉 ∈ C′, and proceed as follows.

1. Check if len(C) − 1 = len(C̃) and Type = PoS-holder, then set ` := len(C). �en verify the new
PoW-block C[`] as follows.

• Verify the pointer in C[`]: Parse C[`] to obtain 〈h`,w`〉, send (Compute, C[` − 1], C̃[` − 1]) to
F∗rRO and then receive (Computed, h). If h 6= h`, remove this chain-pair from C′.

• Verify the PoW solution in C[`]: Send message (RO-Verify, C[`]) to the functionality F∗rRO, and
then receive (RO-Verified, h ′). If h ′ =⊥, remove this chain-pair from C′.

2. Check if len(C) = len(C̃) and V (payload(C̃)) = 1, or len(C)− 1 = len(C̃) and Type = PoS-holder. If
yes, for i from len(C̃) to len(Cinit), proceed as follows.

• Verify PoW-block C[i]:
– Verify the pointer in C[i]: Parse C[i] to obtain 〈hi,wi〉, send (Compute, C[i − 1], C̃[i − 1])

to F∗rRO and then receive (Computed, h).
– Verify the PoW solution in C[i]: Send message (RO-Verify, C[i]) to the functionality F∗rRO,

and then receive (RO-Verified, h ′).
If hi 6= h or h ′ =⊥, set b1 := 0. Else, set b1 := 1.

• Verify PoS-block C̃[i]: Parse C̃[i] to obtain 〈S, B,X , σ〉. �en send message
(Stake-Verify, (B,X, Sj), σ) to the functionality F∗rCERT. Upon receiving message
(Stake-Verified, (B,X, Sj), f) from F∗rCERT, if f = 0 or B 6= C[i], set b2 := 0. Else,
set b2 = 1.

• If b1 = 0 or b2 = 0, remove this chain-pair from C′.

3. Otherwise, remove this chain-pair from C′.

Find the valid chain-pair 〈Cbest, C̃best〉 ∈ C′ with the longest PoW-chain. �en set 〈Cbest, C̃best〉 as the
output.

Figure 8: �e chain set validation local functionality.
Intuitively, BestValid ensures that, if Type = PoS-miner, every valid chain-pair should have its member chains C and C̃
of the same length. On the other hand, if Type = PoS-holder, we allow the PoW-chain longer than the PoS-chain by one
block since there may a new PoW-block produced in the previous rounds.

We then describe the important parameters in the second hop (i.e., proof-of-stake blockchain). Similar to
that in the �rst hop, we consider the total number of PoS-holders is ñ, the poriton of malicious stakes is ρ̃,
and the election parameter is p̃. Similarly, if p̃ñ � 1, α̃ can be approximated by (1− ρ̃)ñp̃.

• Let α̃ = (1− ρ̃)ñp̃ be the probability that a PoW-block is mapped to an honest PoS-holder.

• Let β̃ = ρ̃ñp̃ be the probability that a PoW-block is mapped to an malicious PoS-holder.

Let α̂ = αα̃, β̂ = ββ̃, γ̂ = α̂
1+2∆α̂ . Note that γ̂ can be viewed as a “discounted” version of α̂ due to the

fact that the messages sent by honest parties can be delayed by ∆ rounds; γ̂ corresponds to the “e�ective”
collective resource. Note that if np+ ñp̃ � 1, then γ̂ ≈ α̂ and thus ρ̂ = α̂

β̂
≈ (1−ρ)(1−ρ̃)

ρρ̃ . We are now ready
to state our main theorems.
�eorem 4.1 (Chain Growth for PoS-chain). For any δ > 0, consider protocol Π = (Πw,Πs) in Section 3.2.
For any honest PoS-holder S with the local PoS-chain C̃ in round r and C̃′ in round r′ where s = r′ − r > 0, in
EXEC(Πw,Πs),A,Z , the probability that len(C̃′)− len(C̃) ≥ g ·s where g = (1− δ)γ̂ is at least 1− e−Ω(s).
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�eorem 4.2 (Chain �ality for PoS-chain). We assume γ̂ = λ̂(α + β)β̃ and λ̂ > 1. For any δ > 0, consider
protocol Π = (Πw,Πs) in Section 3.2. For any honest PoS-holder S with PoS-chain C̃ in EXEC(Πw,Πs),A,Z , the
probability that, for large enough ` consecutive PoS-blocks of C̃ which are generated in s rounds, the ratio of
honest blocks is no less than µ = 1− (1 + δ) (α+β)β̃

γ̂ is at least 1− e−Ω(`).

�eorem 4.3 (Common Pre�x for PoS-chain). We assume γ̂ = λ̂β̂ and λ̂ > 1. For any δ > 0, consider protocol
Π = (Πw,Πs) in Section 3.2. Let κ be the security parameter. For any two honest PoS-holders Si in round r and Sj
in round r′, with the local best PoS-chains C̃i, C̃j , respectively, in EXEC(Πw,Πs),A,Z where r ≤ r′, the probability
that C̃i[1, `i] � C̃j where `i = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ).

We notice that the assumptions of γ̂ are di�erent in chain quality and common pre�x properties. �is
is because if the malicious players want to destroy chain quality property, he could recycle the computing
power from honest miners.

4.1 Important Terms

We now provide some important terms which are useful for our analysis.
De�nition 4.4 (Honest Successful Round). We say a PoW-round r is an honest successful round, if in this
round, at least one honest PoW-miner �nds a new solution.
De�nition 4.5 (Honest Stake Successful Round). We say a PoS-round r is an honest stake successful round,
if a new PoW-block B, which is generated from an honest successful round, is mapped to an honest PoS-holder,
and the PoS-holder broadcasts a new PoS-block a�er this round.
Remark 4.6. As discussed in previous section, a PoS-block may be invalid because the delay of the massages on
the network. Here the honest stake successful round also only consider that the real valid PoS-block is generated
(without discounted).
De�nition 4.7 (Valid Malicious PoW-block). We say a PoW-block B is a valid malicious PoW-block if (1) the
PoW-block B is generated by a corrupted (malicious) PoW-miner, and (2) it is mapped to a corrupted PoS-holder.
De�nition 4.8 (Hidden chain-pair). We say a chain-pair 〈C, C̃〉 is a hidden chain-pair, if it is not known to any
honest player.
De�nition 4.9 (Hidden PoS-chain). We say C̃ is a hidden PoS-chain, if 〈C, C̃〉 is a hidden chain-pair.
De�nition 4.10 (Strong Safe round). We say round r is a strong safe round, if no players (both honest and
malicious) publish any new PoS-chain in the 2∆ previous rounds of round r to any honest party.

Now we brie�y analyze the probability that a PoS-round is an honest stake successful round. We have
the probability that a round is an honest successful round is α. Since the new block generated in the honest
successful round will be mapped to a PoS-holder uniformly by F∗rCERT, the probability that an online honest
stake is selected is α̃. �erefore, the probability that a PoS-round is an honest stake successful round is αα̃
on average.

Following a similar argument, the number of valid malicious blocks that the malicious parties will generate
in a PoS-round is ββ̃ on average. We remark that, in an honest stake successful round, the honest PoS-holder
can generate a valid PoS-block for the public best chain-pair. At the same time, the malicious stakeholders
can append all of the valid malicious PoS-blocks to their (hidden) chain-pair.

Further more, the honest miners may generate a PoW-block which is mapped to a malicious stakeholder
and vice versa. We describe the cases as following:

• Case 1: When an honest PoW-miner �nds a new PoW-block which is mapped to an honest PoS-holder
he would broadcast the PoW-block and the chosen honest PoS-holder will query the corresponding
signature for that PoW-block and then produce the corresponding PoS-block. In general, this case will
help the honest public best chain-pair to grow up.
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• Case 2: When a malicious PoW-miner �nds a new PoW-block which is mapped to a malicious PoS-holder
we would send the block to the corresponding PoS-holder and get the PoS-block. �e malicious parties
may keep this pair of blocks hidden to help a hidden chain-pair grow up.

• Case 3: When an honest PoW-miner �nds a new PoW-block which is mapped to a malicious PoS-holder
he would still broadcast it. �e malicious PoS-holders may take it as the starting point to fork a
chain-pair and keep it hidden. �at means the malicious PoS-holders can have one free block at the
beginning of a hidden PoS-chain of a hidden chain-pair. Any hidden chain-pair can have no more than
1 such kind of block.

• Case 4: When a malicious PoW-miner �nds a new PoW-block which is mapped to an honest PoS-holder.
If he sends the PoW-block to the corresponding PoS-holder, then all honest parties will receive it even-
tually. If it is accepted, it may help to grow the best public chain-pair.

As the discussion, α̂ = αα̃ and β̂ = ββ̃ is the collective probability of Case 1 and Case 2. We de�ne the
collective ratio of the honest and malicious resources.

Before we do the formal analysis we will de�ne public PoS-chain �rst.
De�nition 4.11 (Public PoS-chain). If a PoS-chain C̃ is known to all honest players, it is a public PoS-chain.

�e following two lemmas show that each honest PoS-holder’ local PoS-chains of its local chain-pair will
be extended by one block a�er an honest stake successful round. �ere may be competition in that round,
whatever the result is, the length will grow in that round.

4.2 Analysis with Bounded Delay

We assume that the malicious parties can delay the message arrival with some bounded time through the
functionality FNET to capture the asynchronous network scenario. �e malicious parties can delay any mes-
sage on the network in no more than ∆ rounds (this is guaranteed by FNET) which we say it is a ∆ bounded
channel. When an honest miner �nds a new PoW-block he will broadcast it to the system and hope all parties
will receive it. If some parties don’t receive the message, the view of the honest stake holders will keep remain
divergent for this block. Following a similar analysis, if the adversary delays a message of PoS-block from an
honest stakeholder, the view of the honest parties will diverge for that PoS-block. It is easy to see that for a
pair of PoW-block and PoS-block, the malicious parties have two chances to delay the message to prevent the
honest parties achieving the same view.

As discussed, if any message can be delayed for ∆ rounds, a new pair of blocks can be delayed 2∆ rounds at
most. �e intuition is that the delay of messages will decrease the e�ciency of block mining. �is is because
the honest players may not get the real best chain-pair including the real best PoW-chain and PoS-chain
and will therefore work on some inferior chain-pair. If honest players produce a new block-pair (including
a PoW-block and its corresponding PoS-block) during the delay time and later receive a be�er chain-pair,
the new block-pair will be useless and the work for mining the PoW-block in this block-pair is wasted. As
mentioned, we introduce the “e�ective” honest collective resources γ̂ to capture this intuition.

4.2.1 Hybrid expriments

To analyze the best strategy of the adversary and the worst scenario that may happen to the honest players,
we here consider the following executions. Let EXEC(Πw,Πs),A,Z(σ) denote the typical execution of (Πw,Πs)
where

1. �e randomness is �xed to σ,

2. Messages of honest players are delayed by FNET in at most ∆ rounds.
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Without loss of generality, we assume that the messages produced in PoW-round are delayed to PoS-round,
and messages produced in PoS-round are delayed to PoW-round.

Let EXECν(Πw
∆,Π

s),A,Z(σ) denote the execution such that

1. �e randomness is �xed to σ,

2. FNET delays all messages generated by honest PoW-miners at round ν ′ for all r ≤ ν ′ ≤ ν −∆, where
r + s ≥ ν ≥ r + ∆ − 1, in exact ∆ rounds, during ∆ rounds, no honest PoW-miners query the
functionality F∗rRO until the messages are delivered,

3. All messages from honest PoS-holders from r to r + s are delayed as in EXEC(Πw,Πs),A,Z(σ) and
PoS-holders executes normally as in EXEC(Πw,Πs),A,Z(σ) meaning that the chosen PoS-holders in each
PoS-round in both EXEC(Πw,Πs),A,Z(σ) and EXECν(Πw

∆,Π
s),A,Z(σ) are the same from round r to r + s.

4. A�er round ν, the messages from honest players are delayed as in EXEC(Πw,Πs),A,Z(σ) and F∗rRO,
F∗rCERT execute as in EXEC(Πw,Πs),A,Z(σ). �is means, a�er round ν, the chosen PoW-miners and
PoS-holders in each PoW-round and PoS-round, respectively, in bothEXEC(Πw,Πs),A,Z(σ) andEXECν(Πw

∆,Π
s),A,Z(σ)

are the same.

�at is, in this execution, only messages from honest successful rounds before round ν −∆ are delayed
in ∆ rounds.

Let EXECν(Πw
∆,Π

s
∆),A,Z(σ) denote the execution such that

1. �e randomness is �xed to σ,

2. FNET delays all messages generated by honest PoW-miners in round ν ′ for all r ≥ ν ′ ≤ r + s−∆, where
r, s > 0 to the maximum number of ∆, during these ∆ rounds, no honest PoW-miners request the func-
tionality F∗rRO until the messages are delivered,

3. All messages generated by honest PoS-holders, at round ν ′′ for all r ≥ ν ′′ ≥ ν −∆, where r + s ≥ ν ≥ r + ∆− 1,
to the maximum number of ∆ rounds by FNET, during these ∆ rounds, the honest PoS-holders do not
query the functionality F∗rCERT until the messages are delivered,

4. A�er round ν, the messages from honest players are delayed as in EXEC(Πw,Πs),A,Z(σ) and F∗rRO,
F∗rCERT execute as in EXEC(Πw,Πs),A,Z(σ). �is means, a�er round ν, the chosen PoW-miners and
PoS-holders in each PoW-round and PoS-round, respectively, in bothEXEC(Πw,Πs),A,Z(σ) andEXECν(Πw

∆,Π
s),A,Z(σ)

are the same.

�at is, in this execution, messages from all honest successful rounds in s consecutive rounds are delayed
in ∆ rounds, and only messages from honest stake successful rounds before round ν − ∆ are delayed in ∆
rounds.

We prove our �rst lemma showing that the length of PoS-chain of S at round r+s in the normal execution
EXEC(Πw,Πs),A,Z(σ) and the modi�ed execution EXECr(Πw

∆,Π
s),A,Z(σ) where messages of PoW-miners before

rounds r are delayed in exact ∆ rounds are the same.
Lemma 4.12. For all σ, r, s > 0, and for any honest PoS-holder S at round r + s, let C̃r+∆−1

(Πw
∆,Π

s),r+s,S denote the

PoS-chain of S at round r + s in the execution EXECr+∆−1
(Πw

∆,Π
s),A,Z(σ), C̃(Πw,Πs),r+s,S denote the PoS-chain of S at

round r + s in the execution EXEC(Πw,Πs),A,Z(σ). We then have

len(C̃r+∆−1
(Πw

∆,Π
s),r+s,S) = len(C̃(Πw,Πs),r+s,S)

Proof. We show that len(C̃r+∆−1
(Πw

∆,Π
s),r+s,S) = len(C̃(Πw,Πs),r+s,S). In the execution EXEC(Πw,Πs),A,Z(σ), for any

round, messages are delayed in any number of round less than or equal to ∆. In the executionEXECr+∆−1
(Πw

∆,Π
s)(σ),

23



from round r to r + s, the messages at round ν ′ for all r ≤ ν ′ ≤ (r + ∆ − 1) − ∆, are delayed to
the next ∆ rounds. �at is, there does not exists ν ′ such that r ≤ ν ′ ≤ (r + ∆ − 1) − ∆. �is im-
plies there are no rounds from r to r + s that messages are delayed to exact ∆ rounds. �erefore, the
two executions EXEC(Πw

∆,Π
s),A,Z(σ) and EXECr+∆−1

(Πw
∆,Π

s),A,Z(σ) are the same, and then len(C̃r+∆−1
(Πw

∆,Π
s),r+s,S) =

len(C̃(Πw,Πs),r+s,S).

We are now ready to introduce our lemma to show that the PoS-chain of every honest player will not
decrease in length from the execution EXECν(Πw

∆,Π
s),A,Z(σ) to the execution EXECν+1

(Πw
∆,Π

s),A,Z(σ) for every
�xed randomness σ where messages from honest successful rounds are delayed as described above.
Lemma 4.13. For all σ, r, s, ν > 0, where r + ∆ − 1 ≤ ν ≤ r + s, and for any honest PoS-holder S at round
r + s, let C̃ν(Πw

∆,Π
s),r+s,S be the PoS-chain of S at round r + s in the execution EXECν(Πw

∆,Π
s),A,Z(σ), and let

C̃ν+1
(Πw

∆,Π
s),r+s,S be the PoS-chain of S at round r + s in the execution EXECν+1

(Πw
∆,Π

s),A,Z(σ). We then have

len(C̃ν(Πw
∆,Π

s),r+s,S) ≥ len(C̃ν+1
(Πw

∆,Π
s),r+s,S) (1)

Proof. We note that if a round is honest successful in EXECν(Πw
∆,Π

s),A,Z(σ), it also an honest successful
round in EXECν+1

(Πw
∆,Π

s),A,Z(σ). Roughly speaking, the main di�erence between EXECν(Πw
∆,Π

s),A,Z(σ) and
EXECν+1

(Πw
∆,Π

s),A,Z(σ) is that, in EXECν(Πw
∆,Π

s),A,Z(σ), the messages of PoW-miners in the rounds before ν−∆

are delayed, while in EXECν(Πw
∆,Π

s),A,Z(σ), the delayed messages are from rounds before ν+ 1−∆ . �is im-
plies that, from round ν+1−∆ to ν, in executionEXECν+1

(Πw
∆,Π

s),A,Z(σ), the messages sent previously from hon-
est PoW-miners to PoS-holders could still be in delay, which means no PoW-miners or PoS-holders is allowed
to query the functionality F∗rRO or F∗rCERT, respectively, in round ν + 1, whereas, in EXECν(Πw

∆,Π
s),A,Z(σ),

PoW-miners can query F∗rRO, which means there may new PoS-blocks generated in during these rounds. We
here take a more careful look at the two executions, and have the following two cases.
If S is not uncorrupted in any round from ν + 1 − ∆ to ν. If ν + 1 − ∆ is an honest successful round,
then in EXECν+1

(Πw
∆,Π

s),A,Z(σ), (1) the messages generated at round ν + 1−∆ are delayed to round ν + 1, (2)
all PoW-miners stop querying F∗rRO until round ν + 1. �erefore,

len(C̃ν+1
(Πw

∆,Π
s),ν+1,S) = len(C̃ν+1

(Πw
∆,Π

s),ν+1−∆,S) + 1

On the other hand, in EXECν(Πw
∆,Π

s),A,Z(σ), (1) the messages generated at round ν + 1 − ∆ are delivered
normally as in EXEC(Πw,Πs),A,Z(σ), (2) all PoW-miners and PoS-holders run normally from round ν + 1 + ∆
to ν, and there may occur some honest stake successful rounds from ν + 1−∆ to ν. �erefore,

len(C̃ν(Πw
∆,Π

s),ν+1,S) ≥ len(C̃ν(Πw
∆,Π

s),ν+1−∆,S) + 1

Since the two executions EXECν(Πw
∆,Π

s),A,Z(σ) and EXECν+1
(Πw

∆,Π
s),A,Z(σ) till round ν + 1 − ∆ and a�er

round ν + 1 are the same, we have len(C̃ν(Πw
∆,Π

s),r+s,S) ≥ len(C̃ν+1
(Πw

∆,Π
s),r+s,S).

It is easily to see that if ν+1−∆ is not an honest successful round (e.g., an honest stake successful round,
normal PoW-round, PoS-round), the the length of the PoS-chain in two executions are the same.
If S is uncorrupted in any round from ν + 1 −∆ to ν. If ν + 1 −∆ is an honest successful round, then
in EXECν+1

(Πw
∆,Π

s),A,Z(σ), all honest parties stop working, while in EXECν(Πw
∆,Π

s),A,Z(σ), every party executes
normally. If the PoS-holder S is uncorrupted in round ν + 1 − ∆ ≤ ν ′ ≤ ν, he will start with an initial
state and receive incoming chain-pair from other parties in the protocol, and then update his local chain-pair
with the best one (i.e., the chain-pair with the longest PoW-chain). We here note the di�erence between
EXECν+1

(Πw
∆,Π

s),A,Z(σ) and EXECν(Πw
∆,Π

s),A,Z(σ) in this case is that, in EXECν+1
(Πw

∆,Π
s),A,Z(σ), S will only receive

messages from corrupted players since all honest players are stop working, while in EXECν(Πw
∆,Π

s),A,Z(σ), S
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will receive messages from both honest and corrupted players. Since the PoS-chain in the best chain-pair at
round ν ′ is at least as long as the valid malicious PoS-chain at round ν ′, the PoS-chain in the best chain-pair
at round r + s in EXECν(Πw

∆,Π
s),A,Z(σ) is at least as long as the valid malicious PoS-chain at round r + s in

EXECν+1
(Πw

∆,Π
s),A,Z(σ).

If ν + 1 − ∆ is not an honest successful round, the messages of honest players will not be delayed.
�erefore, the length of C̃ν(Πw

∆,Π
s),r+s,S and C̃ν+1

(Πw
∆,Π

s),r+s,S are the same. �is completes the proof.

We then prove an important that the length of PoS-chain of S at round r + s in the two executions
EXECr+s(Πw

∆,Π
s),A,Z(σ) and EXECr(Πw

∆,Π
s
∆),A,Z(σ) are the same.

Lemma 4.14. For all σ, r, s > 0, and for any honest PoS-holder S at round r + s, let C̃r+s(Πw,Πs),r+s,S denote the

PoS-chain of S at round r+ s in the execution EXECr+s(Πw
∆,Π

s),A,Z(σ), and let C̃r+∆−1
(Πw

∆,Π
s
∆),r+s,S denote the PoS-chain

of S at round r + s in the execution EXECr+∆−1
(Πw

∆,Π
s
∆),A,Z(σ). We then have

len(C̃r+s(Πw
∆,Π

s),r+s,S) = len(C̃r+∆−1
(Πw

∆,Π
s
∆),r+s,S)

Proof. We demonstrate that len(C̃r+s(Πw
∆,Π

s),r+s,S) = len(C̃r+∆−1
(Πw

∆,Π
s
∆),r+s,S). In the execution EXECr+s(Πw

∆,Π
s),A,Z(σ),

all messages produced by PoW-miners at round r ≤ ν ′ < r + s − ∆ are delayed in exact ∆ rounds, and
all messages generated by PoS-holders are delayed normally. By de�nition of EXECr+∆−1

(Πw
∆,Π

s
∆),A,Z(σ), all mes-

sages generated by PoS-holders are delayed normally and PoS-holders also work normally from round r to
r + s. �erefore, the two executions EXECr+s(Πw

∆,Π
s),A,Z(σ) and EXECr+∆−1

(Πw
∆,Π

s
∆),A,Z(σ) are the same and then

len(C̃r+s(Πw
∆,Π

s),r+s,S) = len(C̃r+∆−1
(Πw

∆,Π
s
∆),r+s,S). �is concludes the proof.

�e following lemma is similar the Lemma 4.13. However, we consider the two executionsEXECν(Πw
∆,Π

s
∆),A,Z(σ)

and EXECν+1
(Πw

∆,Π
s
∆),A,Z(σ) where messages from all honest successful rounds in s consecutive rounds are de-

layed in exact ∆ rounds and messages generated in some honest stake successful rounds are delayed in ∆
rounds.
Lemma 4.15. For all σ, r, s, ν > 0, where r + ∆ − 1 ≤ ν ≤ r + s, and for any honest PoS-holder S at round
r + s, let C̃ν(Πw

∆,Π
s
∆),r+s,S be the PoS-chain of S at round r + s, in the execution EXECν(Πw

∆,Π
s
∆),A,Z(σ), and let

C̃ν+1
(Πw

∆,Π
s
∆),r+s,S be the PoS-chain of S at round r + s in the execution EXECν+1

(Πw
∆,Π

s
∆),A,Z(σ). We then have

len(C̃ν(Πw
∆,Π

s
∆),r+s,S) ≥ len(C̃ν+1

(Πw
∆,Π

s
∆),r+s,S) (2)

Proof. Note that if a round is an honest successful or honest stake successful round in EXECν(Πw
∆,Π

s
∆),A,Z(σ), it

is also an honest successful or honest stake successful round in EXECν+1
(Πw

∆,Π
s
∆),A,Z(σ). �e main di�erence be-

tweenEXECν(Πw
∆,Π

s
∆),A,Z(σ) andEXECν+1

(Πw
∆,Π

s
∆),A,Z(σ) is the same as the di�erence betweenEXECν(Πw

∆,Π
s),A,Z(σ)

and EXECν+1
(Πw

∆,Π
s),A,Z(σ) with an addition is that messages of PoS-holder are also delayed. We also have two

cases here.
If S is not uncorrupted in any round from ν+ 1−∆ to ν. If ν+ 1−∆ is an honest stake successful round,
then in EXECν+1

(Πw
∆,Π

s
∆),A,Z(σ), (1) the messages generated at round ν + 1−∆ are delayed to round ν + 1, (2)

all PoW-miners and PoS-holders stop querying F∗rRO and F∗rCERT, respectively, until round ν + 1. �erefore,
If S is not the PoS-holder who produced the new PoS-block at round ν + 1−∆,

len(C̃ν+1
(Πw

∆,Π
s
∆),ν+1,S) = len(C̃ν+1

(Πw
∆,Π

s
∆),ν+1−∆,S) + 1
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If S is the PoS-holder who produced the new PoS-block at round ν + 1−∆,

len(C̃ν+1
(Πw

∆,Π
s
∆),ν+1,S) = len(C̃ν+1

(Πw
∆,Π

s
∆),ν+1−∆,S)

On the other hand, in EXECν(Πw
∆,Π

s),A,Z(σ), (1) the messages generated at round ν + 1−∆ are delivered
normally as in EXEC(Πw,Πs),A,Z(σ), (2) all PoW-miners and PoS-holders execute normally from round ν +
1 + ∆ to ν. �erefore,

If S is not the PoS-holder who produced the new PoS-block at round ν + 1−∆,

len(C̃ν,(Π
w
∆,Π

s
∆)

ν+1,S ) ≥ len(C̃ν,(Π
w
∆,Π

s
∆)

ν+1−∆,S ) + 1

If S is the PoS-holder who produced the new PoS-block at round ν + 1−∆,

len(C̃ν(Πw
∆,Π

s
∆),ν+1,S) ≥ len(C̃ν(Πw

∆,Π
s
∆),ν+1−∆,S)

Since the two executions EXECν(Πw
∆,Π

s
∆),A,Z(σ) and EXECν+1

(Πw
∆,Π

s
∆),A,Z(σ) till round ν + 1 −∆ and a�er

round ν + 1 are the same, we have len(C̃ν(Πw
∆,Π

s
∆),r+s,S) ≥ len(C̃ν+1

(Πw
∆,Π

s
∆),r+s,S).

If ν + 1−∆ is not an honest successful round or an honest stake successful round (an honest successful
round, normal PoS-round, or PoW-round), the length of the PoS-chain of S in the two executions are the same.
�us, len(C̃ν(Πw

∆,Π
s
∆),r+s,S) = len(C̃ν+1

(Πw
∆,Π

s
∆),r+s,S).

If S is uncorrupted in any round from ν + 1 − ∆ to ν. As discussed, if ν + 1 − ∆ is an honest stake
successful round, then all messages of honest PoS-holders in EXECν+1

(Πw
∆,Π

s
∆),A,Z(σ) are delayed ∆ rounds and

all players stop running, while messages in EXECν(Πw
∆,Π

s
∆),A,Z(σ) from round ν + 1 − ∆ to ν are delayed

normally by FNET and all players work normally. �erefore, the uncorrupted PoS-holder will start with an
initial chain-pair and receive incoming chain-pairs from all players in EXECν(Πw

∆,Π
s
∆),A,Z(σ), whereas S will

only receive the incoming chain-pairs from the malicious players. �e PoS-holder will therefore choose the
best chain-pair. Since the PoS-chain in the best chain-pair at the uncorrupted round is not shorter than all
other PoS-chains including the malicious PoS-chain in the execution. We therefore have len(C̃ν(Πw

∆,Π
s
∆),r+s,S) ≥

len(C̃ν+1
(Πw

∆,Π
s
∆),r+s,S).

If ν+ 1−∆ is an honest successful round, in both executions, all messages of honest PoW-miners at round
ν + 1−∆ are delayed to the maximum of ∆ rounds. �us, len(C̃ν(Πw

∆,Π
s
∆),r+s,S) = len(C̃ν+1

(Πw
∆,Π

s
∆),r+s,S).

If ν + 1 −∆ is not an honest successful round or honest stake successful round, no messages of honest
parties are delayed from round ν + 1−∆ to ν. �erefore, len(C̃ν(Πw

∆,Π
s
∆),r+s,S) = len(C̃ν+1

(Πw
∆,Π

s
∆),r+s,S).

�is concludes the proof.

�e following lemma shows that the PoS-chain of every honest PoS-holder cannot decrease in length if
we maximally delay messages from honest parties in every honest successful round or honest stake successful
round during s consecutive rounds, and all honest PoW-miners, PoS-holders during this delay stop requesting
the functionalities. �e lemma is formally given as follows.
Lemma 4.16. For all σ, r, s > 0, and for any honest PoS-holder S at round r + s, let C̃(Πw,Πs),r+s,S be the

PoS-chain of S at round r+ s in the execution EXEC(Πw
∆,Π

s),A,Z(σ) and C̃r+s(Πw
∆,Π

s
∆),r+s,S be the PoS-chain of S at

round r + s in the execution EXECr+s(Πw
∆,Π

s
∆),A,Z(σ). We then have

len(C̃(Πw,Πs),r+s,S) ≥ len(C̃r+s(Πw
∆,Π

s
∆),r+s,S)

Proof. By Lemmas 4.12, 4.13, 4.15, and 4.14, we have

len(C̃Πw,Πs),r+s,S) = len(C̃r+∆−1
(Πw

∆,Π
s),r+s,S) ≥ len(C̃r+∆

(Πw
∆,Π

s),r+s,S) ≥ . . . ≥ len(C̃r+s(Πw
∆,Π

s),r+s,S) = len(C̃r+∆−1
(Πw

∆,Π
s
∆),r+s,S)

≥ len(C̃r+∆
(Πw

∆,Π
s
∆),r+s,S) ≥ . . . ≥ len(C̃r+s(Πw

∆,Π
s
∆),r+s,S)

(3)
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�is completes the proof.

4.2.2 Analysis in the worst delay setting

Let viewr denote the view at round r for any execution of Π = (Πw,Πs) for any randomness σ and s, r >
0. �en, let len(viewr) denote the length of the best public PoS-chain chain at round r in viewr for any
randomness σ and s, r > 0.

Note that, we denote len(C̃r+s(Πw
∆,Π

s
∆),r+s,S) as the length of the PoS-chain of S at round r+s in the execution

EXECr+s(Πw
∆,Π

s
∆),A,Z . If the context (i.e., execution) is clear, we write len(C̃r+s,S) instead of len(C̃r+s(Πw

∆,Π
s
∆),r+s,S).

Note that the messages from PoS-holders to PoW-miners are delayed exactly ∆ rounds and no PoS-holders
work, and then message from PoW-miners are delayed exactly ∆ rounds no PoS-holders execute in these ∆
rounds. �us, for a message to be delivered from a PoS-holder to another PoS-holder, it takes exactly 2∆
rounds in EXECr+s(Πw

∆,Π
s
∆),A,Z . �e following lemma captures this.

Lemma 4.17. Consider EXECr+s(Πw
∆,Π

s
∆),A,Z(σ). Let α, β, α̃, β̃ > 0, α + β < 1, α̃ + β̃ < 1, and α̂ = λ̂β̂ where

λ̂ ∈ (1,∞). We assume that the malicious parties can delay any message for ∆ rounds at most. Let γ̂ be the
actual probability that a round is honest successful stake round, we have γ̂ = α̂

1+2∆α̂ .

Proof. Consider the case EXEC(Πw,Πs),A,Z(σ) without any delay, the expected number of honest stake suc-
cessful rounds from round r to r + s is α̂s. If we assume the malicious parties can delay any message for ∆
at most, each honest stake successful round would lead to 2∆ rounds delay where the honest player will wast
computing power because they don’t get the recent successful block. Now, assume there are actual c honest
stake successful rounds from round r to r + s in EXECr+s(Πw

∆,Π
s
∆),A,Z(σ) with ∆ assumption. We then have,

α̂(s− 2∆c) = c. �is implies that c = α̂s
1+2∆α̂ = γ̂s where γ̂ = α̂

1+2∆α̂ .

�e following lemma demonstrates that each stake successful round would contribute one PoS-block to
the best chain-pair a�er ∆ rounds in an execution of Π.
Lemma 4.18. For any honest stake successful round ν, len(viewν)− len(viewν−∆) ≥ 1.

Proof. As the de�nition in 4.5. �ere is at least one PoS-holder produces a PoS-block in round ν. Let C̃ν−∆,S be
the PoS-chain that is extended by the PoS-holder at round ν −∆. We have len(C̃ν−∆,S) ≥ len(viewν−∆). Let
C̃ν,S be the PoS-chain that is extended by the PoS-holder at round ν. At the end of round ν we have len(C̃ν,S) =
len(C̃ν−∆,S)+1. �e honest miner will broad cast C̃ν,S to all of the parties, so we have len(viewν) ≥ len(C̃ν,S).
Put them together, we have len(viewν)− len(viewν−∆) ≥ 1.

Corollary 4.19. Suppose there are t honest stake successful rounds from round r to round r + s, it holds that
len(viewr+s)− len(viewr) ≥ t.

Proof. Let ri be honest stake successful round where r < νi < r + s and 1 ≤ i ≤ t. From lemma 4.18, we
have len(viewνi)− len(viewνi−∆) ≥ 1.

len(viewr+s)− len(viewr) ≥
∑t

i=1{len(viewνi)− len(viewνi−∆)} ≥ t

We also need to measure the ability that how fast the malicious parties can extend a hidden chain-pair. Let
hid(viewr) denote the length of the longest hidden PoS-chain chain which is controlled by malicious parties
at round r in view.
Lemma 4.20. Let h be the number of valid malicious PoW-blocks that are generated in round r, hid(viewr) −
hid(viewr−1) ≤ h.
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Proof. No honest PoW-miner will extend a hidden chain-pair with a PoW-block. �erefore, the PoW-chain of
this chain-pair will extend by one new PoW-block B only by a malicious PoW-miner. If the mapped stake-
holder is honest, then the PoS-holder will not extend the corresponding PoS-chain unless that the chain-pair
is public.

Put them together, only valid malicious PoW-blocks will extend hidden chain-pair, and each will con-
tribute a new PoS-block which makes the length of the PoS-chain increase by at most 1. Hence, hid(viewr)−
hid(viewr−1) ≤ h.

4.3 Achieving the Chain Growth Property

We here demonstrate that our protocol satis�es the chain growth property (De�nition 2.3). �e concrete
statement to be proved can be found in �eorem 4.1.
Lemma 4.21. Consider EXECr+s(Πw

∆,Π
s
∆),A,Z . For any δ > 0, during any consecutive s rounds, the number of

honest successful rounds is (1− δ)γ̂s with probability at least 1− e−Ω(s).

Proof. In any consecutive s rounds, the number of honest stake successful rounds is γ̂s on average. LetX ′′ be
the number of honest stake successful rounds in the s consecutive rounds in the execution EXECr+s(Πw

∆,Π
s
∆),A,Z .

By Cherno� bound, we have Pr[X ′′ ≤ (1− δ)γ̂s] ≤ e−δ2γ̂s/2.
�us, Pr[X ′′ > (1− δ)γ̂s] > 1− e−δ2γ̂s/2 = 1− e−Ω(s).

We �rst prove that our blockchain protocol achieves the chain growth property in the executionEXECr+s(Πw
∆,Π

s
∆),A,Z

before moving to the main theorem.
Lemma 4.22. Consider EXECr+s(Πw

∆,Π
s
∆),A,Z . For any δ > 0, and for any honest PoS-holder S with the best

PoS-chain C̃r,S and C̃r′,S in round r′ and r′ respectively where s = r′ − r > 0, the probability that len(C̃r′,S) −
len(C̃r,S) ≥ g ·s where g = (1− δ)γ̂ is at least 1− e−Ω(s).

Proof. Let PoS-chain C̃ be the best valid PoS-chain of S in round r. We have len(C̃r,S) ≤ len(viewr). From
Lemma 4.21, in any consecutive s rounds the number of honest successful round is more than (1− δ)γs with
low error probability. Together with Lemma 4.18 and Corollary 4.19, we have len(viewr′) − len(viewr) ≥
(1− δ)γ̂s.
C̃r′,S is the best valid PoS-chain accepted by an honest PoS-holder S at the end of round r′. We have

len(C̃r′,S) ≥ len(viewr′). Put them together, len(C̃r′,S)− len(C̃r,S) ≥ len(viewr+s)− len(viewr) ≥ (1− δ)γ̂s
with probability 1− e−Ω(s). �e corresponding growth rate is g = (1− δ)γ̂.

Reminder of �eorem 4.1. For any δ > 0, consider protocol Π = (Πw,Πs) in Section 3.2. For any honest
PoS-holder S with the local PoS-chain C̃ in round r and C̃′ in round r′ where s = r′−r > 0, in EXEC(Πw,Πs),A,Z ,
the probability that len(C̃′)− len(C̃) ≥ g ·s where g = (1− δ)γ̂ is at least 1− e−Ω(s).

Proof. From Lemma 4.22, we have Pr[len(C̃r′,S) ≥ len(C̃r,S)+g·s] ≥ 1−e−Ω(s) where honest PoS-holder S has
the local PoS-chain C̃r,S in round r and PoS-chain C̃r′,S in round r′ where s = r′−r > 0, in EXECr+s(Πw

∆,Π
s
∆),A,Z .

We now turn to the chain growth property in EXEC(Πw,Πs),A,Z . Let C̃ and C̃′ be the local PoS-chain of S
in round r and r′, respectively, where s = r′ − r > 0 in the execution EXEC(Πw,Πs),A,Z . By Lemma 4.16, it
follows that,

Pr[len(C̃) ≥ len(C̃′) + g · s] ≥ Pr[len(C̃r′,S) ≥ len(C̃r,S) + g · s] ≥ 1− e−Ω(s) (4)

where g = (1− δ)γ̂. �is completes the proof.
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4.4 Achieving the Chain�ality Property

�e chain-quality property (De�nition 2.5) ensures that the rate of honest input contributions in a continuous
part of an honest party’s chain has a lower bound. We then �nd the lower bound of the number of PoS-blocks
produced by the honest players. We further show that the number of blocks produced by the adversarial
miners is bounded by their collective resource. Finally, we demonstrate that the ratio of honest PoS-blocks in
an honest player’s PoS-chain are not under a suitable lower bound in a su�cient number of rounds with an
overwhelming probability.

First, we will build the relationship between length of a chain and the number of rounds.
Lemma 4.23. For any δ > 0, given Π = (Πw,Πs), let Z be the number of rounds which generate ` blocks, we
then have Pr[Z = Ω(`)] > 1− e−Ω(l).

Proof. Put all of the resources together, all players can generate α̂ + β̂ PoS-blocks in a round on average. In
order to generate ` blocks, it will consume `

α̂+β̂
rounds on average.

Let Z be the number of rounds which generate ` PoS-blocks. For any δ > 0, by using Cherno� bounds,
Pr[Z ≤ (1− δ) `

α̂+β̂
] ≤ e−δ

2 `

α̂+β̂
/3

�at is, ` blocks will consume Ω(`) rounds to extend the blocks and Pr[Z = Ω(`)] > 1 − e−Ω(`). �is
completes the proof.

Next we will prove that our blockchain protocol achieves the chain quality property in the execution
EXECr+s(Πw

∆,Π
s
∆),A,Z before moving to the main theorem.

Lemma 4.24. Consider EXECr+s(Πw
∆,Π

s
∆),A,Z . We assume γ̂ = λ̂(α + β)β̃ and λ̂ > 1. For any δ > 0, consider

protocol Π = (Π w
∆ ,Π

s
∆) in Section 3.2. For any honest PoS-holder S with PoS-chain C̃, the probability that, for

large enough ` consecutive PoS-blocks of C̃r+s,S which are generated from round r to r + s, the ratio of honest

blocks is no less than µ = 1− (1 + δ) (α+β)β̃
γ̂ is at least 1− e−Ω(`).

Proof. Let r is the round where the �rst PoS-block in the ` consecutive blocks of C̃ is produced. We will show
the chain quality property in EXECr+s(Πw

∆,Π
s
∆),A,Z . As the proof in Lemma 4.23, given any concussive l blocks

for the view of the stakeholder S, ` blocks will consume Ω(`) rounds with probability 1 − e−Ω(`). We use s
to denote the number of rounds that the l blocks consumed. We have s = Ω(l) with probability 1− e−Ω(l).

Let X ′′ be the number of honest stake successful rounds in s rounds in EXECr+s(Πw
∆,Π

s
∆),A,Z . By Cherno�

bound, we have

Pr[X ′′ > (1− δ)γ̂ · s] > 1− e−Ω(s) > 1− e−Ω(`)

Let Y be the number of valid malicious PoW-blocks which are actually generated in s rounds. By Cherno�
bound, we have

Pr[Y < (1 + δ)ββ̃ · s] > 1− e−Ω(s) > 1− e−Ω(`)

Further more, let Z be the number of blocks of case 3 in s round. By Cherno� bound, we have

Pr[Z < (1 + δ)αβ̃ · s] > 1− e−Ω(s) > 1− e−Ω(`)

From Lemma 4.18 and Corollary 4.19, we have ` ≥ X ′′. From Lemma 4.20, the malicious parties will
contribute Y +Z PoS-blocks at most in the s rounds. Even if the malicious parties win all of the competitions
in the block comparisons for each of his blocks, the ` blocks will remain ` − Y − Z blocks from the honest
parties at least. We then have, in EXECr+s(Πw

∆,Π
s
∆),A,Z , µ ≥ `−Y−Z

` = 1 − Y+Z
` ≥ 1 − (1 + δ) (α+β)β̃

γ̂ . �is
completes the proof.
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Reminder of �eorem 4.2. We assume γ̂ = λ̂(α + β)β̃ and λ̂ > 1. For any δ > 0, consider protocol
Π = (Πw,Πs) in Section 3.2. For any honest PoS-holder S with PoS-chain C̃ in EXEC(Πw,Πs),A,Z , the probability
that, for large enough ` consecutive PoS-blocks of C̃ which are generated in s rounds, the ratio of honest blocks is
no less than µ = 1− (1 + δ) (α+β)β̃

γ̂ is at least 1− e−Ω(`).

Proof. From Lemma 4.24, inEXECr+s(Πw
∆,Π

s
∆),A,Z , the ratio of honest PoS-blocks in s consecutive with ` PoS-blocks

is µ ≥ 1− (1 + δ) (α+β)β̃
γ̂ .

From Lemma 4.16, the number of honest PoS-blocks in EXEC(Πw,Πs),A,Z is greater than or equal to that
in EXECr+s(Πw

∆,Π
s
∆),A,Z and because messages of corrupted player would not be delayed. �is implies that, in

EXEC(Πw,Πs),A,Z , the ratio of honest PoS-blocks is no less than 1− (1 + δ) (α+β)β̃
γ̂ in ` consecutive blocks of

C̃. �is completes the proof.

4.5 Achieving the Common Pre�x Property

We now turn our a�ention to proving the common pre�x property (De�nition 2.4) for the proposed protocol.
�e concrete statement can be found in �eorem 4.3.

Now we will give some informal proof ideas before the formal proof.

• First, from the assumption, we know that if the malicious parties do not get any help from the honest
parties, then they cannot produce PoS-blocks faster than the honest parties. �at means if the malicious
parties keep a forked chain-pair hidden and try to extend it by themselves, then the growth rate of the
hidden chain-pair is smaller than the growth rate of the public longest chain-pair on average. When
considering an extended period of time, the hidden chain-pair will be shorter than the public chain-pair
with an overwhelming probability.

• Second, once the malicious parties send the hidden chain-pair to any honest party to get help then all
of the parties would know the chain, and it is a public chain-pair now. Over all public chain-pairs, only
the best one will be extended in the future rounds.

Pu�ing them together, if any two chain-pairs are accepted by di�erent honest parties in some round, that
means there is at least one chain-pair is hidden to some public parties. Otherwise, the parties will make the
same choice. If the hidden part of the PoW chain of this chain-pair is long, that means this part is generated
only by malicious parties. A�er a long time it would be shorter than the PoW-chain of the public chain-pair
which then cannot be accepted by any honest parties.

We remark that adversarial starting point is not be�er than honest players’starting point except one free
block. More precisely, when an honest PoW-miner �nds a new PoW-block which is mapped to a malicious
PoS-holder he would still broadcast it. �e malicious PoS-holders may take it as the starting point to fork a
chain-pair and keep it hidden. �at means the malicious PoS-holders can have one free block at the beginning
of a hidden chain. Any hidden chain can have no more than such kind of block advantage.

We now prove an essential lemma that will be helpful in our analysis. Intuitively, the lemma shows that,
in s consecutive rounds, the honest parties will extend the chain-pair faster than the malicious parties if they
do not help each other. Let X denote the total number of honest stake successful rounds, in EXECr+s(Πw,Πs),A,Z
and X ′′ denote the total number of honest stake successful rounds in EXECr+s(Πw

∆,Π
s
∆),A,Z . Y be the number of

valid malicious PoW-blocks which are actually generated in s rounds, it is valid for both of the two executions.
Lemma 4.25. Let γ̂ = λ̂β̂ and λ̂ > 1. Consider in EXECr+s(Πw

∆,Π
s
∆),A,Z . For any δ > 0 and s > 1

γ̂−β̂
, let X ′′

denote the total number of honest stake successful rounds and Y be the number of valid malicious PoW-blocks
during any consecutive s rounds, we have Pr[X ′′ − Y > 1] ≥ 1− e−Ω(s).

Proof. Consider X ′′ number of honest stake successful rounds in EXECr+s(Πw
∆,Π

s
∆),A,Z . First, from Lemma 4.21,

we have Pr[X ′′ > (1− δ)γ̂s] > 1− e−Ω(s).
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At the same time, the number of new valid malicious PoW-blocks is β̂ · s on average in s rounds. For any
δ ∈ (0, 1], using the Cherno� bound analysis, we have Pr[Y ≥ (1 + δ)β̂ · s] ≤ e−δ

2β̂·s/3. �us, Pr[Y <

(1 + δ)β̂ · s] > 1− e−δ2β̂·s/3 = 1− e−Ω(s).
If s > 1

γ̂−β̂
, for small δ and λ̂ > 1 we have Pr[X ′′ − Y > 1] ≥ 1− e−Ω(s).

We then argue the total number of honest successful rounds against the number valid malicious PoW-blocks
in the typical execution EXEC(Πw,Πs),A,Z .

Lemma 4.26. Let γ̂ = λ̂β̂ and λ̂ > 1. For any δ > 0, if s is large enough, in protocol execution EXEC(Πw,Πs),A,Z
where Π is described in Section 3.2, letX denote the total number of honest stake successful rounds and Y be the
number of valid malicious PoW-blocks during any consecutive s rounds, we have Pr[X − Y > 1] ≥ 1− e−Ω(s).

Proof. From Lemma 4.25, we have Pr[X ′′ − Y > 1] ≥ 1 − e−Ω(s). where X ′′ denote the total number of
honest stake successful rounds and Y be the number of valid malicious PoW-blocks during any consecutive
s rounds in EXECr+s(Πw

∆,Π
s
∆),A,Z .

From Lemma 4.16, the number of honest stake successful roundsX in EXEC(Πw,Πs),A,Z is greater than or
equal to the number of honest stake successful rounds X ′′ in EXECr+s(Πw

∆,Π
s
∆),A,Z that is X ≥ X ′′.

We also have Y is same in the two executions. We get Pr[X − Y > 1] ≥ 1− e−Ω(s).

If the malicious PoS-holder helps the honest PoW-miner to sign PoS-block, it would increase the longest
valid PoS-chain, and this is not harmful. If the honest PoS-holder helps the malicious PoW-miner to sign
PoS-block, it means this block is public and belongs to the longest valid PoS-chain which is also not harmful.
Our useful lemma below states that, under the main assumption that γ̂ = λ̂β̂ and λ̂ > 1, the best public
PoS-chain is longer than any public or hidden PoS-chain. �is implies that the adversarial PoS-chain would
not be be�er than the best public PoS-chain.
Lemma 4.27. Let γ̂ = λ̂β̂ and λ̂ > 1. For any δ > 0, consider the execution EXEC(Πw,Πs),A,Z , suppose there are
two divergent valid PoS-chains C̃i and C̃j of two honest PoS-holders Si and Sj in round r. We assume the last public
PoS-block of C̃j was public from round r− s. Let ` be the number of PoS-blocks generated on C̃i from round r− s
to r. If C̃i is the best public valid PoS-chain and s is large enough, we have Pr[len(C̃i) ≥ len(C̃j)] ≥ 1− e−Ω(`)

Proof. We have the following two cases:

• If C̃j is also a public chain and C̃i is the best public PoS-chain. For C̃i is the best public valid PoS chain,
len(C̃i) ≥ len(C̃j) directly comes from the de�nition of best chain Process in Figure 8.

• If C̃j is a hidden chain from the malicious parties. Let C̃′i be the best public PoS-chain in round r − s
and C̃′j denote the status of C̃j in round r − s. We have len(C̃′i) ≥ len(C̃′j).
From Lemma 4.26, we have that the number of honest successful stake rounds is greater than the number
of valid malicious PoS-blocks by more than 1 with probability at least 1 − e−Ω(s) in s rounds. From
Corollary 4.19 and Lemma 4.20, each honest successful stake round will increase the length of the public
PoS-chain by 1 block and each valid malicious PoS-block will extend the hidden chain-pair by 1 block at
most. Further more, the malicious hidden chain may have 1 more block advantage as in Case 3. Pu�ing
them together, we have, with the probability at least 1− e−Ω(s),

len(C̃i) ≥ len(C̃′i) +X ≥ len(C̃′j) + Y + 1 ≥ len(C̃j) (5)

From Lemma 4.23, it follows that Pr[len(C̃i) ≥ len(C̃j)] ≥ 1− e−Ω(`).
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Next, we will give an important lemma in our analysis. Intuitively, the lemma shows that the PoS-chains
which were not chosen as the best PoS-chain (the PoS-chain in the best chain-pair) will never be accepted by
any honest player in future.
Lemma 4.28. We assume γ̂ = λ̂β̂ and λ̂ > 1. For any δ > 0, consider the execution EXECr+s(Πw,Πs),A,Z . Let C̃
be the best public PoS-chain of the system at round r. Let C̃′ be a PoS-chain of an honest PoS-holder at round r.
We assume C̃′ and C̃ diverge at round r′ where there are ` PoS-blocks generated on C̃ from round r′ to r. It holds
that the probability that C̃′ is accepted by an honest player in the future is at most e−Ω(`).

Proof. Note that, during the rounds s = r − r′ there are at least ` blocks are generated to extend the best
public PoS-chain.

Let X denote the total number of honest stake successful rounds where a single honest PoS-holder pro-
duces a block in that honest stake successful round in EXEC(Πw,Πs),A,Z . By Lemmas 4.26, we have

Pr[X > (1− δ)γ̂ · s] > 1− e−Ω(s) > 1− e−Ω(`)

Let Y be the number of valid malicious PoW-blocks which are actually generated in s rounds. By Lemmas
4.26, we have

Pr[Y < (1 + δ)β̂ · s] > 1− e−Ω(s) > 1− e−Ω(`)

We then have Pr[X − Y > (λ− 1− δ)β̂s] > 1− e−Ω(`). �is implies the best public PoS-chain is longer
than PoS-chain (λ− 1− δ)β̂s blocks with probability 1− e−Ω(`) where s = Ω(`).

If C̃′ is accepted by an honest party in a future round r′′ and let s′ = r′′− r, we will prove the probability
that C̃′ is negligible in `. Let Z be the number of honest stake successful rounds subtracts the number of valid
malicious PoW-blocks in the s′ rounds. We have Z = (γ̂ − β̂)s′ = (λ− 1)β̂s′ on average.

If C̃′ is accepted by an honest party that means (λ− 1− δ)β̂s+ Z ≤ 0. Let Z ′ = (λ− 1− δ)β̂s+ Z , by
Cherno� bound, we have Pr[Z ′ < 0] < e−Ω(s+s′) < e−Ω(`).

We are now ready to prove the main theorem which asserts that our protocol achieves the common-pre�x
property with an overwhelming probability in the security parameter κ. �e theorem is formally given as
follows.

Reminder of�eorem 4.3. We assume γ̂ = λ̂β̂ and λ̂ > 1. For any δ > 0, consider protocol Π = (Πw,Πs) in
Section 3.2. Let κ be the security parameter. For any two honest PoS-holders Si in round r and Sj in round r′, with
the local best PoS-chains C̃i, C̃j , respectively, in EXEC(Πw,Πs),A,Z where r ≤ r′, the probability that C̃i[1, `i] � C̃j
where `i = len(C̃i)−Θ(κ) is at least 1− e−Ω(κ).

Proof. Let C̃ be the best public PoS-chain in round r. From Lemma 4.27, we have C̃i diverges with C̃ no more
than Θ(κ), otherwise it can not be the best chain for any honest party in round r.

Let C̃′j be the status of C̃j in round r. From lemma 4.28, we know that C̃′j diverges with C̃ no more than
Θ(κ), otherwise it can not be the best chain for any honest party in round r′.

Put them together, we get C̃i diverges with C̃′j no more than Θ(κ). C̃′j is pre�x of C̃j , we have C̃i diverges
with C̃j no more than Θ(κ).
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A Resource Certi�cate Authority Functionality F∗rCA
In this work, we consider the following scenario where a cryptocurrency system (e.g., Bitcoin) has “grown
up” which means all players keep roughly the same blockchain; meaning that stake stored in this blockchain
is distributed among all players. �is mature blockchain can be used to implement a resource certi�cation
functionality F∗rCA described in Figure 9. In [9], Cane�i introduce the certi�cate authority functionality FCA;
here, we introduce the resource certi�cate authority functionality F∗rCA without any trapdoor information
and can be implemented by real world resource (e.g., computing power).

Note that, proof-of-stake is introduced to strengthen the proof-of-work blockchain. Speci�cally, our goal
is to use proof-of-stake e�ectively to secure the proof-of-work blockchain if the adversary controls the ma-
jority of computing power but the majority of collective online resources (stake and computing) overall. We
will later formally show that, under the assumption that the majority of collective online resources belongs
to the honest players, even if the adversary dominates the proof-of-work chain (meaning that the adversary
controls the majority of computing power), our protocol is still secure. Here, the honest stakeholders have an
important role to protect the proof-of-work blockchain from the domination of the malicious players.

We argue that the scenario we consider here is realistic. Currently, the PoW-based cryptocurrency system
such as Bitcoin is stable where the honest players have the majority of computing power, which means the
majority of stake is also under the control of honest players. �en, the adversary may develop novel min-
ing techniques and a�empt to dominate the Bitcoin system. However, by our e�ective protocol design and
under the plausible assumption that the majority of collective online resources is honest, these PoW-based
cryptocurrency systems are protected.

Similarly toF∗rRO, at any time step, a PoS-holder Sj could send a register command (CA-Register, Sj , B, vkj)
to ask for registration. �e functionality then records (Sj , B, vkj) (if permi�ed by the adversary), with prob-
ability p̃. �en, for each execution round, a di�erent player P could request the functionality retrieving the
message registered by Sj , the functionality then returns the record of Sj if it permi�ed by the adversary.
Otherwise, the player Sj′ will not receive vkj .

�e formal description of F∗rCA is given in Figure 9.

Functionality F∗rCA

�e functionality is parameterized by a PoS election parameter p̃, a PoS security parameter κ, and interacts
with PoS-holders, PoW-miners, as well as an adversary A.
Registration. Upon receiving a message (CA-Register, Sj , B, vkj) from party Sj where vkj ∈ {0, 1}poly(κ),
it then passes the message to the adversary. Upon receiving a message (CA-Registered, Sj) from the ad-
versary,

1. With probability p̃, set f := 1, then record (Sj , B, vkj), and pass (CA-Registered, Sj , f) to the party.

2. With probability 1− p̃, set f := 0, and pass (CA-Registered, Sj , f) to the party.

Retrieve: Upon receiving (Retrieve, Sj , B) from a player P , send (Retrieve, Sj , P ) to the adversary, and
wait for a message (Retrieved, Sj , P ) from the adversary. �en, if there is a recorded entry (Sj , B, vkj),
output (Retrieved, vkj) to P . Else, output (Retrieved,⊥) to P .

Figure 9: Resource Certi�cate Authority Functionality.

�ere are multiple ways to instantiate F∗rCA. Intuitively, in our main application scenario, F∗rCA is imple-
mented by an already “mature” blockchain (i.e., Bitcoin) and a random oracle; at a speci�ed point, this already
mature blockchain changes its gear, and switch to a new mode (i.e., hybrid PoW/PoS protocol).

We denote φrCA as the ideal protocol for an ideal functionality F∗rCA and πCA as the protocol in the
FCA,FRO-hybrid model. In the ideal protocol φrCA, players are dummy, they just forward the messages
received from the environment F∗rCA to the functionality F∗rRO, and then forward the messages received from
the functionality to the environment. In contrast, upon receiving messages from the environment, the players
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in πCA execute the protocol and then pass the outputs to the environment. �e protocol πCA is described in
Figure 10.

Protocol πCA

�e protocol is parameterized by a PoW parameter p, a PoW security parameter κ.

1. Upon receiving (CA-Register, Sj , B, vkj) from the environment Z , send (B, vkj) to the functional-
ity FRO and receive h .

• If h > D̃ where D̃ = p̃ ·2κ, then set f := 0, and pass (CA-Registered, Sj , f) to the environment.
• Else, if h ≤ D̃, send (Register, Sj , B, vkj) to the functionality FCA. Upon receiving

(Registered, Sj , B, vkj) from FCA, set f := 1 and send (CA-Registered, Sj , f) to the envi-
ronment.

2. Upon receiving (Retrieve, Sj , B) from the environment, send (Retrieve, Sj , B) to the functionality
FCA and then receive the output (Retrieved, vkj). �en pass the message to the environment.

Figure 10: Resource Certi�cate Authority Protocol.

LetS be the adversary in the ideal protocolφrCA, andA be the adversary in protocolπCA. LetEXECF
∗
rCA

φrCA,S,Z
denote random variable denoting the joint view of all parties in the execution of φrCA with the adversary S
and an environment Z . Let EXECFCA,FRO

πCA,A,Z denote random variable denoting the joint view of all parties in the
execution of πCA with the adversary A and an environment Z .
Lemma A.1. Consider φrCA described above and described above and πCA in Figure 10. It holds that the two
ensembles EXECF

∗
rCA

φrCA,S,Z and EXECFCA,FRO
πCA,A,Z are perfectly indistinguishable.

Proof. �e adversary S on input 1κ and p̃ operates as follows. Note that, S stores a table T .

1. Upon receiving (B, vkj) fromA in the name of Sj , send (CA-Register, Sj , B, vkj) to the functionality
F∗rCA and receive (CA-Registered, Sj , f). If f = 0, choose random h ∈ {0, 1}κ such that h > D̃ where
D̃ = p̃ · 2κ, then store ((B, vkj), h)) in the table T and send h to A. If f = 1, choose h ∈ {0, 1}κ such
that h ≤ D̃, then store ((B, vkj), h) in the table T and send h to A.

2. Upon receiving (Register, Sj , B, vkj) from A, send (Registered, Sj , B, vkj) to A.

3. Upon receiving (Retrieve, Sj , B) fromA, send (Retrieve, Sj , B) to the functionality F∗rCA and obtain
(Retrieved, vkj). �en pass the message to the environment.

We now show that the two ensembles EXEC
F∗rCA
φrCA,S,Z and EXECFCA,FRO

πCA,A,Z are perfectly close. Notice that for
each random oracle query fromA, the adversary S asks the functionalityF∗rCA to decide whether this random
oracle query is successful or not, then it samples the output randomly from a set {0, 1}κ. Moreover, for every
register query to the functionality FCA, S would accept if it the random oracle query is successful. Pu�ing
them together, the views of players in the two executions are perfectly indistinguishable.

Remark A.2. �e functionality FCA can be instantiated by a mature and continuing blockchain. Intuitively, the
blockchain is public and all participants agree on the chain except that last several blocks. �erefore, everyone
can derive the latest set of valid stakeholders from the common pre�x of the blockchain with their corresponding
stake.
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B Signature Functionality FSIG

We present the signature functionality following the modeling of [9].

Functionality FSIG

Key Gerneration: Upon receiving a message (Keygen) from some party S, hand (Keygen) to the adversary.
Upon receiving (Verification-Key, vk) from the adversary, output (Verification-Key, vk) to the party S.
Signature Generation: Upon receiving a message (Sign,m) from S, send (Sign,m) to the adversary. Upon
receiving (Signature,m, σ) from the adversary, verify that no entry (m,σ, vk, 0) is recorded. If it is, then
output an error message to S and halt. Otherwise, output (Signature,m, σ) to S, and record the entry
(m,σ, vk, 1).
Signature Veri�cation: Upon receiving a message (Verify,m, σ, vk′) from some party P , hand
(Verify,m, σ, vk′) to the adversary. Upon receiving (Verified,m, φ) from the adversary, do:

1. If vk′ = vk and the entry (m,σ, vk, 1) is recorded, then set f := 1.

2. Else, if vk′ = vk, the signer is not corrupted, and no entry (m,σ′, vk, 1) for any σ′ is recorded, then
set f := 0.

3. Else, if there is an entry (m,σ, vk′, f ′) recorded, then let f := f ′.

4. Else, let f := φ and record the entry (m,σ, vk′, φ).

Output (Verified,m, f) to P .

Figure 11: Signature Functionality.
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